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Abstract

Recent advances in diffusion models hold signifi-
cant potential in robotics, enabling the generation
of diverse and smooth trajectories directly from
raw representations of the environment. Despite
this promise, applying diffusion models to mo-
tion planning remains challenging due to their
difficulty in enforcing critical constraints, such
as collision avoidance and kinematic feasibility.
These limitations become even more pronounced
in Multi-Robot Motion Planning (MRMP), where
multiple robots must coordinate in shared spaces.
To address these challenges, this work proposes
Simultaneous MRMP Diffusion (SMD), a novel
approach integrating constrained optimization
into the diffusion sampling process to produce
collision-free, kinematically feasible trajectories.
Additionally, the paper introduces a comprehen-
sive MRMP benchmark to evaluate trajectory
planning algorithms across scenarios with vary-
ing robot densities, obstacle complexities, and
motion constraints. Experimental results show
SMD consistently outperforms classical and other
learning-based motion planners, achieving higher
success rates and efficiency in complex multi-
robot environments. The code and implementa-
tion are available at https://github.com/
RAISELab-atUVA/Diffusion—-MRMP.

1. Introduction

Multi-Robot Motion Planning (MRMP) is a fundamental
problem in robotics and autonomous systems, where the
goal is to compute collision-free paths for multiple robots
navigating shared environments (Luo et al., 2024; Shaoul
et al., 2025). MRMP has widespread applications, from
autonomous vehicles to warehouse logistics and search-and-
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rescue, where robots must operate reliably in complex and
highly constrained settings. Despite its importance, solving
MRMP in real-world scenarios remains challenging due to
the need to plan trajectories in continuous spaces and the un-
structured nature of their inputs. These inputs often lack the
structured representations needed by classical algorithms,
which require implicit representation of both robot state
spaces and obstacles in configuration spaces (LaValle, 2006;
Ichter et al., 2018; Luo et al., 2024). Consequently, classical
approaches struggle to operate effectively in these high-
dimensional environments (Wang et al., 2021; Teng et al.,
2023). Specifically, sampling-based planners often yield
non-smooth paths due to their reliance on discrete connectiv-
ity between sampled configurations (Carvalho et al., 2024).
Optimization-based methods suffer from similar issues, as
they require computationally expensive trajectory refine-
ments to enforce smoothness and feasibility (Ichnowski
et al., 2020).

To address these challenges, learning-based methods offer
a promising alternative by leveraging data-driven priors to
handle unstructured environments. Recently, diffusion mod-
els, a class of generative models originally developed for
image and signal processing tasks (Song & Ermon, 2019; Ho
et al., 2020), have shown promise for single-robot motion
planning (Carvalho et al., 2023; Christopher et al., 2024).
However, extending diffusion models to MRMP presents
new challenges: while these models effectively produce di-
verse trajectories, they fail to enforce hard constraints such
as collision avoidance and kinematic feasibility, a limitation
that becomes increasingly significant in MRMP.

Existing diffusion-based approaches attempt to address
these constraints through gradient-based guidance or re-
jection sampling (Okumura et al., 2022b; Carvalho et al.,
2023). However, gradient-based methods are prone to fail
in such scenarios due to the non-convex nature of collision
avoidance constraints, complicating trajectory correction.
Rejection sampling methods, conversely, suffer from ineffi-
ciencies, discarding large portions of generated trajectories
and struggling to generate feasible solutions in cluttered en-
vironments (Carvalho et al., 2024; Christopher et al., 2024).

To address these limitations, this paper introduces Simulta-
neous MRMP Diffusion (SMD), a novel approach that inte-
grates constrained optimization directly into the diffusion
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Figure 1. SMD incorporates a projection operator to enforce constraints within the diffusion process. During sampling, the projection
operator iteratively corrects trajectories by mapping them to the nearest feasible points, resulting in final collision-free paths. The
infeasible paths are marked with red circles and only occur in the initial random trajectory. In the experiments, the red objects
appear at sampling time only, and the robots move from their start e to their goal positions .

sampling process to generate feasible multi-robot trajecto-
ries. This work reformulates MRMP within a constrained
diffusion framework, where diffusion-based trajectory gen-
eration is guided by an Lagrangian-dual based method. This
approach enables diffusion models to satisfy collision avoid-
ance and kinematic constraints without post-hoc filtering,
making them applicable even in high-density, unstructured
environments. Unlike prior methods, which degrade sig-
nificantly in cluttered scenarios, our framework maintains
feasibility even as the number of robots and obstacles in-
creases. The overall scheme is illustrated in Figure 1.

Contributions. The paper makes the following contribu-
tions: (1) It introduces Simultaneous MRMP Diffusion
(SMD), which formulates multi-robot trajectory generation
as a constrained diffusion process, ensuring collision-free
and kinematically feasible motion plans. (2) It integrates
constrained optimization directly into the sampling process
of diffusion models, enabling the direct embedding of con-
straints within the trajectory generation pipeline. (3) It
develops a Lagrangian-dual based method to reformulate
the MRMP problem, dramatically improving the efficiency
with these critical constraints can be satisfied during dif-
fusion sampling, both theoretically and empirically. (4)
Finally, it introduces the first benchmark for MRMP evalu-
ation, featuring complex input maps and diverse scenarios.
Our approach demonstrates significant improvements over
competing methods, particularly in environments with dense
obstacles and unstructured configurations.

2. Related Work

Motion Planning. Motion planning computes a feasible
path for a robot to move from its start to its goal state while
avoiding obstacle collisions. Sampling-based algorithms,
such as Probabilistic Roadmaps (Kavraki et al., 1996) and
Rapidly-Exploring Random Trees (RRTs) (LaValle, 1998)
have been widely studied for this task. These methods
guarantee probabilistic completeness but face significant
scalability issues, especifically in multi-robot motion plan-
ning (MRMP) as the configuration space of MRMP scales
significantly. Alternatively, MRMP can be formulated as a
constrained optimization problem, solving by optimization
methods such as gradient optimization techniques (Ratliff
et al.,, 2009) and sequential convex programming (Au-
gugliaro et al., 2012; Chen et al., 2015). However, these
approaches encounter difficulties when taking into account
changes in acceleration (Ichnowski et al., 2020) and are
usually too conservative to find any solution, even if one
exists (Chen et al., 2015). Other lines of research focus
on a discretized version of this problem, known as multi-
agent path finding. Specifically, multi-agent path finding re-
duces the configuration space by discretizing both time and
space into steps and grids, respectively (Stern et al., 2019).
This simplification has enabled the development of efficient
search-based algorithms (Li et al., 2019; 2021; Okumura
et al., 2022a). However, these assumptions create a dis-
connect from real-world applications due to their oversim-
plification (Shaoul et al., 2025). Unlike these approaches,
this paper develops SMD, a diffusion-based MRMP frame-
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work that directly learns the distribution of collision-free
paths and generates feasible solutions for multiple robots
simultaneously in complex environments.

Motion Planning with Generative Models. Recent ad-
vancements in generative models have opened new avenues
for solving motion planning problems by learning complex,
high-dimensional distributions of feasible paths. For exam-
ple, Okumura et al. (2022b) employed a conditional varia-
tional autoencoder to predict cooperative timed roadmaps.
Following the introduction of diffusion models into mo-
tion planning by Janner et al. (2022), subsequent research
has largely focused on using gradient-based methods to
guide the outputs of diffusion models toward feasible solu-
tions (Carvalho et al., 2023; Luo et al., 2024; Saha et al.,
2024; Ubukata et al., 2024; Carvalho et al., 2024; Naderi-
parizi et al., 2025). These works design tailored cost func-
tions to guide the generation of diffusion models during
the sampling process. Although these approaches leverage
the ability of diffusion models to generate diverse trajec-
tories, they are unable to ensure constraint satisfaction in
scenarios with complex environments and multiple robots.
In fact, most existing work has primarily addressed single-
robot motion planning, leaving multi-robot motion planning
underexplored. Recently, Shaoul et al. (2025) combined
diffusion models with search-based multi-agent path finding
algorithms, where the diffusion models generate trajectories
for a single robot, and a search-based algorithm determines
the final trajectories for multiple robots. While this is a
substantial contribution towards MRMP, it does not ensure
the feasibility of the trajectories generated by diffusion mod-
els, particularly in environments with dense obstacles or
complex robot interactions. In contrast, our proposed SMD
directly integrates optimization techniques into the diffusion
process, enabling the generation of feasible MRMP trajec-
tories even in scenarios with a significant number of robots
and obstacles.

3. Preliminaries

Score-based Diffusion Models. Generative diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) pro-
duce high-fidelity complex data operating in two phases: A
forward step, that gradually introduce noise to clean data
samples, followed by a reverse denoising step, in which a
deep neural network is trained to iteratively remove noise.
This forward process defines a Markov chain {x;}7_,, with
initial sample x ~ p(xo) and each transition ¢(x:|x;—1)
realized by adding Gaussian noise according to a variance
schedule ;. In score-based diffusion (Song & Ermon, 2019;
Song et al., 2020), the reverse process relies on a learned
score function sg(x,t) = V4, log p(x+) that approximates
the gradient of the log probability density of the noisy data.

This score function is trained to minimize

min E 1—a [s T, t) — Vg, log q(xt|x 2},
in B (1) [lsg(@et) - Vo, loza(aleo)|

q(xt|xo)

and is then used to iteratively “denoise” random noise sam-
ples back into data-like samples. This is also known as the
sampling phase.

Multi-Robot Motion Planning. Multi-Robot Motion Plan-
ning (MRMP) involves computing collision-free trajecto-
ries for multiple robots navigating a shared environment
from designated start positions to goal states. Consider
a set of N, robots A = {aj1,as,...,ay,} operating in
a continuous workspace. Each robot a; is modeled as
a sphere with radius 7; > 0 and has a trajectory over
H time steps denoted by m; = [r},77,..., 7], where
7l = (2 yt) € R2? represents the robot’s states at
time h. For each robot, their start and target states are
defined, respectively by sets B = [b1,bo,...,by,] and
E = [e1,ea,...,en,]- The robots must navigate around
N, obstacles O = {01,...,0n,} while adhering to kine-
matic constraints such as velocity and acceleration limits.

The objective is to compute a feasible set of trajectories
Il = {my,72,..., N, }, that minimizes a predefined cost
function while ensuring feasibility to environmental con-
straints and inter-robot collision avoidance. Formally,

ml_'}n J(II) (la)
s.t. IIC Qobs; (1b)
7} =b;, Vi€ [Na], (1c)

i =e;, Vi€ [N, (1d)
Kinematic constraints on IT, (le)

Collision avoidance between robots in IT,  (1f)

where J : RNexHx2 _y R+ represents the cost function,
which may include objectives such as total travel time or en-
ergy consumption, and ) is the feasible region, excluding
obstacle-occupied space. Constraints (1b) ensure that robots
avoid obstacles, (1c¢) and (1d) ensure that each robot starts
at its initial position and reaches its target position. (le)
enforce kinematic limits, defined by a maximum reachable
velocity, and (1f) ensures collision avoidance, maintaining
a minimum Euclidean separation between robots at all time
steps. Subsequently, we denote constraint set (1b)—(1f) with
Q.

The MRMP problem poses significant challenges due to
the difficulty of representing and navigating unstructured,
high-dimensional configuration spaces and coordinating dy-
namic interactions among multiple robots in continuous
environments (Stern et al., 2019; Shaoul et al., 2025).
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4. Simultaneous MRMP Diffusion

To address these challenges, this section introduces Simulta-
neous MRMP Diffusion (SMD), a diffusion-based method
for MRMP. We start by introducing the concept of repeated
projections, which constitutes a core building block of SMD.
Then, the section discusses how to integrate the multi-robot
motion planning constraints into the diffusion framework
and, finally, how to enable effective sampling in complex,
high-dimensional MRMP tasks. A theoretical analysis is
also provided to establish the feasibility guarantees of SMD.

4.1. Repeated Projections.

Incorporating constrained optimization techniques into gen-
erative models has been an important direction in ensur-
ing feasibility in structured domains. Diffusion models
inherently use a variant of Langevin Monte Carlo sampling,
known as Stochastic Gradient Langevin Dynamics (SGLD),
for their denoising sampling process. SGLD introduces an
additional stochastic perturbation to gradient-based updates,
resulting in a non-deterministic version of natural gradient
descent. This allows it to from getting trapped in local min-
ima and enables diverse sampling trajectories (Welling &
Teh, 2011). Given this perspective, the diffusion sampling
process can be viewed as an iterative unconstrained opti-
mization problem aimed at maximizing the log-likelihood
of the true data distribution.

Building upon this understanding from Christopher et al.
(2024), we can extend the standard diffusion process by
incorporating a feasible region €2:

_min Y —logg(x/xo) (2a)
T5.5X1 =Tl
st. Xp,...,Xg € Q. (2b)

To enforce these constraints during the generative process,
it is possible to modify the standard Stochastic Gradient
Langevin Dynamics (SGLD) update rule by introducing a
projection step after each iteration:

K+ — P (Xi + % Vi log q(x¢[x0) + 2%2)’ @

classic reverse process

where z is standard normal, v; > 0 is the step size,
Vi log q(x¢|x0) is approximated by the learned score func-
tion sg(xy,t), Q is the set of constraints, and Pq(-) is a
projection onto 2:

: 1112
Pa(x) argglén Ix — x| “)

At each time step ¢, starting from x?, the process performs
M iterations of SGLD.

A key theoretical advantage of this approach is that it retains
the convergence guarantees of Langevin-based sampling.
Specifically, this constrained diffusion process converges to
an “almost-minimizer” of the objective function (2a), where
the approximation quality is bounded by the noise term z
and the Langevin step size y; (Xu et al., 2018).

Importantly, as shown in (Christopher et al., 2024), this pro-
cess guarantees that the generated outputs satisfy constraints
from convex sets under mild conditions.

4.2. Collision-free Projection Mechanism

While the application of repeated projections provides a use-
ful primitive to steer samples generated by diffusion models
to satisfy relevant constraints, projecting onto the space of
collision-free and kinematically viable trajectories presents
a critical challenge due to the nonconvex nature of these con-
straints and the high dimensionality of the problem. These
issues make the standard application of repeated projections
ineffective in solving even simple MRMP instances. The
following first presents the projection mechanism for SMD,
which aims to generate feasible trajectories for all robots in
the problem.

Note that the feasible region 2 for the MRMP problem
can be represented by distinguishing between convex and
nonconvex constraints. This distinction will be useful later
to provide an accelerated version of the projection operator
introduced above.

Convex Constraints. First, note that each robot’s trajec-
tory must begin and end at its designated start and goal
locations, as enforced by Constraints (1c¢) and (1d). Ad-
ditionally, robots must respect maximum velocity limits
between consecutive time steps:

(wh — 7t < MAN?, Vie [N hel2,... HY,
&)
where v]"™ represents the maximum allowable velocity for

robot a;, and At is the time interval between steps. Together,
these constraints define a convex set:

Q, = {H e RNaXH*2|Constr. (Ic), (1d), and (5) hold} .

Nonconvex Constraints. To ensure collision-avoidance the
following nonconvex constraints must also be imposed:

P — 7?2 > (R")2 Vi, j, i # j € [Na),h € [H], (6)

(m — T

where R* denotes the minimum distance between robots at
any time. The above states that any two robots should be far
enough from each other at any point in the trajectory.

Similarly, the following constraints are imposed to avoid
collisions between each robot and static obstacles:

(ml —0;)* > (R°)?,Vi € [N,],¥j € [N,),h € [H], (7)
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Algorithm 1 Diffusion Sampling Process in SMD

1: Input: Gaussian Noise x9.

2: fort=T —1do
3:  Initialize v,

4: fori=1— Mdo

5: Sample z ~ N(0,T)

6: Compute g + sp (Xf5 )

7: Update xi + Po(xi ' + g + v/2V:2)
8:  end for

9: %V 4« xiw

10: end for

11: Output: x)

where o, is the position of obstacle j and R° denotes the
minimum distance at which an robot must be to avoid an
obstacle. Together, these constraints define a nonconvex set:

Q, = {H e RNa*H*2|Constr. (6), (7), hold} ,

and the complete feasible set is given by: 2 = Q. N Q,,.

The detailed algorithm is shown in Algorithm 1. Notably,
the SMD framework allows straightforward incorporation
of additional constraints, such as acceleration bounds or
trajectory smoothness, by introducing these to the feasible
set £2.

4.3. Lagrangian Relaxation for Efficient Projections

Although solving Pq () can generate feasible trajectories,
the nonconvex nature of the constraint set above results in
high computational costs. To address this issue, we propose
a relaxation of the nonconvex constraints in MRMP (Boyd
et al., 2011) to vastly enhance the tractability of projections
onto a MRMP feasible set. Following standard practices
in constrained optimization, we transform inequality con-
straints into equality constraints using non-negative auxil-
iary variables (Kotary & Fioretto, 2024). This simplifies
multiplier updates and improves convergence:

He :(xl — 72 —df, — (RY)? =0,Vi,§, i # j, Vh,

J
Ho () = 0;)> = df;, — (R°)* = 0,Vi, j, Vh,

where df ; ;, and df ; , (with vector form d* and d°, re-
spectively) are positive auxiliary variables. Specifically, H,
corresponds to the robot collision avoidance constraints and

H,, to the obstacle collision avoidance constraints.

The Lagrangian function of the MRMP problem is thus
defined as:

LT v,,v,) = J() + v] Ho(I1) + v/ H(TT), (9)

where 7 (II) represents the objective function, which typi-
cally finds the nearest feasible point to the input in the pro-
jection, as shown in Eq. 4. v, and v, are Lagrangian mul-
tipliers, and H,, and H,, represent the equality constraints

enforcing inter-robot collision avoidance and obstacle avoid-
ance, respectively. While the standard Lagrangian formu-
lation provides a means of incorporating constraints into
the optimization process, it suffers from slow convergence
due to the instability of dual variable updates, particularly
in nonconvex settings. To mitigate these issues, we adopt
the augmented Lagrangian method (Boyd et al., 2011; Ko-
tary et al., 2022) to improve the convergence performance,
which introduces additional penalty terms on the constraint
residuals:

L(IT,v,,v,) = J(I)

+ v Ho(IT) + v ] Ho(T1)
+ PaH%a(H)HQ + p0||7'[0(1_[)||2,

where p, and p, are penalty parameters that control the
strength of the constraint enforcement. These penalties
improve numerical stability by discouraging constraint vio-
lations in early iterations, accelerating convergence.

The corresponding Lagrangian dual function can thus be
defined by:

d(”av Vo) = ml_}nﬁ(l'[, Vg, Vo)'
and associated Lagrangian Dual Problem is defined as max-
imizing the dual function:

arg max d(v,, v,) st. IIeQ.. (10)

Va,Vo

Through weak duality, maximizing (10) provides a lower
bound on the optimal objective value of the primal MRMP
problem. Even in cases where strong duality does not hold
(e.g., as in the application context studied in this work),
minimizing the duality gap allows for near-optimal feasible
solutions to be obtained. Given the optimal dual variables
(v, v}), a primal solution II can be obtained by solving:

IT = arg min
e,

LOL v, vh).

This follows from the stationarity condition, where optimiz-
ing the augmented Lagrangian function with fixed multipli-
ers yields the best feasible solution.

Crucially, the dual problem (10) can be solved iteratively,
by employing an adaptation of a Dual Ascent method (Boyd
etal., 2011):

k kK
1" = argl_rlrélgrzl LI, v, V), (12a)
vt = vl 4 i (TTY), (12b)
vt = Uk o (TTF). (12¢)

At each iteration, the primal variable IT* is updated by min-
imizing the augmented Lagrangian, and the dual variables
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Algorithm 2 Efficient Projection Operator for SMD
1: Input: Tolerance J, and 6,, Weight p, Initial Trajectory
fI, scaling factor ¢
while V,,, < d,and V. < J, do
Dy Ho(ID), 0y <+ Ho(IT)
II + argmingeq, L(ILv%, v¥)
Vo, « Ho(II), Vs, < H,(II)
pCxp
end while
Output: II

PRI AR

v,, V, are updated via a gradient ascent step on the con-
straint residuals. This approach enables the generation of
collision-free and kinematic viable trajectories for multi-
ple robots, especially in complex scenarios. The efficient
projection process is described in Algorithm 2.

4.4. Theoretical Analysis for SMD

Building on our earlier discussion of how the repeated pro-
jection mechanism ensures convex constraint satisfaction,
we now present a more detailed theoretical justification of
our proposed SMD for MRMP. The key insight is SMD can
provide feasible trajectories for MRMP by introducing the
Lagrangian relaxation method. Although the full MRMP
problem is nonconvex, we leverage the constraint structure
to control violations during each projection step.

For simplicity, we conduct our analysis on the standard
Lagrangian formulation in Eq. (9), as the augmented La-
grangian method mainly enhances the convergence of the
original Lagrangian relaxation. Before proceeding, we make
the following assumptions commonly satisfied in MRMP
formulations.

Assumption 4.1. The cost function of relaxed MRMP
L(I1,v,,v,) is continuously differentiable and convex over
the convex set ..

Proposition 4.2 (Convex Feasibility Guarantee). Let 11
be the trajectory output by the projection operator Pgq,(II)
within the diffusion step of SMD. Suppose that Assump-
tion 4.1 holds. Then, the generated trajectory I1 satisfies

dist(TL, Q,) < ¢

where dist(-) denotes the distance between the trajectory
IT and the feasible region ()., and & > 0 can be made
arbitrarily small.

Remark 4.3. This proposition provides a theoretical guar-
antee that our SMD can ensure the feasibility for convex
feasible set (2. by introducing Lagrangian relaxation meth-
ods. In addition to the convex constraints, SMD handles
nonconvex constraints defined by functions #,(II) and
H,(IT) via a dual ascent method with the user-defined stop-
ping criterion J, and J,. Specifically, SMD ensures the

output of the projection operator I1I:
Ha (D] < 0, [[Ho(TD]| < 6o,

for some tolerances d,, 4, > 0.

5. Experimental Settings

This section describes the evaluation methodology for Multi-
Robot Motion Planning algorithms, detailing the benchmark
maps, task assignment process, and performance metrics.
To ensure a comprehensive evaluation, this paper also intro-
duces a new benchmark instances set that captures a variety
of real-world MRMP challenges (released as supplemental
material).

Maps. We evaluate MRMP algorithms on both randomly
generated and real-world-inspired maps.

e Random maps include environments with increasing lev-
els of complexity: empty maps test inter-robot collision
avoidance in open spaces; basic maps introduce 10 obsta-
cles, requiring navigation within the feasible region that
excludes obstacle-occupied areas ; dense maps contain 20
obstacles, significantly restricting movement and increasing
planning difficulty. The progression from empty to dense
maps allows us to systematically assess the algorithms on
spatial constraints and coordination.

o Practical maps simulate real-world environments such as
warehouses and buildings, where constrained pathways and
structured layouts impose additional planning challenges.
Corridor maps replicate narrow passages where robots must
coordinate movements to pass each other without dead-
locks. Shelf maps mirror warehouse storage layouts with
tight aisles, requiring precise navigation. Room maps in-
troduce multiple rooms connected by doors, restricting the
number of robots that can enter at the same time and requir-
ing careful scheduling to prevent congestion. Compared to
random maps, practical maps emphasize not only collision
avoidance but also global coordination, as robots must find
feasible routes through constrained spaces.

Each scenario includes 25 maps with different obstacle con-
figurations.

Task assignment. Start and goal states are assigned dif-
ferently for random and practical maps. In random maps,
they are placed at feasible positions without collisions (see
Figure 2), while in practical maps, they are constrained to
predefined zones that reflect real-world constraints, such as
pickup and drop-off locations in warehouses (see Figure 3).
We conduct experiments with 3, 6, and 9 robots, generat-
ing 10 test cases for each configuration, except for corridor
maps, where we use 2 robots.

Evaluation metrics. MRMP algorithms are assessed based
on their ability to generate collision-free, efficient, and
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(b) Basic Maps.

(a) Empty Maps. (c) Dense Maps.
Figure 2. Examples of random maps used for MRMP experiments,
with increasing complexity. Colorful spheres and plates denote the
start and goals of robots. White objects indicate obstacles.

(a) Corridor Maps. (b) Shelf Maps. (c) Room Maps.
Figure 3. Examples of practical maps used for MRMP experiments

show different practical challenges in MRMP.

smooth trajectories. Success rate measures the percentage
of test cases solved without collisions. Path length evaluates
the average travel distance per robot, reflecting efficiency.
Acceleration quantifies trajectory smoothness, with lower
values indicating reduced energy consumption and smoother
motion. Collision ratio measures the proportion of robots
that experience collisions, providing insight into the robust-
ness of the planning method. These metrics collectively
assess feasibility, efficiency, and safety in MRMP.

Competing Methods. We compare our proposed SMD
against the following learning-based baseline methods:

1. Diffusion Models (DM): We adopt standard diffusion
models trained over the feasible trajectories to address
MRMP directly (Nichol & Dhariwal, 2021).

2. Motion Planning Diffusion (MPD): The state-of-the-art
motion planning diffusion model for single robots (Car-
valho et al., 2023), which we extend to handle MRMP
for comparison.

3. Multi-robot Motion Planning Diffusion (MMD): A re-
cently introduced solution that combines diffusion mod-
els with classical search-based techniques—generating
MRMP solutions under collision constraints (Shaoul
et al., 2025).

We also compare our proposed approaches with classical
algorithms in Appendix C.

[ 3 Robots [ 6 Robots [ 9 Robots
Empty
10 1.00 N/A N/A 1.02 2.59 N/A LI L1 112 1.01 1.18 1.19
oM
S w4
&~
2
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"l
0.0
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10 0.99 N/A N/A 1.03 N/A N/A 113 1.13 1.14 1.01 1.16 1.22
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& A
2
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=3
w0
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10 N/A N/A N/A 1.06 N/A N/A 1.16 1.17 1.18 1.03 1.18 1.36
L ez
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&
305
=
2] | |
0.0
DM MPD MMD SMD

Figure 4. Results for each method on random maps with three
different numbers of robots. Gray bars represents the failure rate,
and values on top of the bars indicate average path length per robot.

6. Experiments

In this section, we evaluate the performance of various
MRMP algorithms using our proposed benchmark. In most
cases, regular projection methods cannot be applied to ob-
tain solutions in MRMP due to the huge computational
burden (hence, our omission of Christopher et al. (2024) as
a baseline). Thus, for our implementation of SMD, we use
the projection with the Lagrangian relaxation method for our
experiments, except for the narrow-corridor map. The imple-
mentation details can be found in Appendix A. Additional
experimental results are presented in Appendix C, including
the performance of classical algorithms, additional evalua-
tion metrics, runtime comparisons, sensitivity analysis of
projection parameters, and results on other map types.

6.1. Performance on Random Maps

We first showcase the methods’ performance on random
maps. Figures 4 compares the success rate and path length
for all methods for settings of increasing complexity and
three configurations (3, 6, and 9 robots).

First, notice that the Standard Diffusion Model (DM) is un-
viable for MRMP tasks. Despite reporting a reasonable
success rate (78%) for 3 robots in empty maps, when simple
obstacles are introduced, the success rate falls dramatically
(5%). Additionally, DM fails to produce any feasible tra-
jectory when scaling to six or nine robots, even in empty
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(a) Basic Maps. (b) Dense Maps.

Figure 5. Trajectories generated by SMD on random maps.

maps.

Next, we focus on Motion Planning Diffusion (MPD). While
it reports near-perfect success rates for the 3-robots setting
(the smallest in our benchmark), this approach is highly
ineffective when scaled to additional robots. In empty envi-
ronments, MPD reports 35% success rates with six robots
and it fails to synthesize any feasible trajectory when ob-
stacles are introduced to the map or when scaling to nine
robots.

Multi-robot Motion Planning Diffusion (MMD) represents
the current state-of-the-art method for MRMP. This method
outperforms other baselines in its ability to handle an in-
creased number of robots. For instance, it reports non-zero
success rates for up to nine robots. However, there remains
a steep performance drop with the increasing number of
robots. For instance, it reports a success rate of 27% in
dense maps for 9 agents. A similar decrease in constraint
satisfaction occurs for in other scenarios besides the empty
maps.

In contrast, Simultaneous MRMP Diffusion (SMD) provides
new state-of-the-art results for both constraint satisfaction
and path length. Unlike other methods whose success rates
rapidly decline as robot and obstacle numbers grow, SMD
maintains feasibility in scenarios with increased robot and
obstacle counts (e.g., dense maps with 9 robots and 20
obstacles). Specifically, SMD is the only known method that
provides feasible solutions for the largest number of robots
in complex environments. SMD reports perfect success rates
and collision ratios for all tasks except the most complex
maps (dense environments) and 9 robots. Even in the most
challenging dense maps, where it still provides near-perfect
results (96% successful). This is a 3.6x improvement over
the previous state-of-the-art. Sample trajectories generated
by SMD are visualized in Figure 5.

6.2. Performance on Practical Maps

Practical maps are designed to evaluate the ability of the
methods to generate feasible trajectories for more challeng-

1 2 Robots
N/A N/A N/A

qﬁ)@ ‘I\QO Q@O %@9
(a) Results.

—_
(=)

(=]
W

Success Rate

(b) Trajectories.

Figure 6. Results for each method on corridor maps. Gray bars
represents the failure rate, and values on top of the bars indicate
average path length per robot.

ing yet commonly occurring real-world scenarios.

In corridor maps, Figure 6(a) shows that our SMD achieves
a perfect success rate, whereas all other methods fail to
report even a single feasible trajectory. In restrictive envi-
ronments like this, robots need to swap their positions in a
specific area to achieve their goals, as their initial relative po-
sitions are opposite to their goals positions, and the narrow
corridors do not allow direct position exchange. In this case,
the gradient-based guidance used by MPD in the diffusion
sampling process is prone to failure, as it cannot globally
coordinate different robots to reach their respective goals.
Although MMD uses multi-agent path-finding algorithms to
account for goal-reasoning, it still relies on gradient-based
guidance to generate trajectories. The penalty term em-
ployed by this method during gradient computation is thus
insufficient to produce feasible solutions in such regions.
In contrast, our reformulation of the diffusion sampling
process as a constrained optimization problem confers the
ability to ensure feasibility in the generated trajectories. As
shown in Figure 6(b), the trajectories generated by our SMD
allow the two robots to use the only slightly wider area to
swap their positions.

We also evaluate on shelf maps and room maps, both of
which contain narrow passages that must be traversed to
reach the goals. Figure 7 shows that MPD and MMD
achieve a similar success rate (60%) when there are only
three robots in shelf maps, and MPD even provides shorter
paths. However, it quickly fails to provide feasible solu-
tions as the number of robots increases, even slightly. SMD
again achieves a perfect success rate for three robots, and
it only experiences a slight decline as the number of robots
increases (90%). SMD also reports the shortest paths among
all methods. Similarly, room maps report SMD achieving
a perfect success rate for 3 and 6 robots and above 90%
when scaling up to 9 robots. In contrast, MPD and MMD
fail to produce feasible trajectories as the number of robots
increases. In these maps, SMD advantage over the baselines
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Figure 7. Results for each method on practical maps with three
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Figure 8. Trajectories generated by SMD on practical maps.

is even more noticeable. These results shows the adaptabil-
ity of the proposed algorithm to multiple environments and
challenging scenarios (such as the narrow passages).

Finally, Figure 8 provides two illustrative cases for shelf
maps (a) and room maps (b) where SMD is the only method
across those tested able to generate feasible solutions. A
common characteristic of these two instances is that multiple
robots need to pass through the same narrow passage, a
scenario frequently encountered in real-world applications.

7. Discussion and Limitations

While SMD provides state-of-the-art results for MRMP
tasks, consideration should be given to the appropriate ap-
plications of this approach. First, generative models incur
inference-time costs that should be considered when ap-
plying these models to motion planning. Diffusion models
are most advantageous in scenarios where the complex-
ity of the environment and the need for multimodal trajec-
tory generation outweigh the benefits of faster but more

rigid methods. For instance, such architectures are ideal for
handling unstructured environments with dense obstacles,
dynamic changes, and uncertain sensor inputs, where tradi-
tional methods struggle to adapt but may be unnecessary in
structured or open spaces.

8. Conclusion

This work introduced Simultaneous MRMP Diffusion
(SMD), a method that integrates constrained optimization
with generative diffusion models to generate collision-free,
kinematically feasible trajectories for multi-robot systems.
By alternating diffusion sampling with projections onto the
feasibility set, SMD eliminates the need for rejection sam-
pling or post-processing. To handle complex nonconvex con-
straints, the paper incorporates an Augmented Lagrangian
Method enabling scalability to challenging multi-robot sce-
narios where other methods fail. To support rigorous evalu-
ation, a benchmark was also introduced, covering environ-
ments that reflect real-world motion planning challenges.
Extensive experiments across varying obstacle densities and
increasing robot counts demonstrated that SMD achieves
significantly higher success rates and better objective values
than competing methods. The results highlight its robustness
in handling both static obstacles and dynamic interactions,
making it a promising approach for real-world applications.

There are several promising directions for future work. Ex-
tending SMD to more complex scenarios, such as 3D en-
vironments and humanoid locomotion is very promising.
Furthermore, the extension of SMD to decentralized set-
tings still remain to be explored.
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A. Implementation Details

Software: The software used for experiments is Rocky Linux release 8.9, Python 3.8, Cuda 11.8, and PyTorch 2.0.0.
Hardware: For each of our experiments, we used 1 AMD EPYC 7352 24-Core Processor and 1 NVIDIA RTX A6000 GPU.
A.1. MRMP Details

In our experiments, the size of each local map was 2 x 2 units. The robot radius was set to 0.05 units in all cases, except for
the corridor map, where it was 0.1 units. The obstacle sizes in random maps varied between 0.05 and 0.1 units.

To adopt the EECBS algorithm, we discretized the map into a grid with a cell size of 0.1 units, which corresponds to the
robot’s diameter. If an obstacle was present within a grid cell, the cell was marked as an obstacle. The robot’s starting
position was determined by the grid cell in which its center was located.

A.2. Training Details

Our implementation builds upon the official code of Carvalho et al. (2023) and Shaoul et al. (2025), with modifications to
accommodate our specific requirements. Since MMD can be trained with single-robot motion planning data, we first trained
it accordingly. Then, by running MMD, we obtained the feasible solutions of MRMP it generated and used them as training
data. Table 1 shows the hyperparameters used for training the score-based diffusion models in our experiments.

Table 1. Hyperparameters for Training in Experiments.

HyperParameters Value
Diffusion Sampling Step 25
Learning Rate le-4
Batch Size 64
Optimizer Adam

A.3. Evaluation Details

We conducted experiments on six types of maps, each with 25 different parameters, such as obstacle size and positions. For
all map types except corridor maps, we evaluate three different numbers of robots (3, 6, and 9). In corridor maps, only two
robots are tested. For each number of robots, we generate 10 test cases, resulting in 4,000 test instances for each method.

Table 2. Summary of MRMP Benchmark Instances
Obstacle  Number of Robots  Start & Goal Number of

Map Type Variations Variations Variations Instances
Empty Maps 25 3 10 750
Basic Maps 25 3 10 750
Dense Maps 25 3 10 750
Corridor Maps 25 1 10 250
Shelf Maps 25 3 10 750
Room Maps 25 3 10 750
Total 4000

For each generated path, we first check for collisions and compute the success rate of each method. For collision-free cases,
we analyze path length and acceleration. For cases with collisions, we report the collision ratio. If a method fails to generate
a feasible solution, its path length and acceleration are excluded from the statistical analysis.

12



Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models

B. Missing Proofs
B.1. Proof of Proposition 4.2

Proof. By Assumption 4.1, the projection operator Pq () performs the following optimization problem at each iteration:

II = argrr[%isgl, LILv,,v,). (13)

k

Since Q. is convex and L (I, v%, v*

unique global minimum.

) is convex and continuously differentiable over (2., the optimization problem has a

We define a single update step for the diffusion sampling process as:

U(IT}) =TT, + ys(T0}, t) + \/27,2. (14)
For each time step ¢, there exists a minimum iteration index ¢ = I such that:
S st || 47 Vi log g(TL o)) || < |1 F2lly (15)

where F; is the closest point to the global optimum that can be reached via a single gradient step from any point in €2..

Let Error be the distance between Hi and its nearest feasible point. Using Theorem 5.2 in (Christopher et al., 2024), for
any ¢ > I, we have: ‘ ‘
E [Error(U (P, (I1})), Q)] < & < E [Error(U(IT}), )] . (16)

where & > 0 is arbitrarily small.

Therefore, the expected distance between the final generated trajectory and the feasible set €2, is bounded above by &, which
means our SMD method yields a strictly smaller expected constraint violation and provides a feasibility guarantee for the
convex constraint set 2.

O

C. Additional Experimental Results

Our manuscript primarily evaluates learning-based algorithms based on their performance in terms of success rate and path
length (Figure 4, Figure 6(a), and Figure 7). While these metrics are sufficient to demonstrate SMD’s ability to consistently
outperform its competitors, two additional aspects warrant further investigation: (1) comparison with traditional methods and
(2) solution smoothness—measured by acceleration (computed as the absolute difference in velocity between consecutive
time steps)—and collision ratio, which quantifies the proportion of robots that collide when no feasible solution is found.
Specifically, we discretize the environment to adopt a powerful near-optimal multi-agent path finding algorithm, Explicit
Estimation Conflict-Based Search (EECBS) (Li et al., 2021).

As shown in Table 3 and Table 4, our proposed SMD consistently achieves an impressive success rate across all tested
scenarios. In contrast, traditional approaches such as EECBS also maintain a high success rate but struggle with path length,
which is approximately 20% longer than that of our method. This is caused by they operate within a predefined grid structure.
Notably, our SMD achieves near-zero collision rates, outperforming other learning-based approaches, which frequently fail
to avoid collisions in complex scenarios. The computational costs are reported in Table 5. Notably, more challenging tasks
typically take longer to solve, thus increasing the average running time.

In addition, Table 6 shows evaluation results on practical maps introduced by (Shaoul et al., 2025). SMD still maintains a
zero collision rate. These results further confirm the practical applicability and reliability of our approach.

In Figures 9 and 10, we present a sensitivity analysis of the scaling factor o used in our ALM-based projection. The results
suggest that careful tuning of ¢ is not necessary; using a moderate value such as 1.05 already achieves good convergence
performance.
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Table 3. Additional results for classical algorithms and learning-based algorithms in random maps. S is the success rate, L denotes the
average path length per robot, A is the average acceleration, and C is the collision ratio (see Section 5). We omit acceleration and collision
information for multi-agent path finding methods, as they assume constant velocities and typically do not return infeasible solutions.

Map Robots  Metric | EECBS DM MPD MMD  Ours
ST 1 0.7840 1 1 1
3 Ll 1.2591 09997 1.0180 1.1109 1.0125
Al - 0.0030 0.0022 0.0028 0.0010
Ccl - 0.1493 0 0 0
ST 1 0 0.3520 1 1
Empty Maps 6 L, 1.2607 - 2.5886 1.1139 1.1764
Al - - 0.0062  0.0029 0.0034
Cl - 1 0.4167 0 0
N 1 0 0 1 1
9 LJ| 1.2684 - - 1.1168  1.1945
Al - - - 0.0031 0.0046
Ccl - 1 0.9929 0 0
ST 1 0.0520  0.9960 0.9280 1
3 L. 1.3236 09910 1.0310 1.1315 1.0091
Al - 0.0031 0.0012 0.0032 0.0040
cl - 0.6133  0.0013  0.0467 0
ST 1 0 0 0.8320 1
Basic Maps 6 L 1.3228 - - 1.1319  1.1560
Al - - - 0.0033  0.0120
Cl - 1 0.9847 0.0813 0
ST 1 0 0 0.7280 1
9 L] 1.3244 - - 1.1375 1.2212
Al - - - 0.0035 0.0048
Ccl - 1 1 0.1093 0
N 0.968 0 0.9920 0.6600 1
3 L, 1.4945 - 1.0568 1.1638 1.0337
Al - - 0.0014 0.0037 0.0025
Cl - 0.9093 0.0040 0.1813 0
ST 0.944 0 0 0.4360 1
Dense Maps 6 L] 1.5135 - - 1.1693 1.1841
Al - - - 0.0038  0.0064
cl - 1 1 0.2687 0
ST 0.932 0 0 0.2720  0.9600
9 L, 1.5349 - - 1.1793  1.3556
Al - - - 0.0041  0.0052
Cl - 1 1 0.3707 0.0044
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Table 4. Additional results for classical algorithms and learning-based algorithms in practical maps.

Map Robots Metric | EECBS DM MPD MMD  Ours
St 1 0 0 0 1
. L] 1.4208 - - - 1.6619
Corridor Maps 2 Al _ 3 3 : 0.0012
Cl - 1 1 1 0
St 1 0.1200 0.5960 0.5960 1
3 L] 1.1697 0.7884 0.8825 0.9371 0.9017
Al - 0.0030 0.0081 0.0030 0.0060
Cl - 0.5027 0.2493 0.3133 0
St 1 0 0 0.5000 0.9560
Shelf Maps 6 L] 1.1493 - - 0.9317 1.0632
Al - - - 0.0030 0.0018
Ccl - 1 0.9960 0.3740  0.01
St 1 0 0 0.4480 0.9320
9 L] 1.1427 - - 0.9331 1.0838
Ccl - - - 0.0032  0.0068
Al - 1 1 0.4218 0.0111
St 1 0 0.0840 0.1360 1
3 L] 1.6956 - 1.1771  1.2697 1.1917
Al 0 - 0.0066 0.0043 0.0030
Ccl - 1 0.6520 0.6867 0
St 0.9960 0 0 0.0240 1
Room Maps 6 L \L 1.6778 — — 1.2660 1.3019
Al - - - 0.0032 0.0014
Cl - 1 1 0.8033 0
St 0.9920 0 0 0 0.9600
9 L] 1.6620 - - - 1.3374
Al - - - - 0.0033
Cl - 1 1 0.8849  0.0044
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Table 5. Running time in seconds with success rates (shown in parentheses and expressed as percentages) for all learning-based methods
across all maps. We consider only the time consumed to generate feasible trajectories for MMD, as the running time for failed trajectories
in MMD is determined by a predefined time limit, which could be meaningless if we calculate the running time using time limit (e.g.,
3000s).

Map | Robots | DM MPD MMD Ours
3 4.2(78.4)  14.1(100) 37.6(100) 29.5(100)
Empty Maps 6 3.7(0) 11.7(35.2)  72.1(100) 103.8(100)
9 3.9(0) 9.9(0) 108.5(100)  204.7(100)
3 41(52) 143(99.6) 39.6(92.8)  75.1(100)
Basic Maps 6 4.1(0) 9.9(0) 81.9(83.2)  235.2(100)
9 4.1(0) 10.2(0) 123.1(72.8)  481.6(100)
3 3.8(0) 14.5(99.2)  46.3(66.0) 73.7(100)
Dense Maps 6 4.3(0) 10.1(0) 105.3(43.6)  255.1(100)
9 4.1(0) 10.3(0) 192.4(27.2) 551.1(96.0)
3 4.1(12.0)  9.3(59.6)  59.2(59.6) 91.3(100)
Shelf Maps 6 4.1(0) 7.6(0) 128.4(50.0) 283.2(95.6)
9 4.1(0) 8.2(0) 200.2(44.8) 585.9(93.2)
3 41000  7.984)  20.5(13.6)  74.6(100)
Room Maps 6 4.1(0) 8.8(0) 41.2(2.4) 158.7(100)
9 4.1(0) 8.5(0) N/A(0) 255.7(96.0)
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Table 6. Additional results for MMD and SMD in maps used in (Shaoul et al., 2025).

Map Robots  Metric | MMD  Ours
St 1 1
3 L| 1.1638 1.1391
Al | 0.0026 0.0030
Ccl 0 0
St 1 1
Highways Maps 6 L] 1.1669 1.1775
Al | 0.0028 0.0022
Ccl 0 0
St 1 1
9 L| 1.1792  1.1802
Al | 0.0028 0.0031
Ccl 0 0
St 1 1
3 L| 1.1529  1.1499
Al | 0.0030 0.0029
Ccl 0 0
St 1 1
Conveyor Maps 6 L| 1.1726  1.1806
Al | 0.0027 0.0044
Ccl 0 0
St 1 1
9 LJ| 1.1916  1.2003
Al | 0.0031 0.0067
Ccl 0 0
St 1 1
3 L| 1.1417 1.0337
Al | 0.0024 0.0051
Ccl 0 0
St 1 1
Drop-Region Maps 6 L] 1.1604 1.1841
Al | 0.0028 0.0039
Ccl 0 0
St 1 1
9 L| 1.1719  1.3556
Al | 0.0027 0.0075
Ccl 0 0
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(j) Shelf Maps with 3 Robots.

(k) Shelf Maps with 6 Robots.

(1) Shelf Maps with 9 Robots.
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Figure 9. Sensitivity analysis of the scaling factor { on gradient convergence for inter-agent collision avoidance constraints in ALM-based
projection, evaluated for each map with different numbers of robots. The scaling factor ¢ determines how the coefficient of the augmented

term is multiplied at each iteration. We test five increasing values of ¢ from 1.01 to 1.09, as well as a constant value of 1.00 as the ablation
study.
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Figure 10. Sensitivity analysis of the scaling factor on gradient convergence for obstacle collision avoidance constraints in ALM-based
projection, which leads to similar conclusions with inter-agent collision avoidance constraints.

19



