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Figure 1. Our method deforms a source shape (gray) into a text-specified semantic style (blue). While the deformations are expressive,

they preserve the identity of the original shape.

Abstract

We present Geometry in Style, a new method for identity-

preserving mesh stylization. Existing techniques either ad-

here to the original shape through overly restrictive defor-

mations such as bump maps or significantly modify the in-

put shape using expressive deformations that may introduce

artifacts or alter the identity of the source shape. In con-

trast, we represent a deformation of a triangle mesh as a

target normal vector for each vertex neighborhood. The de-

formations we recover from target normals are expressive

enough to enable detailed stylizations yet restrictive enough

to preserve the shape’s identity. We achieve such defor-

mations using our novel differentiable As-Rigid-As-Possible

(dARAP) layer, a neural-network-ready adaptation of the

classical ARAP algorithm which we use to solve for per-

vertex rotations and deformed vertices. As a differentiable

layer, dARAP is paired with a visual loss from a text-to-

image model to drive deformations toward style prompts,

altogether giving us Geometry in Style. Our project page is

at https://threedle.github.io/geometry-in-style.

1. Introduction

Semantically deforming triangle meshes is a basic task in

3D surface modeling. A common paradigm for shape cre-

ation is to take a base 3D object and deform it to sculpt a

desired shape. For example, a human artist creates an in-

tricate surface by starting with a simple generic version of

an object (from a shape library, or quickly sketched), and

successively deforms parts of the object like a sculptor mod-

eling clay.

Recently, machine learning pipelines have adopted de-

formations as a strategy for neural shape manipulation [2,

38, 77]. However, existing learning-based methods do not

always fully mimic the classical approach: they either make

small, surface-level changes for simple stylization [30, 60],

or they generate large deformations that destroy the identity

of the base object [26, 41]. Our method, Geometry in Style,

uses text prompts to generate large deformations that cre-

ate unique shapes while preserving the identity of the base

shape (see Fig. 1) – much like a human sculptor would.

We posit that existing learning methods’ failure to gener-

ate the kinds of large, identity-preserving deformations that

a human artist would is due to not employing the right rep-

resentation for the space of deformations. Existing methods

either (a) adhere to the original shape through overly restric-

tive deformations, such as bump maps [30, 60]; or they (b)

significantly modify the input shape using expressive defor-

mations based on gradient fields that may introduce artifacts

or destroy the identity of the original shape [26, 41].

In this work, a deformation of a triangle mesh is repre-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

28456



a 3d render of a(n)...

antique sofa tropical chair racing chair greek statue chair gothic chair

cybernetic glove skull dinosaur statue
penguin-themed

fire hydrant
ornate

art deco column racer bunny

cardboard chair

Figure 2. Style diversity. Our method is capable of deforming various input meshes towards a variety of text-specified styles. The style

can be manifested as fine geometric details, like in the ornate art deco column, or as low-frequency deformations, such as the joints of

the cybernetic glove. Our method retains the structural features of the input shape, such as a flat arm on the antique sofa. Moreover, the

resultant stylizations are in accordance with prompt semantics and part-aware semantics: the folds in the tropical chair are on the seat and

backrest as opposed to the legs, the head of the penguin becomes like the top of a fire hydrant, and the racer bunny’s thigh turns into the

shape of a wheel.

sented by target normals for vertex neighborhoods. We re-

cover a deformation from this representation using our dif-

ferentiable As-Rigid-As-Possible method (dARAP), whose

formulation optimizing for local rigidity yields detailed and

salient deformations that are nonetheless restrictive enough

to preserve the identity of the base shape. dARAP locally

rotates each vertex neighborhood individually to fit its nor-

mal to a desired target normal, and follows this local ro-

tation with a global step that finds a global deformation

that best fits all individual rotated neighborhoods. Crucially,

dARAP is differentiable, and can be used as a layer in a neu-

ral network. This is achieved by replacing classical ARAP’s

iteration of local and global steps until convergence (im-

practical to backpropagate through) with dARAP’s easily

differentiable use of a single local and global step. Where

classical ARAP needs many iterations to converge in de-

formation tasks with fixed target vertex positions, dARAP’s

use with target normals inside the Geometry in Style method

(where dARAP is run once per iteration of a larger gradient

descent optimization problem) achieves high-quality defor-

mations from only a single iteration.

We use dARAP together with a visual loss from a text-

to-image model (T2I) which drives our deformation to ar-

rive at Geometry in Style. Our visual loss leverages a cas-

caded T2I model to achieve high-fidelity deformations [21],

allowing the use of a user-specified text prompt to deform

any base shape into a stylized object without any dedicated

3D supervision data. As such, our method allows the ap-

plication of a wide variety of styles, indicated intuitively by

text prompts, to a wide variety of shapes (Figs. 1 and 2).

Our stylization can manifest as different types of geomet-

ric manipulation, such as local surface texture, as well as

global low-frequency deformations. Additionally, we show

that our method offers control over the deformation result,

where the user can easily change the strength of the styliza-

tion effect even after optimization. We contrast our method

with recent deformation techniques and find that it can bet-

ter achieve the target style with a lower surface distortion.

In this work, we present:

• dARAP, a differentiable neural network layer that de-

forms a triangle mesh to specified target normals; and

• Geometry in Style, an identity-preserving shape deforma-

tion method from user text input using target normals as

a representation of the space of deformations;

We achieve high-quality stylization of shapes through de-

formation that is faithful to the identity of the input shape

with a simple and easy-to-implement framework.

2. Related work

2.1. Classical Deformation Representations

Our deformation technique builds on the extensive litera-

ture on variational surface deformation and mapping meth-

ods [8]. Methods in this family commonly compute a local

differential deformation quantity, such as a per-element ro-

tation, normal, jacobian matrix, or differential coordinates,

subject to modeling constraints such as handles or cages.

The vertex positions are then recovered using a global linear
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Figure 3. Overview of our stylization pipeline. Geometry in Style optimizes vertex normals to deform the mesh surface, subject to

a stylization text prompt. Using the normals undergoing optimization as a target for our differentiable As-Rigid-As-Possible method

(dARAP), the dARAP local step computes a rotation matrix per vertex; we then obtain the deformed surface via our dARAP global solve.

Then, we utilize a differentiable renderer and a diffusion model-based semantic loss to guide the normals being optimized towards a

deformation matching the desired style prompt.

solve, usually derived from the least-squares minimization

of energy that encodes the desired local properties.

Important classical deformation approaches include

Laplacian surface editing [84], gradient field mesh editing

[96], or skinning-based approaches [24, 37]. A seminal

work in this field is “as-rigid-as-possible” (ARAP) shape

modeling which regularizes the local deformations of a sur-

face to be rigid [83]. This approach promotes local rigid-

ity with smooth and detail-preserving solutions, with var-

ious downstream applications including editing, parame-

terization, registration, shape optimization, and simulation

[9, 12, 36, 52, 54, 107]. We adopt ARAP as the basis for our

geometric stylization pipeline’s deformation method. This

is similar to recent neural methods that have also taken ad-

vantage of ARAP in other shape representations [6, 10, 35],

especially the work of Yan et al. [92] who incorporate a

differentiable ARAP loop into an image-to-3D face recon-

struction pipeline. Yan et al. [92]’s use of ARAP serves to

smoothen an assembly of 3D patches and requires multi-

ple ARAP steps; on the other hand, our dARAP method is

meant for optimizations of a deformation quantity (in our

case, per-vertex normals) to achieve a desired deformation

in a single local step-global step pair.

Often related to such differential deformation methods,

the manipulation of surface normals is a cornerstone use-

ful for a variety of applications: shape abstraction [3], tex-

ture mapping [33, 87, 101], mesh parameterization [102],

generative shape refinement [45], and more. Operating

on surface normals has also been particularly core to cu-

bic stylization [25, 50, 102] as well as geometric filters

[46, 49, 70, 100, 105]. Some approaches use an ARAP-

like optimization to achieve desired target normals (similar

to our goal) for manufacturing [29, 85].

Normal-Driven Shape stylization. Liu and Jacobson

[51] propose a normal-based stylization approach by shape

analogies. Given a source object and a sphere-based normal

template, modeled as a normal-to-normal function S2 →
S2, the source shape’s normals are locally rotated to match

target normals dictated by the template; the deformation is

obtained via ARAP solve using these local rotations. Sim-

ilar to this work, we also use target normal vectors as the

driving tool for our deformation. However, we use a text

prompt to describe the desired style rather than a geomet-

ric exemplar, enabling semantic styles (e.g. “antique”) that

are not easily represented by a spherical normal template.

Not being tied to a normal template, our deformations are

part-aware, i.e. different parts with the same source normal

do not have to receive the same target normal, and can be

stylized differently as can be seen in Figs. 1 and 2).

2.2. Neural Shape Manipulation

Following the success of generative methods that optimize

2D representations via text-to-image guidance from dif-

fusion models [31, 40, 74, 80–82] or CLIP-based scores

[72, 73], there has been a large body of work using score

distillation-based approaches [69, 90] to achieve 3D gen-

eration using 2D diffusion priors. These methods use a

variety of shape representations, mostly implicits: Signed

Distance Fields (SDF) [19, 64, 66], other implicit neural

fields [4, 11, 16, 27, 59, 79] or variations on Neural Radi-

ance Fields (NeRF) and Gaussian splatting [5, 14, 17, 18,

44, 47, 48, 53, 55, 56, 62, 71, 73, 76, 78, 89, 91, 93, 99,

103, 104, 106]. Some methods leverage the rapidly growing

size of 3D datasets to train text-to-3D models that directly

generate 3D representations [39, 63, 98].

More relevant to our present work, recent methods have

used the strong representation power of neural networks

to drive not just generation but also the editing and ma-

nipulation of shapes [2, 30, 60]. Hertz et al. [30]’s net-

work predicts local vertex displacements to match local ge-

ometric characteristics of an exemplar shape. The follow-

up Text2Mesh [60] replaced reference shapes by style text
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prompts. Similarly, our shape editing is flexibly guided

by text, but rather than raw vertex displacements, we find

rotations of the surface normal and recover an identity-

preserving deformation via the dARAP solver.

Other neural deformation and manipulation methods

based include data-driven cage deformations [94], geo-

metric fields for skinning [22], vector displacement maps

[58], or deformation fields using neural representations

[23, 28, 57, 88]. There is also a large family of 3D edit-

ing methods built on implicit shape representations such as

NeRF, Gaussian splatting, occupancy fields, and signed dis-

tance fields [7, 13, 15, 43, 61, 65, 67, 75, 97].

Neural Jacobian Fields. Neural Jacobian Fields (NJF)

[2] pioneered in connecting classical differential deforma-

tion methods such as Yu et al. [96] to neural, differentiable

pipelines with geometric or semantic losses. This approach

has powered compelling results for applications including

UV mapping, re-posing, handle-based deformation [95],

and unsupervised shape morphing and correspondence [86].
In the NJF approach, given a local transformation matrix

Mk per face k, the least-squares best fit deformed vertices
Φ∗ to these differential transforms can be found by solving
a Poisson equation with the cotangent Laplacian:

  \label {eq:njfpoisson} \Phi ^* = \argmin _\Phi \sum _{k \in \text {all faces}} {a_k} \| \Phi \nabla _k^\top - \Mm _k\|^2_2 = L^{-1}\AA \nabla ^\top \Mm  












 


 (1)

where M is all Mk stacked, ak is the area of face k, ∇ is

the gradient operator, and A is the face mass matrix. This

solve is differentiable with respect to M. We note that the

global step to optimize ARAP energy [83] is also a Poisson

equation with the cotangent Laplacian (Eq. (6)). As such,

in dARAP, we can use a similar differentiable solver while

taking advantage of the regularization inherent in ARAP.

Neural methods that use NJF’s differential deformation

for text-based deformation include TextDeformer [26] and

MeshUp [41] which optimize jacobians to deform a source

shape into a different semantic target e.g. turning a dog into

a frog via a text prompt. Their deformations are not suf-

ficiently restricted by construction and require an extra L2

loss between identity and the estimated jacobians to pre-

vent losing the shape identity altogether. In contrast, our

deformation framework is more contained by construction

(Sec. 3.1), preserving the source details and updating the

geometry to the desired style (see Fig. 9 and Sec. 4.2).

3. Method

Our method takes as input a source triangle mesh M =
(V,F) and a text prompt x. Our goal is to obtain a de-

formed mesh M∗ = (V∗,F) that semantically matches the

style indicated by x.

We find this deformation by optimizing per-vertex unit

normals of M. For a mesh with |V| vertices, gradient de-

scent directly optimizes a |V|×3 array of real numbers, i.e.,

Rk =?

∈ SO(3)

Local orthogonal Procrustes problem

Original & target

normal

vk

uk

ûk

Nk ∪ {uk} Nk ∪ {ûk}

Figure 4. Local Orthogonal Procrustes. The single-iteration lo-

cal step of our dARAP energy solves for the best fit rotation given

the original and and target normal.

a 3-element vector per vertex. These per-vertex vectors Û
are treated as target normals used to solve for per-vertex ro-

tations R̂, and then, the deformed positions V̂ . Specifically,

from a current estimate Û = {ûk | k ∈ {1 . . . |V|}} of target

normals, we first perform a local step that obtains per-vertex

rotation matrices R̂k = {R̂k ∈ SO(3) | k ∈ {1 . . . |V|}}
from the normals Û (Sec. 3.1), followed by a global step

that obtains the deformed vertex locations V̂ from the per-

vertex rotations R̂ (Sec. 3.2).

We refer to this pair of local step and global step as

dARAP. dARAP is closely inspired by the multiple alternat-

ing local-global iterations of classical ARAP optimizations

(which are repeated many times until convergence) [83], but

here condensed into a single local step and single global

step as a differentiable module, usable in a neural optimiza-

tion or deep learning pipeline. While for classical deforma-

tion applications, ARAP is run until convergence to achieve

satisfactory results, in the context of our pipeline (Fig. 3),

dARAP running only one iteration is sufficient and offers

the benefits of efficient differentiability.

3.1. Local Rotations from Normals

For a vertex k with edge neighborhood Nk, with current

estimated target vector ûk (normalized to unit length) and

original normal vector uk (the area-weighted unit normal of

vertex k of the undeformed mesh), we compute a best fit

rotation that transforms the bundle of vectors Nk ∪ {uk} to

the bundle Nk ∪ {ûk} (see Fig. 4). The best fit rotation R̂k

minimizes the ARAP energy assuming fixed vertices v̂k, i.e.

  \begin {split}\label {eq:arap-energy-local} \hat \Rr _k = \argmin _{\Rr _k} &\sum _{(i,j) \in \NN _k} w_{ij} \| \Rr _k \ee _{ij} - \ee _{ij} \|_2^2 \\ &\quad + \lambda a_k \| \Rr _k \uu _k - \hat \uu _k \| \end {split} 






 



  

(2)

where ak is the Voronoi mass of vertex k; λ is a hyper-

parameter that scales the strength of the rotation match-

ing the source to the target normal; eij ∈ Nk are all the

edge vectors in the neighborhood of vertex k, and wij are

the cotangent weights [68] of these edges. Like Liu and

Jacobson [51], we choose the spokes-and-rims neighbor-
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Figure 5. Our method is capable of deforming the same mesh

towards different text-specified styles.

hood, consisting of halfedges in the vertex 1-ring, their twin

halfedges, and halfedges opposite the vertex [12].

This minimization is the orthogonal Procrustes problem

for each neighborhood, and can be solved [51] by finding

  \Xx _k = \begin {bmatrix} \Ee _k & \uu _k \end {bmatrix} \begin {bmatrix} \Ww _k & \\ & \lambda a_k \end {bmatrix} \begin {bmatrix} \Ee _k^\top \\ \hat \uu _k^\top \end {bmatrix} 






















(3)

where Ek is a 3× |Nk| matrix whose columns are the unde-

formed edge vectors in Nk, and Wk is a |Nk| × |Nk| diag-

onal matrix with the cotangent weights of the Nk edges as

the entries. (The |Nk| dimensions in these matrices can be

zero-padded to maxk∈{1...|V|} |Nk| for batched solutions.)

Taking the SVD of Xk, we can find R̂k (up to multiplying

the last column of Uk by −1 to ensure det(Rk) > 0) as

  \begin {split} \mathbf U_k \mathbf \Sigma _k \mathbf V_k^\top =\Xx _k \\ \hat \Rr _k = \mathbf V_k \mathbf U_k^\top \end {split} 

 

 



(4)

Note that in classical ARAP iterative optimization,

the term in (2) is normally
∑

eij∈Nk

(

wij∥Rkeij − e
′
ij∥

2
2

)

where e
′
ij is the vector of the most recent deformed edge

(i, j) in Nk output by the previous ARAP optimization iter-

ation. Since dARAP is meant as a differentiable module in

a larger optimization process or learning pipeline, we con-

dense the typically many local-global alternating steps of

classical ARAP to just one local step and one global step,

hence the identification of e′ij with eij . Coupled with setting

λ to an appropriately large value, which scales the strength

of the rotation towards the requested normal ûk, our single

local step is still able to achieve the required expressiveness

and strength to make detailed deformations, yet regularized

by the Procrustes solve to retain shape identity without re-

quiring an extra identity regularization loss as in Kim et al.

[41] and Gao et al. [26].

Note also that in NJF-based methods such as [26, 41], the

local step would be the identity function; a jacobian matrix

per face is assumed given or predicted from upstream com-

ponents. In our case, a matrix (a rotation) is not given, but

computed from the target normal vector for each element.

3.2. Global Solve from Local Rotations

Having obtained a rotation per neighborhood with our local

step, we minimize the energy fixing the rotation matrices

and solving for deformed vertex locations, i.e., finding the

deformed vertices V̂ such that

  \hat \VV = \argmin _{\tilde \VV }\sum _{k \in \{1\dots |\VV |\}} \sum _{(i,j) \in \NN _k} w_{ij}\| \Rr _k \ee _{ij} - \tilde \ee _{ij} \|_2^2  










 

 (5)

where eij = (vj − vi), ẽij = (ṽj − ṽi), and wij is the

cotangent weight of edge (i, j). This is a linear least squares

optimization for V̂ . As such, for the spokes-and-rims neigh-

borhood, taking the derivative with respect to V̂ and setting

it to zero yields a linear equation in V̂

 \label {eq:global-solve} L\hat \VV = \begin {bmatrix} \operatorname {rhs}(1)^\top \\ \vdots \\ \operatorname {rhs}(|\VV |)^\top \end {bmatrix} 


















(6)

  \operatorname {rhs}(k)= \!\! \sum _{\scriptscriptstyle (k,m,n)\in \NN ^F_k}{ \!\! \frac {\Rr _k + \Rr _m + \Rr _n}{3} \left (\frac {w_{km}}2\ee _{km} + \frac {w_{kn}}2 \ee _{kn} \right ) } 





   

















(7)

where NF
k are the faces adjacent to vertex k, each one hav-

ing vertices (k,m, n) (i.e. even permutation such that k is

in front); wkm, wkn are the (undirected) cotangent weights

of edges (k,m), (k, n); and L is the cotangent Laplacian.

Equation (6) is a Poisson equation. As such, we can use

the same solving and pre-factorization techniques as in NJF

[2] to make our global solve step differentiable and efficient.

3.3. Optimization Using a Semantic Visual Loss

Differentiable renderer and semantic loss. Our opti-

mization is guided by a powerful pretrained text-to-image

(T2I) diffusion model. We render the deformed mesh from

multiple views using a differentiable rasterizer [42], then

feed the rendered views into a semantic visual loss, in our

case Cascaded Score Distillation (CSD) [21] using stages 1

and 2 of the image diffusion model DeepFloyd IF [1].

4. Experiments

Optimization details. Our initial guess for the target

normals Û is U , the original area-weighted vertex normals

of the undeformed mesh M. We set the local step hyperpa-

rameter λ = 8 (Sec. 3.1) for all of our optimizations. We

run our optimization for 2500 epochs at a constant learning

rate of 0.002 using the Adam optimizer, each epoch being a
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batch of 8 renders fed to CSD loss. A full optimization run

takes about 2 hours 15 minutes using a single A40 GPU.

We remesh our source meshes for better behavior with the

cotangent Laplacian (see Sec. 4.3.) Further details on view

sampling settings, CSD configuration, and source mesh pre-

processing can be found in the supplementary material.

4.1. Properties of Geometry in Style

Generality and expressivity. Our method is highly ver-

satile, and is able to deform meshes from varied domains

towards a wide range of styles (Figs. 1 and 2). Our method

handles organic and articulated surfaces, such as animals

and the human body, as well as man-made objects with

sharp features and complex topology such as chairs. The

target style is specified by an open-vocabulary text prompt

and can thus be described flexibly and intuitively.

The stylization manifests in a part-aware manner, con-

forming to the shape’s geometry. For the pineapple-themed

vase in Fig. 1, our method adds a pineapple-like geometric

texture to the vase’s body, while the vase’s head is deformed

with a different ripple pattern to resemble a pineapple head.

For a human body, our method creates geometric details to

reflect a knight’s armor in the appropriate locations, such as

shoulder pads, a large chest plate, a crease across the waist-

line, and a hat on the head. In Fig. 2, the antique, gothic,

and cardboard chairs’ styles are reflected by both local ge-

ometric details and the silhouette of the deformed mesh.

source w/
selected
region

a 3d render of a bulldog

We can further take advantage

of part awareness to stylize only

select regions. In the inset, we lo-

calize the deformation to the head

by setting the rotation of vertices

outside the region to the identity

matrix every iteration. The defor-

mation is contained within the lo-

cal region, yet detailed and appropriate for the rest of the

body. We observe no boundary artifacts, showing dARAP’s

beneficial regularizing effects.

Identity preservation. Our method applies the prescribed

style to the input mesh expressively while preserving im-

portant characteristics. In Fig. 7, each input animal has a

unique pose, e.g. the folded front leg of the horse. The

deformation recognizably keeps the pose while stylizing

the body towards the skeletal style. Similarly, the styliza-

tion of the person shape from Fig. 1 maintains body pro-

portions. Additionally, our method preserves other distinct

shape properties, e.g., the animal’s facial features (Fig. 7)

and the chairs’ parts (Fig. 2), with semantic correspon-

dences maintained (Fig. 10).

We attribute our pronounced yet identity-preserving styl-

izations to our normal-based deformation representation. A

pretrained vision foundation model provides strong guid-

ance toward the style prompt but can also easily impart de-

lego camel lego dog lego pig

lego chair lego chair lego chair

vase made of lego bricks

a 3d render of a...

vase made of lego bricks vase made of lego bricks

Figure 6. Our method is capable of deforming different input

meshes towards the same text-specified style. Even with the same

prompt in a shape class (a 3d render of a lego chair, a 3d render

of a vase made of lego bricks), different starting shapes (different

chairs, different vases) result in stylizations that closely align to

the identity of the original shape, while still strong enough to in-

duce more blocky components and lego-like surface textures.

formations that significantly alter the identity of the shape,

as witnessed in previous work that used jacobian-based de-

formations [26, 41], see Figs. 9 and 11. By contrast, our

deformation is driven by rotations of normals, further regu-

larized as a best-fit rotation over the spokes-and-rims neigh-

borhood (Sec. 3.1.) This formulation selects for local rigid

changes that are discouraged from scaling or shearing, thus

preventing excessive structural changes while requiring no

extra identity regularization loss on the local transforms.

Specificity. Our method performs diverse shape stylizations

that adhere to the target style prompt with high detail. In

Fig. 5, we deform the source shape into different styles: the

origami chair’s backrest is thin and has creases as with pa-

per folds; the church pulpit style is thicker with overhangs

appropriate of church furniture. As further seen by the de-

tailed prompts and styles in Figs. 1 and 2, our method pro-

duces distinct styles and shows granular effectiveness.

Robustness. Our method exhibits robustness across shape

categories and instances within the category. In Fig. 6, the

same lego style is applied to chairs, animals, and vases.

Each domain has unique geometry: the chairs have vary-

ing parts (e.g., the types of legs and backrests), the animals

have smooth geometry, and the vases have sharp edges and

rotational symmetry. Still, our method consistently conveys

the style on the source shape with a lego brick-like surface

pattern and by cubifying the geometry.
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an alien cheetah a balloon animal lion a skeletal horse

a 3d render of ...

Figure 7. Pose preservation. Geometry in Style stylize the shape

according to the text prompt, while decently keeping characteris-

tics of the source shape like the relative positioning of the limbs

and the angle of the head.

Tunable stylization strength. A specific value of λ is used

by deformations during the optimization process. However,

this λ can be changed when re-applying the saved optimized

normals to the source mesh, allowing user control separate

from the optimization pipeline itself, as shown in Fig. 8.

Recall from Eq. (2) that the hyperparameter λ influences the

match from the original vertex normal to the target normal.

As seen in Fig. 8, as the value of λ increases, the geometry

of the deformed shape is sharpened to strengthen to “robot”

style effect, while a lower λ results in deformed normals

being closer to the original ones, though the desired style

is still visible. Notably, we observe that using an inference

λ value larger than that used during optimization results in

a more geometrically salient yet still sensible stylization,

further demonstrating the robustness of our method.

4.2. Evaluation

We contrast our method to two recent text-guided mesh de-

formation methods, TextDeformer [26] and MeshUp [41]

using public code released by the authors.

Qualitative comparison. In Fig. 9, we show deforma-

tion results for TextDeformer [26], MeshUp [41], and our

method. For comparison, all three methods use the same

text prompt, source mesh, and view sampling settings.

TextDeformer distorts the surface, changes the pose of the

source shape, and does not achieve the target style. MeshUp

does stylize following the text prompt, but in some cases, its

surface texture may be weaker than ours, as seen in the lego

goat example.

In other cases, MeshUp’s stylization is strong but pro-

duces notable distortion in arms and body proportions: in

the examples knight in armor and Chinese terracotta war-

rior, the body gets a broader, stouter stature and does not

preserve the identity and body proportions of the source

shape as well as our method does. Moreover, our method

does not encounter certain artifacts that MeshUp introduces,

like the crushed head of the knight in armor example, or the

Janus effect with a duplicate face and chestplate on the back

for Chinese terracotta warrior. We achieve a prominent de-

sired style with fewer artifacts and better preservation of

a 3d render of a robot lion

λ = 5 λ = 8
(setting during optimization)

λ = 11

Figure 8. Changing stylization strength after optimization.

Normals found by optimization using λ = 8 can be conveniently

re-applied after optimization using a different λ to tune the styl-

ization strength on demand. Both larger and smaller λ result in

salient and clean stylizations at the required strength.

source shape features. More qualitative examples are given

in the supplementary material.

Quantitative results. As a proxy for evaluating identity

preservation, we measure the mean and standard deviation

of the ratio (deformed triangle area / original triangle area)

summarized over all triangles across the chosen meshes. We

use 20 mesh-prompt pairs chosen from results seen through-

out the paper; per-mesh triangle counts range from 10 thou-

sand to 20 thousand. Source meshes are normalized to fit a

side-length-2 cube centered at the origin; deformed meshes

are normalized to have the same bounding box diagonal

length as the source, as is done after the Poisson solve of

MeshUp and our method. This quantity measures distortion

and estimates how well the bounding box is respected: de-

formations that shrink the mesh lead to a larger rescale fac-

tor during the bounding-box-restoring normalization, thus

inflating the face area ratio, and vice versa. Ideal identity-

preserving values are ratio 1 with 0 standard deviation.

Table 1 summarizes the quantitative comparison with the

baseline methods [26, 41]. These deformations use jaco-

bians, which are more prone to changing triangle scale and

compromising the integrity of the mesh. In contrast, we

represent a target deformation by surface normals, coupled

with our dARAP layer that regularizes the resulting defor-

mation and better preserves the original triangle area, im-

proving faithfulness to the input shape. Indeed, as Tab. 1

shows, our triangle area ratio has an average closer to 1 with

a lower standard deviation than MeshUp and TextDeformer.

We also include a quantitative evaluation of CLIP similarity

to the prompt for these three methods on the same shapes

(see the supplementary material); our method achieves bet-

ter CLIP similarity to the prompt.

4.3. Limitations

Our method uses the cotangent Laplacian, which works well

only on manifold meshes and is sensitive to triangle as-

pect ratios. This is also true for other methods that use
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Method Ratio mean Ratio std. dev.

TextDeformer [26] 0.827 0.360

MeshUp [41] 1.288 0.363

Geometry in Style (ours) 1.080 0.233

Table 1. Triangle area preservation. As a surrogate for measur-

ing identity preservation, we compute the mean and standard de-

viation of the triangle area ratio between the deformed and source

shapes. Our method preserves the triangle area better than the

other methods, with an average ratio closer to 1 and a lower stan-

dard deviation.

the cotangent Laplacian, such as TextDeformer [26] and

MeshUp [41]. To mitigate this, we remesh input meshes

with isotropic explicit remeshing [32], optionally after man-

ifold preprocessing [34].

Another limitation is the possibility of self-intersection

in deformed meshes (Fig. 11). The rods of the source

lamp are rotated towards the center and intersect each other.

This can be somewhat mitigated by adjusting the deforma-

tion strength parameter λ after optimization, as discussed in

Fig. 8, a strategy not straightforwardly available to MeshUp.

5. Conclusion

In this work, we presented Geometry in Style, a technique

for deforming meshes to achieve a text-specified style. A

key claim of the work is that prescribing a deformation via

surface normals allows the recovery of deformed vertices

that adhere well to the input geometry while still being ex-

A-pose Chinese terracotta warrior

OursMeshUpTextDeformer

A-pose knight in armor

a 3d render of a(n)...

Back view

Source
mesh

lego goat

Figure 9. Comparison with baselines. We compare our method

with the alternative deformation techniques TextDeformer [26]

and MeshUp [41]. While the baseline methods have a weaker styl-

ization effect, change the poses, or create geometric artifacts on

some examples, Geometry in Style cleanly achieves both the de-

sired style and remains faithful to the shape of the source meshes.

a 3d render of a robot lion a 3d render of a throne chair

source mesh
source mesh

Figure 10. Correspondence. The meshes deformed with our

method preserve semantic correspondence to the source mesh. De-

formed vertices have the same color as the corresponding source

vertices, colored by the source shape’s wave kernel signature.

pressive. We demonstrate high-quality, detailed geometric

stylizations that respect the input shape’s identity.

As part of Geometry in Style, we introduce dARAP, a

differentiable neural network layer that deforms a surface

to achieve target normals. Our layer is simple yet effec-

tive: while traditional applications require iterating ARAP

to convergence for a desirable solution, we find that within

our neural network pipeline, good results can be achieved

with only a single step. We speculate that by iteratively

updating target normals through gradient descent, we can

avoid (in a dARAP forward pass) the standard practice

of needing to repeatedly iterate between local and global

ARAP steps. Moreover, dARAP is general and may be used

for other geometry tasks where ARAP is useful, such as pa-

rameterization, re-posing, collisions, editing, and more.

In the future, we are interested in leveraging unsuper-

vised segmentation strategies [20, 21] to perform local-

ized geometric stylization. In addition, while our method

is topology-preserving, follow-up work could explore edits

and deformations that add explicit parts or change topology.

a 3d render of a pineapple shaped lamp

λ = 6λ = 7λ = 8
(setting during optimization)

Ours

MeshUp

Figure 11. Limitations. Our method may produce self-

intersections. Decreasing the parameter λ after the optimization

process can alleviate the self-intersection with only a mild reduc-

tion in the stylistic surface details. MeshUp warps the 3-lamp

structure and the individual lamps and exhibits less geometric

pineapple texture.
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Nonlinear spectral geometry processing via the tv trans-

form. ACM Transactions on Graphics (TOG), 39(6):1–16,

2020. 3

[26] William Gao, Noam Aigerman, Thibault Groueix, Vova

Kim, and Rana Hanocka. Textdeformer: Geometry ma-

nipulation using text guidance. In ACM SIGGRAPH 2023

Conference Proceedings, pages 1–11, 2023. 1, 4, 5, 6, 7, 8

[27] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and

Yaron Lipman. Implicit geometric regularization for learn-

ing shapes, 2020. 3

[28] Rana Hanocka, Noa Fish, Zhenhua Wang, Raja Giryes,

Shachar Fleishman, and Daniel Cohen-Or. Alignet: Partial-

shape agnostic alignment via unsupervised learning. ACM

Trans. Graph., 2018. 4

[29] Philipp Herholz, Wojciech Matusik, and Marc Alexa. Ap-

proximating free-form geometry with height fields for man-

ufacturing. Computer Graphics Forum, 34(2):239–251,

2015. 3

28464



[30] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel

Cohen-Or. Deep geometric texture synthesis. ACM Trans.

Graph., 39(4), 2020. 1, 3

[31] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models, 2020. 3

[32] Hugues Hoppe, Tony DeRose, Tom Duchamp, John Mc-

Donald, and Werner Stuetzle. Mesh optimization. In

Proceedings of the 20th Annual Conference on Computer

Graphics and Interactive Techniques, page 19–26, New

York, NY, USA, 1993. Association for Computing Machin-

ery. 8

[33] Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun

Bao, and Mathieu Desbrun. l1-based construction of poly-

cube maps from complex shapes. ACM Transactions on

Graphics (TOG), 33(3):1–11, 2014. 3

[34] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust wa-

tertight manifold surface generation method for shapenet

models. arXiv preprint arXiv:1802.01698, 2018. 8

[35] Qixing Huang, Xiangru Huang, Bo Sun, Zaiwei Zhang,

Junfeng Jiang, and Chandrajit Bajaj. Arapreg: An as-

rigid-as possible regularization loss for learning deformable

shape generators. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), pages

5815–5825, 2021. 3

[36] Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-

rigid-as-possible shape manipulation. ACM transactions on

Graphics (TOG), 24(3):1134–1141, 2005. 3

[37] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and JP

Lewis. Skinning: Real-time shape deformation. In ACM

SIGGRAPH 2014 Courses, 2014. 3

[38] Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun

Wu, Noah Snavely, and Angjoo Kanazawa. Keypointde-

former: Unsupervised 3d keypoint discovery for shape con-

trol. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2020. 1

[39] Heewoo Jun and Alex Nichol. Shap-e: Generating condi-

tional 3d implicit functions, 2023. 3

[40] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.

Elucidating the design space of diffusion-based generative

models, 2022. 3

[41] Hyunwoo Kim, Itai Lang, Noam Aigerman, Thibault

Groueix, Vladimir G Kim, and Rana Hanocka. Meshup:

Multi-target mesh deformation via blended score distilla-

tion. arXiv preprint arXiv:2408.14899, 2024. 1, 4, 5, 6, 7,

8

[42] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,

Jaakko Lehtinen, and Timo Aila. Modular primitives for

high-performance differentiable rendering. ACM Transac-

tions on Graphics, 39(6), 2020. 5

[43] Verica Lazova, Vladimir Guzov, Kyle Olszewski, Sergey

Tulyakov, and Gerard Pons-Moll. Control-nerf: Editable

feature volumes for scene rendering and manipulation,

2022. 4

[44] Weiyu Li, Rui Chen, Xuelin Chen, and Ping Tan. Sweet-

dreamer: Aligning geometric priors in 2d diffusion for con-

sistent text-to-3d, 2023. 3

[45] Weiyu Li, Jiarui Liu, Rui Chen, Yixun Liang, Xuelin Chen,

Ping Tan, and Xiaoxiao Long. Craftsman: High-fidelity

mesh generation with 3d native generation and interactive

geometry refiner, 2024. 3

[46] Zhiqi Li, Yingkui Zhang, Yidan Feng, Xingyu Xie, Qiong

Wang, Mingqiang Wei, and Pheng-Ann Heng. Normalf-

net: Normal filtering neural network for feature-preserving

mesh denoising. Computer-Aided Design, 127:102861,

2020. 3

[47] Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang

Xu, and Yingcong Chen. Luciddreamer: Towards high-

fidelity text-to-3d generation via interval score matching,

2023. 3

[48] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki

Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja

Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-

resolution text-to-3d content creation, 2023. 3

[49] Bin Liu, Junjie Cao, Weiming Wang, Ning Ma, Bo Li, Lig-

ang Liu, and Xiuping Liu. Propagated mesh normal filter-

ing. Computers & Graphics, 74:119–125, 2018. 3

[50] Hsueh-Ti Derek Liu and Alec Jacobson. Cubic stylization.

arXiv preprint arXiv:1910.02926, 2019. 3

[51] Hsueh-Ti Derek Liu and Alec Jacobson. Normal-driven

spherical shape analogies. In Computer Graphics Forum,

pages 45–55. Wiley Online Library, 2021. 3, 4, 5

[52] Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and

Steven J. Gortler. A local/global approach to mesh param-

eterization. In Proceedings of the Symposium on Geome-

try Processing, page 1495–1504, Goslar, DEU, 2008. Eu-

rographics Association. 3

[53] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-

makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:

Zero-shot one image to 3d object, 2023. 3

[54] Tiantian Liu, Adam W Bargteil, James F O’Brien, and

Ladislav Kavan. Fast simulation of mass-spring systems.

ACM Transactions on Graphics (TOG), 32(6):1–7, 2013. 3

[55] Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan
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