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Situated within efforts to understand the complex interplay among learners, teachers, and tasks 
in mathematical modeling education, we examine how contingent scaffolding moves influence 
the modeling process. Using mixed methods, we coordinated qualitative frameworks for 
scaffolding and modeling competencies through their application to task-based cognitive 
interviews with undergraduate STEM majors. A mixed logistic regression model with participant 
random effect analyzed the temporally-linked frequencies of codes. The model sustains claims 
about the compatibility of the frameworks and predicts moves eliciting competencies. 
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In any didactic situation, there is a triadic interaction among the learner, the teacher, and the 
task environment (Brousseau, 1997; Koichu & Harel, 2007). Understanding how the teacher 
influences the interaction between learner and task environment is a major research objective in 
mathematics education. In learning environments that focus on developing mathematical 
modeling skills, learners are assumed to enter with real-world knowledge (and therefore 
assumptions) that may not afford the intended mathematics (Cai et al., 2014). A number of 
studies have shown that educators may respond to the learners’ work in ways that amount to 
consistent negative feedback or diminish learner autonomy in decision-making while modeling 
(Verschaffel et al., 2020). Additionally, support which may, on the surface, seem adaptive to 
error is not always contingent to a learner’s in the moment needs (Wischgoll et al., 2015). For 
these reasons, educators have sought means for scaffolding learners’ modeling processes that 
maintain cognitive demand, endorse and extend their autonomous ways of reasoning, and do not 
inadvertently teach the idea that there is a “school math” entirely distinct from “real math” (see 
Nunes et al., 1985; Watson, 2008). Our study is situated within the broader agenda to understand 
which kinds of scaffolding moves are effective in supporting modelers as they learn to construct 
and validate meaningful models of real-world scenarios. In particular, the aim of this study was 
to investigate the influence of facilitators’ micro interventions on undergraduate STEM majors’ 
modeling processes. 

Literature Review 

Mathematical modeling is a cognitive process. 
Cognitive perspectives on mathematical modeling conceive it as a process of transforming a 

question about the real world into a mathematically well-posed problem (Kaiser, 2017). For 
example, one way the question How rapidly will a disease spread through a community? can be 
answered is by using the equation 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝜏𝜏𝜏𝜏𝜏𝜏 as a model of the scenario. Using an equation as a 

model means the modeler constructs quantitative meanings for the variables 𝑆𝑆 and 𝐻𝐻 which 
represent the number of sick people and healthy people at time 𝑡𝑡, respectively. This sub-process 
is known as mathematizing.  Another important sub-process of modeling is validating. This is 



done by adopting (implied or explicit) assumptions about how the world works and evaluating 
the adequacy of the resulting representation against those assumptions. Assuming that having the 
disease does not confer immunity to it is consistent with the model in the example. In general, 
modelers decide which real-world conditions and assumptions are important (or not) to 
incorporate into their model as mathematical properties, parameters, and relationships 
(Schwarzkopf, 2007; Zbiek & Conner, 2006). This sub-process is known as simplifying & 
structuring. Mathematical modeling cycles (MMCs) provide a descriptive framework that 
organizes the cognitive sub-processes as a set of phases connecting stages of model construction 
(Blum & Leiß, 2007). Table 1 shows Blum and Leiß (2007)’s cycle for the stages a modeler 
passes through and the sub-processes that connect those stages. 

Table 1 Modeling competencies from (Blum & Leiß, 2007) 

Sub-Processes Definition Connects Stages 
Understanding Forming an initial idea about what the 

problem is asking for 
real world → situation 
model 

Simplifying & 
Structuring 

Identify (un)important real-world entities and 
relationships 

situation model → real 
model 

Mathematizing Represent idealized version of the real-world 
problem using mathematical conventions 

real model → mathematical 
model 

Working 
Mathematically 

Analyze or solve mathematical problem mathematical model → 
mathematical results 

Interpreting Re-contextualize mathematical results mathematical results → real 
results 

Validating Verify results against constraints real results → real situation 
Many studies have investigated the sub-processes and their manifestations across grade 

levels and content areas (Cevikbas et al., 2021), the characteristics of tasks that evoke them 
(Bock et al., 2015; Maaß, 2010), and the challenges learners face in carrying them out (Galbraith 
& Stillman, 2006; Klock & Siller, 2020). Importantly, many studies have found modeling does 
not proceed linearly through the sub-processes (Ärlebäck & Bergsten, 2010; Borromeo Ferri, 
2007; Czocher, 2016, 2018). Despite the low predictive power of MMC’s, they remain powerful 
descriptive models of desirable learner engagement with modeling tasks. There are robust 
analytic frameworks of observational indicators for which sub-process the modeler is engaged 
with that are applicable across content areas and grade bands (Czocher, 2016; Maaß, 2006). 
Within working mathematically, for example, learners are seen to exhibit procedural and 
conceptual mathematics knowledge whereas during simplifying and validating, learners are seen 
to articulate and justify assumptions they make and may not draw overtly on mathematical 
knowledge at all. Because carrying out the sub-processes successfully is critical to constructing a 
viable mathematical model, they are styled as modeling competencies (Maaß, 2006). Modeling 
competencies are learning objectives in their own right and a major goal of research in modeling 
is understanding how a teacher, who is using modeling problems to teach mathematics (or to 
teach modeling), can scaffold and thereby promote learners’ modeling competencies.  
Scaffolding in mathematical modeling ought to be contingent. 

Scaffolding a learner as they develop and validate a model has two goals. The local goal is 
helping the modeler arrive at a viable model for a particular problem. The global goal is 
promoting competencies that can be used in other problems. Both are challenging because 
facilitators need to focus on learners’ current knowledge and understanding as it is expressed 



within a given sub-process of the MMC (Blum & Borromeo Ferri, 2009; Doerr, 2006; 
Schukajlow et al., 2015; Stender & Kaiser, 2015; Wischgoll et al., 2015). The high-level idea is 
that because the nature of a learner’s engagement in modeling changes across modeling 
competencies, there are likely to be differing (and specific) moves a facilitator can make that 
would support each sub-process. Providing hints towards a normatively correct mathematical 
representation when the learner is mulling over which variables are important to include robs her 
of the modeling experience and does little to cultivate competencies. Investigating this 
conjecture calls for a view of scaffolding suitable for studying learners’ productions and their 
relations to facilitator moves at a within-task grain size, rather than broader views that take into 
account classroom-level organization or cross-lesson supports (Anghileri, 2006). For these 
reasons, the active trend in modeling research is to adopt a Vygotskian view of scaffolding as an 
interactive process between a teacher and a learner that gives support to the learner as she works 
on a task she might not otherwise be able to accomplish (van de Pol et al., 2010, p. 274). 

Building on the scaffolding means and intentions framework (van de Pol et al., 2010; van de 
Pol et al., 2015), Stender and Kaiser (2015) assumed that scaffolding the modeling process may 
be productive under three conditions: the learner has disengaged (and therefore requires 
motivation to re-engage in the problem), the learner asks a question, or the learner has been 
working unproductively for an appreciable time and does not realize it. The latter case presents 
the most challenging aspect of designing and evaluating scaffolding moves. Effective in-the-
moment scaffolding is contingent, meaning that the proffered support increases facilitator control 
when the learner is struggling and decreases control when the learner is succeeding. In some 
studies, contingency is conceived as being along three-point ordinal scale (van de Pol et al., 
2015). Çakmak Gürel (2023) examined the interplay between teachers’ participation structures 
and their scaffolding methods and found that the level of support could vary according to 
modeling competency. These findings did not directly relate level of support to modeling 
competency, instead showing that scaffolding method is mediated by the teachers’ preferred 
form of engagement in the classroom. Additionally, modeling tasks can be quite open and 
learners’ engagement in the modeling process is idiosyncratic, based in part on their highly 
individual previous knowledge and experiences (Borromeo Ferri, 2006; Stillman, 2000). Thus, 
contingency for scaffolding modeling processes means adapting support to be responsive to the 
particularities of a learner’s constructed knowledge and how it manifests during the modeling 
process, not only attending to the accuracy of learners’ intermediate productions – requiring the 
facilitator to engage in diagnostic activities before intervening (Kaiser & Stender, 2013).  

To address the research need for analyzing contingent support, Stender (2016) developed a 
framework to capture contingent interventions in learners’ modeling processes that are 
responsive to a learner’s current conceptual and (partially formed) mathematical models of the 
real world scenario, anticipate the specific cognitive needs of the learner, and are calibrated to 
provide minimal in-the-moment support such that the learner will retain control of their 
modeling process (excerpt in Table 2). We focus on the “B3 Codes”, which classify the 
contingent moves.  Stender and Kaiser (2015) found that requesting leaners to summarize the 
work they’d done thus far (code B3.1 Work Status) enabled them to continue working 
independently or aided the facilitator in diagnosing their work to proffer further supports, 
regardless of how far along the learners were in model development. Stender and Kaiser (2015) 
also found some expected associations between scaffolding moves and particular modeling 
competencies. Thus, some scaffolding moves could be competency-general while others may be 
capable of promoting specific competencies.  Stender and Kaiser (2015) also cautioned that it 



was not always possible for them to determine success of an intervention because there wasn’t 
sufficient information in the students’ work. They focused on only on the few minutes before and 
after the facilitators’ intervention into a few focal groups’ work and on normative correctness of 
the students’ models. In this study, we used task-based cognitive interviews to generate 
facilitator-learner interactions that could be analyzed for the extent that scaffolding moves 
promote modeling competencies. This maximized the amount of information available to the 
facilitator for informing which moves to attempt and to the analysis for examining the impact of 
the proffered support. We address the research question: Which modeling competencies were 
more frequently elicited by which kinds of scaffolding moves? 
Table 2 Scaffolding moves (Stender & Kaiser, 2015), fitted with instances from this study. 

Code Name Description Rule to use Example 
B3.1 Work 
status 

Learner asked to 
describe current 
work status or what 
they are currently 
working on 

Can be a direct question 
or implicit; Intended to 
orient facilitator to the 
learner’s reasoning 

Can you summarize what 
you have done here, so 
far? 
Can you share what 
you’re thinking about? 

B3.6 Prompt to 
include real-
world aspects 

Learner asked or 
encouraged to 
include a certain 
aspect 

Learner asked to add an 
aspect to the model. Can 
be used to increase 
complexity or to draw 
attention to specific 
variable or quantity 

Are there any factors that 
negatively influence the 
number of current 
infections? 

B3.10 Request 
reason or 
explanation 

Interviewer 
requests a reason, 
explanation, or 
justification 

The reason can be about 
assumptions made, refer 
to algebra steps, or to the 
whole modeling process 

Why did you choose 
multiplication here? 
What leads you to think 
that way? 

Methods 
We used explanatory sequential mixed methods (Creswell, 2014). We deductively coded 

task-based interviews according to the modeling competencies framework for participants’ 
modeling processes and the contingent scaffolding framework for interviewer moves. The 
quantitative analysis used mixed logistic regression model with a participant random effect. 
Data Collection 

Twenty four undergraduate STEM majors at a large southern university were recruited from 
differential equations courses or courses listing it as a pre-requisite to participate in a set of 10 
hour-long task based interviews conducted over zoom. Each participant worked on between four 
and eleven modeling tasks across the sessions. The modeling tasks had well-defined goals and 
ill-defined answers (Yeo, 2007) and were designed based on canonical problems from 
differential equations featuring feedback loops. We studied participants’ model construction 
(simplifying & structuring, mathematizing), interpretations of models (interpreting), and 
justifications of model adequacy (validating) and ignored understanding and working 
mathematically. The tasks were given as written statements so the understanding competency is 
primarily indicated by “reading the problem statement” (Czocher, 2016), and occurs without 
contingent scaffolding. Additionally, many of the resulting differential equations models cannot 
be solved analytically, so we did not ask for their solutions (also, contingent support would be 
highly tailored to the mathematical content instead of participants’ modeling needs).  



The tasks were sequenced so that later tasks presented scenarios whose mathematical 
structures subsumed the structures of earlier tasks.  The first 4 tasks included embedded 
scaffolding (sub-tasks) oriented towards learners’ quantitative reasoning to aid them in 
constructing or transferring quantitative structures to the task scenario (Moore et al., 2022; 
Thompson, 2011). The remaining tasks did not include embedded scaffolding and featured only 
contingent scaffolding provided by the interviewer. Not every participant saw all tasks, 
depending on how “far” they got through the trajectory, which was based on their capacity to 
work autonomously on the tasks. A lead interviewer and a witness from the research team were 
present during each interview (Steffe & Thompson, 2000). The interviewer intervened in the 
participants’ modeling process if the participant requested help, if it seemed that the participant 
got stuck, or to generate and test conjectures about the participants’ ways of reasoning about the 
mathematical or real-world aspects of the task. The probing questions were designed to focus on 
aspects of quantities and quantitative reasoning, but overall interviewer turns were formulated so 
they could map to the scaffolding moves framework. The alignment between interviewer moves 
and the scaffolding framework was achieved through several rounds of pilot interviews and 
subsequent analysis, not reported here. In this paper, we consider only the tasks without 
embedded scaffolding to isolate the influence of contingent scaffolding. The dataset for this 
study comprised 51 hour-long modeling sessions. 

Table 3 Summary of interview tasks 

Task Name Intended Canonical Model 𝑛𝑛  Median Task Time 
Tropical Fish Contaminated tank 18 1:10:11 
Tuberculosis Two compartment disease transmission 17 0:47:07 
Ebola Three compartment disease transmission 11 0:53:03 
Bobcats & Rabbits Two-species predator prey 2 1:04:44 
Diffusion Fick’s first law (one dimension) 2 0:20:18 
Kidneys Dialysis across a one-dimensional membrane 1 0:42:26 

Data Analysis 
Qualitative analysis proceeded with deductive coding procedures based on pre-defined, 

published codes for engagement in modeling processes (MMC codes) and contingent scaffolding 
moves (B3 codes). Participant engagement and interviewer moves were coded separately. To 
code for participant engagement, we viewed the videos in MaxQDA  and assigned an MMC code 
if an indicator for that code could be observed in the participant’s speech or writing. The MMC 
codes were not mutually exclusive; a participant’s actions at a given time could indicate both 
interpreting and validating, for example. Start and stop times for the codes were determined 
independently of the start and stop times for other codes. Because much of the modeling process 
takes place in the mind of the modeler, when a modeler “really starts” to make assumptions is 
not accessible information. Thus, we assigned a timestamp to the earliest moment there was 
verbal or written evidence of an indicator for the code. To code interviewer moves, the 
recordings were segmented into durations of 30s and each segment was assigned each 
intervention code the segment evidenced. In this way, the scaffolding moves codebook produced 
time series corresponding to if the code is “on” or “off” during each 30s segment. Pilot studies 
(not reported here) adapted the scaffolding moves codebook to the research setting.  We then 
mapped each instance of a scaffolding move to the MMC by identifying which stage of model 
construction the intervention referenced (situation model, real model, mathematical model, 



mathematical results, real results). For example, the move “Let's work on just the susceptible and 
infectious. And we'll pick back up the removed later” was coded as B3.23 Narrowing scope 
because the interviewer suggested the participant to ignore the removed population. Because the 
move referred to the distinct populations identified by the learner (susceptible, infectious, 
recovered), we inferred it to refer to the Real Model stage of the MMC. In this way, we obtained 
a description of the move and its modeling-stage referent. 

Due to the complexity of the codebooks, total duration of the 51 sessions, and planned 
quantitative models, our primary concerns about reliability were the chance of missing codable 
segments and consistent application of the codebooks across participants and tasks. Thus, two 
analysts independently coded each event. To mitigate coder drift, six pairs of analysts were 
formed from four research team members and rotated. Pairs met regularly to reconcile codebook 
application and resolve disagreements based solely on code definitions. Since neither codebook 
was mutually exclusive, multiple codes could be added to the same data segment if warranted. 
Remaining disagreements were considered by the whole group and resolved by consensus.  

To investigate the impact of the contingent scaffolding moves (B3 codes) on the modeling 
competencies (MMC phases), at each instance of a B3 and for each MMC phase, we determined 
if the competency was observed during the subsequent two-minute window.  If the competency 
was observed at least once in the window, we said the B3 move was taken up by the participant.  
Combining the results across tasks and participants, we estimated the probability of uptake for 
each competency and set of B3 codes.  

As seen in Table 4, the number of instances observed varied considerably by competency. As 
expected, understanding (233) and working mathematically (261) competencies were rarely 
elicited, and so were excluded from analysis. However, validating was observed nearly twice as 
often as interpreting. To account for variation, we estimated a base probability under the null or 
no effect model where the null assumption is that MMC codes are uniformly distributed across 
the sessions.  Under the null model, we let 𝑋𝑋𝑘𝑘 be the number of instances of MMC code 𝑘𝑘 in a 
given two-minute window. Then 𝑋𝑋𝑘𝑘 follows a binomial distribution with size equal to the total 
number of instances of code 𝑘𝑘 and probability equal to 2 divided by the total combined time of 
the sessions. The base probability is 𝑝𝑝𝑏𝑏𝑘𝑘 = 𝑃𝑃(𝑋𝑋𝑘𝑘 > 0).  We then normalized the probability of 
uptake, by computing an odds ratio: 

OR = (𝑝𝑝/(1−𝑝𝑝)
(𝑝𝑝𝑏𝑏𝑘𝑘/(1−𝑝𝑝𝑏𝑏𝑘𝑘)

. 

If the uptake probability equals the expected value under the null model, then 𝑂𝑂𝑂𝑂 = 1, and 
indicates the contingent scaffolding move is not associated with an increased uptake of 
competency 𝑘𝑘.  On the other hand, 𝑂𝑂𝑂𝑂 > 1 indicates that the contingent scaffolding move 
promotes competency 𝑘𝑘.    

Initial investigations indicated that the proportion of uptake depended on the modeling stages 
referred to. Hence, we used the analysis of B3 code instances in terms of model construction 
stage to collapse to four broad categories: Real (scaffolding move refers to situation and/or real 
model), Math (scaffolding move refers to mathematical model), Both (scaffolding move refers to 
both Real and Math), and Neither (scaffolding move refers to neither Math nor Real). Only 15 
instances of intervention codes referring only to math result, 14 referring only to real result, and 
9 referring to both were observed. We excluded the low counts. Instances of B3.10 Request 
Reason or Explanation could fall into distinct secondary categories, depending on the stage 
referred to by the specific move at that time in the interview. 

Results and Interpretations 



Figure 1 shows variation in the odds of uptake of each competency following interviewer 
moves referring to the stages of model construction.  To fully characterize the differences 
observed in Figure 1, for each competency we fit a mixed logistic regression model with a 
participant random effect, 𝑢𝑢𝑖𝑖, to account for dependence (Agresti, 2012): 

log �
𝑝𝑝

1 − 𝑝𝑝�
=  𝛽𝛽0 +  𝛽𝛽1Real +  𝛽𝛽2Math +  𝛽𝛽3Both + 𝑢𝑢𝑖𝑖 

Results of the models are shown in the Relationship with Stage Referred to column of Table 4. 
“𝐴𝐴 < 𝐵𝐵” indicates that the Odds of uptake for that competency is significantly less for stage 𝐴𝐴 
than 𝐵𝐵.  “𝐴𝐴 = 𝐵𝐵” indicates no significant difference. 

Figure 1 Odds ratio of uptake of modeling competency by stage of scaffolding move 
referred to. 

  Table 4 Summary of competencies, relationship with stages referred to, and log odds for 
three of the contingent scaffolding moves from Table 2 

Competency Count Relationship Stage Referred to B3.1  B3.6  B3.10  
Simplifying & 
Structuring 1218 Neither = Math = Both < Real -0.289 0.027 -0.100 

Mathematizing 929 Neither = Math < Real = Both 0.391 0.943 -.656 
Interpreting 787 Neither< Real = Math < Both 0.208 0.408 0.192 
Validating 1428 Neither< Real = Math = Both 0.552 -0.139 -0.101 

As expected, contingent scaffolding moves referring to the Real stages were much more 
likely to elicit simplifying/structuring than those referring to other stages. Specifically, the odds 
are 1.4 times expectations under the null model.  Scaffolding moves classified as Real and Both 
had the greatest odds of eliciting mathematizing, which is sensible because the mathematizing 
competency bridges thinking about real-world conditions and assumptions to reasoning about 
mathematical properties and parameters (Zbiek & Conner, 2006) it also, according to the MMC, 
ought to follow chronologically from thinking about real-world conditions and assumptions. 
Additionally, the odds of eliciting the interpreting competency are greatest when a move refers 
to Both (Math and Real) stages of model construction. This makes sense theoretically because 
interpreting competency, like mathematizing, bridges real-world and mathematical knowledge. 



Finally, a wide range of scaffolding moves can elicit validating – as long as the move refers to 
either Real or Math or Both -- corroborating claims in previous work that validating arises 
throughout the modeling process in response to multiple knowledge sources (Czocher, 2018; 
Ishibashi & Uegatani, 2022).  

Due to space constraints, we discuss only three of the 48 B3 Codes. The log odds (Table 
4) show increased rates of mathematizing, interpreting, and validating followed a request for the 
participant to summarize their current work (B3.1 Work Status), relative to the base rates of 
occurrence for these competencies, while it is not an effective move for eliciting simplifying & 
structuring. Because mathematizing and interpreting are likely to follow B3.6 Prompt to Include 
Aspects (of the real world), moves which primarily refer to Real stages of model construction, it 
seems that prompting learners to attend to their ideas about how the world works leads to 
competencies associated with increasing model complexity and scope. We are not surprised to 
see a positive association between B3.10 Request Reason or Explanation and interpreting, 
because asking a learner their rationale for a modeling decision would often necessitate 
interpreting situationally relevant meanings. However, its negative association with validating, 
which shares aspects of justifying and explaining (Czocher et al., 2018) was surprising. We had 
anticipated that B3.10 would increase elicitation of validating.  

Finally, there were several scaffolding moves for which the odds of eliciting any of the 
four focal competencies were less than the base rate predicted by the null model. The move 
3.11p Math Procedure was one such example. In contrast, the move B3.14 Suggestion for 
Action, Related to Content (focus on directing attention to variables and quantities) elicited all 
four focal competencies more than expected. Thus, it seems attending to the role of quantities 
and quantitative reasoning promotes modeling competencies. 

Conclusions 

We conclude that the logistic regression model adequately captures expected relationships 
between contingent scaffolding moves, their referents relative to the MMC, and elicitation of 
modeling competencies. We view it as an initial model capable of sustaining claims about (a) the 
compatibility of the analytic frameworks and (b) predicting which moves are capable of eliciting 
which modeling competencies. Importantly, the regression model quantifies variation and 
differences across competencies, scaffolding moves, and the likelihoods of their interactions. 
This is a promising advance for work seeking to understand the impact of modeling-forward 
learning environments on learners’ modeling competencies. The approach retains the nuance of 
the critical aspects of contingent scaffolding, as articulated by the scaffolding moves framework, 
while offering a vision of the larger cross-participant and cross-task patterns. One limitation is 
that presently, it is unclear the extent to which the random effect model adequately accounts for 
the person-dependence of each competency. Future iterations would improve on this uncertainty. 
In the end, the holy grail is a model capable of informing facilitators which contingent 
scaffolding moves are most and least likely to promote which competencies so they may focus 
on developing powerful moves.  Due to the large number of codes, we clumped them according 
to the stage they referred to. Future iterations can examine individual moves to understand which 
perform similarly with respect to competency elicitation and distill move types into strategies. 
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