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Abstract

It has been observed that applying pruning-at-initialization methods and training the sparse
networks can sometimes yield slightly better test performance than training the original
dense network. Such experimental observations are yet to be understood theoretically.
This work makes the first attempt to study this phenomenon. Specifically, we identify a
theoretical minimal setting and study a classification task with a one-hidden-layer neural
network, which is randomly pruned according to different rates at the initialization. We show
that as long as the pruning rate is below a certain threshold, the network provably exhibits
good generalization performance after training. More surprisingly, the generalization bound
gets better as the pruning rate mildly gets larger. To complement this positive result,
we also show a negative result: there exists a large pruning rate such that while gradient
descent is still able to drive the training loss toward zero, the generalization performance is
no better than random guessing. This further suggests that pruning can change the feature
learning process, which leads to the performance drop of the pruned neural network. To our
knowledge, this is the first theory work studying how different pruning rates affect neural
networks’ performance, suggesting that an appropriate pruning rate might improve the
neural network’s generalization.
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1. Introduction

Neural network pruning can be dated back to the early stage of the development of neural
networks (LeCun et al., 1989). Since then, many research works have been focusing on
using neural network pruning as a model compression technique, e.g. (Molchanov et al.,
2019; Luo and Wu, 2017; Ye et al., 2020; Yang et al., 2021). Many of the early pruning
literature focused on pruning neural networks after training to reduce inference time. On the
other hand, nowadays, training models has become more and more expensive since people
are training and deploying larger and larger models with tens of billions of parameters.
The idea of applying pruning to reduce the cost of training has been catching people’s
attention: if we can train a sparse model which can achieve similar performance with a dense
model, then the cost of training can be significantly reduced. It is not until recently that
Frankle and Carbin (2018) showed a surprising phenomenon: a neural network pruned at the
initialization can be trained to achieve competitive performance to the dense model. They
called this phenomenon the lottery ticket hypothesis. The lottery ticket hypothesis states
that there exists a sparse subnetwork inside a dense network at the random initialization
stage such that when trained in isolation, it can match the test accuracy of the original
dense network after training for at most the same number of iterations. On the other hand,
the algorithm Frankle and Carbin (2018) proposed to find the lottery ticket requires many
rounds of pruning and retraining which is computationally expensive. Many subsequent
works have focused on developing new methods to reduce the cost of finding such a network
at the initialization (Lee et al., 2018; Wang et al., 2019; Tanaka et al., 2020; Liu and Zenke,
2020; Chen et al., 2021b). A further investigation by Frankle et al. (2020) showed that some
of these methods merely discover the layer-wise pruning ratio instead of sparsity pattern.
Surprisingly, there have been empirical works showing that random pruning can be effective
under certain cases and sometimes even produce sparse sub-networks that can perform on
par as the lottery ticket sub-network (Frankle et al., 2020; Su et al., 2020; Liu et al., 2021b).

To understand the lottery ticket hypothesis, on the theory side, a line of research is
focusing on finding a subnetwork inside a dense network at the random initialization such
that the subnetwork can achieve good performance (Zhou et al., 2019; Ramanujan et al.,
2020). In particular, Malach et al. (2020) formalized this phenomenon which they called
the strong lottery ticket hypothesis: under certain assumption on the weight initialization
distribution, a sufficiently overparameterized neural network at the initialization contains a
subnetwork with roughly the same accuracy as the target network. Later, Pensia et al. (2020)
improved the overparameterization parameters and Sreenivasan et al. (2021) showed that
such a type of result holds even if the weight is binary. Unsurprisingly, as it was pointed out
by Malach et al. (2020), finding such a subnetwork is computationally hard. Nonetheless, all
of the analysis is from a function approximation perspective and none of the aforementioned
works have considered the effect of pruning on gradient descent dynamics, let alone the
neural networks’ generalization. Thus, such type of analysis is far from fully explaining the
success of the lottery ticket hypothesis.

Interestingly, in many empirical studies, it has been reportedly found that pruning can
noticeably improve generalization in certain scenarios (Chen et al., 2021a; He et al., 2022;
Jin et al., 2022). In particular, Jin et al. (2022) in their empirical work hypothesizes that
pruning can (1) lead to better training (i.e., smaller training loss at the end of training) and



RANDOM PRUNING CAN IMPROVE GENERALIZATION

(2) provide additional regularization effect on the model. However, theoretical understanding
of such benefit of neural network pruning is still limited. In this work, we take the first step
to answer the following important open question from a theoretical perspective:

How does pruning fraction affect the training dynamics and the model’s gen-
eralization, if the model is pruned at the initialization and trained by gradient
descent?

On the one hand, pruning methods like iterative magnitude-based pruning find sparse masks
by many rounds of training and pruning and thus, the masks found by such pruning methods
possess complicated relationships with the magnitude of the weights themselves, which
creates theoretical hurdles for analysis. On the other hand, there have been empirical works
showing that random pruning can be effective (Frankle et al., 2020; Su et al., 2020; Liu
et al., 2021b). In this work, we identify a theoretical minimal setting where we show that
different pruning rates can make the network exhibit distinct generalization behaviors even
under random pruning. We consider a classification task where the input data consists of
class-dependent sparse signal and random noise. We analyze the training dynamics of a
one-hidden-layer convolutional neural network pruned at the initialization, where we offer
new principled insights beyond the recent empirical observations on how pruning can improve
generalization (Jin et al., 2022; He et al., 2022). Specifically, this work makes the following
contributions:

e Mild pruning. We prove that there indeed exists a range of pruning fractions where
the pruning fraction is mild and the generalization error bound gets better as the
pruning fraction gets larger. In this case, the signal in the feature is well-preserved and
pruning reduces the effect from noise. We provide detailed explanation in Section 3.
To our knowledge, this is the first theory work studying how different pruning rates
affect neural networks’ performance, suggesting that mild pruning rate can improve the
neural network’s generalization under some setting. Further, we conduct experiments
to verify our results.

e Over pruning. To complement the above positive result, we also show a negative
result: there exists a certain range of large pruning rates such that the generalization
performance of the trained network is no better than simple random guessing, although
gradient descent is still able to drive the training loss toward zero. This further
suggests that contrary to the common belief that the performance drop of the pruned
neural network is caused by its lack of trainability or expressiveness, that can also be
attributed to the change of gradient descent dynamics due to pruning.

e Technically, we develop novel analysis to bound pruning effect to weight-noise and
weight-signal correlation. Further, in contrast to many previous works that considered
only the binary case, our analysis handles multi-class classification with general
cross-entropy loss. Here, a key technical development is a gradient upper bound for
multi-class cross-entropy loss, which might be of independent interest.

Pictorially, our result is summarized in Figure 1. We point out that the neural network
training we consider is in the feature learning regime, where the weight parameters can
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Figure 1: A pictorial demonstration of our results. The bell-shaped curves model the
distribution of the signal in the features, where the mean represents the signal strength
and the width of the curve indicates the variance of noise. Using the notations which we
introduce later, the signal strength denotes (wy, ® my,,, peg). Our results show that mild
pruning preserves the signal strength and reduces the noise variance (and hence yields better
generalization), whereas over pruning lowers signal strength albeit reducing noise variance.

go far away from their initialization. This is fundamentally different from the popular
neural tangent kernel regime, where the neural networks essentially behave similarly to its
linearization around initialization.

1.1 Related Works

The Lottery Ticket Hypothesis and Sparse Training. The discovery of the lottery
ticket hypothesis (Frankle and Carbin, 2018) has inspired further investigation and applica-
tions. One line of research has focused on developing computationally efficient methods to
enable sparse training: the static sparse training methods are aiming at identifying a sparse
mask at the initialization stage based on different criterion such as SNIP (loss-based) (Lee
et al., 2018), GraSP (gradient-based) (Wang et al., 2019), SynFlow (synaptic strength-based)
(Tanaka et al., 2020), neural tangent kernel based method (Liu and Zenke, 2020) and one-shot
pruning (Chen et al., 2021b). Random pruning has also been considered in static sparse
training such as uniform pruning (Mariet and Sra, 2015; He et al., 2017; Gale et al., 2019;
Suau et al., 2018), non-uniform pruning (Mocanu et al., 2016), expander-graph-related
techniques (Prabhu et al., 2018; Kepner and Robinett, 2019) Erdoés-Rényi (Mocanu et al.,
2018) and Erdos-Rényi-Kernel (Evci et al., 2020). On the other hand, dynamic sparse
training allows the sparse mask to be updated (Mocanu et al., 2018; Mostafa and Wang,
2019; Evci et al., 2020; Jayakumar et al., 2020; Liu et al., 2021c,d,a; Peste et al., 2021). The
sparsity pattern can also be learned by using sparsity-inducing regularizer (Yang et al., 2020).
Recently, He et al. (2022); Jin et al. (2022) discovered that training neural networks pruned
at the initialization via iterative magnitude-based pruning can noticeably improve model’s
generalization when a significant portion of the training data-set labels are corrupted.
Another line of research has focused on studying pruning the neural networks at its
random initialization to achieve good performance (Zhou et al., 2019; Ramanujan et al.,
2020). In particular, Ramanujan et al. (2020) showed that it is possible to prune a randomly
initialized wide ResNet-50 to match the performance of a ResNet-34 trained on ImageNet.
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This phenomenon is named the strong lottery ticket hypothesis. Later, Malach et al. (2020)
proved that under certain assumption on the initialization distribution, a target network of
width d and depth [ can be approximated by pruning a randomly initialized network that is
of a polynomial factor (in d,l) wider and twice deeper even without any further training.
However finding such a network is computationally hard, which can be shown by reducing
the pruning problem to optimizing a neural network. Later, Pensia et al. (2020) improved
the widening factor to being logarithmic and Sreenivasan et al. (2021) proved that with a
polylogarithmic widening factor, such a result holds even if the network weight is binary. A
follow-up work shows that it is possible to find a subnetwork achieving good performance at
the initialization and then fine-tune (Sreenivasan et al., 2022). Our work, on the other hand,
analyzes the gradient descent dynamics of a pruned neural network and its generalization
after training.

Analyses of Training Neural Networks by Gradient Descent. A series of work
(Allen-Zhu et al., 2019; Du et al., 2019; Lee et al., 2019; Zou et al., 2020; Zou and Gu, 2019;
Ji and Telgarsky, 2019; Chen et al., 2020b; Song and Yang, 2019; Oymak and Soltanolkotabi,
2020) has proved that if a deep neural network is wide enough, then (stochastic) gradient
descent provably can drive the training loss toward zero in a fast rate based on neural tangent
kernel (NTK) (Jacot et al., 2018). Further, under certain assumption on the data, the
learned network is able to generalize (Cao and Gu, 2019; Arora et al., 2019). However, as it
is pointed out by Chizat et al. (2019), in the NTK regime, the gradient descent dynamics of
the neural network essentially behaves similarly to its linearization and the learned weight is
not far away from the initialization, which prohibits the network from performing any useful
feature learning. In order to go beyond NTK regime, one line of research has focused on the
mean field limit (Song et al., 2018; Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden,
2018; Wei et al., 2019; Chen et al., 2020a; Sirignano and Spiliopoulos, 2020; Fang et al.,
2021). Recently, people have started to study the neural network training dynamics in the
feature learning regime where data from different class is defined by a set of class-related
signals which are low rank (Allen-Zhu and Li, 2020, 2022; Cao et al., 2022; Shi et al., 2021;
Telgarsky, 2022). Our work also focuses on the aforementioned feature learning regime, but
for the first time characterizes the impact of pruning on the generalization performance of
neural networks.

2. Preliminaries and Problem Formulation

In this section, we introduce our notation, data generation process, neural network architec-
ture and the optimization algorithm.

Notations. We use lower case letters to denote scalars and boldface letters and symbols
(e.g. x) to denote vectors and matrices. We use ® to denote element-wise product. For
an integer n, we use [n] to denote the set of integers {1,2,...,n}. We use x = O(y),xz =
Q(y),z = ©(y) to denote that there exists a constant C' such that x < Cy, = > Cy,z = Cy
respectively. We use 5, Q and O to hide polylogarithmic factor in these notations. Finally,
we use = poly(y) if z = O(y®) for some positive constant C, and z = polylogy if

z = poly(log y).
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2.1 Settings

Definition 1 (Data distribution of K classes) Consider we are given the set of signal
vectors {pe;} X |, where 1 > 0 denotes the strength of the signal, and e; € R? (with d > K)
denotes the i-th standard basis vector with its i-th entry being 1 and all other coordinates
being 0. Each data point (x,y) with x = [x] ,x4]" € R?? and y € [K] is generated from the
following distribution D:

1. The label y is generated from a uniform distribution over [K].
2. A noise vector £ is generated from the Gaussian distribution N(0,c21).

3. With probability 1/2, assign X1 = p,,, X2 = §; with probability 1/2, assign xz =
Ky, X1 =& where p, = pey.

The sparse signal model is motivated by the empirical observation that during the process
of training neural networks, the output of each layer of ReLLU is usually sparse instead of
dense. This is partially due to the fact that in practice the bias term in the linear layer is
used (Song et al., 2021). For samples from different classes, usually a different set of neurons
fire. Our study can be seen as a formal analysis on pruning the second last layer of a deep
neural network in the layer-peeled model as in Zhu et al. (2021); Zhou et al. (2022). We also
point out that our assumption on the sparsity of the signal is necessary for our analysis. If
we don’t have this sparsity assumption and only make assumption on the 5 norm of the
signal, then in the extreme case, the signal is uniformly distributed across all coordinate
and the effect of pruning to the signal and the noise will be essentially the same: their /o
norm will both be reduced by a factor of /p.

Network architecture and random pruning. We consider a two-layer convolutional
neural network model with polynomial ReLU activation o(z) = (max{0, z})9, where we
focus on the case when g = 3 ! The network is pruned at the initialization by mask M where
each entry in the mask M is generated i.i.d. from Bernoulli(p). Given the data (x,y), the
output of the neural network can be written as F(W © M, x) = (F1 (W10 Mji,x), Fo(W2®
My, x), ..., Fx(Wg © Mg, x)) where the j-th output is given by

NE

Fi(W;0Mj,x) = > [o((wWjr ©mj,,x1)) + o((Wjr © mj,, X2))]

1
I
—

I
NE

[U(<Wj,r O my,, I'l’y>) +o((wjr ©my,, §))],

1
I
—

where m; ;. denotes the r-th row of M;. The mask M is only sampled once at the initialization
and remains fixed through the entire training process. From now on, we use tilde over a
symbol to denote its masked version, e.g., W =W OM and w;, = w;, © mj,.

1. We point out that as many previous works (Allen-Zhu and Li, 2020; Zou et al., 2021; Cao et al., 2022),
polynomial RelLU activation can help us simplify the analysis of gradient descent, because polynomial
ReLU activation can give a much larger separation of signal and noise (thus, cleaner analysis) than ReLU.
Our analysis can be generalized to ReLU activation by using the arguments in (Allen-Zhu and Li, 2022).
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Since we have p; © mj, = 0, with probability 1 — p, some neurons will not receive the
corresponding signal at all and will only learn noise. Therefore, for each class j € [K], we
split the neurons into two sets based on whether it receives its corresponding signal or not:

Sglgnal {T € [ ] y‘j © m;, 7é 0}7
S ={relm: p; ©m;, =0}

noise

Gradient descent algorithm. We consider the network is trained by cross-entropy loss

with softmax. We denote by logit,(F,x) := S el (x; o and the cross-entropy loss can be
JE[K] €

written as £(F'(x,y)) = — loglogit, (F,x). The convolutional neural network is trained by
minimizing the empirical cross-entropy loss given by

1n
Ls(W) =ELF(WoM;x;,y)] = — F(W O M;x;, )],
(W) = BHF(W © Mixi, )] = 2 3 F(W © Mixi 0]

where S = {(x;,y;)}!_; is the training data set. Similarly, we define the generalization
loss as

Lp = (E)V(F(W © M;x,y))].

The model weights are initialized from a i.i.d. Gaussian N'(0,03). The gradient of the
cross-entropy loss is given by ¢ ; := £} (x;,y;) = logit,; (F, x;) — I(j = v;).
Since
vw],TLS(W @ M) = VW]J‘QmJ,TLS(W @ M) @ mj’,r
- V‘X’],T‘LS(W) @ mj)r’

we can write the full-batch gradient descent update of the weights as

Wit = gl nVWJ Ls(W) ©m;,
v~v ®_1 Z ]7 <<~§t2’52>) 'gj,r,i
5 ()

for j € [K] and r € [m], where Ej,r,i =& Omy,.

Condition 2 We consider the parameter regime described as follows: (1) Number of classes
K = O(logd). (2) Total number of training samples n = polylogd. (3) Dimension
d > Cy for some sufficiently large constant Cq. (4) Relationship between signal strength
and noise strength: p = ©(o,\/dlogd) = ©(1). (5) The number of neurons in the network
m = Q(polylogd). (6) Initialization variance: oo = O(m *n"*u1). (7) Learning rate:

Q(1/ poly(d)) <n < O(1/u2). (8) Target training loss: € = O(1/ poly(d)).



YANG, Lianc, Guo, Wu, AND WANG

Conditions (1) ensures that there are not too many classes which is a mild assumption and
can be satisfied by real world dataset like MNIST. Condition (2) ensure that there are enough
samples in each class with high probability and at the same time not too many samples
such that the noise will interfere with the neural network learning the signals. Condition
(3) ensures that our setting is in high-dimensional regime. Condition (4) ensures that the
full model can be trained to exhibit good generalization. Condition (5), (6) and (7) ensures
that the neural network is sufficiently overparameterized and can be optimized efficiently by
gradient descent. Condition (7) and (8) further ensures that training time is polynomial
in d. We further discuss the practical consideration of 1 and € to justify their condition in
Theorem 23.

3. Mild Pruning

3.1 Main result

The first main result shows that there exists a threshold on the pruning fraction p such that
pruning helps the neural network’s generalization.

Theorem 3 (Main theorem for mild pruning, informal version of Theorem 15)
Under Condition 2, if p € [C} logd, 1] for some constant C1, then with probability at least

m
1 —O(dY) over the randomness in the data, network initialization and pruning, there exists

T= 6(anla§_q/fq + K2mAp—2n=te™ ) such that

1. The training loss is below e: LS(W(T)) <e.

2. The generalization loss can be bounded by LD(W(T)) < O(Ke) + exp(—n?/p).

Theorem 3 indicates that there exists a threshold in the order of @(%) such that if p is
above this threshold (i.e., the fraction of the pruned weights is small), gradient descent is
able to drive the training loss towards zero (as item 1 claims) and the overparameterized
network achieves good testing performance (as item 2 claims): as p becomes smaller (recall
that p is the probability that we keep a weight, and thus, the smaller p is, the more we
prune), the generalization bound will become smaller. This implies that we can get a better
generalization by pruning more. In the next subsection, we explain why pruning can help
generalization, and we defer all the detailed proofs in Appendix C.

3.2 Proof Outline
Our proof establishes of the following two properties:

e First we show that after mild pruning the network is still able to learn the signal, and
the magnitude of the signal in the feature is preserved.

e Then we show that given a new sample, pruning reduces the noise effect in the feature
which leads to the improvement of generalization.

We first present our analysis for three stages of gradient descent: initialization, feature
growing phase, and converging phase, and then establish the generalization property.
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Initialization. First of all, readers might wonder why pruning can even preserve signal
at all. Intuitively, a network will achieve good performance if its weights are highly correlated
with the signal (i.e., their inner product is large). Two intuitive but misleading heuristics
are given by the following:

e Consider a fixed neuron weight. At the random initialization, in expectation, the signal
correlation with the weights is given by Ew m[| (w © m, u) |] < poop and the noise cor-
relation with the weights is given by Ev, m e[| (W @ m, §)|] < \/Ew7m7£[<w om,¢)? =

o00onv/pd by Jensen’s inequality. Based on this argument, taking a sum over all the
neurons, pruning will hurt weight-signal correlation more than weight-noise correlation.

e Since we are pruning with Bernoulli(p), a given neuron will not receive signal at all
with probability 1 — p. Thus, there is roughly p fraction of the neurons receiving the
signal and the rest 1 — p fraction will be purely learning from noise. Even though for
every neuron, roughly ,/p portion of /5 mass from the noise is reduced, at the same
time, pruning also creates 1 — p fraction of neurons which do not receive signals at
all and will purely output noise after training. Summing up the contributions from
every neuron, the signal strength is reduced by a factor of p while the noise strength is
reduced by a factor of /p. We again reach the conclusion of pruning under any rate
will hurt the signal more than noise.

The above analysis shows that under any pruning rate, it seems pruning can only hurt the
signal more than noise at the initialization. Such analysis would be indicative if the network
training is under the neural tangent kernel regime, where the weight of each neuron does not
travel far from its initialization so that the above analysis can still hold approximately after
training. However, when the neural network training is in the feature learning regime, this
average type analysis becomes misleading. Namely, in such a regime, the weights with large
correlation with the signal at the initialization will quickly evolve into singleton neurons
and those weights with small correlation will remain small. In our proof, we focus on the
featuring learning regime, and analyze how the network weights change and what are the
effect of pruning during various stages of gradient descent.

We now analyze the effect of pruning on weight-signal correlation and weight-noise
correlation at the initialization. Our first lemma leverages the sparsity of our signal and
shows that if the pruning is mild, then it will not hurt the maximum weight-signal correlation
much at the initialization. On the other hand, the maximum weight-noise correlation is
reduced by a factor of |/p.

Lemma 4 (Initialization, same as Theorem 21) With probability at least 1 —2/d, for
all i € [n],

000/ pd < max <VTIJ(OT),£Z> < /2log(Kmd)ogon+/pd.
Further, suppose pm > Q(log(Kd)), with probability 1 — 2/d, for all j € [K],

ol < e (5., < V2lonSpmEdjon

signal
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Given this lemma, we now prove that there exists at least one neuron that is heavily aligned
with the signal after training. Similarly to previous works (Allen-Zhu and Li, 2020; Zou
et al., 2021; Cao et al., 2022), the analysis is divided into two phases: feature growing phase
and converging phase.

Feature Growing Phase. In this phase, the gradient of the cross-entropy is large
and the weight-signal correlation grows much more quickly than weight-noise correlation
thanks to the polynomial ReLU. We show that the signal strength is relatively unaffected
by pruning while the noise level is reduced by a factor of |/p.

Lemma 5 (Feature growing phase, informal version of Theorem 31) Under Con-
dition 2, there exists time T1 such that
1. The mazx weight-signal correlation is large: max, <V~VJ(-7;1), uj> >m~ Y forje [K].
2. The weight-noise and cross-class weight-signal correlations are small: if j # y;, then
~ (T} ~ (T A
<W§-ﬂ}),£i> < O(ogony/pd) and max;,. ’<W§»’7}), ,uk>‘ < O(oop).

Converging Phase. We show that gradient descent can drive the training loss toward zero
while the signal in the feature is still large. An important intermediate step in our argument
is the development of the following gradient upper bound for multi-class cross-entropy loss
which introduces an extra factor of K in the gradient upper bound.

maxxm

Lemma 6 (Gradient upper bound, informal version of Theorem 33) Under Con-
dition 2, we have

HVLS(VVM) © MHi < O(Km?/1:%) Lg(W®),

Proof Sketch To prove this upper bound, note that for a given input (x;,y;), ﬁgf)ZVF L (x;)
should make major contribution to |[V/(W;x;,y;) ‘F Further note that |€;(f)z\ =1~

Fj(x;) Fj(x;)
Z#yi;i < Z]’?éF?{if f)
Zje S - et'yi\ ¥

logit,, (F;x;) = . Now, apply the property that F(x;) is small

for j # y; (which we prove in the appendix), the numerator will contribute a factor of

K. To bound the rest, we utilize the special property of multi-class cross-entropy loss:

|£;(?| < |€;(f)z| < Egt). However, a naive application of this inequality will result in a factor of
3 . . . . /(t) - /(t)

K* instead K in our bound. The trick is to further use the fact that >, |6,/ = (¢, ;|. B

Using the above gradient upper bound, we can show that the objective can be minimized.

Lemma 7 (Converging phase, informal version of Theorem 38) Under Condition
2, there exists Ty such that for some time t € [T1,Ts] such that

1. The results from the feature growing phase (Lemma 5) hold up to constant factors.
2. The training loss is small Ls(W®) < e.

Notice that the weight-noise correlation still remains reduced by a factor of ,/p after training.
Lemma 7 proves the statement of the training loss in Theorem 3.

10
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Generalization Analysis. Finally, we show that pruning can purify the feature by
reducing the variance of the noise by a factor of p when a new sample is given. The lemma
below shows that the variance of weight-noise correlation for the trained weights is reduced
by a factor of p.

Lemma 8 (Same as Theorem 39) The neural network weight W* after training satisfies
that
g
P |max (W}, &)| > (2m)Q} < 2Kme\ ©57ird)
s -]7T ’
Using this lemma, we can show that pruning yields better generalization bound (i.e., the
bound on the generalization loss) claimed in Theorem 3.

4. Over Pruning

Our second result shows that there exists a relatively large pruning fraction (i.e., small p)
such that the learned model yields poor generalization, although gradient descent is still
able to drive the training error toward zero. The full proof is defered to Appendix D.

Theorem 9 (Main theorem for over pruning, informal version of Theorem 41 )
Under Condition 2 if p = @(m), then with probability at least 1 — 1/ polylogd
over the randomness in the data, network initialization and pruning, there exists T =

0(77_171(787207?1(])(1)_’1/2 +nte tmino, 2 (pd) ") such that
1. The training loss is below e: LS(W(T)) <e.
2. The generalization loss is large: LD(W(T)) > Qlog K).

Remark 10 The above theorem indicates that in the over-pruning case, the training loss
can still go to zero. However, the generalization loss of our neural network behaves no much
better than random guessing, because given any sample, random guessing will assign each
class with probability 1/ K, which yields a generalization loss of log K. The readers might
wonder why the condition for this to happen is p = @(m) instead of O(m). Indeed,
the generalization will still be bad if p is too small. However, now the neural network is not
only unable to learn the signal but also cannot efficiently memorize the noise via gradient
descent.

Proof Outline: Now we analyze the over-pruning case. We first show that there is a good
chance that the model will not capture any signal after pruning due to the sparse signal
assumption and mild overparameterization of the neural network.

Lemma 11 (Over pruning initialization, same as Theorem 42) If m = polylogd
andp = @(m), with probability 1 —0O(1/logd), for all class j € [K| we have \Sgignall =0.

Then, leveraging such a property, we bound the weight-signal and weight-noise properties for
the feature growing and converging phases of gradient descent, as stated in the following two
lemmas, respectively. Our result indicates that the training loss can still be driven toward
zero by letting the neural network memorize the noise, the proof of which further exploits
the fact that high dimensional Gaussian noise are nearly orthogonal.

11
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Lemma 12 (Feature growing phase, informal version of Theorem 43) Under Con-
dition 2, there exists T such that

e Some weights has large correlation with noise: max, <v~vglr), z> > m~14 for alli € [n].

o The cross-class weight-noise and weight-signal correlations are small: if j # y;, then
~ (T ~ ~ (T ~
<w§.ﬂ}),5i> = O(0090nV/pd) and max; .y ‘<w§-;), ,uk>‘ < O(oop).

Lemma 13 (Converging phase, informal version of Theorem 49) Under Condition
2, there exists a time Ty such that for some t in [T1,Ts|, the results from phase 1 still holds
(up to constant factors) and Lg(W®) < e.

manmZ‘

Finally, since the above lemmas show that the network is purely memorizing the noise, this
can be further utilized to show that such a network yields poor generalization performance
as stated in Theorem 9.

5. Experiments

5.1 Simulations to Verify Our Results

In this section, we conduct simulations to verify our results. We conduct our experiment
using binary classification task and show that our result holds for ReLU networks. Our
experiment settings are the follows: we choose input to be x = [x1,x2] = [yei, &] € R
and x1,Xo € R0 where €, is sampled from a Gaussian distribution. The class labels y are
{£1}. We use 100 training examples and 100 testing examples. The network has width 150
and is initialized with random Gaussian distribution with variance 0.01. Then, p fraction of
the weights are randomly pruned. We use the learning rate of 0.001 and train the network
over 1000 iterations by gradient descent.

The observations are summarized as follows. In Figure 2a, when the noise level is
on = 0.5, the pruned network usually can perform at the similar level with the full model
when p < 0.5 and noticably better when p = 0.3. When p > 0.5, the test error increases
dramatically while the training accuracy still remains perfect. On the other hand, when
the noise level becomes large o, = 1 (Figure 2b), the full model can no longer achieve good
testing performance but mild pruning can improve the model’s generalization. Note that the
training accuracy in this case is still perfect (omitted in the figure). We observe that in both
settings when the model test error is large, the variance is also large. However, in Figure 2b,
despite the large variance, the mean curve is already smooth. In particular, Figure 2c plots
the testing error over the training iterations under p = 0.5 pruning rate. This suggests that
pruning can be beneficial even when the input noise is large.

5.2 On the Real World Dataset

To further demonstrate the mild/over pruning phenomenon, we conduct experiments on
MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky et al., 2009) datasets. We consider neural
network architectures including MLP with 2 hidden layers of width 1024, VGG, ResNets
(He et al., 2016) and wide ResNet (Zagoruyko and Komodakis, 2016). In addition to
random pruning, we also add iterative-magnitude-based pruning Frankle and Carbin (2018)
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Training/Testing Error over Pruning Rates

Training/Testing Error over Pruning Rates
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Figure 2: Figure (a) shows the relationship between pruning rates p and training/testing
error under noise variance o, = 0.5. Figure (b) shows the relationship between pruning
rates p and testing error under noise variance o, = 1. The training error is omitted since
it stays effectively at zero across all pruning rates. Figure (c¢) shows a particular training
curve under pruning rate p = 50% and noise variance o, = 1. Each data point is created by
taking an average over 10 independent runs.

into our experiments. Both pruning methods are prune-at-initialization methods. Our
implementation is based on Chen et al. (2021c).

Under the real world setting, we do not expect our theorem to hold exactly. Instead,
our theorem implies that (1) there exists a threshold such that the testing performance is
no much worse than (or sometimes may slightly better than) its dense counter part; and (2)
the training error decreases later than the testing error decreases. Our experiments on MLP
(Figure 3a) and VGG-16 (Figure 3b) show that this is the case: for MLP the test accuracy
is steady competitive to its dense counterpart when the sparsity is less than 79% and 36%
for VGG-16. We further provide experiments on ResNet in Appendix A.2.

MLP MNIST Accuracy vs Sparsity VGG-16 CIFAR-10 Accuracy vs Sparsity

100

98

96

]

> >
2 985 g 94
3 Tttt g W
3 3
g g -
< 98.0 < %
97.5 %
—f— Random (Train) —f— Random (Train)
97.0 Random (Test) Random (Test)
—f— IMP (Train) 881 —— IMP (Train)
—f— IMP (Test) —f— IMP (Test)
96.5
0.0 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2 0.0 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2
(a) (b)

Figure 3: Figure (a) shows the result between pruning rates p and accuracy on MLP-1024-
1024 on MNIST. Figure (b) shows the result on VGG-16 on CIFAR-10. Each data point is
created by taking an average over 3 independent runs.

6. Further Comparison to Prior Works

We point out that previous works such as (Allen-Zhu and Li, 2020, 2022; Cao et al., 2022;
Karp et al., 2021; Frei et al., 2022; Glasgow et al.) studied deep learning theory by considering
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data distribution consisting of signals and noise. Our work aligns with such a line of research
with the following key difference. All the above work did not study the pruning model,
whereas our focus is on exploring how random pruning at initialization can improve the
network’s generalization after training. Our new contributions lies in characterizing how
pruning neural networks at initialization will impact the training dynamics. For example,
for mild pruning, Lemma 5 shows that the effect of pruning on increasing SNR can be
carried through the feature growing phase. Furthermore, all the above previous work focused
on binary classification setting whereas we study a multi-class classification setting, which
requires further extension.

A prior work in a similar spirit to ours is (Zhang et al., 2021) whose setting assumes the
labels of the input data are generated from some unknown sparse teacher network and the
goal of the training is to learn a student network to recover the weights of the teacher network
given the underlying true mask of the teacher network. Under such assumption,
their conclusion is that the sparser the teacher network is, the faster convergence and better
sample complexity the student network can achieve. On the other hand, our setting assumes
a sparse signal structure and a binary label. However, our work doesn’t have such strong
assumption that the student network knows the underlying true sparse structure of the
signal at all. In fact, our work complements Zhang et al. 2021 in a sense that our setting
considers mask generated by random pruning under different pruning rate (which can hardly
ever be the true mask), and we are able to show that there exists a range that the more we
prune, the better generalization we can have.

7. Discussion and Future Directions

In this work, we provide theory on the generalization performance of pruned neural networks
trained by gradient descent under different pruning rates in a simplified setting. Our results
characterize the effect of pruning under different pruning rates: in the mild pruning case, the
signal in the feature is well-preserved and the noise level is reduced which leads to improvement
in the trained network’s generalization; on the other hand, over pruning significantly destroys
signal strength despite of also reducing the amount of noise in the feature. For practical
utility of our work, our goal is to improve the theoretical understanding of the effectiveness
of neural network pruning. We hope our work can help machine learning practitioners
understand how and why pruning works. In particular, our theoretical analysis indicates that
there are neurons in the neural network aligning more with the signal while other neurons
aligning more with the noise. Thus, pruning the neurons aligning noise more will help improve
the network’s generalization. We believe that such theoretical understanding is helpful for
machine learning practitioners and can lead to designing efficient and accurate pruning
algorithms. We do hope our work can provide guidance on finding the optimal pruning ratio.
However, currently, limited by the theoretical tools, we are unable to characterize the phase
transition even for our simple data distribution.
Thus, our work is preliminary and contains many interesting future directions:

e Our work considers a simple signal-noise distribution although inspired by many recent
work, still far from the real world distribution such as images. In the future, it would
be interesting to consider more complicated data distribution such as the one recently
studied (Ankner et al., 2022).
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e Our work only considers one-hidden-layer neural networks which are although studied
in the current frontier of deep learning theory, still have different learning mechanism
from the deep neural networks.

e Our work studies random pruning, and we would like to study more sophisticated
pruning methods such as magnitude-based pruning (Frankle and Carbin, 2018).
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Appendix A. Experiments

A.1 Experiment Details

The experiments of MLP, VGG and ResNet-32 are run on NVIDIA A5000 and ResNet-50
and ResNet-20-128 is run on 4 NIVIDIA V100s. We list the hyperparameters we used in
training. All of our models are trained with SGD and the detailed settings are summarized
below.

Table 1: Summary of architectures, dataset and training hyperparameters

MODEL DATA EpocH BarcH Size LR MoOMENTUM LR DEecAy, EPocH WEIGHT DECAY
LENET MNIST 120 128 0.1 0 0 0

VGG CIFAR-10 160 128 0.1 0.9 0.1 x [80, 120] 0.0001
REsNETs CIFAR-10 160 128 0.1 0.9 0.1 x [80, 120] 0.0001

A.2 Further Experiment Results

We plot the experiment result of ResNet-20-128 in Figure 4. This figure further verifies our
results that there exists pruning rate threshold such that the testing performance of the
pruned network is on par with the testing performance of the dense model while the training
accuracy remains perfect.

ResNet-20-128 CIFAR-10 Accuracy vs Sparsity

—— Random (Train)
Random (Test)

97 —+— IMP (Train)

—— IMP (Test)

0.0 20.0 36.0 48.8 59.0 67.2 738 79.0 83.2 86.6
Sparsity

Figure 4: The figure shows the experiment results of ResNet-20-128 under various sparsity
by random pruning and IMP. Each data point is averaged over 2 runs.

A.3 Further synthetic experiments

We run further experiments to verify our theory. For our experiment setting, we choose
the input dimension d = 400, and the Gaussian noise level to be 1.5. We use 100 training
samples and testing samples. The neural networks have hidden dimension 4 and the weights
are initialized with standard deviation 0.01. We train the neural network with learning rate
0.1 for 5000 epoch.
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Figure 5a shows mild pruning can improve generalization: 0.1 pruning rate has error
noticeably smaller than the full model. On the other hand, Figure 5b shows that when the
pruning rate is large, the neural network can still attain very small training loss while the
testing loss is very high.

Training/Testing Error over Pruning Rates Training/Testing Loss over Pruning Rates
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{ Testing loss
0.4 Testing error 2,54
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0.3
s v 1.54
) S
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Figure 5

Appendix B. Preliminary for Analysis

In this section, we introduce the following signal-noise decomposition of each neuron weight
from Cao et al. (2022), and some useful properties for the terms in such a decomposition,
which are useful in our analysis.

Definition 14 (signal-noise decomposition) For each neuron weight j € [K], r € [m)],

there exist coefficients fyj(.? e (?Z, w](tzl such that

-2 -
, Siris

n
-2 ~
2 15752 j,””7’i

Ej,r,i

K n
~(0 t —2 t =
= el e om0, €
k=1 =1

where 'y(t) >0, 'y(t)k <0, C_j(,tg’b > 0,0 <0.

J7r7j - ]7T J’T7Z -

It is straightforward to see the following:
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LD ) g0 (0,60 By 16 = w0
D 2o (50,60 (B[ 106 £ w0

where {fy] , ]}t 1> {C e I | are increasing sequences and {'y ok T, {w | are decreasing

]T‘Z
)

sequences, because E( > 0 when j = y;, and E() < 0 when j # y;. By Lemma 18, we

have pd > n+ K, and hence the set of vectors {p;,} 5, U{ﬁl ', is linearly independent with
probability measure 1 over the Gaussian distribution for each j € [K],r € [m]. Therefore
the decomposition is unique.

Appendix C. Proof of Theorem 3

We first formally restate Theorem 3.

Theorem 15 (Formal Restatement of Theorem 3) Under Condition 2, choose ini-

tialization variance oo = O(m™*n~u~Y) and learning rate n < O(1/u2). For ¢ > 0, if

D> Cl% for some sufficiently large constant C1, then with probability at least 1 — O(d™!)
over the randomness in the data, network initialization and pruning, there exists T =
over th d in the dat twork initializati d ing, th ists T
O(Kn_lag_q,u_q + K2m*u—2n=te™Y) such that the following holds:

1. The training loss is below e: LS(W(T)) <e.
2. The weights of the CNN highly correlate with its corresponding class signal: max, %(77:)] >
Q(m=19) for all j € [K].
3. The weights of the CNN doesn’t have high correlation with the signal from different
T o
classes: max; s, refm) |7](r)k| < O(opp).

4. None of the weights is highly correlated with the noise: max; ,; Cj(j;)z = 6(ann\/pd),
and max;,; [w; T)Z] = O(000my/pd).

Moreover, the testing loss is upper-bounded by
Lp(WT) < O(Ke) + exp(~n?/p).

The proof of Theorem 3 consists of the analysis of the pruning on the signal and noise for
three stages of gradient descent: initialization, feature growing phase, and converging phase,
and the establishment of the generalization property. We present these analysis in detail in
the following subsections. A special note is that the constant C' showing up in the following
proof of each subsequent Lemmas is defined locally instead of globally, which means the
constant C within each Lemma is the same but may be different across different Lemma.

C.1 Initialization

We analyze the effect of pruning on weight-signal correlation and weight-noise correlation
at the initialization. We first present a few supporting lemmas, and finally provide our
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main result of Theorem 21, which shows that if the pruning is mild, then it will not hurt
the max weight-signal correlation much at the initialization. On the other hand, the max
weight-noise correlation is reduced by a factor of |/p.

Lemma 16 Assume n = Q(K?2log Kd). Then, with probability at least 1 —1/d,
{ieln]: =7}l =00n/K) VjelK]

Proof By Hoeffding’s inequality, with probability at least 1 — § /2K, for a fixed j € [K],

we have
1. /10g(4K/5)'
- 2n

Therefore, as long as n > 2K?21og(4K/J), we have

1o 1 1
- Iy = 4) — —| < —.
=1
Taking a union bound over j € [K] and making 6 = 1/d yield the result. |

Lemma 17 Assume pm = Q(logd) and m = polylogd. Then, with probability 1 —1/d, for
all j € [K], k € [K], we have Y, | (mj, ), = O(pm), which implies that |S§ignal| = O(pm)
for all j € [K].

Proof When pm = Q(logd), by multiplicative Chernoff’s bound, for a given k € [K], we
have

m

> (mj, ) —pm

r=1

P

> O.5pm] <2exp{—-Q(pm)}.

Take a union bound over j € [K], k € [K], we have

|

Lemma 18 Assume p = 1/ polylogd. Then with probability at least 1 —1/d, for all j € [K],
r € [m], Yo (my,); = ©(pd).

Proof By multiplicative Chernoff’s bound, we have for a given j,r

|

m

> (mj,)x —pm

r=1

> 0.5pm, Vj € [K], k € [K]] <2K?exp{—Q(pm)} < 1/d.

d

Z(mj;r)i - pd

i=1

> O.5pd] < 2exp{—Q(pd)}.
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Take a union bound over j,r, we have

d
P [ > (my,)i — pd| > 0.5pd, Vj € K], r € [m]] < 2Kmexp{—Q(pd)} < 1/d,
i=1
where the last inequality follows from our choices of p, K, m,d. |

Lemma 19 Suppose p = Q(1/ polylogd), and m,n = polylogd. With probability at least
1—1/d, we have

S)
(&01:80)| < 002 /pdlog d),

B
() =

forall j € {—1,1}, r € [m], i,i' € [n] and i # i’

[ (1, &) | < O(onp/logd),

Proof From Lemma 18, we have with probability at least 1 — 1/d,

d
Z ij' k= pd), Vj € [K]> e [m]
k=1

For a set of Gaussian random variable g, ..., gn ~ N(0,0%), by Bernstein’s inequality, with

probability at least 1 — §, we have
2 1
< 0“4/ N log 5

N
2 9 —o°N
i=1

Thus, by a union bound over j, 4, with probability at least 1 — 1/d, we have

e, -

O(o7pd).

For ¢ # 4/, again by Bernstein’s bound, we have with probability at least 1 — 0,

I e )

for all j,r,i. Plugging in 6 = 1/d gives the result. The proof for | (u, ;) | is similar. |

Lemma 20 Suppose we have m independent Gaussian random variables gi,g2, ..., gm ~
N(0,0?). Then with probability 1 — 6,

> o, [log —~
max g; :
e T log1/0

20



RANDOM PRUNING CAN IMPROVE GENERALIZATION

Proof By the standard tail bound of Gaussian random variable, we have for every x > 0,

3 —x2 /202
<U U)egp[g>m]gae
x

r a3 V2T V2T ‘

—x2 /202

We want to pick a x* such that

P [maxgz- < ff*} = (Plg; <2*])" =(1-Plg > a*)" < e Pzl <5

= Plg; > 2*] = © <log(1/5)>

m

= 2* = O(o+/log(m/(log(1/8)logm))).

Lemma 21 (Formal Restatement of Theorem 4) With probability at least 1 —2/d, for
all i € [n],

000ny/ pd < max <VTIJ(OT),€Z> < /2log(Kmd)ogon+/pd.

Further, suppose pm > Q(log(Kd)). Then with probability 1 — 2/d, for all j € [K],

o0 [l ll, < max (%)) < V/2logEpmEdjon ||,
res?

signal

Proof We first give a proof for the second inequality. From Lemma 17, we know that
|Sgignal| = O(pm). The upper bound can be obtained by taking a union bound over

r e Sgignal, j € [K]. To prove the lower bound, applying Lemma 20, with probability at

least 1 — 6/K, we have for a given j € [K]

~(©) A pm
régg;al <Wj,r’“3> > oo ||, \/ log log K/6°

Now, notice that we can control the constant in pm (by controlling the constant in the lower
bound of p) such that pm/log(Kd) > e. Thus, taking a union bound over j € [K] and
setting 0 = 1/d yield the result.

The proof of the first inequality is similar. |

C.2 Supporting Properties for Entire Training Process

This subsection establishes a few properties (summarized in Theorem 24) that will be used
in the analysis of feature growing phase and converging phase of gradient descent presented
in the next two subsections. Define T* = n~!poly(1/e, u,d"*, 0,2 ao_ln,m,d). Denote

yYn
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o = ©og"U(T*)), 8 = 2maxi s {| (W, )| | (W) &)
bound holds for our subsequent analysis.

V1o _ logd
4m1/q max {< (07.);uy > ,Cn N g <W(O £ >’3CTLOC pgd } <1 (1)

}. We need the following

Jiri oppd NI -

Remark 22 To see why Equation (1) can hold under Theorem 2, we convert everything in
terms of d. First recall from Theorem 2 that m,n = poly(logd) and p = ©(c,Vdlogd) =
O(1). In both mild pruning and over pruning we require p > €(1/polylogd). Since o =
@(logl/q(T*)), if we assume T* < O(poly(d)) for a moment (which we are going to justify
in the next paragraph), then o = O(log9(d)). Then if we set d to be large enough, we have

47711/‘707161“\/E < Pol}\';)gd < 1. Then, for the quantity 4m"/9 max; . ;{ (W gog,uy) (W ](OT),EZ>},
by Theorem 4, our assumption of K = O(logd) in Theorem 2 and our choice of oy =
@(m*‘ln*l/fl) in Theorem 3 (or Theorem 15), we can easily see that this quantity can also
be made smaller than 1.

Now, to justify that T* < O(poly(d)), we only need to justify that all the quantities
T* depend on is polynomial in d. First of all, based on Theorem 2, n,m = polylog(d)
and p = (Un\flog d) = O(1) further implies 0,2 = ©(dlog*d). Since Theorem 38 only
requires oo = O(m~4n"tu="), this implies 00_1 < O(polylogd). Hence ao_ln = O(polylogd).
Together with our assumption that €, > Q(1/ poly(d)) (which implies 1/e,1/n < O(poly(d))),
we have justified that all terms involved in T* are at most of order poly(d). Hence T* =

poly(d).

Remark 23 Here we make remark on our assumption on € and n in Theorem 2.

For our assumption on €, since the cross-entropy loss is (1) not strongly-convex and
(2) achieves its infimum at infinity. In practice, the cross-entropy loss is minimized to a
constant level, say 0.001. We make this assumption to avoid the pathological case where € is
exponentially small in d (say e = 2=) which is unrealistic. Thus, for realistic setting, we
assume € > Q(1/ poly(d)) or 1/e < O(poly(d)).

To deal with n, the only restriction we have is n = O(1/u?) in Theorem 3 and Theorem 9.
However, in practice, we don’t use a learning rate that is exponentially small, say n = 2-%.
Thus, like dealing with €, we assume n > (1/poly(d)) or 1/n < O(polyd).

We make the above assumption to simplify analysis when analyzing the magnitude of
F;(X) for j # y given sample (X,y).

Proposition 24 Under Theorem 2, during the training time t < T*, we have
® @
L Yjrgo Grd S @
2. wj(7) —B —6Cnay/ lzgdd.
3. 7](2k > -3 —2Cna« ;klfjd.
Notice that the lower bound has absolute value smaller than the upper bound.

Proof We use induction to prove Proposition 24.
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Induction Hypothesis: Suppose Proposition 24 holds for all t < T < T™.
We next show that this also holds for ¢ = T via the following a few lemmas.

Lemma 25 Under Theorem 2, for t < T, there exists a constant C' such that

<v~v§2 ~(0) > (() + ona Y108 d

D) = (40 Ona™ B 1(m = 1),
~ (1) logd
<wj7r ]r’£l> C]fr'z:l:30 pT?
~(t) _ <(0) logd
<er ]r’£z> :|:3C od

Proof From Lemma 19, there exists a constant C' such that with probability at least
1-1/d,

’<Zi7'z7612’>’ < o [logd
ﬂsjm,i )
(& )| - omloed

~ 2 o nd ’
Hﬁjmz‘ ) P
&) | _ on/loBd
5— < )
[l p

Using the signal-noise decomposition and assuming (mj, ), = 1, we have
) _ &(0) ()
‘< g j,w“k> = Yk
2 /% ~ 0
' <£jﬂ’,i7 Nk> + Zwm,i
Iz log
< 0BT | o

onpd

oz |
j7r7i J)T’Z 2

-2 ~
: <£j,'r,i7 H’k>

&ril,

o#vlogd Z ‘
],r %

onpd

\/log

1
<20————
O'npd

where the second last inequality is by Lemma 19 and the last inequality is by induction
hypothesis.

To prove the second equality, for j = y;,
~ ~ (0)
‘<wj(7)‘ §r7£> C]rl

SN R UL B NI

~ 2
k=1 H kH? i i HE =1

j7r7l

‘5],7”,1'/ 9
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onV1 1 1
OIS Zw Gl O\ Zl

’75@
= o InV08 e IOgdKa + 2Cna logd
% pd
< 3Cna logd.
pd

where the last inequality is by n > K and p = @(on\/&log d). The proof for the case of
j # vy; is similar. |

Lemma 26 (Off-diagonal Correlation Upper Bound) Under Theorem 2, for t < T,
j # vi, we have that

2,77 u’yz‘ 7,7 “yi

<€v§2, > §< r,£i>—|—30no¢ ljild,

() = (300, ) 4 O

Fj(W§-t),XZ‘) < 1.

Proof If j # y;, then ’y(.t) < 0 and we have that

7,r.k
< () 5 (0) ® pylogd _
<wj7r’”yi> < <wj7r’”y¢> + (%‘,ny + Cna onpd ) I((mjz)y, = 1)
~(0) uy/log d
< . .
- < 72,m7 l’l’yi> + Cna O'npd
Further, we can obtain
~ (t < log d
(510 < (516 s+ a0m %
(0) logd
< .
< <W] £Z> + 3Cna ol
Then, we have the following bound
Fi (W x0) = [0 (W by, )) + 0 (W), €0))]
r=1
q
~ logd /(o logd

< QQ+1 (0) _ H (0)
<t | (5 ) o (0.6 e [
<1
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where the first inequality is by Equation (1). |

Lemma 27 (Diagonal Correlation Upper Bound) Under Theorem 2, fort <T, j =
Y, we have

<W§?7ﬂj>g< J(r)uuj>+’y() + Cna ny/logd

Jimg O'npd

logd

(wi&) < (%0.&)+ ¢, +3Cna
If maX{’Y] TJ’CJT"L} < m~V4, we further have that F; (W( ) x;) < O(1).

(t)
Proof The two inequalities are immediate consequences of Lemma 25. If max{’y] i ¢ i i<
m~4, we have

Fj (W'Y x,)

— Z (Wi, 7)) + 0 (W, €:))]

(%o

(0.6)]

7,ry0

<2 3qmmax{'yjr,g“”, . v
n.

q
1 1
Oid,?nda ogd} < O(1).

Lemma 28 Under Theorem 2, for t <T, we have that

1. wj(?,Z > —p —6Cna h;)gdd;

2. fy](?k >3- QCna“UV 1‘;2 .

Proof When j = y;, we have w?

gRX)
WY < 0,58 — 3Cnha l(;g by Lemma 25 we have

= (0. We only need to consider the case of j # y;. When

Wiri
< 75 > < 3(07«)751‘> +w§7;;1) 4+ 3Cn«a l(;gdd <0.
Thus,
D) = 0 LD (RE,6) [Ei 16 7
(T-1)
3,
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1
> —f —6Cna ogd
pd
When w](,Trgl) > —0.58 — 3Cna« k]’?gdd, we have
Ty _ (T-1) N (T-1) ~ (T—-1)
wjml- = wwz ﬁ . Z],l . 0'/ (<ij7' 5 >) ng,rv, ] 7é yl)
logd
> —0.58 — 3Cnay | 2 (0 55+3cna,/ > Hsm
pd n’
> —f5 —6Cna logd’
pd

2—q
where the last inequality is by setting n < ng~! (0.5,8 +3Cna k;gdd> (Cy02d)~t and Cs

is the constant such that HE]”

2
) < Cy02pd for all j,r,i in Lemma 19.
(t)

For ~; ., the proof is similar. Consider I((mj,)r) = 1. When ’y](tr)k < —0.58 —
Cnat=28c k;fi , by Lemma 25, we have
(1) +(0) (1) pvlogd
<wj7r,uk> S < wﬂk> T Ve + Cnand <0
Hence,

- 2 ()

=1

_ (T-1)
_’Yj,rk
py/logd
> -2 .
=5 Cna onpd
When fy() > —0.58 — C’na“‘;l;‘z , we have
T (r-n 1 T-1
Viok = Vion Z e (W )7Nk>)M2H(yi:k7)
Viogd V1
> 058 — Cna!¥2089 _ 001 (055 4+ cnatV I8 2
onpd K onppd
> 3 20maty1oed
onpd '

where the first inequality follows from the fact that there are ©( ) samples such that I(y; =
k), and the last inequality follows from picking n < K(0.58 + Cna“V log ) 2oy !'m
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Lemma 29 Under Theorem 2, fort < T, we have ’yj 7,], Cj

'I’Z—

Proof For y; # jorr¢ Slgnal,’yjm,gm— <a

If y; = j, then by Lemma 26 we have

Fi(X)
O] 1 et (1Y) Digi€ Ke
lj;| =1~ logit; (I X) = K eFi(X) = eFi(X) 2)

Recall that

¢ ) 2
Virg T Virg T Tesglgnal Z J7 (< JT’“yz>) [Tz

G ==L o ((w m») &

Iy = j),

n ]—yz)

e first boun et 1. ,; be the last time ¢ < 1" that ;.. < 0.5a. en we have
We first bound ). Let Tj,; be the last ti T that ('), < 0.5a. Th h

(1= (T = L0 o (500 €0 10y = ) [

n

Iy

oy B (s = e

Ty i <t<T

I

We bound I, I> separately. We first bound I; as follows.

q—1
logd
L < q C(T] " 1+ 0.58 + 3Cna o8 Coo’pd < ¢2n 1na?1Cho2pd < 0.25a,
o7 pd n n

where the first inequality follows from Lemma 27, the second inequality follows because 8 <

0.1 and 3Cna k;gdd < 0.1a, and the last inequality follows because n < n/(q292a4202d).

For T} ,; <t < T, by Lemma 25, we have that <v~v§?, §i> > 0.5a—0.58 — 3Cna k;gdd >

=~ (t) 1
0.250 and <wj’r,£i> < a+0.58 + 3Cna, /2L < 2.
Now we bound I as follows

Bl Y TReen (K0} ((#0.)) 10 =) &

Ty i <t<T
N ~ ~

< ¥ tween{-r ((#he))}o ((w6)) 0= 6],

ijr,i<t<T

Squ772‘1_1T*

exp(—a?/4) a1 o2 pd
< 0.25T* exp(—ad/47) a2
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< 0.25a,

where the first inequality follows from Equation (2), the second inequality follows because
Fi(X) >0 (<v~v§t7),,£l>), the fourth inequality follows by choosing n < n/(¢Ke2it102d),
and the last inequality follows by choosing o = @(logl/ 4T™)).

Plugging the bounds on Iy, Is finishes the proof for Cj(»i)z

To prove fyj(tz ; < a, we pick n < 1 /(qe29%212) and the rest of the proof is similar. [ |

Lemma 28 and Lemma 29 imply Proposition 24 holds for all ¢t < T

Induction Ends [ |

C.3 Feature Growing Phase

In this subsection, we first present a supporting lemma, and then provide our main result of
Theorem 31, which shows that the signal strength is relatively unaffected by pruning while
the noise level is reduced by a factor of ,/p.

During the feature growing phase of training, the output of F;(X) = O(1) for all j € [K].

Therefore, logit;(F, X) = O(%) and 1 — logit;(F, X) = ©(1) until <v~v](-2,uj> reaches m /4.

n77710403_q(0n\/pd)*q

Lemma 30 Under the same assumption as Theorem 15, for T = Ca(@0n) 1~ Tlog i~/ the
following results hold:
o ](J(?l\ = O(ogop\/pd) forallj € [K], r € m|, i € [n] andt <T.
o |w](t271| = O(ogon/pd) for all j € [K], r€[m], i € [n] and t <T.
Proof Define ¥(*) = man,m{CJ(?ﬂ, |w;, M|} Then we have
\If(t+1)
g',r,i’?&i ~ 2
<ol 4 max ﬁw}(?‘ o <W§027£i> Z ]rk (g, &) + Z \I/(t)< i 2> ng77‘77;
7,ryi n ’ ’ e || ||2 =1 H£ ., 2
YA 2
wv/Iogd d 2. /pdlog d -t
< \Il(t)—i—%q <O(\/@aoam/pd)—|—K10g1/qT*NU th Olop )+@?(10;d> peos >xp<>> O(o2pd)

-1
<o 4 % (o(\/@aoan\/ﬁ) + O(\I/(t’))q O(oypd),

where the second inequality follows by |€/(t)] and applying the bounds from Lemma 19, and the
last inequality follows by choosing 25198 7 = 0(1/vd) < 0¢. Let Cy, Cs, Cs be the constants

ond+/D
—1 2—q —
for the upper bound to hold in the big O notation. For any T = 82(2543291[1(()22@3)/2 =

28



RANDOM PRUNING CAN IMPROVE GENERALIZATION

—1_2—q —
o™ [12(; ] f;fl\)/f?) : ), we use induction to show that

¥ < Cyo00,/pd, Vit € [T). (3)

Suppose that Equation (3) holds for ¢ € [T”] for 7" < T — 1. Then

T+ < g 1 (01 Viog dogon/pd + CoChooomr/pd ) ' Cho2pd
<o) 4 . (201 \/@aoan\/gTd> ! Cs02pd
<(T'+1)2 (261 1og doan/pd) " Cyo2pd
< T% (261 V/log dog/pd) " Cyolpd
< Cho00m/pd,

: : . L0403 (00/pd) 1020, /pd)
where the last inequality follows by picking T' = g:(z 03391[153(; a (f_z) 3 = o™ [l‘:) (;; d]((;—l) }Z ) ).

Therefore, by induction, we have W) < Cyo00,+/pd for all t € [T7. [ |

Lemma 31 (Formal Restatement of Theorem 5) Under the same assumption as The-

orem 15, there exists time T = 1og(114(:§;92(m);¢/1q 7 = O(Kn—lag_qu—q log 2m /%) such that

1. max, 7](7;1]) >m~ Y for j € [K].
2. 10 1 1w) | < Oo0onv/pd) for all j € [K],r € [m],i € [n] and t < Ty.

3. |’y](tr)k\ < O(opupolylogd) for all j,k € [K], j#k, r€[m| andt <T.

— 2— —
Proof Consider a fixed class j € [K]. Denote T} to be the last time for t € |0, g;;gfﬁ%ﬁi:&@% /qz

satisfying max, yj(tr) < m~Y4. Then for t < T, max; Cj(tgvi,|w(t) | < O(ogopv/pd) <

77t

O(m~1/9) and max; 'y](?J Thus, by Lemma 27, we obtain that F;(W®, x;) < O(1), Vy; = j.

Thus, 6](1) =0(1). For j € Ssjlgnal, we have
(t+1)
I
&oriv M &
77 Jirsto PV 7,500 g
_%tw ZEJZ < J?“)’“J>+7JTJ+ZCJH< ~ >+Z J7”Z< 2> HHJ'H;H(-%
S €57,
/1 :
—’Y;J_fzgm << Jr?“]>+73(2J O(naoanpda 5 ng )) I(y; = 4).
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Let ’yj(gj = V](t,),d + <VAV](-?2,[LJ~> — O(nogo,/pd ™ =2= Vlogd) and A®) = max, ﬁj(?,] Note that
by our choice of y1, we have ™82 — (1), Since max, < (2, p]> > Q(opp) by Lemma 21,

onpd
max, <v~vj(-?r)7 uj> > Q(oop) — O(naoanpdgn/;;/;gg ) = Q(oop). Then we have
n .
A(H—l > A(t Ze]l ( z:,])

> A + O () [A)
> (1+ 6% 2[A0)-2)) A®
> (1+6(qeuaf ) A,

Therefore, the sequence A® will exponentially grow and will reach 2m~1/¢ within log 2m /2 =

log(1+©(4)utad ™)
1. 2-q _ _ 16279 (gp/pd) 4 t

O(Kn~toy 9u~log2m=1/) < (™ [g(éd}((;ilfg) ). Thus, max, 7](7), > A® —max;,, | < gr),p,]> | >
2m~ Y9 — O(oop) > 2 —m~ Y1 =m=1/a,

Now we prove that under the same assumption as Theorem 15, for 7' = O(K nflag_q/fq),
we have \’y](?k] < O(oppupolylogd) for all r € [m], j,k € [K], j#kand t <T.

We show that there exists a time 7" > T such that for all ¢ < 7", max;, ]7](t2k| <
O(opppolylogd). Let T' = O(K2n*103_q/fq log d).

nn-loéf%om/mrq)
[logd](a—1D7/2 ’

Define ®(*) = rnaxTe[m] jkelK], j¢k{]’y](tr)k|} Since we assume 7' < O(
by Lemma 30, we have C i |w ]M\ < O(ogon/pd).

@(tJrl)

€]T"L 7y’k>
= 2z | H

<£jrz 7y’k>
2
+Z i

< ®® 4 max HZHyl—kM]J < §027Hk>+icj(',?,<

ki
g =1

HS]?"’L 9 HEJT‘Z

2
1 a V1o
@, "L onpvioga gd
<o + <O(O’0;L log d) + nO(opon/pd 2pd >

q -1
@()+%(O(UOM 10gd)> 12,

where the first inequality follows because 'y](t,r) x < 0, the second inequality follows because

there are ©(n/K) samples from a given class k£ and \E i | = O(4), and the last inequality

follows because p = o,/ dlogd. Now, let C be the constant such that the above holds with
big O. Then, we use induction to show that ®®) < Cyoou for all t < T. We proceed as
follows.

-1
q—1
I (Conry/logd)
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< Caooppoly logd,

2p—1452-4 Tog d
where the last inequality follows by picking T = C2Kn CS’q K —*vlogd = O(K?p7!

C.4 Converging Phase

2—
7700

w ?logd).

In this subsection, we show that gradient descent can drive the training loss toward zero
while the signal in the feature is still large. An important intermediate step in our argument
is the development of the following gradient upper bound for multi-class cross-entropy loss.

In this phase, we are going to show that

e max, ’yﬁQ > m!/9 for all j € [K].

® MAaX; sk relm] \’YJ rk\ < B1 where 81 = O(oop).

O(UOUn\/ZTd)

o max;,; {¢\"), \wg(tﬁz!} < B2 where 5 =

.]7T7Z7

Define W* as follows:

0 I
Wi, = wgr) +O(m log(l/e))’u—;
Lemma 32 Based on the result from the feature growing phase,

— —~ |2
HW<T1> - W[ < OtKm? log?(1/e)u~?).

Proof We first compute

o
F
L& (T1)“j®mjﬂ“ (Tl):u‘k'Qm]r ) S]rz (T1) Ej,r,i
:ZZ FYJWJT—FZVJTR ZC] — ij,r,ii
j=1lr=1 k#j 7,ryt 9 i j
2
SZZ J(Y;TJM_FZ J,rk +ZC,M ~ Z ]rz ~
Jj T k#j 5Ty 9 gyt 9
2
25 (6<;>+K5<00>+n6<00>>
7 T
~ 1
< ZZO<E)
] '
~ 1

31
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where the first inequality follows from triangle inequality, the second inequality follows from
Lemma 31, and the last inequality follows from our choice of gg. On the other hand,

o

Zm log?( 16 —O(Km log? (1/6)M )-

Thus, we obtain

[we | <a W - WOy af wo - W
F F

2 1
< 37002 .
S O(Km” log (1/6),&2)

Lemma 33 (Gradient upper bound, formal version of Theorem 6) Under Theorem 2,
fort <T*, there exists constant C' = O(Km?* Y max{u?, o2pd}) such that

[vzsw®) e MHZF < CLg(W®).

— 2
Proof We need to prove that M;(f)z (W, x) ® MHF < C. Assume y; # j. Then we

(< 52’ “yz>> py, + 0 <<W§t2751>> 3
< 5 (5 ) i+ ((5)

}(q_l)/qmax{,u, Con/pd}

obtain

foesson o], <

2

3

2
< m!/a [Fj(WjaXi)
< ml/ max{u, Co,+/pd},

where the first and second inequality follow from triangle inequality, the third inequality
follows from Holder’s inequality, and the last inequality follows from Lemma 26. Similarly,
on the other hand, if y; = j, then

HVF (W) ® MHF < ml/a [Fyi (Wyi,xi)} =/ max{p, Co,\/pd}.

Therefore,
S e yHVF (W,,%;) ® M H Zye /90 (max {42, 02 pd})
J#yi J#yi
— 109 m2/10 (max {2, o2pd})
< Keexp{—Fy,(x;)}m*90(max{p*, oppd}),
and

2

t —
|£;J(i7)i Yi (Wyia Xi) © Myi -
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— 2(qg—1
< Keexp{~Fy, (x)m?? [F, (W 0] """ O(mas{u?, o%pd.

where the inequality follows from Equation (2). Thus,

ZW\ |7rWiox) o |
< o W o
j=1

(¢-1)/
< |€;(f7)i|Keexp{—F i(xi)}m2/q0(max{u2,anpd} <[ yl(Wyz,Xz)} a-1)/q N 1)
< Gy OE M max{y’, o7 pd}), @)

where the first 1nequahty follows because |€ (t)\ < M | and the last inequality uses the fact

that exp{—xz}(1 + 2(¢=1/9) = O(1) for all > 0.
The gradient norm can be bounded by
2
1)
_ e’(t 2|V E (W x)

forswo = (;iumf
Bt

2
( Z \/|€y | O(K'm?/4 max{u?, 02d}))

/(t)
< O(Km?*max{u?, o )ﬁ Z: ]

2

F

IN

)i)

< O(Km?* % max{;?, o2d})Ls(W®),

where the first inequality uses triangle inequality, the second inequality follows because
|€/(t | < |€/(t [, the third inequality uses the bound (4 ) the fourth inequality uses Jensen’s

inequality and the last inequality follows because |€yi z| < th). [ |

Lemma 34 For Ty <t <T*, we have for all j # y;,

< =< = — 29K
(VEL (W, %), W;, ) = (VE(W %), W) > qlog =2
Proof [Proof of Lemma 34] The proof of this lemma depends on the next two lemmas.
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Lemma 35 ForTy <t <T* and j = y;, we have <VF] (V/V§t),xi),ﬁ7]*> > 0(mY71og(1/¢)).

Proof By Lemma 31, we have

g {51} =g (50, 15) o0, 300 B3 (o)

= e, [&-1,
V1
> m™1 — O(oouy/log d) — O(nooo, V" ;’j)
On

> 0(m~19),

where the last inequality follows by picking o9 < O(m~*n~1u~'(logd)~'/?). On the other
hand,

(%0 €)| < (Wi &) | + il + 16,1 + On k;gdda)JrO( “ﬁ )< 0(1), (5)

where the first inequality follows from Lemma 25 and the second inequality follows from
Equation (1) and Theorem 24. Therefore,

<VF-(\A7\7(.t),xZ-),\A7\7*>
= 22 ((Sina)) (i 50+ 30 ((W€0)) (€60 5)

Z Z (< eruj>) O(mlog(1l/e)) — ZO(ann\/pdlogd—i— Un\{u@mlog(l/ﬁ))

> O(m!log(1/€)) — O(maogon/pdlogd + < nyl dm 21og(1/e€))

> O(m'/?log(1/e)),
where the last inequality follows because moyo,v/pdlogd = o(1) and T2¥V°8< bg m? = o(1) by
our choices of p, og. |
Lemma 36 For T} <t <T and j # y;, we have <VE(W§t),Xi),W*> <0O(1).

Proof First we have

(5500) = (8ol + 3o ) S g )

1=1 ngrz 9 H Jirsi 2
ni/log d
O(gou\/@+aoupolylogd+n000n\/17dw(72\/p?)
<o), ©)
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where the first inequality follows from Lemma 21, Lemma 19 and Lemma 31, and the last
inequality follows from our choices of g, . Then, we have

<VF<({7VV(.t),xi),\A7\7*->

_Z << ]7"“?/1>> Hy,s Wiy +Z (< W€ >) <€z‘7{’v";,r>

on/logd
< mO(oop/logd) + mO(opon+/dlogd + mlog(l/e)i
©

< 0(1),

)

where the second inequality follows from Equation (6) and Equation (5), and the last
inequality follows from our choices of u, og. |

Applying the lower bound and upper bound from Lemma 35 and Lemma 36, we have

(VE(W.x). Wy, ) = (VE (W %), W)
> O(m1og(1/€)) — O(1)

2qK
> glog =~
€
|
Lemma 37 Under the same assumption as Theorem 15, we have
— — 2 — — 2 —
HW(t) -w| - HW““) - W = 5nLs(WO) —ne.

Proof To simplify our notation, we define F j(t) (xi) = <VF i (W§t),xi), W]*>

We use the fact that the network is ¢g-homogeneous.

N — |2 — —

HW(t) ~wH” = Hw(t+1) W

F F
N N — — 2
— 2 <VLS(W(t)) OM, W — W*> P HVLS(W“)) ® MHF
2 () .\ o ~ 2
= ZZ@N { W, 7Xz,yl)—<VF]-(WJ(.),XZ-),W]->] —nQHVLS(W(t))@MHF
=1 j=1
2q77 n K K 9

> 2N Hog(1 Fy=Fuy | (F=Fy)/ay| H Ls(W® MH

—nZOg(+Ze ) —log(1 Z:: n? ||VLs( ) © .

> 2an z”: [K(W(t)' x;, yi) — log(1 + Ke_log(QqK/E))} —n? HVLS(W(t)) ©) MH2

_ n - ) ) F
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where the first inequality follows from the convexity of the cross-entropy loss with soft-
max, the second inequality follows from Lemma 34, the third inequality follows because
log(1 + x) < z, and the last inequality follows from Lemma 33 for some constant C. |

Lemma 38 (Formal Restatement of Theorem 7) Under the same assumption as The-
W(T1) —wW*
% =T+ O(Km3 log?(1/€)u=2). Then for any time
t during this stage, we have w7} > w4 for all § € (K], maxii{IC2 hil} <

261, max; sy reim {1y} < 262, and

orem 15, choose Ty =T +

H{;VV(Tl) ~wel” )

1
Ls(WH)) < E
t—T1§; W )_ C’I](t—Tl) +C
S 1

(T )

Proof From Theorem 31, we have mayy; , ;2> m!/? and since 4*) is an increasing sequence

over t, we have maxm/( ) > ml/4 for all t € T1,T5]. We have
j7r7.7

— — 2 — — 12 .
Hw(S) —W* = HW(8+1) _W* . > CnLg(W®)) —

Taking a telescopic sum from 73 to t yields

P H{fvm) —wH?
> Ls(W) < oy

+ 77€(t — Tl)

Combining Lemma 32, we have

2

S (W) < 00 W =W ) = o~ Km*log?(1 /7). (7)

s=T1

Define ¥®) = max;.i{(; (t) |w

Ty jrz

|} and &) = max; = O(oop). Now

we use induction to prove U() < 28 and ) < 2B2 Suppose the result holds for time
t <t'. Then

p(t+1)

2

<\I/(t)—|—max |€/(t)‘ o’ <JT,£> (t) ”kf’Ez +Z t)<€J”’£Z> H~

]rk YR
Jyrst k=1 ” ||2 =1 HE]T‘Z

2
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nV1ogd
<) 4 %q max |€gf')z| (O(\/log dooon/pd) + K log!/1 T*%

O(o2pd)

<o Z w/(t) < (v/1og dooom/pd) +O(\I/(t)))q_1 O(o2pd),

q—1
| Olo2pd) + nO(oyV/pdlog d) \W) O(o2pd)

where the second inequality follows by M;(m < |€, ®) :| and applying the bounds from Lemma

19, and the last inequality follows by choosing %C/;T* = 5( f) < 09gopy/pd. Unrolling

the recursion by taking a sum from T; to ¢’ we have

(i N O s !
<0 4 1373 14:110(o7pd poly log d) 5]

s=Ty i=1

\If(t/+1)

(i2) n
< w4 QO( o2pd poly log d) Z Zﬁ
n
s= le 1

—gm dpolylog )% S Lg(
+-0( o2pd poly log XT: s(W
S 1

(423)
< w4 O(Km p2a2pd poly log d) B9~ 1

(v
< Bi + O(EKm®)pi!

(v)
S 2/817

where (i) follows from induction hypothesis U(*) < 23;, (ii) follows from the property of
cross-entropy loss with softmax |£} ;| < |€, ;| < &, (iii) follows from Equation (7), (iv) follows
from our choice of u,n, K, and (v) follows because O(Km?)B197% < O(Km3ogo,/pd) < 1.
Therefore, by induction ¥ < 28, holds for time ¢ <’ + 1.

On the other hand,

o'+

(2) 77 " < g,y 7/'l’k> n t <Ej,r,i’7 l’l’k>
< o +]m7‘8]‘€)§ I(yi = k) sz < ]r7uk> C]rz + W§,2,i'~72 /”L2
0 - =

j’r7i/

H AL P

()+@(K)max|£()\< (oopr/logd) + nO(ogon/pd Gnu logd )

opd
S) (T1)+@ ZZK( ( (oo logd))qi

s=T1 i=1

2
(")

(iii 1

(< Ba + O(m®)pL !

37



YANG, Lianc, Guo, Wu, AND WANG

(v)
S 252?

where (i) follows because ’yj(-? &

because max; ; \E;(?] < max; \E;/(Zt)z\ < max; Egt) <> Kﬁt), (iv) follows from Equation (7), and
(v) follows because O(mS)BQF2 < O(m3oop) < 1. [ |

<0, (ii) follows from Lemma 21 and Lemma 19, (iii) follows

C.5 Generalization Analysis

In this subsection, we show that pruning can purify the feature by reducing the variance of
the noise by a factor of p when a new sample is given.
Now the network has parameter

_ n @ ¢ 5
w5, —Wgﬁz Virk g +Z<m J”ﬁz e

],TZ jT‘Z

2 2

, = O(oov/pd + p~log!/9(T*) + Kogpolylogd + naoan\/szg

We have Hﬁ};r
O(o0V/pd).

Lemma 39 (Same as Theorem 8) With probability at least 1 — 2Km exp (—%)
0'00'

1):
Vpd

macx | (1, €)] < (2m) 201
7T

Proof Since <v~v}‘-7,ﬂ, 3 > follows a Gaussian distribution with variance O(o3o2pd), we have

m)—4/a
P U<v~vjﬂ1,€>‘ > (2m)‘2/"} < 2exp <_0(?08)03Jml)> '

Applying a union bound over j € [K],r € [m] gives the result. [ |

Theorem 40 (Formal Restatement of Generalization Part of Theorem 3) Under the

same assumptions as Theorem 15, within 6(K77_1 8 1=+ K?m*u=2n~te™ 1) iterations,

we can find W* such that
o Lg(W*) <e.
o Lp < O(Ke) + exp(—n?/p).

Proof Let &£ be the event that Lemma 39 holds. Then, we can divide Lp (W*) into two
parts:

E[((F(W*,x))] = E[[(€)((F(W*,x))] +E[H(50)€(5(V~V*7 x))] -

I 1P
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Since Lg(W*) < ¢, for each class j € [K] there must exist one training sample (x;,y;) € S
with y; = j such that ¢/(F(W*,x;)) < Ke < 1 by pigeonhole principle. This implies that
> i1z €xp(Fy (x;) — Fj(x;)) < 2Ke. Conditioning on the event £, by Lemma 39, we have

|F;(W*,x) — xzr<§j (W, &) +Z Wi, 6))
gZQm +22m
<1 7"

Thus, we have exp(Fj/(x) — Fj(x)) < 2Kee? = O(Ke). Next we bound the term Is.

UF(W*,x)) =log | 1+ Y exp(Fj(x) — Fy(x))
J'#y

<log |1+ Z exp(Fj’(X))
J'#y
< 3" log(1 + exp(Fy (x)))
J'#y

<K+ Y Fy(x)

J'#y
=K + Z U(<W}(”r7 I’l’y>) + U(<{’VV;/,T7£>)

J'#y
<K+ Km(O(O’ou log d))q + 6(m(000'n\/g)q) Hg/o'n”g
<2K +|€/onll}, ®)

where the first inequality follows because F,(x) > 0, the second and third inequalities
follow from the property of log function, and the last inequality follows from our choice of
o0 < O(m 4o 1d=1/2). We further have

I, < E[H(g)]\/E[e(F(W*,X))Q}

< /PENAK? + E [|€/a, ]2
exp(~Cm~ 050, %p~ d™! + log(d))
exp(—nz/P)7

IN A

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality
follows from Equation (8), the third inequality follows from Lemma 39, and the last inequality
follows because o9 < O(m~*n~lo;1d=1/?).

|
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Appendix D. Proof of Theorem 9

In this section, we show that there exists a relatively large pruning fraction (i.e., small p) such
that while gradient descent is still able to drive the training error toward zero, the learned
model yields poor generalization. We first provide a formal restatement of Theorem 9.

Theorem 41 (Formal Version of Theorem 9) Under Condition 2, choose initialization

variance oo = O(m~*n~u~1) and learning rate n < O(1/p2). For e >0, if p = @(m),

then with probability at least 1 — 1/log(d), there exists T = O(n‘lnagfafﬁq(pcl)_q/2 +
n e tmino 2(pd)~t) such that the following holds:
1. The training loss is below e: LS(W(T)) <e.

2. The model weight doesn’t learn any of its corresponding signal at all: 'y](?] =0 for all
j€[K], re[m].

3. The model weights is highly correlated with the noise: max;¢ |y C](-?)i > Q(m‘l/q) if
Yi=17J-

Moreover, the testing loss is large:
Lp(W™) > Q(log K).

The proof of Theorem 9 consists of the analysis of the over-pruning for three stages
of gradient descent: initialization, feature growing phase, and converging phase, and the
establishment of the generalization property. We present these analysis in detail in the
following subsections.

D.1 Initialization

Lemma 42 When m = poly logd and p = @(m)7 with probability 1 — O(1/logd), for
all class j € [K] we have |S},,.1| = 0.

Proof First, the probability that a given class j receives no signal is (1 — p)™. We use the
inequality that

1+t>exp{O(t)} Vte(—-1/4,1/4).

Then the probability that S5, .\| =0, Vj € [K] is given by

(1 =)™ > exp {0 (pKm)} = 1 -0 (1; d) .
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D.2 Feature Growing Phase

Lemma 43 (Formal Restatement of Theorem 12) Under the same assumption as The-
orem 41, there exists Ty < T* such that T} = O(r]_lnagdagq(pd)_qﬂ) and we have

e max, Gy, ri > m~Y4 for all i € [n].

= O(0oon/pd).

e max;,; |ij’

o magj i 14l < Oloop).
Proof First of all, recall that from Definition 14 we have for j = y;
(W)
(0 v, o, ) s i) o (G
i'=1

2
k] H i i

‘ jirit ’éjmi’ )

Let

(t) _ (t) ~(0) 1/q logd B logd
Bl ]Egi{i{gj’rl < ]7”£Z> (nlog T pd ) O(naoan\/ﬁ pd ) :

Since max;—y, , <v~v](-?r), £i> > Q(ogopy/pd), we have

BZ(O) > Q(O’oO’n\/]Td) _ O(n logl/q T* ljjgdd) — O(naoan\/pTZ k;gdd) > Q(O'(]O'n V pd)

Let T; to be the last time that Cj(tgz < m~Y4 We can compute the growth of Bi(t) as

B > i @(nanpd)[Bfw]

B +@(770npd)[32(0)]q 2B()

( (naq “onp?dy 2)) B
n v

Therefore, B(t) will reach 2m /¢ within 5(77_1710872 9 (pd)~9/?) iterations.
On the other hand, by Proposition 24, we have |w] M| < B+6Cna k;)gdd O(ogony/pdlogd).
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D.3 Converging Phase

From the first stage we know that

Om;, E KX E X
( . ++Z ]tr)kﬂk Js ch(j;lz) ~] 2+Z j7;12 ~]

k#j i=1

j’f‘l

]TZ 2 2

Now we define W* as follows:

. " " . E’ri
Wi, =W 4+ 0(mlog(1/e) | S 10 = yi) 2"

=1

‘gj,r,i 9

Lemma 44 Based on the result from feature growing phase,

W

i O(m?n'/log(1/€)o, " (pd)~7?).

Proof We derive the following bound:

e
F
<HVV<T1> W(O)H +HWm) W+
F F
) M (m) 3 . ) '3
t k T '77. T
j,r k;é] 2 =1 j7r’i 21192 =l j7r77: 2112

+O(m*n'/?log(1/e)a,, ! (pd) /%)
< Km(O(VEKoo) + O(n'?5, (pd)/?1og"1T*)) + O(mn**log(1/e)o,, " (pd) ~7?)
< O(m*n'*log(1/€)oy, (pd) ™2,

where the first inequality follows from triangle inequality, the second inequality follows from
the expression of W) 'W* and the third inequality follows from Lemma 19 and the fact
that C > 0 if and only if j = y;. |

7,70

Lemma 45 For Ty <t <T*, we have
W AT+ A7 —— 2qK
(VEL (W, %), Wy, ) = (VE(W;,x), W ) > qlog ==
Lemma 46 For Ty <t <T* and j = y;, we have
<VF]-(W§25)’XZ-),WJ*.> > @(ml/q log(1/€)).
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Proof By Lemma 19, we have <gj,ma Ng*r> = O(mlog(1l/e)) and by Lemma 43 for j = y;,

max, <VTIJ(2,€Z> > max, (jr; — Max, <wj7r,£i> —O(ny/ logd a) > 0(m ’l/q). Then we have

(R )W) =30 ((26)) (G55

r=

> 0(m'/log(1/e)).

|
Lemma 47 For Ty <t <T* and j # y;, we have
<VFj(W§t),xi),W;> <0(1).
Proof We first compute < & > <v~v§02,£z> + O(mlog(1/e)) > i 15 = vi) <H€J ”’T|2> =
],r,z 2
O(ogonv/pdlogd). Further,
= (1)
<Wj’7«7 £Z>
/] ~(0) <uka£jrz> () <€J,rza£1> " <£grw€z>
= (Fihe) + 2 Py @ A +Z T
k#j =1 ‘ YR ‘ JTyi
2 2
< O(000m/pdlog d),
where the inequality follows from Lemma 19 and Lemma 29. Thus, we have
So(t < ~(t = ~
<VFJ(W§ )a X’i)a W;> = Z OJ <<W](72, £z>> <£j,r,i? w}:r>
<mO (ann\/pd log d)q
<0(1),
where the last inequality follows from our choice of oy < O(m~Y4u~1). [

Lemma 48 Under the same assumption as Theorem 41, we have

2 2 —
HW@ -w| = CnLs(W®) — e

_ HW(t+1) ~W*

Proof To simplify our notation, we define F\j(t) (xi) = <VFj (WJ(-t),xi), W;> The proof is
exactly the same as the proof of Lemma 37.

o

2 HW(t—&-l) W 2
F F
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— —~ —~ —~ 2
=2 (VLs(W®) 0 M, WO - W*) — 2 [VLs(W) o M|

o (o) - s ]
i=1 j=1
Z%ﬂzn: 1og(1+§:eFnyi)—log i (Fj—Fy,) /1y —p HVLS Wit )@MH2
n s ) "
> 2377; W0 5x5:) — o1+ Ke™SCI)] 2 [ VLW o M|
> 205 W0 - L] |9 W) o M

> CnLs(W®) —

where the first inequality follows from the convexity of the cross-entropy loss with soft-
max, the second inequality follows from Lemma 34, the third inequality follows because
log(1 4 z) < z, and the last inequality follows from Lemma 33 for some constant C' > 0. H

Lemma 49 (Formal Restatement of Theorem 13) Under the same assumption as The-
W) w2 ~
orem 41, choose Ty = T} + “127]6”1”-‘ =Ty +O(n e tmino, 2(pd)~1). Then for any

time t during this stage we have max; , ]wjm\ = O(09+/pd) and

H“(Tl W,
€
E4 =

Lg .
t—Tl S:ZT - Cn(t—1Ty) C

Proof We have

HW(S) _ W* 2 . HW(S-{-I) _ W*
F

2 —
e CnLs(W®)) —

Taking a telescopic sum from 73 to t yields

—~ —~ |12
b HW(Tl) WA et — )
> Ls(W) < E .
Cn
s=Ty

Combining Lemma 44, we have

ZLS ) < Of *1HWT1 —W*

s=T1

") = O oy (pd) ).

F
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D.4 Generalization Analysis

Theorem 50 (Formal Version of the Generalization Result of Theorem 9) Under
the same assumption as Theorem 41, within O(n'nod 2o, (pd) =92 40~ e 'mino;, 2(pd) )
iterations, we can find W) such that L¢(W)) < ¢, and Lp(W®) > Q(log K).

Proof First of all, from Theorem 49 we know there exists ¢ € [T1, T3] such that L S(W(T)) <e
Then, we can bound

~0] _ Jm ® _ &iri
w52, =[5+ o +2<m + 3
k#j ]1"12 i=1 jri22
~ (0 t
< &, + il +Z<,m +Z\ il =T
k#j 37'12 ]rz2

< O(oo\/a) + 6(n0;1(pd)_1/2).

Consider a new example (x,y). Taking a union bound over r, with probability at least
1 —d~ !, we have

‘<W§f2«, 5>‘ = O(000nVd + n(pd) /%),

for all r € [m]. Then,

F

S = 30 ((500,)) + o ((0.€))

r=1

< g (o)

< mO(clo?d?? + ni(pd)~1?)
L,

IN

where the last inequality follows because oy < 5(m*1/ ay~1) and d > ﬁ(m2/ 9n?). Thus,
with probability at least 1 — 1/d,

(F(WW;x)) > log(1 + (K —1)e™).
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