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Abstract. We present an asymptotic framework that rigorously generates nonlinear constitutive relations between stress
and linearized strain for elastic bodies. Each of these relations arises as the leading-order relationship satisfied by a one-
parameter family of nonlinear constitutive relations between stress and nonlinear strain. The asymptotic parameter limits
the overall range of strains that satisfy the corresponding constitutive relation in the one-parameter family, while the stresses
can remain large (relative to a fixed stress scale). This differs from classical linearized elasticity where a fixed constitutive
relation is assumed, and the magnitude of the displacement gradient serves as the asymptotic parameter. Also unlike classical
approaches, the constitutive relations in our framework are expressed as implicit relationships between stress and strain
rather than requiring stress explicitly expressed as a function of strain, adding conceptual simplicity and versatility. We
demonstrate that our framework rigorously justifies nonlinear constitutive relations between stress and linearized strain
including those with density-dependent Young’s moduli or derived from strain energies beyond quadratic forms.
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1. Introduction

1.1. Nonlinear constitutive relations between stress and linearized strain

The celebrated eponymous constitutive relation to describe the response of elastic solids subject to “small
strains” remains a cornerstone of solid mechanics.1 Hooke did not have a clear grasp of the applicability
of the empirical constitutive relation he was proposing in his immortal treatise “Lectures de potential
restitutiva, or of Spring, Explaining the Power of Springy Bodies.” He erroneously supposed that the
constitutive relation was equally applicable to gases and thereby confused his constitutive relation with
the one proposed by Boyle (see [12] for a discussion of the relevant issues). Moyer [12] remarks:

While it is a simple and straightforward matter to extract from the early pages of De poten-
tia restitutiva the modern statement of ‘Hooke’s law’ for elastic solids, F = −kx, one must
first suppress or ignore Hooke’s ‘trial’ involving ‘a body of Air.’ That is, in modern terms,
he inappropriately associated ‘Hooke’s law’-a direct proportionality between displacement and
force-with ‘Boyle’s law’-an inverse proportionality between the volume of an ideal gas at con-
stant temperature and the pressure to which it is subjected (or, for a gas in a cylinder with a
uniform cross-sectional area, between the length of the column of gas and the force on it).

In fact, Moyer [12] points out that Hooke’s theoretical explanation of his empirical relation F = −kx
is consistent with Boyle’s relation for gases but is inconsistent with Hooke’s linear relation for solids.

1Referring to it as “Hooke’s law” is clearly unwarranted as it is merely a constitutive relation that holds for a small
subset of bodies in an approximate sense, while we expect a “law” to have more universal validity. Unfortunately, most
people that use the constitutive relation, including experts in the field, are unaware that Hooke did not limit the use of the
relation to solids.
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Indeed, assuming that a spring has natural length of 1 unit, Hooke proposed that the force due to the
spring’s particles’ “endeavor of receding from each other” is inversely proportional to its stretched length
d [12]. As a consequence of balance of forces, Moyer [12] observes:

. . .realizing that the stretched length d is equal to the original length 1 unit plus some increment
distance x, we obtain a relation between the force on a spring due to an external macroscopic
agent and the spring’s change in length:

Fe = k(1 − [1/(1 + x)]),

which is also equal to k[x/(1+x)] . . .In other words, for slight changes in length, Hooke’s model
does lead approximately to his empirical law.

In his authoritative article in the Handbuch der Physik, Bell [1] devotes a significant amount of
discussion to the work by illustrious contemporaries of Hooke on nonlinear constitutive relations between
stress and linearized strain.2 According to Bell, many of them did not believe that Hooke’s empirical
constitutive relation was appropriate, even for elastic solids undergoing small displacement gradients.3

Concerning the data that James Bernoulli had sent him, Leibniz observed that it seems to be fitted best
by a hyperbola. Later, James Bernoulli himself proposed a parabolic relation, namely

t = kxm,

where t is the applied force and x is the elongation. Bullfinger [2] proposed the value m = 3/2.
Wertheim [35] carried out extensive and systematic experiments on a miscellany of biological materials.

He carried out experiments on a variety of bones (femur, fibula), tendons (big toe flexor, small plantar),
sartorial muscles, nerves, femoral arteries, veins, for both males and females. With the exception of bones,
all his experiments could be fitted to the nonlinear constitutive relation

ε2 = Aσ2 + Bσ,

where ε denotes the strain, σ the stress, and A and B are constants. This led Bell [1] to remark:
The experiments of 280 years have demonstrated amply for every solid substance examined
with sufficient care, that the strain resulting from applied stress is not a linear function thereof.

The above observation of Bell remains true today with regard to a large class of solid bodies.
Numerous recent works study a variety of materials wherein one observes nonlinear response even

when the body is subject to sufficiently small strains, regimes where the linearized constitutive relation
due to Hooke seems reasonable. It is now well established that the response of the trabecular bone is
nonlinear, even for small strains, and more importantly such bones respond differently in tension and
compression (see, e.g., [11] and [7]). It is interesting to note that the title of [11] is Nonlinear behavior
of trabecular bone at small strains, emphasizing that even in the small strain range where the linearized
constitutive relation due to Hooke is usually thought to be valid, the response is nonlinear.4 There is
considerable experimental evidence for a large class of metallic alloys wherein the response is nonlinear in
the small strain regime. For the case of Gum metal and titanium alloys, see [5,8,27–29,32,36,37]. Once

2A great deal of care has to be exercised in analyzing the discussion in Bell [1] as some of the works, while concerned
with small strains, are suffering inelastic response. As no unloading data are provided, it is possible that during the reported
experiments, some or many of the specimens might have undergone inelastic response.

3Of course, it depends on what one means by small displacement gradients. Here, it means the use of linearized strain
wherein the nonlinear part of the strain is ignored and merely the symmetric part of the displacement gradient is used,
or put differently, wherein the square of the norm of the displacement gradient is negligible compared to the norm of the
displacement gradient. For example, it would be reasonable to say the displacement gradient is small if its Frobenius norm
is less than 10−2. See [24] for more on this point.

4If the strain is sufficiently small and one assumes that the stress as a function of strain is sufficiently smooth that
one can use a Taylor series expansion, there will be a small interval containing the origin wherein the linear relationship
will hold. However, this might be a absurdly small range of strains. The point being made here is that even in the range
wherein one usually applies the linearized approximation, many materials exhibit nonlinear response.
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again, we quote a few remarks from the papers which emphasize the fact that the response is nonlinear
even though the strain is small. Talling et al. [32] remark: “As the elastic regions of the microscopic
stress–strain curves are nonlinear in Figure 3, the moduli were calculated from the lowest stress portion
of the curve, before deviation from linearity.” The first sentence of the abstract of Zhang et al. [37]
reads “We report the fatigue endurance of a multifunctional b type titanium alloy exhibiting nonlinear
elastic deformation behavior.” Finally, Withey et al. [36] demarcate the nonlinear response region which
is in the small strain regime. Interestingly, even traditional materials such as concrete and rocks exhibit
nonlinear behavior in the small strain regime. Grasley et al. [4] show that concrete subject to simple
uniaxial compression test starts to respond nonlinearly even at a very low strain of 2 × 10−3, where one
would unhesitatingly apply the classical linearized constitutive relation.

Thus, it is necessary to put into place a framework wherein the linearized strain is a nonlinear function
of the stress, or wherein the linearized strain and the stress are implicitly related as an approximation.
Moreover, such an approximation should stem rigorously from a proper constitutive relation that meets
the basic requirements such as frame indifference and appropriate material symmetry.

1.2. Implicit constitutive theory

We now discuss modern advances in constitutive theory that inspired this study’s proposed asymptotic
foundation for rigorously generating nonlinear constitutive relations between stress and linearized strain.

Cauchy’s classical theory of elasticity is founded upon a functional relation between the Cauchy stress
tensor T and deformation gradient F for a given deformation,5

T = g(F ). (1.1)

Here and throughout our study, we omit the dependence of various quantities on current points in the
body, that is, we assume the body to be homogeneous. Assuming frame indifference, one alternatively
prescribes a functional relationship between the symmetric Piola-Kirchhoff stress tensor S̄ and the Green-
Saint Venant strain tensor E = 1

2 (F T F − I),

S̄ = f(E). (1.2)

Classic linearized elasticity is obtained from (1.2) or (1.1) in the asymptotic limit of infinitesimal
strains. More precisely, if |F − I| = δ0 � 1, f(0) = 0, and f is twice continuously differentiable, then
(1.2) implies that

σ = C[ε] + O(δ20), (1.3)

where C = DE f(0) is the elasticity tensor, ε = 1
2 (F +F T )−I is the linearized strain, and σ has replaced

S̄ as the stress variable.6

In a series of papers [19–22], the first author put into place an implicit framework for the response of
elastic bodies,

g(F ,T ) = 0, (1.4)

with a simpler subclass for isotropic solids taking the form

B = g(ρ/ρR,T ), (1.5)

5Here, F = ∇X χ is the gradient of a smooth, invertible deformation χ : B → χ(B) ⊆ E
3 of a body with reference

configuration B in three-dimensional Euclidean space. See Sect. 2 for more on the definitions of the tensors appearing in this
discussion. Throughout this work, we use standard tensor notation. In particular, if A is a tensor, we denote the Frobenius
norm |A | = [tr (AAT )]1/2.

6We use standard big-oh and little-oh notation. In particular, a tensor A and scalar B satisfy A = O (B) if there exists
a constant C > 0 such that |A | ≤ CB. If C depends on parameters a and b, we say that the big-oh term O (B) depends on
a and b.
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where B = FF T is the left Cauchy-Green stretch tensor. Inspired by [19–22], Mai and Walton [9,10]
studied constitutive relations of the form

E = f(S̄). (1.6)

They proved in [9] that for a popular class of isotropic forms of f appearing in the literature, strong
ellipticity for (1.6) holds as long as |S̄| is sufficiently small and fails for extreme compression. Results
of a similar spirit were obtained in [10] for a form of monotonicity that is strictly weaker than strong
ellipticity (and thus applies when f is not Frechét differentiable). It was shown in [18] that certain
relations of the form (1.5) arise when describing the response of isotropic elastic solids specified in terms
of Gibbs potentials. For simple choices of the Gibbs potential (see Section 5 of [18]), (1.5) becomes

H = β0(ρ/ρR)(tr T )I + β1(ρ/ρR)T ,

where H = 1
2 log B is the Hencky strain. Based on the assumption that the Frobenius norm of the

displacement gradient is small, the works [19–22] formally argued that if an implicit relation g(B,T ) = 0
holds, then g(I + 2ε,T ) = 0, up to negligible errors of size |F − I|2.7

However, one may show using the implicit function theorem that if g is continuously differentiable,
g(I,0) = 0, and DT g(I,0) is invertible on the linear space of symmetric tensors, then there exists a
function h such that (1.4) is satisfied if and only if T = h(B), provided |F − I| is sufficiently small. A
similar statement holds for implicit relations of the form

f(E, S̄) = 0. (1.7)

Thus, under the previous assumptions, fixed constitutive relations of the form g(B,T ) = 0 or (1.7) will
always lead to (1.3) as the leading-order relation satisfied in the asymptotic limit, δ0 = |F − I| → 0.

Instead, our approach is inspired by the theory discussed in [20,23] wherein strains are limited by
the constitutive relation to a range of size δ � 1 (while the stresses can remain large relative to a fixed
stress scale). Rather than δ0, it is the limiting strain determined by the constitutive relation, δ, that
serves as the asymptotic parameter in our framework. The central thesis demonstrated in this work is
that “linearization” with respect to δ rigorously leads to nonlinear relations between stress and linearized
strain ε while, as discussed above, “linearization” with respect to δ0 = |F −I| only leads to linear relations
between stress and the linearized strain.8

We illustrate the above discussion and motivate our framework via a simple 1d example. Consider the
relations

E = δa(1 + |aS̄|p)−1/pS̄, S̄ ∈ R, (1.8)

ε := −1 + (1 + 2E)1/2, δ0 := |ε|, (1.9)

where ε is the linearized strain variable, S̄ is the stress variable, and

E = ε +
1
2
ε2

is the nonlinear strain. Here, we assume that δ, δ0 � 1. By (1.8), for all S̄ ∈ R, |E| ≤ δ. By (1.9),
ε = E + O(δ2), and (1.8) yields

ε + O(δ2) = δa(1 + |aS̄|p)−1/pS̄.

Thus, linearization with respect to δ yields the nonlinear relation between stress and linearized strain,

ε = δa(1 + |aS̄|p)−1/pS̄. (1.10)

7Similar arguments in [19–22] suggest that if the implicit relation f (E , S̄ ) = 0 is satisfied, then f (ε, S̄ ) = 0, up to
negligible errors of size |F − I |2.

8Here, our use of “linearization” with respect to a small parameter a means to neglect terms of order a2 appearing in
either the strain variable or constitutive relation.
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On the other hand, we may invert (1.8), leading to

aS̄ = (1 − |E/δ|p)−1/pE/δ. (1.11)

Since ε = E + O(δ20), we conclude that

aS̄ = ε/δ + O(δ20/δ2). (1.12)

Thus, linearization with respect to δ0 yields the linear relation

aS̄ = ε/δ.

This interplay between inversion and linearization of constitutive relations was first explored in [25]. We
point out that it was quite simple to rigorously arrive at (1.10) directly from (1.8) when linearizing with
respect to δ. However, it is much less clear how one arrives at aS̄ = (1 − |ε/δ|p)−1/pε/δ directly from
(1.11) when linearizing with respect to δ.

1.3. Main results and outline

In this work, we consider implicit constitutive relations,

E = f δ(E, S̄), (1.13)

with f δ bounded by δ � 1 on its domain. The parameter δ should be physically interpreted as the
maximum possible strain the material can undergo (in the class of processes being considered). In Sect.
2 we briefly review the kinematics and balance laws necessary for this study to be self-contained.

In this study, we view each f δ as a member of one-parameter family of strain-limiting functions with
limiting small strains introduced in Sect. 3. See Definition 3.1. A one-parameter family of strain-limiting
functions should be physically interpreted as representing a collection of constitutive relations, with each
member modeling a (possibly) distinct material within a broader family of materials, and δ giving the
maximum possible strain the material can undergo (in the class of processes being considered). The
defining features of our asymptotic framework are:

• We approximate a family of strain-limiting constitutive relations with limiting small strains.
• The limiting strain δ for each individual constitutive relation in the family acts as the framework’s

asymptotic parameter characterizing the degree of the approximation, e.g., the leading-order ap-
proximate.

We discuss several examples in Sect. 3.2, and we show in Sect. 3.3 that within our framework, a
nonlinear constitutive relation between stress and linearized strain is the leading-order-in-δ relationship
satisfied by the family of strain-limiting constitutive relations represented by (1.13); informally,

ε = f δ(ε,σ) + O(δ2).

See Proposition 3.3 and Corollary 3.4 for the precise statements. Our results are clearly distinct but in
similar spirit to the situation in classical linearized elasticity (1.3). As applications of Proposition 3.3 and
Corollary 3.4, we first obtain nonlinear constitutive relations between stress and linearized strain wherein
the stress is derived from a strain energy depending on the linearized strain; see (3.23). In contrast
to classical linearized elasticity, however, our framework allows for strain energies beyond quadratic
forms of the linearized strain. In addition, we also obtain certain popular nonlinear constitutive relations
between stress and linearized strain having density-dependent Young’s moduli; see (3.27), (3.28), (3.29),
and (3.30). We emphasize that the nonlinear constitutive relations between stress and linearized strain
obtained correspond to the leading-order relations satisfied by appropriate families of strain-limiting
constitutive relations.
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In the concluding Sect. 4, we speculate on the interesting open question concerning the solvability of
the fully nonlinear problem if one can prove the solvability of the associated “linearized problem,” the
body force being kept the same.

2. Preliminaries

In this brief section, we give necessary definitions for the ensuing discussion and analysis presented in
this work.

Let B ⊆ E
3 be a smooth domain in three-dimensional Euclidean space, the reference configuration of

a body with reference mass density ρR. Let χ : B → χ(B) ⊆ E
3 be a smooth invertible deformation of B.

For a given reference element X ∈ B, we denote by x = χ(X) its position in the current configuration
χ(B). The deformation gradient of χ is defined by F (X) = ∂χ

∂X (X).
The left and right Cauchy-Green stretch tensor fields are given, respectively, by

B = FF T , C = F T F ,

and the Green-Saint Venant strain is the second-order tensor

E =
1
2
(C − I).

The displacement field is defined by

u = x − X,

and the displacement gradient is given by

∇X u = F − I.

Then

B = I +
[∇X u + (∇X u)T

]
+ ∇X u(∇X u)T ,

C = I +
[∇X u + (∇X u)T

]
+ (∇X u)T ∇Xu.

Assuming that

|∇X u| = δ0 � 1,

we then have that

B = I + 2ε + O(δ20), E = ε + O(δ20),

where ε is the linearized strain

ε =
1
2
[∇X u + (∇X u)T

]
=

1
2
(F + F T ) − I.

In the purely mechanical setting and in the absence of external forces and body couples, the clas-
sical equations expressing conservation of mass, balance of linear momentum, and balance of angular
momentum on the current configuration are given, respectively, by:

ρ̇ + ρdiv v = 0,

ρv̇ = div T , T T = T .

Here, ˙= ∂t +
∑3

j=1 vj∂xj
is the material time derivative, ρ is the current mass density, v is the velocity

field, and T is the (symmetric) Cauchy stress tensor. On the reference configuration, the balance laws
can be expressed by:

ρ = (detF )−1ρR,

ρR∂2
t χ = Div (S), SF T = FST ,
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where S is the first Piola-Kirchhoff stress tensor. We denote the second symmetric Piola-Kirchhoff stress
tensor by S̄ = F −1S. We note that if |∇X u| = δ0 � 1, then

ρ/ρR = (detB)−1/2 = (det C)−1/2 = [det(I + 2E)]−1/2 = 1 − tr ε + O(δ20).

3. An asymptotic framework for nonlinear relations between stress and linearized strain

In this section, we introduce a novel asymptotic framework for constitutive relations. Within this frame-
work, a nonlinear constitutive relation between stress and linearized strain is the leading-order-in-δ re-
lationship satisfied by a one-parameter family of strain-limiting constitutive relations E = f δ(E, S̄).
These one-parameter families are given in terms of families of strain-limiting functions with limiting
small strains, f δ, defined in the following subsection.

3.1. Families of strain-limiting functions with limiting small strains

Definition 3.1. For small δ̃ > 0, and each δ ∈ (0, δ̃), let Uδ ⊆ B(0, 1/2) and V be open subsets of Sym.9

We say that a collection of bounded Lipschitz continuous functions f δ : Uδ × V → Sym indexed by
δ ∈ (0, δ̃) is a family of strain-limiting functions with limiting small strains if there exist C0, C1 > 0, and
D0 > 0, independent of δ, such that for all δ ∈ (0, δ̃),

∀E, S̄, |f δ(E, S̄)| ≤ C0δ, ∀E1 	= E2, S̄,
|f δ(E2, S̄) − f δ(E1, S̄)|

|E2 − E1| ≤ C1, (3.1)

∀E, S̄1 	= S̄2,
|f δ(E, S̄2) − f δ(E, S̄1)|

|S̄2 − S̄1| ≤ D0δ. (3.2)

If E represents a strain variable, S̄ represents a stress variable, and f δ represents a dimensionless
response function, then δ, C0, and C1 are dimensionless and D0 has physical units of (length)2(force)−1.
Each individual function f δ is referred to as a strain-limiting function with limiting small strains on
Uδ × V .

We note that f δ is a family of strain-limiting functions with limiting small strains if and only if for any
fixed C > 0, fC−1δ is a family of strain-limiting functions with limiting small strains. In particular, we
may always assume without loss of generality that C0 = 1. However, it will be mathematically convenient
to allow C0 	= 1 when discussing examples in the sequel.

3.2. Examples of families of strain-limiting functions

We now discuss a series of example families of strain-limiting functions with limiting small strains. Let
f : U × V → Sym be a bounded Lipschitz continuous function satisfying,

∀E, S̄, |f(E, S̄)| ≤ δ1, ∀E1 	= E2, S̄,
|f(E2, S̄) − f(E1, S̄)|

|E2 − E1| ≤ C̃1,

∀E, S̄1 	= S̄2,
|f(E, S̄2) − f(E, S̄1)|

|S̄2 − S̄1| ≤ D̃0δ1.

9Here, Sym denotes the set of symmetric tensors on R
3, and B(0, r) =

{
E ∈ Sym | |E | < r

}
. We note that if

E ∈ B(0, 1/2), then it straightforward to see that C = I + 2E is positive definite.
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Then

f δ(E, S̄) :=
δ

δ1
f

(δ1
δ

E, S̄
)
, (3.3)

for E ∈ Uδ := δ
δ1

U =
{

δ
δ1

Ẽ | Ẽ ∈ U
}

and S̄ ∈ V , defines a family of strain-limiting functions with
limiting small strains satisfying f δ1 = f . Moreover, the constants appearing in (3.1) and (3.2) satisfy

C0 = 1, C1 = C̃1, D0 = D̃0.

Roughly speaking, this example shows that an arbitrary bounded Lipschitz continuous function generates
a family of strain-limiting functions with limiting small strains in a natural way.

We now show that if δn → 0, then up to passing to a subsequence, a family of strain-limiting functions
with limiting small strains and Uδ = δU , where U is a fixed open subset in Sym, takes the form (3.3)
to leading order in δn. This class of strain-limiting functions with limiting small strains satisfying the
additional condition Uδ = δU is extensive and contains all explicit examples discussed in this work.

Proposition 3.2. Let U, V ⊆ Sym be bounded open sets. For each δ > 0, let

Uδ = δU = {δẼ | Ẽ ∈ U}.

Suppose that {δn}n is a sequence of positive numbers converging to 0, and f δ : Uδ ×V → Sym is a family
of strain-limiting functions with limiting small strains. Then there exist a subsequence {δnm

}m and a
bounded Lipschitz continuous function g : U × V → Sym such that

sup
(E ,S̄)∈Uδnm

×V

|f δnm
(E, S̄) − δ−1

nm
g(δ−1

nm
E, S̄)| = o(δnm

),

as m → ∞.

Proof. Define hn : U × V → Sym by

hn(Ẽ, S̄) = δ−1
n f δn

(δnẼ, S̄), (Ẽ, S̄) ∈ U × V.

Then by (3.1) and (3.2), for all n,

∀Ẽ, S̄, |hn(Ẽ, S̄)| ≤ C0, ∀Ẽ1 	= Ẽ2, S̄,
|hn(Ẽ2, S̄) − hn(Ẽ1, S̄)|

|Ẽ2 − Ẽ1|
≤ C1,

∀Ẽ, S̄1 	= S̄2,
|hn(Ẽ, S̄2) − hn(Ẽ, S̄1)|

|S̄2 − S̄1| ≤ D0.

By the Arzela-Ascoli theorem, there exists a subsequence {hnm
}m and g : U × V → Sym such that

sup
(Ẽ ,S̄)∈U×V

|hnm
(Ẽ, S̄) − g(Ẽ, S̄)| = o(1),

as m → ∞, concluding the proof.

A simple subclass of the example (3.3) is generated by a Lipschitz continuous function f1 : V → Sym
on an open set V ⊆ Sym satisfying

∀S̄, |f1(S̄)| ≤ 1.

Then

f δ(S̄) = δf1(S̄), (3.4)

is a family of strain-limiting functions on V with limiting small strains. If there exists a scalar function
W ∗ : V → R such that f1 = ∂S̄ W ∗, then the relation

E = δf1(S̄) = ∂S̄ [δW ∗(S̄)], S̄ ∈ V, (3.5)
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models an elastic solid body with complementary energy δW ∗. If, in addition, V is convex and W ∗ is a
twice continuously differentiable, convex function on V , then the relation (3.5) can be inverted yielding

S̄ = ∂E [δW
(
δ−1E

)
], E ∈ range(δf1). (3.6)

In (3.6), W is the Legendre transform of W ∗, and (3.6) is the classical constitutive relation for a Green
elastic solid with strain energy δW (δ−1·) (see [33]).

An explicit example of such a family of strain-limiting functions with limiting small strains, inspired
by [9,10,21], is generated by

f1(S̄) = a(1 + ap|S̄|p)−1/pS̄, S̄ ∈ Sym,

where a > 0 and p ≥ 1. Then for all E, S̄,

|f1(E, S̄)| ≤ 1. (3.7)

Using the product and chain rules, we compute the Frechét derivative,

DS̄ f1(S̄) = a(1 + bp|S̄|p)−1/pI − a(1 + bp|S̄|p)−1/p−1bp|S̄|p−2S̄ ⊗ S̄,

where I : Sym → Sym is the identity map. By the triangle inequality, the operator norm of DS̄ f1 satisfies

‖DS̄ f1(S̄)‖ ≤ a(1 + bp|S̄|p)−1/p
(
1 + bp(1 + bp|S̄|p)−1|S̄|p

)
≤ 2a. (3.8)

The fundamental theorem of calculus and (3.8) then imply that

|f1(S̄2) − f1(S̄1)| =
∣
∣
∣

1∫

0

DS̄ f δ(sS̄2 + (1 − s)S̄1)[S̄2 − S̄1]ds
∣
∣
∣

≤ 2δa|S̄2 − S̄1|. (3.9)

By (3.7) and (3.9), we conclude that f δ = δf1 is a family of strain-limiting functions with limiting small
strains. We leave it to the reader to verify that f1 = ∂S̄ W ∗ for an appropriately chosen twice continuously
differentiable, convex function W ∗.

A family of strain-limiting functions with limiting small strains outside of the scope of our discussion
thus far is the following. Let E0 and a be fixed positive constants. For δ > 0 small, define

Eδ(E) = δ−1E0

[
1 + aδ−1([det(I + 2E)]−1/2 − 1)

]
,

f δ(E, S̄) =
1 + ν

Eδ
S̄ − ν

Eδ
(tr S̄)I, (3.10)

One may interpret the constitutive relation E = f δ(E, S̄) as a generalization of the classical linear
constitutive relation for an isotropic solid with a generalized Young’s modulus Eδ depending on the
density via Eδ = δ−1E0

[
1 + aδ−1(ρ/ρR − 1)

]
(see (2)).

Suppose that b > 0, c > 0, and ab < 1/2. We claim that for all δ sufficiently small (depending on a and
b), (3.10) is a family of strain-limiting functions with limiting small strains on domains B(0, bδ)×B(0, c).
Toward proving our claim, we observe that if E ∈ B(0, bδ), then for all δ sufficiently small,

∣
∣
∣[det(I + 2E)]−1/2 − 1

∣
∣
∣ = | − trE + o(|E|)| ≤

√
3|E| + o(|E|) ≤ 2|E|.

Above we used the fact that by the Cauchy-Schwarz inequality, for any tensor A we have |tr A| = |I ·A| ≤√
3|A|. By the reverse triangle inequality, we have

Eδ(E) ≥ δ−1E0(1 − 2aδ−1|E|) ≥ δ−1E0(1 − 2ab) > 0. (3.11)

We conclude that

|f δ(E, S̄)| ≤ 1 + ν

Eδ
|S̄| +

ν

Eδ
|tr S̄||I| ≤ (1 + 4ν)c

E0(1 − 2ab)
δ. (3.12)
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Let E1,E2 ∈ B(0, bδ) and S̄1, S̄2 ∈ B(0, c). Then

f δ(E2, S̄2) − f δ(E1, S̄1) =
Eδ(E1) − Eδ(E2)
Eδ(E1)Eδ(E2)

[(1 + ν)S̄2 − ν(tr S̄2)I]

+
1

Eδ(E1)
[(1 + ν)(S̄2 − S̄1) − ν(tr [S̄2 − S̄1])I]. (3.13)

For all δ sufficiently small, we have

∀s ∈ [0, 1], |(I + sE1 + (1 − s)E2)−1| ≤ (1 − bδ)−1 ≤ 2,

∀s ∈ [0, 1], |det(I + sE1 + (1 − s)E2)| ≥ 1/2.

By the fundamental theorem of calculus and the chain rule, we have

|Eδ(E1) − Eδ(E2)|

= δ−2E0a
∣
∣
∣

1∫

0

−1
2
[det(I + sE1 + (1 − s)E2)]−1/2

× (I + sE1 + (1 − s)E2)−1 · (E1 − E2)ds
∣
∣
∣,

and thus,

|Eδ(E1) − Eδ(E2)| ≤ δ−2E0a
√

2. (3.14)

We also have

|(1 + ν)S̄2 − ν(tr S̄2)I| ≤ (1 + 4ν)|S̄2| ≤ (1 + 4ν)c,

|(1 + ν)(S̄2 − S̄1) − ν(tr [S̄2 − S̄1])I| ≤ (1 + 4ν)|S̄1 − S̄2|.
Using the previous two estimates along with (3.14) and (3.11), we conclude from (3.13) and repeated use
of the triangle inequality that

|f δ(E2, S̄2) − f δ(E1, S̄1)|

≤ (1 + 4ν)ac
√

2
E0(1 − 2ab)2

|E2 − E1| +
1 + 4ν

E0(1 − 2ab)
δ|S̄2 − S̄1|. (3.15)

By (3.12) and (3.15), we conclude that for all δ sufficiently small (depending on a and b), (3.10) is a
family of strain-limiting functions with limiting small strains.

A final example of a family of strain-limiting functions with limiting small strains is given in terms of
a slightly different form of a density-dependent generalized Young’s modulus:

Eδ = δ−1E0

[
1 + aδ−1([det(I + 2E)]1/2 − 1)

]−1

,

f δ(E, S̄) =
1 + ν

Eδ
S̄ − ν

Eδ
(tr S̄)I, (3.16)

Again, by (2), one may interpret the generalized Young’s modulus as depending on the density via
Eδ = δ−1E0

[
1 + aδ−1(ρR/ρ − 1)

]−1. We note that both (3.10) and (3.16) have the physical property
that an increase in density, ρ, yields an increase in the Young’s modulus, Eδ. Arguing as above, one
may conclude that (3.16) also yields a family of strain-limiting functions with limiting small strains on
domains Uδ × V = B(0, b) × B(0, c) for appropriate choices of b and c.
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3.3. Nonlinear relations between stress and linearized strain

We now show that a family of constitutive relations of the form E = f δ(E, S̄), with E interpreted as the
Green-Saint Venant strain tensor associated to a deformation and S̄ as the symmetric Piola-Kirchhoff
stress, asymptotically yield nonlinear relations between stress and the associated linearized strain ε, up
to a O(δ2) error. Moreover, Corollary 3.4 and the examples discussed thereafter show that in general, the
resulting asymptotic relations between stress and linearized strain can be genuinely nonlinear to leading
order in δ. This stands in contrast to the setting of a fixed constitutive relation, which, under mild
differentiability assumptions, always can be asymptotically reduced to a linear relation between stress
and linearized strain to leading order in the displacement gradient |F − I|.

The preliminary setup for our result is as follows. For an element Eδ ∈ B(0, 1/2), rotation Rδ, and
S̄ ∈ Sym, we associate a deformation gradient F δ via

Cδ := I + 2Eδ, F δ := RδC
1/2
δ , εδ :=

1
2
(F δ + F T

δ ) − I,

and a stress variable, σδ, by

σδ :=
1
2
(
F δS̄ + S̄F T

δ

)
.

The tensor σδ can be interpreted as the symmetric part of an associated first Piola-Kirchhoff stress
tensor.

Proposition 3.3. Let f δ : Uδ × V → Sym be a family of strain-limiting functions with limiting small
strains. Let S̄ ∈ V . Assume that there exists r > 0 such that for each δ > 0 sufficiently small, there exists
Eδ ∈ Uδ such that B(Eδ, rδ) ⊆ Uδ and

Eδ = f δ(Eδ, S̄). (3.17)

In addition, suppose that there exists a fixed dimensionless constant C2 > 0 such that for all δ sufficiently
small,

|Rδ − I| < C2δ. (3.18)

Then for all δ sufficiently small, (εδ,σδ) ∈ Uδ × V , and as δ → 0,

εδ = f δ(εδ,σδ) + O(δ2),

where the big-oh term depends on C0, C1, C2, and D0|S̄|.
Proof. For all δ > 0 sufficiently small, we use the bound |(I +2Eδ)1/2| ≤ (3+2

√
3|Eδ|)1/2, (3.18), (3.17),

and (3.1) to obtain

|F δ − I| = |Rδ(I + 2Eδ)1/2 − I|
≤ |(Rδ − I)(I + 2Eδ)1/2| + |(I + 2Eδ)1/2 − I|
≤ (3 + 2

√
3|Eδ|)1/2|Rδ − I| + (1 − 2C0δ)−1/2|Eδ|

≤
[
(3 + 2

√
3C0δ)1/2C2 + (1 − 2C0δ)−1/2C0

]
δ.

Since Cδ = F T
δ F δ and Eδ = 1

2 (Cδ − I), we conclude that

Cδ = I + 2εδ + O(δ2), Eδ = εδ + O(δ2), (3.19)

and

σδ =
1
2
(I + O(δ))S̄ +

1
2
S̄(I + O(δ)T ) = S̄ + O(δ)S̄ + S̄O(δ)T , (3.20)

where the big-oh terms depend only on C0 and C2.
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Since S̄ ∈ V and V is open, there exists r0 > 0 such that B(S̄, r0) ⊆ V . The relations (3.19) and
(3.20) imply that there exists a constant C depending on C0 and C2 such that for all δ sufficiently small,

|Eδ − εδ| ≤ Cδ2 < rδ,

|σδ − S̄| ≤ Cδ|S̄|, (3.21)

and thus, (εδ, S̄) ∈ B(Eδ, rδ) × B(S̄, r0) ⊆ Uδ × V for all δ sufficiently small. Then by (3.17), (3.19),
(3.1), and (3.2),

εδ = f δ(Eδ, S̄) + εδ − Eδ

= f δ(εδ,σδ) + [f δ(εδ, S̄) − f δ(εδ,σδ) + εδ − Eδ + f δ(Eδ, S̄) − f δ(εδ, S̄)]

= f δ(εδ,σδ) + O(δ2),

as δ → 0, where the big-oh term depends only on C0, C1, C2, and |D0||S̄|. This concludes the proof.

We remark that the approximation (3.20) between the stress variables and the associated bound (3.21)
have the same form as the classical setting where the norm of the displacement gradient δ0 serves as the
asymptotic parameter rather than δ. Indeed, consider the one-dimensional example from Sect. 1.2 and
the notation therein. Let σδ = ε/(aδ), and let δ, a, and p be fixed (i.e., the constitutive relation is fixed).
From (1.12) and the fact that δ0 = |ε|, we conclude that

σδ = S̄
[
1 + O(δ0/δ)

]−1 = S̄
[
1 + O(δ0/δ)

]
,

for all δ0 sufficiently small. We then obtain

|σδ − S̄| ≤ C

δ
|S̄|δ0, (3.22)

for some absolute constant C > 0. This is the same form as (3.21) where δ0 is now the small changing
parameter rather than δ.

Moreover, we comment that inserting aS̄ = O(δ0/δ) (derived from (1.12)) into the right-hand side
of (3.22) gives the false impression that using δ0 as the asymptotic parameter results in a “stronger”
approximation between the stress variables

|σδ − S̄| ≤ C̃

aδ2
δ20 .

One should not necessarily view the above estimate as stronger than (3.21) since aσδ and aS̄ are O(δ0/δ),
but in (3.21), σδ and S̄ are O(1) relative to a fixed stress scale.

Corollary 3.4. In addition to the assumptions of Proposition 3.3, suppose that there exist an open set
U ⊆ Sym, f1 : U × V → Sym, and a constant C3 > 0 such that

Uδ = δU = {δẼ | Ẽ ∈ U},

and

∀(E, S̄) ∈ Uδ × V,
∣
∣f δ(E, S̄) − δf1

(
δ−1E, S̄)

∣
∣ ≤ C3δ

2.

Then, in the notation of Proposition 3.3, we have as δ → 0,

εδ = δf1(δ
−1εδ,σδ) + O(δ2),

where the big-oh term depends on C0, C1, C2, C3, and D0|S̄|.
We now discuss the examples from Sect. 3.2 within the context of Proposition 3.3 and Corollary 3.4.

It is clear that a general family of strain-limiting functions with limiting small strains given by (3.4)
satisfies the hypotheses of both Proposition 3.3 and Corollary 3.4. In particular, if (3.5) holds with a
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twice continuously differentiable, convex function W ∗, then Corollary 3.4 implies in the notation therein
that

εδ = ∂σδ
[δW ∗(σδ)] + O(δ2), σδ ∈ V.

Omitting the O(δ2) term yields εδ = ∂σδ
[δW ∗(σδ)] or, equivalently,

σδ = ∂εδ
[δW

(
δ−1εδ

)
], (3.23)

where W is the Legendre transform of W ∗. The relation (3.23) models a Green elastic solid, i.e., the
stress is derived from a strain energy depending on the linearized strain. In contrast to classical linearized
elasticity, however, our framework allows for strain energies W beyond quadratic forms of the linearized
strain.

We now consider the explicit family (3.10). We write f δ(E, S̄) = δgδ(E/δ, S̄) where

gδ(Ẽ, S̄) =
1 + ν

δEδ(δẼ)
S̄ − ν

δEδ(δẼ)
(tr S̄)I, (Ẽ, S̄) ∈ B(0, b) × B(0, c),

and we note that for all δ̃ and b sufficiently small,

(0, δ̃) × B(0, b) � (δ, Ẽ) �→ δEδ(δẼ) = E0

[
1 + aδ−1([det(I + 2δẼ)]−1/2 − 1)

]
,

extends smoothly to a function of (δ, Ẽ) ∈ (−δ̃, δ̃) × B(0, b). Moreover, we have for all Ẽ ∈ B(0, b),

δEδ(δẼ) = E0[1 − atr Ẽ + O(ab2δ)]. (3.24)

We observe that E = f δ(E, S̄) if and only if

Ẽ = gδ(Ẽ, S̄), (3.25)

where E = δ · Ẽ, g0(0,0) = 0, and

DẼ

(
Ẽ − gδ(Ẽ, S̄)

)∣∣
∣
(δ,Ẽ ,S̄ )=(0,0,0)

= I.

Thus, by the implicit function theorem and choosing δ̃, b, and c sufficiently small, we conclude that for
each 0 < δ < δ̃ and S̄ ∈ B(0, c), there exists a unique Ẽδ ∈ B(0, b) satisfying (3.25). Written differently,
we have shown that for each 0 < δ < δ̃ and S̄ ∈ B(0, c), there exists a unique Eδ ∈ B(0, δb) satisfying
Eδ = f δ(Eδ, S̄), and the hypotheses of Proposition 3.3 are satisfied on Uδ × V = B(0, bδ) × B(0, c).

Finally, define

f1(Ẽ, S̄) = g0(Ẽ, S̄) = E−1
0 (1 − atr Ẽ)−1

[
(1 + ν)S̄ − ν(tr S̄)I

]
.

By (3.24), it follows that for all E ∈ B(0, δb) (with ab < 1/2),
∣
∣
∣

1
Eδ(E)

− δ

E0(1 − atr (δ−1E))

∣
∣
∣ =

∣
∣δ−1E0(1 − atr (δ−1E)) − Eδ(E)

∣
∣

δ−1E0(1 − atr (δ−1E))Eδ(E)

≤ a
∣
∣1 − [det(I + 2E)]−1/2 − trE

∣
∣

E0(1 − 2ab)2

≤ Ca|E|2
E0(1 − 2ab)2

≤ Cab2δ2

E0(1 − 2ab)2
,

where C is an absolute constant. Thus, for all (E, S̄) ∈ B(0, bδ) × B(0, c),
∣
∣f δ(E, S̄) − δf1

(
δ−1E, S̄)

∣
∣ ≤ Cab2(1 + 4ν)cδ2

E0(1 − 2ab)2
. (3.26)
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The estimate (3.26) proves that the hypotheses of Corollary 3.4 are satisfied. In the notation therein,

εδ = δE−1
0

[
1 − aδ−1tr (εδ)

]−1[(1 + ν)σδ − ν(tr σδ)I
]
+ O(δ2), (3.27)

as δ → 0, and omitting the O(δ2) term yields

εδ = δE−1
0

[
1 − aδ−1tr (εδ)

]−1[(1 + ν)σδ − ν(tr σδ)I
]
.

One may similarly show that the hypotheses of Proposition 3.3 and Corollary 3.4 are satisfied for
(3.16) on a family of nontrivial open sets Uδ × V with

f1(Ẽ, S̄) = E−1
0 (1 + atr Ẽ)

[
(1 + ν)S̄ − ν(tr S̄)I

]
.

In the notation of Proposition 3.3 and Corollary 3.4, we conclude that

εδ = δE−1
0

[
1 + aδ−1tr (εδ)

][
(1 + ν)σδ − ν(tr σδ)I

]
+ O(δ2), (3.28)

as δ → 0, and omitting the O(δ2) term yields

εδ = δE−1
0

[
1 + aδ−1tr (εδ)

][
(1 + ν)σδ − ν(tr σδ)I

]
.

Constitutive relations of the form

ε = E−1
ref

[
1 − Γtr ε

]−1[(1 + ν)σ − ν(tr σ)I
]
, (3.29)

or

ε = E−1
ref

[
1 + Γtr ε

][
(1 + ν)σ − ν(tr σ)I

]
, (3.30)

where σ is the stress variable, have been appeared extensively in the literature; see, e.g., [6,13–17,26,34].
Our framework and the expansions (3.27) and (3.28) place (3.29) and (3.30) on firm mathematical footing
as the asymptotic leading-order relations (in δ) arising from a constitutive theory for finite deformations.

We conclude this section by noting that our results are not restricted solely to constitutive relations
expressed via the Green-Saint Venant strain tensor and the symmetric Piola-Kirchhoff stress tensor. We
demonstrate that analogs of Proposition 3.3 and Corollary 3.4 can be proved in terms of variables H and
T representing the Hencky strain and Cauchy stress for an isotropic elastic solid. The preliminary setup
is as follows. For an element (Hδ,T ) ∈ Sym×Sym and rotation Rδ, we associate a deformation gradient
F δ via

F δ := eH δRδ, εδ :=
1
2
(F δ + F T

δ ) − I,

and a stress variable, σδ, via

σδ = (detF δ)
1
2
(
TF −T

δ + F −1
δ T

)
.

As before, the tensor σδ can be interpreted as the symmetric part of an associated first Piola-Kirchhoff
stress tensor.

Proposition 3.5. Let f δ : Uδ × V → Sym be a family of strain-limiting functions with limiting small
strains. Let T ∈ V . Assume that there exists r > 0 such that for each δ > 0 sufficiently small, there exists
Hδ ∈ Uδ such that B(Hδ, rδ) ⊆ Uδ and

Hδ = f δ(Hδ,T ). (3.31)

In addition, suppose that there exists a fixed dimensionless constant C2 > 0 such that for all δ sufficiently
small,

|Rδ − I| < C2δ. (3.32)

Then for all δ sufficiently small, (εδ,σδ) ∈ Uδ × V , and as δ → 0,

εδ = f δ(εδ,σδ) + O(δ2),
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where the big-oh term depends only on C0, C1, C2, and D0|T |.
Proof. For all δ > 0 sufficiently small, we have by (3.32), (3.31), and (3.1) that

|F δ − I| = |eH δRδ − I|
≤ |eH δ(Rδ − I)| + |eH δ − I|
≤ e|H δ||Rδ − I| + |Hδ|e|H δ|

≤ [C2 + C0]eC0δδ.

Since Hδ = 1
2 log F δF

T
δ , we conclude that

Hδ = εδ + O(δ2), σδ =
1
2
T (I + O(δ) +

1
2
(I + O(δ))T ,

where the big-oh terms depend only on C0, C1, and C2.
Arguing as in Proposition 3.3, we conclude that for all δ sufficiently small, (εδ,σδ) ∈ Uδ × V , and

εδ = f δ(Hδ,T ) + εδ − Hδ

= f δ(εδ,σδ) + [f δ(εδ,T ) − f δ(εδ,σδ) + εδ − Hδ + f δ(Hδ,T ) − f δ(εδ,T )]

= f δ(εδ,σδ) + O(δ2),

as δ → 0, where the big-oh term depends only on C0, C1, C2, and D0|T |. This concludes the proof.

4. Conclusion

In this study, we have presented a rigorous asymptotic framework that provides a mathematical founda-
tion for nonlinear constitutive relations between stress and linearized strain. Within our framework, we
have demonstrated that a nonlinear constitutive relation between stress and linearized strain emerges as
the primary term of an asymptotic expansion in δ of a family of strain-limiting, nonlinear constitutive
relations,

E = f δ(E, S̄)

between stress and nonlinear strain. Here, the dimensionless parameter δ determining the leading-order
term is (up to a fixed constant) the limiting small strain of f δ: ∀E, S̄, |f δ(E, S̄)| ≤ δ. Although the size of
the strain E is controlled by δ (and constrained to be small) via the associated constitutive relation, the
size of the stress S̄, relative to a fixed stress scale, is neither required to be controlled by δ nor required to
be small. Our approach diverges from classical linearized elasticity where a constitutive relation is fixed
and the asymptotic parameter is the size of the displacement gradient δ0 = |F − I|.

As our results show, strain-limiting constitutive relations E = f δ(E, S̄) are approximated by ε =
f δ(ε,σ) up to a quadratic error in δ with σ interpreted as the symmetric part of the associated first
Piola-Kirchhoff stress tensor; however, a fundamental question remains. In particular, we conjecture that
for a fixed external body force b and for all δ sufficiently small, solvability of the “linearized” equilibrium
equations,

0 = DivσL,δ + b, σT
L,δ = σL,δ,

εL,δ = f δ(εL,δ,σL,δ),

implies solvability of the fully nonlinear equilibrium equations,

0 = DivSδ + b, SδF
T
δ = F δS

T
δ ,

Eδ = f δ(Eδ, S̄δ),
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and

Eδ = εL,δ + O(δ2), S̄δ = σL,δ + O(δ), Sδ = σL,δ + O(δ),

as δ → 0.10 Such a fundamental result would be unique but in line with analogous results established for
classical linearized elasticity; see, e.g., the classic works of Stoppelli [30,31] and the discussion of more
recent results by Ciarlet in Chapter 6 of [3].
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