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Abstract

Despite the remarkable generative capabilities of diffusion models, their integration into safety-
critical or scientifically rigorous applications remains hindered by the need to ensure compliance
with stringent physical, structural, and operational constraints. To address this challenge, this pa-
per introduces Neuro-Symbolic Diffusion (NSD), a novel framework that interleaves diffusion steps
with symbolic optimization, enabling the generation of certifiably consistent samples under user-
defined functional and logic constraints. This key feature is provided for both standard and discrete
diffusion models, enabling, for the first time, the generation of both continuous (e.g., images and
trajectories) and discrete (e.g., molecular structures and natural language) outputs that comply with
constraints. This ability is demonstrated on tasks spanning three key challenges: (1) Safety, in
the context of non-toxic molecular generation and collision-free trajectory optimization; (2) Data
scarcity, in domains such as drug discovery and materials engineering; and (3) Out-of-domain
generalization, where enforcing symbolic constraints allows adaptation beyond the training distri-
bution.

Keywords: Diffusion Models, Controllable Generation, Differentiable Optimization

1. Introduction

Diffusion models (Ho et al., 2020) are a class of generative Al models at the forefront of high-
dimensional data creation and form the backbone of many state-of-the-art image and video gener-
ation systems (Rombach et al., 2022; Betker et al., 2023; Liu et al., 2024). This potential has also
been recently extended to the context of discrete outputs, which is suitable for language modeling
or combinatorial structure design, like chemical compounds or peptide design (Zheng et al., 2024;
Lou et al., 2024; Shi et al., 2024). Diffusion models operate by progressively introducing controlled
random noise into the original content and learning to reverse the process to reconstruct statistically
plausible samples. This approach has shown transformative potential for engineering, automation,
and scientific research through applications including generating trajectories for robotic agents in
complex, high-dimensional environments or synthesizing new molecular structures with improved
strength, thermal resistance, or energy efficiency (Carvalho et al., 2023; Watson et al., 2023).
However, as opposed to standard image synthesis tasks, scientific applications of diffusion mod-
els need to be controlled by precise mechanisms or properties that must be imposed on generations.
While diffusion models produce statistically plausible outputs, they are simultaneously unable to
comply with fundamental physics, safety constraints, or user-imposed specifications (Motamed
et al., 2025). Violations of established principles and constraints not only undermine the utility
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of generative models, but also erode their trustworthiness in high-stakes domains. For example,
embodied agents powered by generative Al such as drones or robotic arms are susceptible to adver-
sarial manipulations that bypass safety protocols (Robey et al., 2024). To date, these models have
struggled to produce even simple trajectories that satisfy basic collision avoidance, let alone more
stringent safety requirements in complex environments (Power et al., 2023). Similarly, in scientific
and industrial applications such as autonomous bio-labs, systems may improperly model specifica-
tions or even react to adversarial triggers, potentially leading to synthesis of hazardous compounds

(Wittmann, 2024). Thus, there is a pressing need for generative models to satisfy physical, opera-

tional, and structural constraints that govern large-scale scientific and engineering challenges.

Recently, Christopher et al. (2025) observed that a class of generative models can ground their
induced distributions to a specific property. Inspired by this observation, this paper provides a step
towards addressing the challenge of constraining generative models and developing a novel integra-
tion of symbolic optimization with generative diffusion models. The resulting framework, called

Neuro-Symbolic Diffusion (NSD), enables the generation of outputs that are certifiably consistent

with user-defined properties, ranging from continuous constraints, such as structural properties for

material science applications or collision avoidance in motion-planning environments, to discrete
constraints, including the prevention of toxic substructures in molecule generation tasks.

Contributions. The contributions of this study are as follows.

1. It develops a novel methodology for integrating functional and logic constraints within genera-
tive diffusion models. The core concept involves a tight integration of differentiable constraint
optimization within the reverse steps of diffusion process and ensures that each generated sample
respects user-imposed or domain-specific properties.

2. It shows that this approach is not only viable for generation within continuous subspaces but
also effective in constraining token generation for discrete modalities, including domain-specific
sequence generation for scientific discovery and open-ended language generation.

3. It provides theoretical grounding to demonstrate when and why constraint adherence can be
certified during the neuro-symbolic generative process.

4. It presents an extensive evaluation across three key challenges: (1) Safety, demonstrated through
non-toxic molecular generation and collision-free trajectory optimization; (2) Data scarcity, with
applications in drug discovery and materials engineering; and (3) Out-of-domain generalization,
where enforcing symbolic constraints enables adaptation beyond the training distribution.

These advances bring forward two key features that are important for the development of generative

models for scientific applications: Improved assurance, e.g., the models can implement safety pred-

icates needed in the domain of interest, such as natural language generation where prompts could be
engineered to elicit harmful outputs, and Improved generalization, e.g., the imposition of knowledge
and symbolic constraints dramatically improves the model generalizability across domains.

2. Preliminaries: Generative Diffusion Models

Diffusion models define a generative process by learning to reverse a forward stochastic transfor-
mation that progressively corrupts structured data into noise. The generative model then approxi-
mates the inverse of this transformation to restore the original structure, thereby allowing sampling
from the learned distribution. The forward noising process {:I:t}tTZO progressively corrupts data in
a Markovian process, starting from &g ~ pgaa (o) and culminating into noise xp ~ p(xr). Here,
Pdata (o) represents the distribution induced by real data samples, and p(x7) is, by design, some
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known distribution. The reverse process starts from & ~ p(a7) and produces samples x that
follow pgata-

In this study, we consider two settings: (1) continuous diffusion models (Ho et al., 2020; Song

et al., 2020) for data in R? (e.g., images or trajectories), and (2) discrete diffusion models (Lou et al.,
2024; Sahoo et al., 2024), which were recently introduced to handle discrete data (e.g., sequences
of tokens representing natural language or molecular structures).
Diffusion models for continuous data. For data in R, the forward diffusion process is often
modeled as a stochastic differential equation (SDE) of the form dax; = — % B(t)x.dt+/B(t)dB(t),
where B(t) denotes standard Brownian motion and ((t) defines a noise schedule. As ¢ — T, the
process asymptotically transforms data into an isotropic Gaussian distribution. The reverse process,
which recovers the original data, follows a time-reversed SDE underlying Langevin dynamics:

However, since exact integration of this process is intractable, in practice, it is discretized into a
finite-step Markov chain:

TN\ = Ty + "}/tSQ(mt, t) + 2’7756, (2)
where sy is a neural network that approximates the gradient of the log data distribution V, log p(x;),
called the score function, and is used to guide the model toward high-density regions. Additionally,
v¢ is the step size and e is a Gaussian perturbation. In the deterministic limit (i.e., 74 — 0), this
becomes a pure gradient ascent update on log p(x;).
Discrete diffusion models. For discrete data such as text tokens, each sample is a sequence xo =
(2}, ..., xk) where each token ) € RV is represented as a one-hot vector over a vocabulary of
size V. The forward process progressively corrupts the sequence by replacing tokens with noise,
the marginal of which is defined as: q(x; | ¢g) = Cat(xy (1 —8(¢t))xo + B(t)v), where
B(t) € [0, 1] is a schedule that increases with ¢, so that tokens are increasingly replaced by noise, and
Cat(-; z) denotes a categorical distribution parameterized by probability vector z € XV, where £V
denotes the V' -dimensional simplex. Finally, v is a fixed categorical distribution, often concentrated
on a special token, such as [MASK] (as in MDLM from Sahoo et al. (2024)) or chosen uniformly
(as in UDLM from Schiff et al. (2024)). It models a process akin to that induced by the isotropic
Gaussian in the continuous counterpart. As ¢ increases, each token in x; becomes less correlated
with its original value, and approaches the noise distribution. The reverse process is represented as

Cat(act,A; a:t), if xy # v,

Toa = Cat<33t—A; BB v (P)=pii=2))

(3
50 se(mt,t)>, if ¢; = v,

Since xg is unknown at inference, it is approximated with sg(x;, t). Here, &, represents a vector of
probability distributions over tokens at each position in the sequence. The paper denotes with ; =
argmax(x;) as the selected output sequence, where the argmax operator is applied independently
to each member a:ft of the sequence x;.

3. Related Work and Limitations

Despite their success, existing diffusion models struggle to enforce structured constraints. An ap-
proach developed to address this issue relies on sampling a conditional distribution pga (o | €),
where c conditions the generation. This approach transforms the denoising process via
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Limitations of Conditional Models

classifier-free guidance:

—— Neuro-Symbolic Diffusion
—— Conditional Diffusion
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where A € (0,1) is the guidance scale and L is a
null vector representing non-conditioning (Ho and Sal- 1o

imans, 2022). These methods have demonstrated effec- V\\\
tiveness in capturing physical design properties (Wang 0
et al., 2023), positional awareness (Carvalho et al., o o3 Diffusiono‘ﬁmestep ¢ o0
2023), and motion dynamics (Yuan et al., 2023). How-  Figure 1: Conditional models fail to converge
ever, while conditioning can guide the generation pro- to feasible states while Neuro-Symbolic Dif-
cess, it offers no reliability guarantees. This issue is fusion produces no violations.

illustrated in Figure 1 (red curve), which shows the magnitude of constraint violations observed in a
physics-informed motion experiment simulating the dynamics of an object under a force-field influ-
ence (more details provided in Appendix E.4). Here, the conditional model fails to adhere to motion
constraints as the diffusion steps evolve (¢ — 0). Additionally, conditioning in diffusion models
often necessitates the training of auxiliary classification or regression models, which requires addi-
tional labeled data. This is highly impractical in many scientific contexts of interest to this paper,
where sample collection is expensive or extremely challenging.

An alternative approach involves applying post-processing steps to correct deviations from de-
sired constraints in the generated samples. This correction is typically implemented in the last noise
removal stage (Giannone et al., 2023; Power et al., 2023; Mazé and Ahmed, 2023). However, this
approach present two main limitations. First, the objective does not align with optimizing the dif-
fusion model score function, and thus does not guide the model towards high-density regions. This
inherently positions the diffusion model’s role as ancillary, with the final synthesized data often re-
sulting in a significant divergence from the learned (and original) data distributions. Second, these
methods are reliant on a limited and problem specific class of objectives and constraints, such as spe-
cific trajectory “constraints” or shortest path objectives which can be integrated as a post-processing
step (Giannone et al., 2023; Power et al., 2023).

To overcome these gaps and handle arbitrary symbolic constraints, our approach casts the re-
verse diffusion process as a differentiable constraint optimization problem, which is then solved
through the application of repeated projection steps. The next section focuses on continuous mod-
els for clarity, but this reasoning extends naturally to discrete models, as shown in Appendix D.

Constraint Violation
N
o

4. Reverse Diffusion as Constrained Optimization

In traditional diffusion model sampling, the reverse process transitions a noisy sample x to xg by
reversing the stochastic differential equation in (1), which is discretized into an iterative Langevin
dynamics update in (2). The key enabler for the integration of constraints in the diffusion process
is the realization that each reverse step can be framed as an optimization problem. As shown in Xu
et al. (2018), under appropriate regularity conditions, Langevin dynamics converges to a stationary
distribution p(x;), effectively maximizing log p(x;) (Christopher et al., 2025). As t — 0, the
variance schedule decreases and the noise term /27 € vanishes, causing the update step to become
deterministic gradient ascent on log p(x;). This perspective reveals that the reverse process can be
viewed as minimizing the negative log-likelihood of the data distribution. The proposed method for
constraining the generative process relies on this interpretation.
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In traditional score-based models, at any point throughout the reverse process, x; is uncon-
strained. When these samples are required to satisfy certain constraints, the objective remains
unchanged, but the solution to this optimization must fall within a feasible region C. Thus, the
optimization problem formulation becomes:

T
Minimize / —logp(a:t | a:o) subjectto x; € C, Vt € (0,T]. 4)
xt : t€(0,T =0

In practice, C is defined by the intersection of multiple (n) functional expressions or logic predi-

cates: C & Ni— ¢i(x), where each ¢;(x) is a predicate that returns 1 if a satisfies a condition
and O otherwise. For example, these may be a series of properties that are required for a generated
molecule to be a non-toxic chemical compound. The paper uses ¢1., to denote the subset of n
constraints in C'.

In discrete diffusion models, the score function can be similarly modeled through Concrete
Score Matching as expounded on in Appendix D (Meng et al., 2022). Hence, the underlying op-
timization interpretation remains consistent: each denoising update seeks to move x; closer to the
high-density region of the learned distribution while respecting the constraints C.

5. Neuro-Symbolic Generative Models

The score network sy (x4, t) directly estimates the first-order derivatives of Equation (4) (excluding
the constraints) and provides the necessary gradients for iterative updates defined in Equations (2)
and (3). In the presence of constraints, however, an alternative iterative method is necessary to guar-
antee feasibility. This section illustrates how projected guidance can augment diffusion sampling
and transform it into a constraint-aware optimization process. First, it formalizes the notion of a
projection operator Pc, which finds the nearest feasible point to the input a:

e |z — yl[3 st.y € C, if & is continuous,

Pc(x) = argmin 5
c@) gy Dir (z || y) st y* =argmax(y) € C, if x is discrete. ©)

Because continuous diffusion operates in a multi-dimensional real space, € R?, whereas discrete
diffusion represents samples as & € %", the notion of proximity must be adapted accordingly. In
continuous settings, Euclidean distance provides a natural measure of deviation from feasibility. At
the same time, for discrete models, the underlying representations correspond to probability distri-
butions; thus, the Kullback—Leibler (KL) divergence is chosen to quantify the minimal adjustment
needed to satisfy the constraints. The optimization objective in Equation (5) defines a projection
operator that minimizes a cost function, which we refer to as the cost of projection. In the contin-
uous setting, this corresponds to the squared Euclidean distance, ||y — z||3, while in the discrete
setting, it is determined by the KL divergence. More generally, we denote this projection cost as
Deost (2, y), representing the modality-specific distance minimized in the projection step.

To ensure that feasibility is maintained throughout the reverse process of the diffusion model,
the sampling step is updated as:

Pc (azt + yeso(xe, t) + \/Q'yte) if & is continuous,

6
Pc (Cat(. ;o (e, t))) if z is discrete. ©

TN =
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where v, > 0 is the step size, € ~ N(0,1), and 7y(x¢, ) is the predicted probability vector,
as generalized from Equation (3). Hence, at each step of the Markov chain, a gradient update is
applied to minimize the objective in Equation (4), while interleaved projections ensure feasibility
throughout the sampling process. Importantly, convergence is guaranteed for convex constraint sets
(see Section 6), and empirical results in Section 7 demonstrate the effectiveness of this approach,
even in highly non-convex settings. Notably, the projection operators can be warm-started across
iterations, providing a practical solution for efficiently handling regions with complex constraints.

Augmented Lagrangian Projection. To solve the
projection subproblem Pc () in each sampling step,
the paper uses a Lagrangian dual method (Boyd,

Algorithm 1 Augmented Lagrangian Projection
Input: x¢, A\, p, v, a, §

Yy<—x
2004), where the constraints are incorporated into while qf(y) < &do
a relaxed objective by using Lagrange multipliers A for j < 1 to max_inner_iter do ~
and a quadratic penalty term p. The augmented La- Lan ¢ Deost (4, y) +A d(y)+ 5 ¢(y)?
grangian function is defined as end Yy =7 Velan
Latm(Ys A, 1) =Deost (4, y) +A ¢~5(y)+% o(y)?, ohd A At pe(y); p min(ag, pm)
TN <Y

where g?) denotes a differentiable residual or con-
straint violation of the original (potentially non-
differentiable) constraint function ¢1.,. For example, consider a linear constraint ¢ = Ay < b,
then ¢ = max(0, Ay — b). The iterative update follows a dual ascent strategy, where the vari-
ables y are optimized via gradient step on V,Lapm, while the dual variables A are updated by
A= A+ /w;(y) Additionally, the penalty coefficients p are increased adaptively by « to tighten
constraint enforcement. This procedure continues until (;~S(y) < 6 or the maximum iteration count
is reached, returning a feasible y as x;_a, as illustrated in Algorithm 1. Note that for convex
constraint sets, the augmented Lagrangian method provides strong theoretical guarantees for exact
convergence to the projection onto the feasible set (Boyd, 2004). Specifically, if Slater’s condition
holds (i.e., there exists a strictly feasible point), then the method guarantees convergence to the pri-
mal solution satisfying the constraints. This feature is key for several applications of interest to this
work (see Section 7).

Notice that, for discrete variables, the projection Pc(x;) must be imposed on the decoded
sequence y* = argmax(y). Because the argmax operator is not differentiable, this paper adopts
a Gumbel-Softmax relaxation (Jang et al., 2016) to preserve gradient-based updates. Details on this
relaxation are provided in Appendix C, and further technical aspects of the augmented Lagrangian
scheme are discussed in Appendix B.

By incorporating constraints throughout the sampling process, the interim learned distributions
are steered to comply with these specifications. The effectiveness of this approach is empirically
evident from Figure 1 (blue curve): remarkably, as the reverse process unfolds, constraint violations
steadily approach 0 and a theoretical justification for the validity of this approach is provided in
the next section. A key distinction of this method, in contrast to prior approaches (Giannone et al.,
2023; Power et al., 2023), is that it optimizes the negative log-likelihood as the primary sampling
objective, maintaining consistency with standard unconstrained diffusion models while enforcing
verifiable constraints. This provides a fundamental advantage: it maximizes the probability of gen-
erating samples that conform to the data distribution while ensuring feasibility. In contrast, existing
baselines prioritize external constraints at the expense of distributional fidelity, often leading to sig-
nificant deviations from the learned distribution, as shown in Section 7.

return x;_aA
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6. Effectiveness of Neuro-Symbolic Generation: A Theoretical Justification

This section focuses on two key outcomes of incorporating iterative projections during diffusion
sampling: (1) As the sample x; transitions toward the minimizer of the negative log-likelihood
(the primary diffusion objective), each projection step needs only a small adjustment to maintain
feasibility. Thus, the projected sampling remains closely aligned with the unconstrained score-
based dynamics, causing minimal deviation from the main objective. (2) By keeping the sample
near Pc () throughout the sampling trajectory, any subsequent or “final” projection step becomes
less costly (e.g., smaller Euclidean or KL distance).

Proofs for all theorems are provided in Appendix F and additional technical details in Appendix
D. The analysis assumes a convex feasible region C and unifies results for both continuous (Eu-
clidean) and discrete (KL-based) metrics (Christopher et al., 2025). Below, we detail the theoretical
underpinnings using the update notation x; — x;_ in place of traditional iterative indexing.
Consider an update step that transforms a sample x; at diffusion time ¢ into x;_a at time ¢t — A.

Next, we use the update operator Uy (x;) def Eq. (1) if a4 is continuous or Eq. (3) if categorical.

We first establish a convergence criterion on the proximity to the optimum, showing that as
diffusion progresses, the projected updates remain close to the highest-likelihood regions of the
data distribution while respecting constraints.

Theorem 1 (Convergence Proximity) If1og pgu. (o) is convex, then there exists a minimum iter-
ation t such that, for all t < t, the following inequality holds: ||Up(x¢) — @||2 < ||p — @||2, where
p is the closest point to ®, the global optimum of 10g pyaa(xo), which can be reached via a single
gradient step from any point in C.

Next, we show that incorporating projections systematically reduces the cost of enforcing feasibility,
making the projection steps increasingly efficient as sampling progresses.

Theorem 2 (Error Reduction via Projection) Ler Pc be the projection operator onto C. For all
t < t, as defined by Theorem 1. Then,

E [Error(Uyp(z:), C)| > E [Error(Up(Pc(x:)), C)],
where Error(-, C) quantifies the cost of projection.

In essence, performing an update starting from a projected x; yields a sample x;_a that is, in
expectation, closer to the feasible set than an update without projection. A direct consequence is:

Corollary 3 (Convergence to Feasibility) For any arbitrarily small ¢ > 0, there exists a time t
such that after the update
Error (Us(Po()),C) < &.

This result leverages the fact that the step size -y, strictly decreases as ¢ decreases, and thus, both
the gradient magnitude and noise diminish. Consequently, the projection error approaches zero,
implying that the updates steer the sample toward the feasible subdistribution of pgar, (o).

Together, Theorem 2 and Corollary 3 explain why integrating the projection steps into the re-
verse update x; — x;_ A produces samples that conform closely to the imposed constraints.

Feasibility Guarantees. For an arbitrary density function, NSD provides feasibility guarantees
for convex constraint sets. This assurance is critical in applications of interest to this paper, including
the material design explored in Section 7.3 and physics-based simulations (Appendix E.4).

7
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Figure 2: Results for Molecule Generation experiments constrained to be novel and non-toxic. On the left,
we provide examples of the projection operators; on the right, the table outlines specific results.

7. Experiments and Evaluation

The evaluation of the symbolic diffusion approach focuses on three primary tasks designed to stress-
test compliance with challenging constraints, with focus on safety, data scarcity robustness, and
out-of-domain generalization. In all cases, we compare our method (NSD) against state-of-the-art
baseline diffusion models and relevant ablations, as assessed by domain-specific qualitative met-
rics (i.e., path length for motion planning and FID scores for image generation) and frequency of
constraint violations. Complimenting any domain specific baselines, the evaluation also includes,
where applicable, a conditional diffusion model (Cond), where constraints are applied as condi-
tioning variables of the models and a post-hoc correction (Post™) approach (projecting the final
output only) to illustrate the importance of integrating constraints during sampling. We use iden-
tical neural network architectures and training procedures for the diffusion model across methods;
thus, differences in performance can be attributed to constraint implementation rather than model
capabilities. Due to space constraints, we fully elaborate all domain specifications in Appendix E.
To demonstrate the broad applicability of NSD, the experimental settings showcase its capability in:
1. Enabling safe, non-toxic molecular generation and out-of-domain discovery (§7.1).

2. Handling safety-critical settings and highly non-convex constraints for motion planning (§7.2).
3. Facilitating microstructure design in data scarce settings for out-of-domain discovery (§7.3).

In addition, we test the ability of NSD to generate ODE-governed videos for out-of-distribution
tasks (Appendix E.4), to prevent harmful text generation for natural language modeling (Appendix
E.5), and to constrain supplementary out-of-domain molecule generation properties (Appendix E.1).

7.1. Molecule Generation for Drug Discovery (Safety and Domain Generalization)

In drug discovery, ensuring the chemical safety and quality of output molecules is critical. This
experiment generates molecules in SMILES format (Weininger, 1988) using a uniform discrete dif-
fusion model finetuned on the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). For
this task, NSD is compared with MDLM (Sahoo et al., 2024) and UDLM (Schiff et al., 2024), the
current state-of-the-art discrete diffusion models, and an autoregressive (AR) baseline with identical
architecture and size to our diffusion model backbone.

The experiment enforces two key constraints: a novelty constraint (¢;) that ensures generated
molecules do not appear in the training set, and five BRENK substructure filters (¢2.6) that identify
undesirable molecular fragments (e.g., aldehydes, three-membered heterocycles) linked to toxicity
and the absence of drug-like characteristics. Critically, molecules flagged by BRENK often exhibit
toxicity, reactivity, or other liabilities making them unsuitable for drug discovery (Brenk et al.,
2008). Thus, for this study, we define ‘non-toxic’ molecules as those passing all five of the chosen
BRENK filters (Appendix E.1). An illustration of the NSD correction mechanism employed to
project the generated molecules is presented in Figure 2 (left).
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Figure 3: Evaluation on practical maps with three different numbers of robots. On the left, we assess failure
rates (depicted by the gray regions of the bars) and average path length (values on top of the bars). On the
right, we provide visualizations of the practical maps tested on.

Together, these constraints serve two purposes: (1) Out-of-Distribution Generation: the nov-
elty constraint promotes out-of-distribution generation, which is essential for discovering new chem-
ical compounds, and (2) Safety-Critical Outputs: the BRENK filters ensure the sampled molecules
are safe, thereby improving their likelihood of success in downstream drug-development pipelines.

Figure 2 (right) reports the number of novel and non-toxic molecules generated, along with
constraint violations (expressed as the percentage of generations that do not conform to the imposed
requirements). While the diffuison baselines report substantial improvements with respect to the AR
model, they frequently violate constraints. In contrast, NSD achieves perfect adherence to safety
constraints, while also increasing the frequency of molecule generations that are novel, valid, and
non-toxic by over 3.5x, a remarkable improvement over the current state-of-the-art. Additionally,
as detailed in Appendix E.1, we provide an evaluation of settings where NSD generations comply
with strict thresholds on synthetic accessibility, the ease with which the generated molecules can be
synthesized, further improving the practical utility.

7.2. Motion Planning for Autonomous Agents (Safety)

Next, we examine how NSD enforces collision avoidance in autonomous multi-agents settings using
a continuous diffusion model. Two main challenges arise: (1) Safety-Critical Outputs: In real-
world deployments, robots must avoid restricted or hazardous areas to ensure safe navigation in
cluttered or dynamic environments. (2) Highly Non-Convex Constraints: Furthermore, the under-
lying problem is characterized by a large number of non-convex and temporal constraints, rendering
the problem extremely challenging (more details in Appendix E.2).

We compare NSD to a conditional baseline and current state-of-the-art methods for multi-agent
pathfinding: (1) Motion Planning Diffuion (MPD) originally designed for single-robot motion plan-
ning (Carvalho et al., 2023), and adapted here to multi-agent tasks for comparison and (2) Multi-
robot Motion Planning (MMD), a recent method that integrates diffusion models with classical
search techniques (Shaoul et al., 2024). Figure 3 (left) highlights the results on practical maps that
feature multiple rooms connected by doors or constrained pathways for robot navigation. These sce-
narios require robots to not only avoid collisions (¢1) but also coordinate globally to find feasible
routes through shared spaces (¢2). NSD sets a new state-of-the-art in feasibility and scalability. In
Figure 3(a), MPD and MMD achieve 60% success with three robots but degrade significantly with
more agents, with MMD dropping to 45% for nine robots. In contrast, NSD maintains high success
rates: 100% for three robots, 96% for six, and 93% for nine. On room maps (Figure 3(b)), NSD
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achieves perfect success rates for up to six robots and over 95% for nine robots, whereas MPD and
MMD fail entirely as complexity increases. This trend persists across other environments (see Ap-
pendix E.2). This is remarkable, as NSD can enable effective coordination among multiple robots
in shared, constrained spaces, ensuring collision-free, kinematically feasible trajectories.

7.3. Morphometric Property Specification (Data Scarcity and Domain Generalization)

Finally, this experiment focuses on a mi-  Ground P(%) Generative Methods

crostructure design task. Here, achieving spe- NSD  Cond  Post®  Cond"
cific morphometric properties is crucial for § i
expediting the discovery of structure-property
linkages. We consider an inverse-design prob-
lem in which a target porosity percentage, de-
noted by P(%), is desired. Here, the porosity is
a measure of the percentage of ‘damaged’ pix-
els in the microstructure. This setting provides
two particular challenges: (1) Data Scarcity:
A key consideration in this context is the ex-
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augmentation an important application of this Figure 4: Samples and results from the morphometric
problem. Obtaining real material microstruc- property specification experiments.

ture images is expensive and time-consuming, with limited control over attributes such as porosity,
crystal sizes, and volume fraction, often requiring a trial-and-error approach. Provided these costs,
our training data regime is very low; we subsample a single 3,000x 3,000 pixel image to compose
the dataset. (2) Out-of-Distribution Constraints Given the low amounts of data available, often
the desired porosity levels are unobserved in the training set. Recall that NSD guarantees strict
adherence to specified porosity constraints. Figure 4 illustrates the effectiveness of our method
in generating microstructures with precise porosity levels as attempted by prior works employing
conditional models (Chun et al., 2020). This demonstrates that our approach not only provides
the highest fidelity to the training distribution but also outperforms baselines in producing valid
microstructures as assessed by domain-specific heuristic metrics (Figure 6, bottom and Appendix
E.3).

8. Conclusion

This paper presented a novel framework that integrates symbolic optimization into the diffusion pro-
cess, ensuring generative models can meet stringent physical, structural, or operational constraints.
By enforcing these constraints continuously, rather than relying on post-processing approaches or
soft guidance schemes, the proposed neuro-symbolic generative approach shows a unique ability
to handle safety-critical tasks, cope with limited or skewed data, and generalize to settings be-
yond the original training distribution. Empirical evaluations across domains including toxic com-
pound avoidance, motion planning, and inverse-design for material science illustrate this ability
and provide a new state-of-the-art in utility and constraint adherence. As evidenced by this work,
the capability to embed and process diverse symbolic knowledge and functional constraints into
diffusion-based models paves the way for more trustworthy and reliable applications of generative
Al in scientific, engineering, and industrial contexts.
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Appendix A. Extended Related Work

Neuro-symbolic frameworks. This paper’s novel integration of symbolic constraints with genera-
tive models builds on foundational work in hybrid Al systems, blending the pattern recognition of
neural networks with symbolic reasoning’s structured constraints. Early approaches like coopera-
tive architectures (Broda et al., 2002) established iterative feedback loops between neural and sym-
bolic components, as seen in autonomous driving systems where visual detectors refine predictions
via spatial logic rules (Sharifi et al., 2023). Parallel efforts in compiled architectures embedded
symbolic operations directly into neural activations, enabling dynamic constraint enforcement in
domains such as finance, where neurons encoded regulatory thresholds into credit scoring models
(Ahmed et al., 2022).

Training-free correction. An alternative approach to enforcing desired properties in diffusion mod-
els is through training-free correction via gradient-based guidance. Inspired by methods such as
Plug and Play Language Models (PPLM) (Dathathri et al., 2019), these techniques compute gra-
dients from an external objective or constraint function at sampling time. Rather than relying on
additional classifier training or extensive data labeling, the method directly adjusts the score esti-
mates during the sampling process. Specifically, a loss function encoding the desired property is
defined over the generated sample, and its gradient with respect to the sample is computed. Un-
like model conditioning, which augments the score with a fixed conditioning signal, training-free
correction dynamically refines the generation by continuously monitoring and correcting deviations
from the target behavior (Guo et al., 2024; Shen et al., 2025). Such methods provide an alterna-
tive to existing conditioning approaches, but generally report worse performance than conditioning
methods, due to inaccuracies in their gradients when the sample is at higher noise levels (Ye et al.,
2025).

Appendix B. Augmented Lagrangian Method

Since qg is typically nonlinear and hard to enforce directly, we adopt an augmented Lagrangian
approach (Boyd, 2004), which embeds the constraint q@(y) ~ ( into a minimization objective with
multipliers \ and a quadratic penalty . Let Uy(x;) be the sample after applying the denoising step
at time t. We introduce a projected sample y that we iteratively refine to reduce violations of (]3
while remaining close to Up(a;) under D, ost. The augmented Lagrangian is:

[:ALM (y; /\7 M) - DCOSt(xt7 y) + )\ Q’;(y) + % é(y)2

Minimizing £ a1,y yields a lower-bound approximation to the original projection. Its Lagrangian
dual solves:

arg max (arg min Larm (y, A, ,u)) .
A Y

We optimize iteratively, updating y via gradient descent and adjusting A and p as follows
Fioretto et al. (2020):

Yy <y —YVyLlam(y, A\, 1), (7a)
A A+ pnd(y), (7b)
p 4= min (o, fmax ) (7c)
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where -y is the gradient step size, o > 1 increases p over iterations, and fyax iS an upper bound.
This drives y to satisfy ¢(y) ~ 0 while staying close to Up(a;). Noting that ¢ may be computed
using a surrogate network, this optimization can be further grounded by directly using ¢1.,(y) = 1
as the termination condition; hence, assuming strong convergence properties (which are encouraged
by the inclusion of the quadratic term (Rockafellar, 2023)), the projected sample will strictly satisfy
the symbolic constraints as assessed by the reasoning test.

Appendix C. Discrete Sequence Relaxations

An important challenge to imposing gradient-based projections on discrete data sequences is provid-
ing a differentiable relaxation of our constraint satisfaction metric. This arises because we impose
the constraint over the decoded version of the probability distributions, which is inherently discrete,
making it not naturally differentiable. This poses a significant obstacle when one needs to backprop-
agate errors through operations that select discrete tokens or decisions. To overcome this limitation,
we leverage a Gumbel-Softmax relaxation of the arg max operator, denoted as 1/, which effectively
bridges the gap between discrete and continuous representations.

More specifically, given a probability vector of token i, x%, where each component x%(v) rep-
resents the probability assigned to token v from a vocabulary of size V', we approximate the hard,
discrete decision of the arg max function by constructing a continuous, differentiable approxima-

tion: _
log x} (v)+gv
eXp( Tsample

1 i (ay! :
S iy

(@) (v) =

Tsample

Here, g, is a random variable drawn independently from a Gumbel(0, 1) distribution for each token
v. The introduction of the Gumbel noise g, perturbs the log-probabilities, thereby mimicking the
stochasticity inherent in the discrete sampling process. The parameter Tgayple > 0 serves as a
temperature parameter that governs the degree of smoothness of the resulting distribution. Lower
temperatures make the approximation sharper and more similar to the original arg max operator,
while higher temperatures yield a smoother distribution that is more amenable to gradient-based
optimization.

This relaxation not only facilitates the propagation of gradients through the projection step but
also maintains a close approximation to the original discrete decision process. By incorporating the
Gumbel-Softmax technique, we can integrate the arg max operation into our model in a way that is
compatible with gradient descent, ultimately enabling the end-to-end training of models that require
discrete token decisions without sacrificing the benefits of differentiability (Jang et al., 2016).

Appendix D. Score Matching for Discrete Diffusion
Recall that in Section 2 we introduce the Euler discretized update step for Langevin dynamics:
Ti-n =Tt + N Va, logp(x) + 1/ 27€

This directly allows us to formulate the objective of the reverse process from the given update rule,
as shown in Equation (4). This representation of the diffusion sampling procedure is fundamental
to our theoretical analysis. While our discussion focuses on continuous diffusion models, as noted
earlier, the framework can be naturally extended to discrete diffusion models as well.

16



NEURO-SYMBOLIC GENERATIVE DIFFUSION MODELS

Particularly, we highlight that Langevin dynamics sampling algorithms used by continuous
score-based diffusion models, whether applied directly (Song and Ermon, 2019) or through predictor-
corrector frameworks (Song et al., 2020), can be utilized by discrete diffusion models. Notably,
score-based discrete diffusion models leverage a discrete generalization of the score function, re-
ferred to as the Concrete score (Meng et al., 2022), to approximate the gradient of the probability
density function log p;(x¢). As opposed to continuous score-based diffusion, where the gradient is
directly applied to the representation of the sample (e.g., for image data the gradient will directly
change pixel values), discrete models apply this gradient to the probability distributions which are
sampled from to predict the final, discrete sequence. Despite this discrepancy, Concrete Score
Matching provides an approach which mirrors continuous Score Matching in that the estimated gra-
dients of the probability density function are used to guide the sample to high density regions of the
target distribution.

As a final note, while many works do not explicitly adopt Concrete Score Matching as done by
previous literature (Meng et al., 2022; Lou et al., 2024), the score function is often still implicitly
modeled by the denoiser. For example, Sahoo et al. (2024) provide theoretical results demonstrating
equivalence to a score-based modeling, supporting the extrapolation of our theoretical framework
to models which employ simplified derivations of the Concrete Score Matching training objective.

Appendix E. Extended Experimental Results
E.1. Molecule Generation for Drug Discovery (Safety and Domain Generalization)

In this section further explain the setting for constrained molecular generation. We use UDLM
(Schiff et al., 2024) as our underlying diffusion model architecture for NSD for this application.
The task is to generate representations of molecule structures using SMILES sequences (Weininger,
1988), human readable strings that can be directly mapped to molecule compounds. We begin
with an overview of the domain-specific benchmarks used in our evaluation. Then, we provide an
extended version of Figure 2 (right), where we detail the violations for each specific BRENK test
that is corrected by our projection operator. We then discuss the violations, their corresponding
symbolics tests, and projection operators in detail. Finally, we introduce and explain the setting and
results for constraining the synthetic accessibility of the molecules generated.

Additional benchmarks. To supplement our evaluation, we compare to several domain specific

approaches:

1. Autoregressive LLM (AR): An autoregressive transformer-based model, trained for molecule
generations and sized to be comparable with the other diffusion-based architectures (100M pa-
rameters).

2. Conditional Masked Diffusion Model (MDLM): A conditional masked discrete diffusion model
implementation from Schiff et al. (2024) with guidance schemes in the subscript if applicable.

3. Conditional Uniform Diffusion Model (UDLM): A conditional uniform discrete diffusion
model implementation from Schiff et al. (2024) with guidance schemes in the subscript if ap-
plicable.

Symbolic test. For the purpose of generating safer, higher quality, and novel molecules we im-
plement a total of six symbolic tests each corresponding with its own correction; in practice, our
projection operator composes these corrections to find the nearest feasible point at the intersection
of these constraints, € C.
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Model Novel & Viol (%)
£ Non-Toxic | ¢;: novelty | ¢o: Aldehydes | ¢3: Three-membered heterocycles | ¢4: Imines | ¢s5: Triple bonds | ¢¢: Isolated alkene
% | AR 53+1.4 99.0£0.2 20.2£6.2 93+7.6 21.2+£13.9 109 £2.6 26=+4.1
g MDLM 108.0+9.7 | 53.9+3.1 95+14 22.2+2.1 11.0+1.9 9.0+1.5 10.3+0.9
é UDLM 132.34+3.7 | 70.8+£2.4 11.3+14 16.9+2.1 10.9 + 2.6 8.0+£29 11.1+1.6
% NSD grenk 392.0£16.7 | 51.24+2.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
= NSDnovel + BRENK | 474.3 £5.7 1.4+0.3 0.0+ 0.0 0.0 +0.0 0.0 + 0.0 0.0 + 0.0 0.0 + 0.0

Table 1: Extended results from Figure 2 (right).

1. Novelty ¢1: As defined in (Schiff et al., 2024), a generate molecule is considered valid if it can be
parsed by the RDK:it library (Landrum et al., 2025), and a molecule is novel if its valid, unique,
and not present in the QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). The test
function ¢; determines whether the current discretized molecular representation * is within the

training set D, thus ¢ el o ¢ D. If ¢, is not satisfied, the corresponding projection operation
uses a best-first search to systematically flip tokens in a sequence, based on minimal probability
“flip costs” to generate new sequences not yet in the dataset. Once a novel sequence is found, it is
finalized, added to the dataset, and the model’s token probabilities are adjusted to maintain high
likelihood for the newly generated sequence. Specifically, we seek a novel sequence * ¢ D by
minimally altering the top-ranked tokens and flip cost denoted as D.os;. We find

Pc(x) &ef argmin Deogt (Y, @),
y*¢D

via a best-first search. Once a novel sequence is found, it is added to D, and the distribution is

updated so that  becomes the new top-ranked path, avoiding duplicates in future generations.

2. Substructure Violations ¢2.5: In order to generate safer and less toxic molecules we use the
blackbox BRENK filter (Brenk et al., 2008) provided by RDKit (Landrum et al., 2025) which
offers various violation alerts which lead to a BRENK flag. While there are many of these poten-
tial substructure violations, we cover the five most frequent. For these violation we use RDKit
to identify and flag these substructures. Thus, we can define B = {x* | BRENKgaq(2*) =

True}, where B is the set of molecules that the BRENK filter flags. Now, we can define the tests

as: ¢o.6 def x* ¢ B with each specific ¢; described below.

(a) Aldehydes ¢o: Aldehydes feature a carbonyl group (C=0) in which the carbon is also
bonded to at least one hydrogen (i.e., R——CHO). In SMILES notation, this typically ap-
pears as C=0 where the carbon atom carries a hydrogen. In drug discovery, aldehydes are
considered undesirable owing to their high reactivity and potential toxicity.

To address flagged aldehydes, our method proceeds as follows:
1. Transform: 1dentify the aldehyde (C=0 with a hydrogen on the carbon) and attempt to
convert it into either an alcohol (R——CHg——0H) or a methyl ketone (R——-C (=0) CH3).
ii. Fallback: If neither transformation produces a valid molecule, directly modify the car-
bonyl bond (e.g., force C=0 to C—-0H) or remove the oxygen entirely, thus eliminating
the problematic functionality.
These operations yield a molecular sequence that no longer violates the aldehyde-related
BRENK filter.
(b) Three-membered heterocycles ¢3: These are small ring systems composed of three atoms,
at least one of which is a heteroatom (e.g., nitrogen, oxygen, etc.). Molecules containing
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such rings are considered undesirable due to their high ring strain, reactivity, and potential
toxicity. Typically, they are detected by filters that look for three-member rings containing
a heteroatom.

To correct a flagged three-membered heterocycle, we use a stepwise approach:

1. Ring expansion: Insert a new carbon atom into one of the ring bonds, creating a larger,
less-strained ring.

ii. Bond breaking: If expansion fails to produce a valid, non-flagged molecule, break one
of the ring bonds to open the ring.

iii. Complete removal: If neither of the previous steps works, remove all bonds in the
original three-membered ring entirely.

After each step, we check for validation and against the BRENK filter. The result is a
structure that no longer violates the “three-membered heterocycle” constraint.

Imines ¢4: An imine is a functional group containing a carbon-nitrogen double bond
(C=N). These groups are often flagged due to potential instability and reactivity.

The corresponding operation employs a two-stage procedure:

i. Initial fix: Convert the double bond into a single bond and add a hydrogen atom to the
nitrogen.

ii. Fallback fix: If the first approach fails or yields an invalid structure, remove or break
the C=N bond entirely so that no imine remains.

Triple bonds ¢5: Molecules containing triple bonds (denoted by # in SMILES) can be
flagged due to concerns about reactivity, metabolic stability, or synthetic difficulty. To ad-
dress such cases, we apply a simple transformation that replaces the triple bond character
(#) with either a double bond (=) or a single bond (-), thus reducing the likelihood of
reactivity or instability.

Isolated alkene ¢¢: Alkenes, represented by (=) can be flagged if they appear in unde-
sired or isolated positions that may lead to reactivity or instability issues. To address this,
when flagged, our method replaces the double bond character (=) with a single bond (-),
effectively saturating the alkene. This ensures that the final structure does not violate the
isolated-alkene BRENK constraint.

Next, to supplement the evaluations provided in the main text, we provide an additional setting

where we constrain synthetic accessibility (SA) of the generated molecules below a strict threshold.
For this setting, we consider that many of the generated molecules, while potentially novel and
valid generations, cannot be directly synthesized due to the complexity of these compounds (Ertl
and Schuffenhauer, 2009). Hence, we impose a constraint on the permissible synthetic accessibility
of these outputs and compare to a series of conditional models (Table 2). Notably, our model yields
a 0% violation rate, despite generating a competitive number of valid molecules and exhibiting the
highest drug-likeness scores (referred to in the table as QED). These results demonstrate how the
inclusion of constraint projection operators ensure that generated molecules not only scores well
in property optimization but also adhere to synthetic feasibility requirements as determined by an
independent, external standard.
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Valid Novel QED Viol (%)
Model M W M | 7=30 7=35 7=40 r=45
AR 1023 11 046 | 916 784 623 420
ARFUDGE y=7 925 13 048 | 1Ll 9.8 9.6 9.2
MDLM 506 271 045 | 859 737 611 440

MDLM@p.crG.~~3 | 772 53 041 | 878 73.9 54.2 22.5
MDLM(p.cpG.y—3 | 436 21 037 | 505 48.6 46.1 44.7
UDLM 895 345 047 | 894 88.0 58.1 37.8
UDLMp.cr.y—35 | 850 69 047 | 80.6 58.6 35.9 13.9
UDLM(p.cBG: = 10y | 896 374 047 | 90.1 77.8 58.6 37.7

Molecules (Synthetic Accessibility)

NSD,_3 0 353 36 0.63| 0.0 0.0 0.0 0.0
NSD,_; 5 863 91  0.62 ; 0.0 0.0 0.0
NSD,_40 936 108 0.6l ; ; 0.0 0.0
NSD,_4 5 938 121 0.8 - - - 0.0

Table 2: Molecule generation constrained to strict synthetic accessibility thresholds.

E.2. Motion Planning for Autonomous Agents (Safety)

For this task, we begin by assigning start and goal states for a series of agents in each respective
environment. For practical maps (Figure 3), these positions fall in predefined zones that reflect real-
world constraints, such as designated pickup and drop-off locations in a warehouse. For random
maps (Figure 5), we assign these start and goal state randomly, constraining these to be collision-free
locations, ensuring feasible solutions exist. To further ensure this, we discretize the environments
and apply multi-agent pathfinding algorithms to verify the existence of collision-free solutions. If
no valid assignment can be found, we regenerate the configuration.

Our results are evaluated by success rate (bars included in the figures), the frequency at which
state-of-the-art methods find feasible solutions, and path length (at the top of the bars), a metric
for the optimality of the solutions. Experiments are conducted with three, six, and nine robots,
generating ten test cases per configuration. In addition to evaluation on practical map environments
illustrated in Figure 3, we provide additional evaluation on random maps in Figure 5. Again, we
see that NSD dramatically outperforms the baselines in its ability to generate feasible motion tra-
jectories. This is particularly exasperated as we scale the number of agents and obstacles. Of the
baselines, only MMD is able to ever provide feasible solutions for nine agents, although we note
that it has much more frequent constraint violations than NSD on non-empty maps.

Additional benchmarks. To supplement our evaluation, we compare to several domain specific

approaches:

1. Conditional Diffusion Model (Cond): A matching diffusion model implementation to NCS,
fine-tuned on benchmark trajectories to address autonomous motion planning problems (Nichol
and Dhariwal, 2021).

2. Motion Planning Diffusion (MPD): The previous state-of-the-art for single-robot motion plan-
ning (Carvalho et al., 2023), this approach is extended to handle multi-agent settings for com-
parative analysis.

3. Multi-robot Motion Planning Diffusion (MMD): A recently proposed method that integrates
diffusion models with classical search techniques, generating collision-constrained multi-agent
path planning solutions (Shaoul et al., 2024).
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Figure 5: Evaluation on random maps with three different numbers of robots. Gray bars represents the failure
rate, and values on top of the bars indicate average path length per robot.

Symbolic test. We model two types of collision constraint tests. The first, ¢; corresponds to
collisions between agents, whereas ¢ captures collisions between agents and obstacles in the map.
We can express the collision-avoidance constraints as follows. First, for inter-agent separation, we
require that for every pair of distinct agents 7 and ¢’ and at every time step j, their positions are
separated by at least a minimum distance dpi, (Which is defined as the sum of their radii):

di(x) Vi i (i £1), Y |lp! — P2 > diin-

Second, to ensure agents do not collide with obstacles, we require that for each agent 7 at each time
step 7 and for every obstacle k with radius rj, the agent’s position is at least r; away from the

obstacle’s center o:
def

¢2(m) = Vi, \V/], Vk ||p{ — OkHQ Z Tk.
Here, 7 and 7’ index the agents, j denotes the time steps, pf is the position of agent ¢ at time j, and
oy, is the position of obstacle k. As these constraints can be expressed in closed-form, we model
A¢ directly from this, employing the augmented Lagrangian method to solve this projection (due
to the highly non-convex nature of these constraints).

E.3. Morphometric Property Specification (Data Scarcity and Domain Generalization)

As mentioned in the main text, our dataset is generated by subsampling a single 3,000 3,000 pixel
image into patches of size 64x64. We then upscale these patches to 256256 images to increase
the resolution for our generation task. The data is obtained from Chun et al. (2020), and we reiterate
it contains only a small range of porosity values fall within the desired porosity ranges (e.g., at the
porosity level P(%) 50, only 7% of the training data falls within a generous five percent error margin
to either side), contributing to the challenging nature of this setting.

In the analysis of both natural and synthetic materials, heuristic metrics are commonly used
to quantify microstructure features such as crystal shapes and void distributions. These measures
provide qualitative insights into the fidelity of the synthetic samples relative to the training data.
Here, we present the distributions of three microstructure descriptors, following the approach of
Chun et al.
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The results demonstrate that the explicit constraint enforcement in NSD yields microstructures
that more faithfully replicate the ground truth. In contrast, the conditional model tends to produce
certain features at frequencies that do not align with the training distribution. By integrating porosity
and related constraints during the sampling process, NSD is able to generate a set of microstructures
that is both more representative and accurate.
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Figure 6: Morphometric parameter distributions comparing ground truth microstructures with those generated
by the NSD and Cond models, evaluated using heuristic analysis.

Additional benchmarks. To supplement our evaluation, we compare to several domain specific

approaches:

1. Conditional Diffusion Model (Cond): A conditional diffusion model implementation modeled
from Chun et al. (2020).

2. Post-Processing (Post™): A matching implementation to our diffusion model for NSD, with the
projection steps omitted from the sampling process, except after the final step.

3. Conditional + Post-Processing (Cond™): The Cond model, but with the addition of a post-
processing projection after the final step.

Symbolic test. We define a test function ¢ that measures the porosity of an image:
E (XY@ <0)) = K
=1 j=1

where £/ € [—1,1] is the pixel value at row i and column j. Our desired constraint is that the
porosity of the generated image & must equal a target value K. In our framework, this condition is
used as a test that triggers the projection: if ¢(x) # 1, a projection operator is applied to minimally
adjust « so that the constraint is satisfied. This can be constructed using a top-k algorithm to return,

— ] i:j_ ixj
Po() argr;g{nglly ||

st. Y e |- ZZ( ’j<0>:

i=1 j=1

where K is the number of pixels that should be “porous”. Because this program is convex, it serves
as a certificate that the generated images comply with the prescribed porosity constraint.
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Figure 7: Physics-informed motion experimental results.

E.4. Physics-informed Motion (Data Scarcity and Domain Generalization)

For this setting, we generate a series of video frames depicting an object accelerating due to grav-
ity. Here, the object’s motion is governed by a system of ordinary differential equations (Eq. (9)),
which our method directly integrates into the constraint set (¢). In addition to the complexity
of the constraints, two key challenges are posed: (1) Data Scarcity: Our training data is based
solely on Earth’s gravity, yet our model is tested on gravitational forces from the Moon and other
planets, where there are no feasible training samples provided, and, consequentially, (2) Out-of-
Distribution Constraints: the imposed constraints are not represented in the training.

Figure 7 (left) highlights the results of our experiments; standard conditional diffusion models
often produce objects that are misplaced within the frame, as evidenced by white object outlines in
the generated samples and the reported constraint violations on the right side of the figure. Post-
processing approaches correct positioning at the cost of significant image degradation. In contrast,
our method guarantees satisfaction of physical constraints while maintaining high visual fidelity,
producing samples that fully satisfy positional constraints. These results demonstrate that our ap-
proach generalizes to out-of-distribution physical conditions while ensuring strict compliance with
governing physical laws.

For training, we begin by generating a dataset uniformly sampling various object starting points
within the frame size [0,63]. For each data point, six frames are produced, depicting the objects
movement as governed by the ODE in Equation (9). The velocity is initialized to vog = 0. The
diffusion models are trained on 1000 examples from this dataset, using a 90/10 training and testing
split. The conditional model is implemented following Voleti et al. (2022), where we provide two
frames illustrating the motion as conditioning. The model then infers future frames from these to
produce the final videos.

Additional benchmarks. To supplement our evaluation, we compare to several domain specific

approaches:

1. Conditional Diffusion Model (Cond): A conditional diffusion model implementation as out-
lined by Voleti et al. (2022).
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2. Post-Processing (Post™): A matching implementation to our diffusion model for NSD, with the
projection steps omitted from the sampling process, except after the final step.

3. Conditional + Post-Processing (Cond™): The Cond model, but with the addition of a post-
processing projection after the final step.

Symbolic test. We define a test function ¢ that checks whether the object’s position in a frame
meets the prescribed positional constraints given by Equations:

— % opy ovy
Pt =Pt-1+ (Vt + <0~5 X o )) (9a) Vg = oo + = (9b)

Hence, we define our test function:

o(x) def (object position in & equals p;)
In other words, the generated frame « is considered feasible if the object’s position exactly matches
the target position p; computed by the dynamics model.

When ¢(x) # 1, a projection operator is triggered to enforce the positional constraint. This
projection proceeds in two steps. First, the object’s current location is detected and its pixels are
set to the maximum intensity (i.e., white), effectively removing the object from its original position
while storing the indices of the object’s structure. Second, the object is repositioned by mapping
its stored pixel indices onto the center point corresponding to p;. If the frame already satisfies
the positional constraint (i.e., ¢(x) = 1), the projection leaves the image unchanged. Since this
projection process is well-defined and convex, it provides a certificate that the generated frames
comply with the prescribed positional constraints.

E.5. Safe Text Generation (Safety)

As language models become widely adopted for commercial and scientific applications, it is neces-
sary that generated text adheres to safety constraints, preventing the production of harmful or toxic
content. Hence, it is essential to provide (1) Safety-Critical Outputs: the adoption of constraint-
aware methods is essential for these applications, especially considering recent examples of foxic
outputs encouraging self-harm or providing information which could be used to harm others (Perez
etal., 2022).

Table 3 highlights the results of our experiments, which evaluate language models on toxicity
mitigation using prompts from the RealToxicityPrompts dataset (Gehman et al., 2020). Our method
significantly improves control over generated content by enforcing strict toxicity constraints during
inference. Compared to baseline models, such as GPT-2 and Llama 3.2, which exhibit high violation
rates, NSD achieves perfect constraint satisfaction across all toxicity thresholds. Furthermore, our
approach scales effectively, ensuring robust toxicity mitigation even at increasingly strict thresholds
(denoted as 7).

Among the baselines, GPT-2 (124M) and LLaMA (1B) achieve the lowest perplexity scores;
however, they frequently generate toxic content, leading to high violation rates. While GPT-2 +
PPLM (345M) Dathathri et al. (2019) reduces violations across all toxicity thresholds, it fails to
consistently prevent toxic generations and suffers from increased perplexity. MDLM (110M) ex-
hibits higher perplexity than GPT-2, with a median PPL of 39.8, and although it moderately reduces
toxicity violations compared to GPT-2, the rates remain significant. In contrast, NSD achieves
perfect constraint satisfaction across all toxicity thresholds while maintaining sentence fluency.
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] PPL Viol (%)
Model SiZ€ | Nean Median | 7 =025 =050 7 =075
£ [ GPT2 124M | 19.1 17.6 36.3 23.8 16.2
E GPT2pp1u 345M | 47.6 37.2 15.2 8.1 4.3
8 | GPT2rupGE,_, 124M | 26.46 18.79 31.5 19.7 12.7
£ | GPT2rupcE,_, 124M | 81.84  19.22 30.6 19.6 11.7
2 | Llama 3.2 IB| 157 14.6 34.9 27.8 23.1
MDLM 110M | 467 39.8 32.1 232 17.2
NSD,_g 25 (Ours) 110M | 61.6 454 0.0 0.0 0.0
NSD,_g 50 (Ours) 110M | 59.4 44.2 - 0.0 0.0
NSD,_g 75 (Ours) 110M | 54.9 432 - - 0.0

Table 3: Results for safe text generation at various toxicity levels 7.

Additional benchmarks. To supplement our evaluation, we compare to several domain specific

approaches:

1. GPT2: Our model uses a GPT2 tokenizer and is roughly the same size as GPT2, so we add this
as a point of comparison.

2. Llama 3.2: For comparison to state-of-the-art autoregressive models, we employ Llama 3.2,
noting that this model is an order of magnitude larger than our diffusion model.

3. Plug and Play Language Model (GPT2ppy)s): We utilize gradient-based guidance as proposed
by Dathathri et al. (2019) to condition autoregressive generation against producing toxic outputs.

4. Masked Diffusion Model (MDLM): A masked discrete language diffusion model implementa-
tion from Schiff et al. (2024).

Symbolic test. As ¢ cannot be explicitly modeled for general text toxicity quantification, we
train a surrogate model to provide a differentiable scoring metric A¢. Hence, the constraint is
assessed with respect to this learned metric, such that: A¢(x*) < 7, where 7 is a tunable threshold
that controls the degree of toxicity that’s permissible (lower values resulting in less toxic output
sequences). As the surrogate model for toxicity task, we use a GPT-Neo (1.3B) model, adapted for
binary classification. We finetune this model on the Jigsaw toxicity dataset which includes multiple
toxicity-related labels such as toxic, severe toxic, insult, etc. We consolidates these columns into a
single binary target (toxic vs. non-toxic).

Appendix F. Missing Proofs

Proof (Theorem 1) By optimization theory of convergence in a convex setting, provided an arbitrary
number of update steps ¢, x; will reach the global minimum. Hence, this justifies the existence of ¢
as at some iteration as 7' — oo,

[Up (1) — @l2 < [lp = |2

which will hold for every iteration thereafter.
|

Proof (Theorem 2) For any update taken after convergence, consider a gradient update without the
stochastic noise. There are two cases:
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Case 1: Suppose that Uy(x;) is closer to the optimum than p. By the definition of p, this implies
that x; is infeasible. Moreover, a gradient step taken from an infeasible point will yield an update
that is closer to the optimum than any point achievable from the feasible set. Hence, we obtain:

Error(blg(mﬁ) > Error(Pc (leg(act))). (10)

Case 2: Suppose instead that Uy (x;) is equally close to the optimum as p. In this situation, either
(1) x; is already the closest feasible point to the optimum (i.e., ; = Pc(x¢)), so that the error
terms are equal, or (2) x; is infeasible. In the latter case, the gradient step from x; is equivalent in
magnitude to that from the nearest feasible point, but, by convexity, the triangle inequality ensures
that the error from starting at an infeasible point exceeds that from starting at the feasible projection.
Thus, Equation (10) holds in all cases. Finally, when the stochastic noise (sampled from a zero-mean
Gaussian) is incorporated, taking the expectation over the update yields:

E [Error(l/lg(wt))] >E [Error(PC Uy () )} .
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