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ABSTRACT

Federated reinforcement learning (FedRL) enables multiple agents to collabora-
tively learn a policy without needing to share the local trajectories collected dur-
ing agent-environment interactions. However, in practice, the environments faced
by different agents are often heterogeneous, but since existing FedRL algorithms
learn a single policy across all agents, this may lead to poor performance. In
this paper, we introduce a personalized FedRL framework (PFEDRL) by tak-
ing advantage of possibly shared common structure among agents in heteroge-
neous environments. Specifically, we develop a class of PFEDRL algorithms
named PFEDRL-REP that learns (1) a shared feature representation collabora-
tively among all agents, and (2) an agent-specific weight vector personalized to
its local environment. We analyze the convergence of PFEDTD-REP, a particu-
lar instance of the framework with temporal difference (TD) learning and linear
representations. To the best of our knowledge, we are the first to prove a linear
convergence speedup with respect to the number of agents in the PFEDRL set-
ting. To achieve this, we show that PFEDTD-REP is an example of federated two-
timescale stochastic approximation with Markovian noise. Experimental results
demonstrate that PFEDTD-REP, along with an extension to the control setting
based on deep Q-networks (DQN), not only improve learning in heterogeneous
settings, but also provide better generalization to new environments.

1 INTRODUCTION

Federated reinforcement learning (FedRL) (Nadiger et al., 2019; Liu et al., 2019; Xu et al., 2021;
Zhang et al., 2022a; Jin et al., 2022; Khodadadian et al., 2022; Yuan et al., 2023; Salgia & Chi,
2024; Woo et al., 2024; Zheng et al., 2024; Lan et al., 2024) has recently emerged as a promising
framework that blends the distributed nature of federated learning (FL) (McMahan et al., 2017)
with reinforcement learning’s (RL) ability to make sequential decisions over time (Sutton & Barto,
2018). In FedRL, multiple agents collaboratively learn a single policy without sharing individual
trajectories that are collected during agent-environment interactions, protecting each agent’s privacy.

One key challenge facing FedRL is environment heterogeneity, where the collected trajectories may
vary to a large extent across agents. To illustrate, consider a few existing applications of FL: on-
device NLP applications (e.g., next word prediction, sentence completion, web query suggestions,
and speech recognition) from Internet companies (Hard et al., 2018; Yang et al., 2018; Wang et al.,
2023b), on-device recommender or ad prediction systems (Maeng et al., 2022; Krichene et al., 2023),
and Internet of Things applications like smart healthcare or smart thermostats (Nguyen et al., 2021;
Imteaj et al., 2022; Zhang et al., 2022b; Boubouh et al., 2023). Note that all of the above (1) exist in
settings with environment heterogeneity (heterogeneous users, devices, patients, or homes) and (2)
could potentially benefit from an RL problem formulation.

As aresult, if all agents collaboratively learn a single policy, which most existing FedRL frameworks
do, the learned policy might perform poorly on individual agents. This calls for the design of
a personalized FedRL (PFEDRL) framework that can provide personalized policies for agents in
different environments. Nevertheless, despite the recent advances in FedRL, the design of PFEDRL

*This work was done when G. Xiong was a PhD student at Stony Brook University.
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Table 1: Comparison of existing FedRL frameworks in terms of noise; environments (Homo: ho-
mogeneous, Hetero: heterogeneous); using representation learning (Rep.L) or not; timescale (TS),
single or two-TS (two) updates; multiple local updates or not; personalization across agents or not;
and with or without linear convergence speedup guarantee.

\ Method [ Noise | Env. [Rep.L [ TS [ Localupdates | Personalized | Linear speedup |
FedTD & FedQ (Khodadadian et al., 2022) | Markov | Homo. X Single v X v
FedTD (Dal Fabbro et al., 2023) Markov | Homo. X Single X X v
FedTD (Wang et al., 2023a) Markov | Hetero. X Single v X v
QAvg & PAvg (Jin et al., 2022) iid. Hetero. X Single X X X
FedQ (Woo et al., 2023) Markov | Hetero. X Single v X v
A3C (Shen et al., 2023) Markov | Homo. X Two X X v
FedSARSA (Zhang et al., 2024) Markov | Hetero. X Single v X v
‘ PFEDRL-REP [ Markov | Hetero. | v/ | Two | v [ 4 [ 4

and its performance analysis remains, to a large extent, an open question. Motivated by this, the first
inquiry we aim to answer in this paper is:

Can we design a PFEDRL framework for agents in heterogeneous environments that not
only collaboratively learns a useful global model without sharing local trajectories, but
also learns a personalized policy for each agent?

We address this question by viewing the PFEDRL problem in heterogeneous environments as N par-
allel RL tasks with possibly shared common structure. This is inspired by observations in centralized
learning (Bengio et al., 2013; LeCun et al., 2015) and federated or decentralized learning (Collins
et al., 2021; Tziotis et al., 2023; Xiong et al., 2024), where leveraging shared (low-dimensional)
representations can improve performance. A theoretical understanding of using shared representa-
tions amongst heterogeneous agents has received recent emphasis in the standard supervised FL (or
decentralized learning) setting (Collins et al., 2021; Tziotis et al., 2023; Xiong et al., 2024).

However, a theoretical analysis of PFEDRL with shared representations is more subtle because
each agent in PFEDRL collects data by following its own policy (thereby generating a Markovian
trajectory) and simultaneously updates its model parameters. This is in stark contrast to the standard
FL paradigm, where data is typically collected in an i.i.d. fashion. Our second research question is:

How do the shared representations affect the convergence of PFEDRL under Markovian
noise, and is it possible to achieve an N -fold linear convergence speedup?

Despite the recent progress in the standard supervised FL setting (Collins et al., 2021; Tziotis et al.,
2023; Xiong et al., 2024), to the best of our knowledge, this question is still open in the context of
learning personalized policies in FedRL under Markovian noise (see Table 1). Motivated by these
open questions, our main contributions are:

e PFEDRL-REP framework. We propose PFEDRL-REP, a new PFEDRL framework with shared
representations. PFEDRL-REP learns a global shared feature representation collaboratively among
agents through the aid of a central server, along with agent-specific parameters for personalizing to
each agent’s local environment. The PFEDRL-REP framework can be paired with a wide range of
RL algorithms, including both value-based and policy-based methods with arbitrary feature repre-
sentations.

e Linear speedup for TD learning. We then introduce PFEDTD-REP, an instantiation of the
above PFEDRL-REP framework for TD learning (Sutton & Barto, 2018). We analyze its con-
vergence in a linear representation setting, proving the convergence rate of PFEDTD-REP to be
O(N~2/3(T + 2)=2/3), where N is the number of agents and 7" is the number of communication
rounds. This implies a linear convergence speedup for PFEDTD-REP with respect to the number
of agents, a highly desirable property that allows for massive parallelism in large-scale systems. To
our knowledge, this is the first linear speedup result for PFEDRL with shared representations under
Markovian noise, providing a theoretical answer to the empirical observations in Mnih et al. (2016)
that federated versions of RL algorithms yield faster convergence. To show this result, we make use
of two-timescale stochastic approximation theory and address the challenges of Markovian noise
through a Lyapunov drift approach.
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2 PROBLEM FORMULATION

In this section, we first review the standard FedRL framework and then introduce our proposed
PFEDRL-REP framework, which incorporates personalization and shared representations. Let N
and T be the number of agents and communication rounds, respectively. Denote [N] as the set of
integers {1,..., N} and || - || as the l3-norm. We use boldface to denote matrices and vectors.

2.1 PRELIMINARIES: FEDERATED REINFORCEMENT LEARNING

A FedRL system with N agents interacting with IV independent heterogeneous environments is
modeled as follows. The environment of agent i € [N] is a Markov decision process (MDP) M® =
(S, A, R', Pt ~), where S and A are finite state and action sets, R is the reward function, P? is the
transition kernel, and v € (0, 1) is the discount factor. Suppose agent ¢ is equipped with a policy
7t : 8 — A(A) (a mapping from states to probability distributions over A). At each time step k,
agent 7 is in state s and takes action ai according 7' ( -|s%), resulting in reward R’(s%,a}). The
environment then transitions to a new state s}, ; according to P’(-|s}, ai ). This sequence of states
and actions forms a Markov chain, the source of the aforementioned Markovian noise. In this paper,
this Markov chain is assumed to be unichain, which is known to asymptotically converge to a steady

state. We denote the stationary distribution as ui’”i.

The value of 7 in environment M" is defined as V™ (s) = E [Z?:o Y*R(si,al) | sy =s]. In
realistic problems with large state spaces, it is infeasible to store V™ (s) for all states, so function

approximation is often used. One example is V™' (s) ~ ®(s) 0, where ® € RISI*? s a state feature
representation and # € R? is an unknown low-dimensional weight vector.

One intermediate goal in RL is to estimate the value function corresponding to a policy 7 using
trajectories collected from the environment. This task is called policy evaluation, and one widely
used approach is temporal difference (TD) learning (Sutton, 1988). The FedRL version of TD
learning is called FedTD (Khodadadian et al., 2022; Dal Fabbro et al., 2023; Wang et al., 2023a),
where IV agents collaboratively evaluate a single policy 7 by learning a common (non-personalized)
weight vector 8, using trajectories collected from N different environments. More precisely, we
have 7’ = 7 and @' = 0,V i € [N]. Given a feature representation ®(s), Vs, this can be formulated
as the following optimization problem:

I

N
1 .
moin N E Egmpivr Hq)(s)ﬂ — VT (s) (1)
i=1

Due to space constraints, we focus our presentation on the policy evaluation problem. Note that
policy evaluation is an important part of RL and control, since it is a critical step for methods
based on policy improvement. Our proposed PFEDRL framework (see Algorithm 1) can be directly
applied to control problems as well, but we relegate these discussions to Section 5 and Appendix C.

2.2 PERSONALIZED FEDRL WITH SHARED REPRESENTATIONS

Since the local environments are heterogeneous across the /N agents, the aforementioned FedRL
methods (in Section 2.1) that aim to learn a common weight vector @ may perform poorly on in-
dividual agents. This necessitates the search for personalized local weight vectors ° that can be
learned collaboratively among N agents in N heterogeneous environments (without sharing their
locally collected trajectories). As alluded to earlier, we view the personalized FedRL (PFEDRL)
problem as N parallel RL tasks with possibly shared common structure, and we propose that the
agents collaboratively learn a common features representation ® in addition to a personalized lo-
cal weights . Specifically, the value function of agent i is approximated as V>™ ~ f(%,®),
where fi(-,-) is a general function parameterized by these two unknown parameters.! The policy

"The approximation f?(8%, ®) is general and can take on various forms, including as linear approximations
or neural networks. For instance, it can be represented as a linear combination of ® and 6°, i.e., f*(§°, ®) :=
®6' in TD with linear function approximation (Bhandari et al., 2018). In addition, f*(6°, ®) can represent a
deep neural network; see, e.g., our extension of PFEDRL to control problems and its instantiation with DQN
(deep Q-networks) (Mnih et al., 2015) in Section 5 and Appendix C.
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Algorithm 1 PFEDRL-REP: A General Description
Input: Sampling policy 7%, Vi € [N];
1: Initialize the global feature representation ®, and local weight vector 8}, Vi € [N] randomly;
2: forroundt =0,1,...,T — 1do
3:  foragentl,...,N do A
4: 0, = WEIGHT_UPDATE(®,0}, o, K);
5 ®,. /o = FEATURE_UPDATE(®,,0; ., 5,);
6: end for
7
8:

Server computes the new global feature representation ®;,1 = % Zil ‘I>i +1/2°
end for

evaluation problem of (1) can be updated for this new setting as:

7@ ®() - v )| @

1 .
min — E min B__ ;.
& N 4 «{67vi} s
1=

where N agents collaboratively learn a shared feature representation @ via a server, along with a
personalized local weight vector {6°, Vi} using local trajectories at each agent.

Remark 2.1. The learning of a shared feature representation ® in PFEDRL is related to ideas from
representation learning theory (Agarwal et al., 2020; 2023), and this is believed to achieve better
generalization performance with relatively small training data. In conventional FedRL, the feature
representation ® is given and fixed. Indeed, as we numerically verify in Section 4.3, our PFEDRL
presents better generalization performance to new environments.

3 PFEDRL-REP ALGORITHMS

We now propose a class of algorithms called PFEDRL-REP that realize PFEDRL with shared rep-
resentations. PFEDRL-REP alternates comprises of three main steps for each agent at each commu-
nication round: (1) a local weight vector update; (2) a local feature representation update; and (3) a
global feature representation update via the server.

Steps 1 and 2: Local weight and feature representation updates. At round ¢, agent 7 performs an
update on its local weight vector given its current global feature representation ®; and local weight
vector §¢. We allow each agent to perform K steps of local weight vector updates. Once the updated
local weight vector 6! 41 is obtained, each agent i executes a one-step local update on its feature

representation to obtain <I>i 4120 We represent these updates using the following generic notation:
0., = WEIGHT_UPDATE(®,,0}, c, K) and &}, , = FEATURE UPDATE(®;,0; ., ), (3)

where a; and S; are learning rates for the weight and feature updates, respectively. The generic
functions WEIGHT_UPDATE and FEATURE_UPDATE will be specialized to the particulars of the un-
derlying RL algorithm: in Section 4 we discuss the case of TD with linear function approximation
in detail, and in Appendix C, we show instantiations of Q-learning and DQN in our framework.

Step 3: Server-based global feature representation update. N

The server computes an average of the received local feature &, — 1 Z & @)
representation updates ®;_ /2 from all agents to obtain the 17N t+1/2

next global feature representation ®, ;1 as in (4). =1

The PFEDRL-REP procedure repeats (3) and (4) and is summarized in Algorithm 1 and Figure 1.
We emphasize that because PFEDRL-REP operates in an RL setting, there is no ground truth for
the value function and learning occurs through interactions with an MDP environment, resulting
in non-i.i.d. data. In contrast, in the standard FL setting (where shared representations have been
investigated), there exists a known ground truth and training data are sampled in an i.i.d. fashion
(Collins et al., 2021; Tziotis et al., 2023; Xiong et al., 2024). The non-i.i.d. (Markovian) data is the
main technical challenge that we need to overcome.
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Figure 1: An illustrative example of PFEDRL-REP for 3 agents. (a) At the beginning of round
t, each agent 7 = 1,2,3 has a local weight vector 0! and a global feature representation ®;. (b)
Using (®,0?), each agent i performs a K -step update to obtain @}, ; as in (3). Note that ®; remains
unchanged at this step. (c) Agent 7 updates the feature representation by executing a one-step update
to obtain ®! +1/2 as in (3), which depends on both 0;, and ®,. Finally, each agent i shares ®! /2

with the server, which then executes an averaging step as in (4) to produce ®;, ;. Updated parameters
are highlighted in red, while shared parameters (the global feature representation) are in blue.

4 PFEDTD-REP WITH LINEAR REPRESENTATION

We present PFEDTD-REP, an instance of PFEDRL-REP paired with TD learning and analyze its
convergence in a linear representation setting.

4.1 PFEDTD-REP: ALGORITHM DESCRIPTION

Here, the goal of IV agents is to collaboratively solve problem (2) when the underlying RL algorithm
is TD learning. We first need to specify WEIGHT_UPDATE and FEATURE_UPDATE of Algorithm 1
for the case of TD. At time step k, the state of agent 7 is s};, and its value function can be denoted
as V(si) = ®(s%)0" in a linear representation setting. By the standard one-step Monte Carlo

approximation used in TD, we compute V(s},) = r§ + (s}, ) 6". The TD error is defined as
6 = V(sh) = V(sh) =ri + YB(s},1)0" — (s}, 0" 3)
The goal of agent i is to minimize the following loss function for every s{, € S

) . ) 1 . )
L1(®(s),0") = S [V(si) - Vs, (6)

with V(s}c) treated as a constant. We now denote the Markovian observations of agent ¢ at the
k-th time step of communication round ¢ as X}, := (s} ;,7} 1,5 x41)- Note that the observa-

tion sequences {Xt w0 VT, k} differ across agents in heterogeneous environments. We assume that
{X!,,Vt, k} are statistically independent across all agents.

Local weight vector update. As in line 4 of Algorithm 1, given the current global feature represen-
tation ®,, each agent 7 takes K local update steps on its local weight vector 6} as

0%,]@ = oi,kfl + oy g(ei,kflv <I>t7 Z,kfl)a (7)

for k € [K], where g(0 ,_,,®:, X}, ;) is the negative stochastic gradient of the loss function
L{(®y(st,_,),0%, ;) with respect to 8, given the current feature representation ®,:

g(ei,kfhcphXti,kfl) = _VGU(‘I’t(Si,kq)aoi,kq) = 6§,k71¢t(si,k71)1" 3)

Since there are K steps of local updates, we denote 6 41 = 01 - We further add a norm-scaling

(i.e., clipping) step for the updated weight vectors 6 1, i.e., enforcmg 16:.1]| < B, to stabilize the
update. This is essential for the finite-time convergence analysis in Section 4.2, and this technique is
widely used in conventional TD learning with linear function approximation (Bhandari et al., 2018).

Local feature representation update. As in line 5 of Algorithm 1, given the updated local weight
vector 0! 11 agent 4 then executes a one-step local update on the global feature representation:

‘I’;+1/2 =&, + :h(0;,,, 9, {Xti,k71}£(:1)7 )
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where h(6],;,®:, { X/, _,}/—,) is the negative stochastic gradient of the loss L*(®;(s} ,_,),0} 1)
with respect to the current global feature representation ®, satisfying

h(0i+1>¢t>X15i,k—l) = —Véﬁi(q’t(si,k—l) 0t+1) = 5t k— 10t+1 . (10)

Server-based global feature representation update. As in line 7 of Algorithm 1, the server then
averages the received local feature representation updates in (9) to obtain the next global feature
representation:

Qi1 =P+ 0 Zh (0741, ®6, {X] o1 }i)- (11
The full pseudo-code of PFEDTD-REP is given in Appendix B.

4.2 CONVERGENCE ANALYSIS

The coupled updates in (7) and (11) can be viewed as a federated nonlinear two-timescale stochastic
approximation (2TSA) (Doan, 2021) with Markovian noise, with 8 updating on a faster timescale
and ®, on a slower timescale. We aim to establish the finite-time convergence rate of the 2TSA
coupled updates (7) and (11). This is equivalent to finding a solution pair (®*, {#%*,Vi}) such that?

E,; [g(0%*,®*, X)) =0 and Eswi,siﬂwpzi(.‘si)[h(ai’*,<I>*,X;’)] =0 (12)

~pt ‘St+1NP::.i Clsh)
hold for all Markovian observations X;. Here, ;" is the unknown stationary distribution of state s;
of agent 7 at ¢, and P!, is the transition kernel of agent 7 under policy 7*.

Although the root (®*,{#%*,Vi}) of the nonlinear 2TSA in (7) and (11) is not unique due to simple
permutations (rotations), it is proved in Tsitsiklis & Van Roy (1996) that the standard TD iterates
converge asymptotically to a vector 8* given a fixed feature representation ® almost surely, where §*
is the unique solution of a certain projected Bellman equation. Hence, for agent ¢, in order to study
the stability of #° when the feature representation ® is fixed, we note that there exists a mapping
0° = y*(®) that maps ® to the unique solution of Egimui s, ~Pi, (1sh) (g(6!,®, X})] = 0.

Inspired by Doan (2020), the finite-time analysis of a 2TSA boils down to the choice of two step
sizes {au, ft, Vt} and a Lyapunov function that couples the two iterates in (7) and (11). We first
define the following two error terms:

& =& & and 0, =0i —y'(®,), Vic [N, (13)

which together characterizes the coupling between {0 ,,Vi} and ®,. If {91 41, Vi} and ®, go to
zero simultaneously, the convergence of ({6i,,Vi},®,) to ({6"*,Vi},®") can be established.
Thus, to prove the convergence of ({6, ,,Vi}, ®;) of the 2TSA in (7) and (11) to its true value

(®",{0%*,Vi}), we define the following weighted Lyapunov function to explicitly couple the fast
and slow iterates

M({0711, ¥}, 1) = [ @ — @72+ === Znom ‘@)l (14)

Remark 4.1. Note that the Lyapunov function (14) for 2TSA does not inherently require the solution
to be unique. If multiple solutions or equilibria exist, the Lyapunov function should still be able to
show that the system will converge to one of these possible equilibria, ensuring that the system’s
state does not diverge and eventually stabilizes at some equilibrium point, which highly depends on
the initialization of ®(. To clarify this, in the rest of this paper, we use ®; to clearly indicate the
dependence of the initialization of ®, and ®* in (14) is interchangeable with ®{, which denotes the
optimum close to the initial point.

The root (®*,{#**,Vi}) of the nonlinear 2TSA in (7) and (11) can be established by using the ODE
method following the solution of suitably defined differential equations (Doan, 2021; 2020; Chen et al., 2019)
as in (12).
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Our goal is to characterize the finite-time convergence of E[M ({#;,,,Vi}, ®;)], the Lyapunov
function in (14). We start with some standard assumptions first.

Assumption 4.2. The learning rates a; and ; satisfy the following conditions: (i) Zfi o Q¢ = 00,
(i) Yopoy af < oo, (iil) Yoo Be = 00, (iv) Dopop B7 < 00, (V) Bt/cy is non-increasing in ¢, and
(vi) limy 00 B¢ /s = 0.

Assumption 4.3. Agent i’s Markov chain { X/} is irreducible and aperiodic. Hence, there exists a
unique stationary distribution p* (Levin & Peres, 2017) and constants C' > 0 and p € (0, 1) such
that dry (P(Xi|X§ = ), 4*) < Cp*,Vk > 0,2 € X, where dpy (-, ) is the total-variation (TV)
distance (Levin & Peres, 2017).

Remark 4.4. Assumption 4.3 implies that the Markov chain induced by 7’ admits a unique station-
ary distribution p*. This assumption is commonly used in the asymptotic convergence analysis of
stochastic approximation under Markovian noise (Borkar, 2009; Chen et al., 2019).

We can define the steady-state local TD update direction as
g(m’q)) = ]Esirvm,siﬂrvP;i(‘ls%)[g(oivq)v XZ)L
h(6",®) :=E, h(6', &, X})]. (15)

sirout, sty ~Pi (sl
Definition 4.5 (Mixing time, similar to Chen et al. (2019)). First, define the discrepancy term
€(6",®,2) = max{|[E[g(6", ®, X}) | Xo=a]—g(8, )|, [E[L(8",®, X;) | Xo=2]-h(6",®)] }.
For 6 > 0, the mixing time is defined as

73 = max min{t >1: & (6, @, 2) < 5(|® — @[ + 10" — 5 ()| + 1),V k > £,V (0", ®,2)},

which describes the time it takes for all agents’ trajectories (Markov chains) to be well-represented
by their stationary distributions.

Lemma 4.6. g(0,®, X) in (8) is globally Lipschitz continuous w.r.t 0 and ® uniformly in X, i.e.,
g(61, @1, X)—g (02, B2, X)[| < Lyg([|61 — 02| + [|21 — R2f]), VX € X.

Lemma 4.7. h(0,®, X) in (10) is globally Lipschitz continuous w.r.t @ and ® uniformly in X, i.e.,
(01, @1, X)—h(62, P2, X)|| < Lp([|61 — b2 + [|®1 — D2f)), VX € X.

Y (@1) — y' (P2)|| < Ly||®1 — Bs.

Lemma 4.8. y*(®), Vi is Lipschitz continuous in ®, i.e.,

For notational simplicity, we let L := max{L,, Ly, L, } and assume that L is the common Lipschitz
constant in Lemmas 4.6-4.8 in the following.

Remark 4.9. The Lipschitz continuity of h guarantees the existence of a solution @ to the equilib-
rium (12) for a fixed @, while the Lipschitz continuity of g and ' ensures the existence of a solution
6° of (12) when ® is fixed.

Lemma 4.10. There exists a w > 0 such thatV®, 0 and V i:
(® —®,h(y'(®),9)) < —w|®;— @[>,  (6; —¢'(®1-1),8(6;, D, 1)) < —wl]|§ —y"(@)].

Remark 4.11. Lemma 4.10 guarantees the stability of the two-timescale update in (7) and (11), and
can be viewed as the monotone property of nonlinear mappings leveraged in Doan (2020); Chen
etal. (2019).

Lemma 4.12. Under Assumption 4.3, and Lemma 4.6 and 4.7, there exist constants C > 0, p €
(0,1) and Ly = max(Lg, Ly, maxx g(6*, ®*, X), maxx h(0*, ®*, X)) such that

< log(1/9) + log(2L,1Cd)
TS T (/)

4.2.1 MAIN RESULTS

and lim 75 = 0.
§—0

We now present our main theoretical results in this work.

Theorem 4.13. Let T > 275 for some 6 > 0. Suppose that the learning rates are chosen as

ar=oo/(t+2)°° and B, = Bo/(t+2),
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where oy < 1/(2L\/2(1 4 L?)), Bo < w/2, and L = max{L,, Ly, L, }. We have

) M{6:}),® C
MO} @rin) < M AES D
+ ot (Bl el LEY 6 v ). as)
(T +2)%/3 0Tl ! o)

i=1

with C1 = (4agBoK?(36%(1 4+ B?) + L?B?) + 202(3K?B? + 3K?26% + 2L? K2 B?) + 8a0y6?)
and CQ = (144T§2K2L262 + 4L2/N)Oéoﬁo.

The first term of the right-hand side of (16) corresponds to the bias due to initialization, which goes
to zero at a rate O(1/7?). The second term is due to the variance of the Markovian noise. The third
term corresponds to the accumulated estimation error of the two-timescale update. The second and
third terms decay at a rate O(1/72/3), and hence dominate the overall convergence rate in (16).

Remark 4.14. Doan (2020) provided the first finite-time analysis for general nonlinear 2TSA under
i.i.d. noise, and then extended it to the Markovian noise setting under the assumptions that both
g and h functions are monotone in both parameters (Doan, 2021). Since Doan (2021) leverages
the methods from Doan (2020), it needs a detailed characterization of the covariance between the
error induced by Markovian noise and the residual error of the parameters in (13), rendering the
convergence analysis much more intricate. To address this, we take inspiration from (Srikant &
Ying, 2019) (which operates in the single-timescale SA setting) and use a Lyapunov drift approach
to capture the evolution of two coupled parameters under Markovian noise. Characterizing the
impact of a norm-scaling step further distinguishes our work.

Corollary 4.15. Suppose that By = o( N~2/3) and that T> > N. Then, we have

. 1
M({8},5},80:1) < O (N/(TW) |

Remark 4.16. Corollary 4.15 indicates that to attain an € accuracy, it requires 7 = O (N~1e=3/2)
steps. In this sense, we prove that PFEDTD-REP achieves a linear convergence speedup with re-
spect to the number of agents NV, i.e., the number of steps until e-convergence is multiplied by a
factor of N—!. In other words, we can proportionally decrease T as N increases. To our knowl-
edge, this is the first linear speedup result for personalized FedRL with shared representations under
Markovian noise, which is highly desirable since it implies that one can efficiently leverage the
massive parallelism in large-scale systems. Recently, Shen et al. (2023) considered a 2TSA in a
federated RL setting and achieved a convergence rate of O (T -2/ 5) and thus a sample complexity

of O (6_5/ 2). In contrast, our method can converge quicker and enjoys a lower sample complexity,
and the convergence speed matches the best-known convergence speed for non-linear 2TSA under
even i.i.d. noise (Doan, 2020). In addition, we note that single-timescale (SA) methods may enjoy a
faster convergence speed and a lower sample complexity. However, the analysis of the 2TSA setting
is more involved, as there are two parameters to be updated in a coupled and asynchronous manner.
To our knowledge, there are no existing works in the 2TSA settings that achieve the same conver-
gence rate or sample complexity as those in the SA settings. It may be an interesting direction to
investigate for the community. Finally, similar to FL settings (Collins et al., 2021), the local step
does not hurt the global convergence with a proper learning rate choice.

Remark 4.17. The gradient tracking technique discussed in Zeng & Doan (2024) could potentially be
effective in handling Markovian sampling and improving the current convergence rate to O(7~1).
However, it is unclear if it can be applied to PFEDRL-REP, because Zeng & Doan (2024) only
considers single-agent settings under i.i.d. noise. Furthermore, Zeng & Doan (2024) assumes a
second-order variance bound of the stochastic function, while our analysis does not include such
an assumption. Investigating these is out of the scope of this work, which already considers a very
challenging setting.

4.2.2 INTUITIONS AND PROOF SKETCH

We highlight the key ideas and challenges behind the convergence rate analysis of PFEDTD-REP
with two coupled parameters, which is an example of a federated nonlinear 2TSA. With the defined
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Figure 2: Comparisons in a CliffWalking Environment with 3 agents.

Lyapunov function in (14), the key is to find the drift between M ({0} ,,Vi},®;) in the ¢-th com-
munication round and M ({0:,Vi},®;_1) in the (¢ — 1)-th communication round. To achieve this,
we separately characterize the drift between ®,,; and ®;, and the drift between 6, ; and 8, Vi.
We emphasize the three main challenges in characterizing the drift: (i) how to bound the stochastic
gradient with Markovian samples; (ii) how to leverage the mixing time 7 to handle the biased pa-
rameter updates due to Markovian noise; and (iii) how to deal with multiple local updates for the
local weight vector 6°.

By the mixing time property of MDPs, we have that the gap between the biased gradient at each time
step and the true gradient can be bounded when the time step exceeds the mixing time 7, as defined
in Definition 4.5. To characterize the effect of local updates, the key idea is to bound the gradient at
the initial local step and the gradient at the final local steps, which can be done by leveraging the Lip-
schitz property of those gradient functions in Lemmas 4.6, 4.7 and 4.8. See Appendix F.1.1 and Ap-
pendix F.1.2 for details. Once we establish the drift of the Lyapunov function, the remaining task is to
select suitable dynamic two-timescale learning rates {oy, ¥t} and {5, Vt} for the weight vector up-
date in (7) and the feature representation update in (9), respectively. See Appendix F.1.3 for details.

4.3 NUMERICAL EVALUATION

We empirically evaluate the performance of PFEDTD-REP. We consider a tabular CliffWalking
environment (Brockman et al., 2016) with a 4 x 12 grid world, where 3 agents evaluate 3 different
policies. The dimension for the feature representation and weight vector is set to be 6. We compare
PFEDTD-REP with (i) “TD”: each agent independently leverages the conventional TD without com-
munication; and (ii) “FedTD” without personalization (Khodadadian et al., 2022; Dal Fabbro et al.,
2023) as listed in Table 1. As shown in Figure 2a, PFEDTD-REP ensures personalization among
all agents while FedTD tends to converge uniformly among all agents. Further, PFEDTD-REP at-
tains values much closer to the ground-truth achieved by TD for each agent compared to FedTD;
and PFEDTD-REP converges much faster than TD. For instance, agent 1 only needs 50 episodes to
converge under PFEDTD-REP, while it takes more than 150 episodes to converge under TD, as illus-
trated in Figure 2b. The improved convergence performance of PFEDTD-REP further supports our
theoretical findings that leveraging shared representations not only provides personalization among
agents in heterogeneous environments but yield faster convergence.

5 APPLICATION TO CONTROL PROBLEMS

In this section, we briefly discuss how our proposed PFEDRL-REP framework can be applied to the
control problems in RL. More details are provided in Appendices C.3 (i.e., Algorithm 4) and G.

PFEDDQN-REP (an instance of PFEDRL-REP paired with DQN) leverages shared representations
to learn a common feature space that captures the underlying dynamics and features relevant across
different but related tasks encountered by various agents. In PFEDDQN-REP, the target network is
a critical component that provides stability to the learning process by serving as a relatively static
benchmark for calculating the loss during training updates (Mnih et al., 2015). The target network’s
architecture mirrors that of the main network, including the shared representation model. However,
its parameters are updated less frequently. This setup ensures that the calculated target values, which
guide the policy updates, are based on a consistent representation of the environment’s state, as
encoded by the shared representation model. The synergy between the target network and the repre-
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Figure 3: Comparisons in control problems.

sentation model is thus central to achieving stable and convergent learning. In Line 13 of Algorithm
4, the algorithm performs a scheduled update of the shared representation ® of the main network’s
parameters with the guidance of the target network. In Line 18 of Algorithm 4, every Tiyge Steps,
the algorithm performs a scheduled update of the target network’s parameters by copying over the
parameters from the main network. This step is essential for maintaining the stability of the learning
process, as it ensures that the target values against which the policy updates are computed remain
consistent and reflects the most recent knowledge encoded in the shared representation. The update
frequency is carefully chosen to balance learning stability with model adaptivity.

Numerical evaluation. We consider a modified CartPole environment (Brockman et al., 2016) by
changing the length of pole to create heterogenous environments (Jin et al., 2022). Specifically,
we consider 10 agents with varying pole lengths from 0.38 to 0.74 with a step size of 0.04.
We compare PFEDDQN-REP with (i) a conventional DQN where each agent learns its own
environment independently; (ii) a federated version of DQN (FedDQN) that allows all agents
to collaboratively learn a single policy (without personalization); (iii) two federated algorithms
without personalizing, FedQ-K (Khodadadian et al., 2022) and LFRL (Liu et al., 2019); and (iv)
two personalized algorithms, PerDQNAvg (Jin et al., 2022) and FedAsynQ-ImAvg (Woo et al.,
2023). We randomly choose one agent and present its performance in Figure 3a. We observe
that our PFEDDQN-REP obtains larger reward than the baselines without personalization and
achieves the maximal return faster than existing personalized algorithms. We further evaluate
the effectiveness of the shared representation learned by PFEDDQN-REP when generalizing to
a new environment. As shown in Figure 3a, PFEDDQN-REP generalizes quickly to the new
environment. Similar observations can be made from Figure 3b using Acrobot environments (see
details in Appendix G). In summary, the significance of our PFEDRL-REP framework lies in
its superior performance in heterogeneous environments compared to existing algorithms that do
not incorporate personalization. Additionally, our PFEDRL-REP framework also enables quick
adaptation to new, previously unobserved environments.

Limitations and open problems. In this paper, we characterize the finite-time convergence rate for
PFEDTD-REP with linear feature representation. However, our analysis is not directly applicable
to control problems. Consider Q-learning. The difficulty arises because the update for Q-learning
is not a linear operation with respect to the shared representation and local weights. Additionally,
Q-learning is typically combined with deep neural networks, where the Q-function is approximated
by a neural network as in PFEDDQN-REP. The complexity is further compounded in personalized
federated RL frameworks, where multiple agents share a common representation while maintaining
personalized local weights. Given the promising experimental results on control, whether we can
extend our theoretical results to the control setting remains an open problem.
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A RELATED WORK

Single-agent reinforcement learning. RL is a machine learning paradigm that trains agents to
make sequences of decisions by rewarding desired behaviors and/or penalizing undesired ones in a
given environment (Sutton & Barto, 2018). Starting from Temporal Difference (TD) Learning (Sut-
ton, 1988), which introduced the concept of learning from the discrepancy between predicted and
actual rewards through episodes, the widely used Q-Learning (Watkins & Dayan, 1992) emerged,
advancing the field with an off-policy algorithm that learns action-value functions and enables pol-
icy improvement without needing a model of the environment. Later on, the introduction of Deep
Q-Networks (DQN) (Mnih et al., 2015) marked a significant leap, integrating deep neural networks
with Q-Learning to handle high-dimensional state spaces, thus enabling RL to tackle complex prob-
lems. Subsequently, policy-based algorithms such as Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) and deep Deterministic Policy Gradients (DDPG) (Silver et al., 2014), leverage
the Actor-Critic framework to provide more stable and robust ways to directly optimize the policy,
overcoming challenges related to action space and variance.

Federated reinforcement learning. Jin et al. (2022) introduced a FedRL framework with N agents
collaboratively learning a policy by averaging their Q-values or policy gradients. Khodadadian et al.
(2022) provided a convergence analysis of federated TD (FedTD) and Q-learning (FedQ) when N
agents interact with homogeneous environments. A similar FedTD was considered in Dal Fabbro
et al. (2023), and expanded to heterogeneous environments in Wang et al. (2023a). Woo et al.
(2023) analyzed (a)synchronous variants of FedQ in heterogeneous settings, and an asynchronous
actor-critic method was considered in Shen et al. (2023) with linear speedup guarantee only under
ii.d. samples. Zhang et al. (2024) provided a finite-time analysis of FedSARSA with linear func-
tion approximation (i.e., fixed feature representation). To facilitate personalization in heterogeneous
settings, Jin et al. (2022) proposed a heuristic personalized FedRL method where agents share a com-
mon model, but make use of individual environment embeddings. There is also a related paper Fan
et al. (2021), which considers a special setting where each agent can be Byzantine and suffers ran-
dom failure in every round. In Fan et al. (2021), convergence was established based on i.i.d. noise.

Personalized federated learning (PFL). In contrast to standard FL. where a single model is
learned, PFL aims to learn /N models specialized for IV local datasets. Many PFL methods have
been developed, including but not limited to multi-task learning (Smith et al., 2017), meta-learning
(Chen et al., 2018), and various personalization techniques such as local fine-tuning (Fallah et al.,
2020), layer personalization (Arivazhagan et al., 2019), and model compression (Bergou et al.,
2022). Another line of work (Collins et al., 2021; Xiong et al., 2024) leveraged the common
representation among agents in heterogeneous environments to guarantee personalized models for
federated supervised learning.

Representation learning in MDP. Representation learning aims to transform high-dimensional ob-
servation to low-dimensional embedding to enable efficient learning, and has received increasing at-
tention in Markov decision processs (MDP) settings, such as linear MDPs (Jin et al., 2020), low-rank
MDPs (Modi et al., 2021; Agarwal et al., 2020) and block MDPs (Zhang et al., 2022c). However, it
is open in the context of leveraging representation learning in PFedFL. In this work, we prove that
representation augmented PFedFL forms a general framework as a federated two-timescale stochas-
tic approximation with Markovian noise, which differs significantly from existing works, and hence
necessitates different proof techniques.

Multi-agent reinforcement learning versus federated reinforcement learning. The advent
of Multi-Agent Reinforcement Learning (MARL) expanded RL’s applications, allowing multiple
agents to learn from interactions in cooperative, competitive, or mixed settings, opening new avenues
for complex applications and research (Zhang et al., 2021). Multi-agent Reinforcement Learning
(MARL) addresses scenarios where multiple agents operate within a shared or interrelated environ-
ment, potentially engaging in both cooperative and competitive behaviors. The complexity arises
from each agent needing to consider the strategies and actions of others, making the learning pro-
cess highly dynamic. Federated Reinforcement Learning (FedRL) (Qi et al., 2021), contrasts with
MARL by focusing on privacy-preserving, distributed learning across agents that do not share their
raw data. Instead, these agents might contribute towards a centralized learning model without com-
promising individual data privacy, addressing the unique challenges of learning from decentralized
data sources.
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Algorithm 2 PFEDTD-REP

1: Input: Sampling policy 7, Vi € [N];
2: Initialize 8} = 0, S§,Vi € [N], and randomly generate ® € RIS/*? with each row being
unit-norm vector;
:fort=0,1,...,7T —1do
fori=1,...,Ndo
fork=1,...,Kdo
Sample observations X ; 1
Set0;; =0, |+ g0, 1, P, X 1)
end for
Scale ||0;, || to B if ||0; || > B, otherwise keep it unchanged;
10: Set Qf‘,-‘,—l/Q :Qt +Bth(0%+13¢tﬂ{X;kfl}gzl);

R A A

. . &t
. : A 7 t+1/2 .
11: Normalize (I)t+1/2 as (I>t+1/2 — [EIE
12:  end for N
. _ 1 '
130 @ =y i ‘I’i+1/2'
14: end for

B PSEUDOCODE OF PFEDTD-REP

In this section, we present the pseudocode of PFEDQ-REP as summarized in Algorithm 2.

C APPLICATION TO CONTROL TASKS IN RL

The Q-function of agent i in environment M® under policy 7 is defined as Qi’”i(s,a) =
Exi 200207 R (s}, a})|sh = s,af = a] . When the state and action spaces are large, it is com-
putationally infeasible to store Q>™ (s, a) for all state-action pairs. One way to deal with is to
approximate the Q-function as Q%™ (s,a) ~ ®(s,a)d, where ® € RISI*IAIXd s 3 feature repre-
sentation corresponding to state-actions, and @ € R is a low-dimensional unknown weight vector.
When @ is given and known, this falls under the paradigm of RL or FedRL with function approxi-
mation.

C.1 PRELIMINARIES: CONTROL IN FEDERATED REINFORCEMENT LEARNING

Another task in RL is to search for an optimal policy, which is called a control problem, and one
commonly used approach is Q-learning (Watkins & Dayan, 1992). Under the FedRL framework,
the goal of a control problem is to let N agents collaboratively learn a policy 7* that performs
uniformly well across N different environments, i.e., 7 = arg max, 4 S0 Ei [V (sh)|sh ~
do], where dy is the common initial state distribution in these N environments. Similar to (1),
this can be formulated as the optimization problem in (17) to collaboratively learn a common (non-
personalized) weight vector @ = 6,Vi € [N] when the feature representation ®(s, a), Vs, a are
given.

) = min—3 E i |@(s,008 - @ (s, a)”2 . (17)

i=1 ar~7m* (¢
Again, we use the superscript 7 to highlight heterogeneous environments P among agents.
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C.2 CONTROL IN PERSONALIZED FEDRL WITH SHARED REPRESENTATIONS

The control problem in (17) aims to learn ® and {8, Vi} simultaneously among all N agents via
solving the following optimization problem:
N
L(®,{0°,Yi}) := min — in E
(®, {07, vi}) BN P {g‘l,lvg}

7%

fi(ai,Q(s,a»—Qiﬂf“*(s,a)HQ. (18)

SNHi,ﬂ
ar* (]s)

C.3 ALGORITHMS

In this subsection, we present two realizations of our proposed PFEDRL-REP in Algorithm 1, one is
PFEDQ-REP as summarized in Algorithm 3, federated Q-learning with shared representations, and
the other is PFEDDQN-REP as outlined in Algorithm 4, federated DQN with shared representations.

Algorithm 3 PFEDQ-REP
Input: Sampling policy 7, Vi € [N].

1: Initialize 8} = 0, and s, Vi € [N], and randomly generate ® € RIS!IA1x? with each row being

unit-norm vector.

2: fort=0,1,....,T — 1do

3 fori=1,...,Ndo
4: fork=1,...,K do
5.
6

Sample observations X;k_l = (sék, s;k_l, a;"kl_l); ‘ ‘
With fixed @, update 0} ), < 0 ;| + o - (1,1 + ymax, Pi(sy 1 1,0)0; 1 —

q’t<5i,k—1)0i,k—1) : Qt(si,k—lv ai,k—l);

7: end for 4
8: Scale |0}, || to Bif |8}, ,| > B, otherwise keep it unchanged.
9: if (s,a) € X{,,3k € {0,..., K — 1} then
10: Update <I>;:+1/2(s, a) = ®i(s,a) + Bi(r(s,a) +ymax, (s, a)0§+1 —®,(s, a)T0§+1) .
0 1:
11: else ‘
12: P} )5(s,0) = Bi(s,a);
13: end if _
. . i i Pirise .
14: Normalize '!I>t_~_1/2 as <I>t+1/2 — ﬁ,
15:  end for N ‘
16: ¢t+1 — %Zi:l <I>1+1/27W S [N]
17: end for

D FIGURE ILLUSTRATIONS

We present some figures to further highlight the proposed personalized FedRL (PFEDRL) frame-
work with shared representations.

Schematic framework of conventional FedRL. We begin by introducing the conventional FedRL
framework (Khodadadian et al., 2022), where N agents collaboratively learn a common policy (or
optimal value functions) via a server while engaging with homogeneous environments. Each agent
generates independent Markovian trajectories, as depicted in Figure 4.

Schematic framework for our proposed PFEDRL with shared representations. We introduce
our proposed personalized FedRL (PFEDRL) framework with shared representations in Figure 5.
In PFEDRL, N agents independently interact with their own environments and execute actions
according to their individual RL component parameterized by ® and #°. Each agent i performs local
update on its local weight vector 8;, while jointly updating the global shared feature representation
® through the server. Similarly, the update follows the Markovian trajectories.

Motivation of personalized FedRL. In the following, we also want to provide some examples
showing that the conventional FedRL framework may fail, as depicted in Figure 6. In Figure 6a,
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Algorithm 4 PFEDDQN-REP

Initialize: The parameters (®,6°) for each Q network Q(s,a), the replay buffer R, and copy
the same parameter from Q network to initialize the target Q network Qi*’ (s,a) for agent i,Vi €
[N];

1: forepisodee =1,..., F do

2 Get the initial state of the environment;

3 fort=0,1,....,7 —1do
4: fori=1,...,N do
5
6

fork=1,...,Kdo
Select action ay;j—1 according to e-greedy policy with the current network

Q" (st,k—1,0);
7: Execute action a; 1, receive the reward (s ;—1, at7k_1), and the environment state
transits to s; i;
8: Store the tuple (s¢ x—1,atx—1,7(St,k—1, @t k—1, St into the replay buffer R*;
9: Sample N data tuples from the replay buffer R*;
10: Update the local weight 8°(t, k) by minimizing the loss compared with the target
network Q% with fixed representation ®,;
11: end for _
12: Sample N data tuples from replay buffer R*;
13: Update representation model locally by minimizing the loss compared with the target
network Q"' with fixed weights 8,1, and yield ®; 4125
14: end for N
15: Average the representation model from all agents, i.e., ®;1 := % Zi:l <I>; 4125
16:  end for
17: if mod(t, Ttarget) = 0 then
18: update the target network QQ"* be copy the up-to-date parameters of Q network Q*, Vi €
(N];
19:  endif
20: end for
= L.
P
s Vi I Ve o
W« z
rEIw rllgllw f C !1
Agent 1 Agent n Agent N
zcgtie?l‘: '1Jf Observation o [ o ‘:Cgt:::;)vf Observation
Environment

Figure 4: Schematic representation of FedRL, where IV agents interact with homogeneous environ-
ments.

we provide an example where three agents assess distinct policies within the same environment.
In the traditional FedRL framework, agents exchange the evaluated value functions via a central
server, leading to a unified consensus on value functions for three different policies. This enforced
consensus on value functions, despite the diversity in policies, is not optimal. In another scenario
depicted in Figure 6b, three agents each interact with their unique environments. The objective
for each agent is to learn an optimal policy tailored to its specific environment. However, within
the traditional FedRL framework, the central server mandates a uniform policy across all three
agents, which clearly contradicts the intended goal of achieving environment-specific optimization.
This highlights the necessity for personalized decision-making, a feature that conventional FedRL
frameworks do not accommodate.
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Environment N

Observation lObservation Observation

Action of

Action of =) Action of
agent 1

RL Component
with parameters
CHH)

RL Component RL Component
with parameters with parameters
(@, 00) (@, 62)

Figure 5: Our proposed PFEDRL-REP framework where [N agents independently interact with
their own environments and take actions according to their individual RL component parameterized
by @ and #%. Agent i locally update weight vector #; while jointly updating the shared feature
representation ® through the central server. The update follows the Markovian trajectories.

; o [?_. BE 2
o Agent 1 i T 11

+

iy i < Environment T  Environment < Environment 3
e Agent 2 my 2 3 .

N Agent 1 Agjnt 2 Agent 3

oan
Environment Agent3 B

(b) Agents learn optimal policies for heterogeneous

(a) Agents evaluate difference policies in the same environments.

environment.
Figure 6: An illustrative example with three agents that demonstrates the conventional FedRL frame-
work fails to work.

Example of RL components that fit the proposed PFEDRL with shared representations. In the
following, we aim to showcase examples of RL components that are compatible with our proposed
PFEDRL framework featuring shared representations. An illustrative example of this framework is
presented in Figure 7. It is important to note that both the DQN architecture in Figure 7a and the
policy gradient (PG) approach in Figure 7b seamlessly integrate into our proposed framework. This
integration is achieved by designating the parameters of the feature extraction network as the shared
feature representation ®, and the parameters of the fully connected network, which either predict
the Q-values or determine the policy, as the local weight vector 8. This arrangement underscores the
adaptability of our framework to various RL methodologies, facilitating personalized learning while
maintaining a common foundation of shared representations.

E PROOF OF LEMMAS IN SECTION 4.2

E.1 PROOF OF LEMMA 4.6

Proof. Recall that for any observation X = (s,a,s’), the function g(f,®, X) defined in (8) is
expressed as

g(0,®,X) := (r(s,a) + v®(s")0 — ®(5)8) - ®(s)T,
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Feature Fully Feature Fully
i Connected I - Extraction ————» H ———» Connected —— Softmax —— E
5 Network Network i Network Network
A b Feature Vector 0 R 5 ) ratreve ) f=nC150)
DQN olicy Network
(a) When DQN meets the proposed framework. (b) When PG meets the proposed framework.

Figure 7: An illustrative example for the proposed framework. Notice that both the DON in (a) and
policy gradient (PG) in (b) can be fitted into the proposed framework by treating the parameters of
the feature extraction network as the shared feature representation ® and the parameter of the fully
connected network which maps to the Q value of policy as the local weight vector .

and hence we have the following inequality for any parameter pairs (81,®1) and (02, A2) with
X =(s,a,8),

||g(017¢17X) - g(027¢27X)||

= [I(r(s,a) + 7®1(s)01 — ®1(s)01) - 1(s)" — (r(s, ) + 7@2(s")02 — Bo(5)02) - Ba(s)7||

(2) [(v@1(5")01 — @1(5)01) - @1(5)T — (Y®1(5")02 — @1(5)02) - @1(s)7||
+[[(7®1(5")02 — ®1(5)02) - @1(5)T — (Y®2(5")02 — B2(5)02) - ®2(s)T|

(@1 ()01 — B (5)01) — (181(5)02 — B ()02)] - [@1(5)]

+ [[(v@1(s")02 — ®1(5)02) - @1(5)T — (vP2(s")02 — P2(5)02) - a(s)T||
(14 4) 181 — Ol| + | (181 ()85 — By ()02) - B1(5)T — (1B (585 — B (5)0) - Bo(s)T|
L4 00— B + (181 ()8 — 1 (5)82) - By ()T — (181 ()6 — By ()6) - ()T
+ [|(v@1(s")02 — ®1(5)02) - B2(s)T — (YP2(s")02 — P2 (s)02) - o (s)T|

10 0a) 4 028~ @1 (5)0)] - [ (5) -~ @a09)

+ [[(7@1(5")02 — @1(5)02) — (V®2(5")02 — @2(5)02)]| - [|®2(s)|
< 61— 6]| + [ (1®@1(51682 — @1(5)9)|| - 1@1(5) — @2(5)]

+ [ @1(5") — ®a(s")|| - [[102] + [[@1(5) — @o(s)]| - [162]|
< (L+79) (101 — 02| + (2 +27) [|62]] - [|@1 — @2

(a7)
< Ly (161 — 02 + [|@1 — @),

(a1) is due to the fact that ||x + y|| < |x|| + llyll,Vx,y € R% (as) holds due to ||x - y]|

x|l - llyll, vx,y € RY, (a3) comes from the fact and ||®;(s)|| < 1,[|®2(s)]| < 1Vs. (ay) — (a
holds for the same reason as (a;1) — (a3). The last inequalty (a7) comes from the fact that
bounded by norm B and by setting L, := max(1 + v, (2 + 2v)B).

Oz2IA

E.2 PROOF OF LEMMA 4.7

Proof. Recall that for any observation X = (s, a,s’), the function h(@,®, X) defined in (10) is
expressed as

h(@,®, X) := (r(s,a) + y®(s")0 — ®(s)0) - 07,

and hence we have the following inequality for any parameter pairs (81,®;) and (02, A2) with
X =(s,a,8),

Hh(ela Qla X) - h(HQa QQa X)H
= [|(r(s,a) +7@1(s" )01 — ®1(5)01) - 07 — (r(s,a) + y@2(s")02 — ®2(5)82) - O3
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(2) [(v®1(s")01 — @1(5)81) - 0] — (y@2(s")81 — @2(5)0:1) - O] |
+ [[(v@2(s")81 — @2(5)81) - 67 — (v@2(s")02 — @2(s)02) - 03|

el [(Y®1(s")01 — @1(5)01) — (YR2(s)01 — P2(5)01)]| - (|61
+ [[(v@2(5")81 — @2(5)81) - 07 — (v@2(s")02 — ®2(s)02) - 03|

(b3)
< (L4017 - [|@1 — B2l + [|[(v@2(5)01 — B2(5)81) - O] — (v@2(s")02 — B2(5)82) - 6]

(2) L+ 0117 - [|B1 — @2 + [|(v®2(s")81 — B2(5)01) - ] — (v®2(s)01 — @2(5)01) - 01|
+[[(v@2(5")01 — ®2(5)01) - 05 — (v®2(s")02 — P2(s)62) - 63|

002 - |81 — o + | (18a(s)0: — Ba(s)61)]] - 01 — 62]
T 1(16a(5)81 — Ba(s)01) — (182()0 — Ba(s)8)] - 6]
b

< (@401 - 1 — B2l + (1 +)[01]] - 181 — 02| + (1 +7)[162] - 61 — 62

—~

=)
g

< (L+)[01]7 - @1 — Rof| + (1 + ) (1011l + [182]1) - 61 — 62|

A
NS
D

Ly ([|01 — 02 + [|@1 — ®2]]),

(b1) is due to the fact that [|x + y| < |x| + [|lyll,vx,y € R< (b2) holds due to |x - y]|

IN

Il - lyll, ¥x,y € RY, (b3) comes from the fact and ||®(s)|| < 1,[|®2(s)|| < 1Vs. (bs) — (bs)
holds for the same reason as (b;) — (b3). The last inequalty (b7) comes from by setting L, :=
max((1 +7)B2, (2 + 2v)B). O

E.3 PROOF OF LEMMA 4.8

Proof. Due to the norm-scale step (step 9) in Algorithm 2, we have

% i !
1y (®1) —y' (@) < = max [0 —6"| <2B. (19)
(lell<B.ll6"|<B)
Since the representation matrices ®; and ®- are of unit-norm in each row, there exists a positive
constant L,, such that

[y"(@1) — y' (®2)]] < Ly[|®1 — ®2]. (20)
O

E.4 PROOF OF LEMMA 4.10

Proof. In the TD learning setting for our PFEDTD-REP, at time step k, the state of agent i is s,
and its value function can be denoted as V' (s},) = ®(s})@" in a linear representation, where ®(s%,)
is a feature vector and ' is a weight vector. The goal of agent i is to minimize the following loss
function for every s}, € S:

i iy pi 1 i NG
L(®(s1),0") = 5 Vi(si) = Visp)|
with V(st) = ri + Y®(s},,)0" being a constant. Therefore, to update ®(s) and 0, we just take
the natural gradient descent. Specifically, we update 8 according to (7) by taking a gradient descent
step with respect to 6, with fixed ®. Similarly, we update ®(s) according to (9) by taking a gradient
descent step with respect to ®(s), with fixed 6.

Next, we show the convexity of the loss function £(® (st ), ") with respect to the feature representa-
tion ® (s}, ) under a fixed 8. Since the estimated value function is approximated as V (s},) = ®(s})6",
where ' is a fixed parameter. Taking the second-order derivative of £(®(s%),0") w.r.t. ®(si) will
involve 8°0*T, which is a positive semi-definite matrix as long as 0" +0. Positive semi-definiteness
of the Hessian implies convexity. Hence, £'(®(s},),0") is convex on ®(s},) under a fixed 6°. This
property holds vice versa, i.e., L/ (®(s%),0") is convex on 6 under a fixed ®(s%,).
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Recall that the optimal solution ®( and §* is defined as the set of possible values that make the
expectation of stochastic gradient g and h tends to be 0, as defined in (12), which is analogy to
make the first-order gradient of loss function be 0 and achieve the local minima. The inequalities in
Lemma 4.10 denote that the updates made to the feature matrix ® for fixed € in the first equation and
the parameters @ for fixed ® in the second equation is directed towards reducing the deviation from
the optimal solutions close to initial point. As we only care about the solution to make stochastic
gradients be 0, for a fixed 6, the loss function £ is convex w.r.t. ®, the learning process of @ is
guaranteed to move towards decreasing the difference from an optimal point. This also holds for the
update of 6. O

E.5 PROOF OF LEMMA 4.12

Proof. Under Lemma 4.6, we have

I8, ®,X) — g(y' (@), @, X)|| < L(|0 — 4 (@")] + |® — @"[)),Vi € [N]. (D)
Similarly, under Lemma 4.7, we have

h(6, @, X) —h(y' (@°),®", X)|| < L(|0 — y'(@")|| + @ — @), Vi€ [N].  (22)

Let L; = max(L, maxyx g(y*(®*),®*, X), maxx h(y'(®*),®*, X)), then according to (21)-(22),
we have

1g(8,®)|| < L1 ([0 — ' (@] + 1@ — @*[| + 1),
and

(8, @)[| < Li(|6 —y" (@) + |8 — &[] +1).

Denote h7 (0, ¢, X) as the j-th element of h(#, ®, X). Following Chen et al. (2019), we can show
that € RY, & € RISIXd and z € X,

[E[h (0 ®, X)|Xp = 2] -~ E,[h(6,®, X)]|

d
<2L1(/0 — ¥ (@) + & — @[+ 1)) _|E
j=1

[ hi(6,®, X) ‘X B ]
2L, (|6 — yi(®@)[| + [|x — A[[+1) 17—

8 {2L1(0 =y @)+ A=A +1)
<2L1 ([0 — ' (@) + @ — @ + 1)dC1p},

hi(0,®,X) ] ‘

where the last inequality holds due to Assumption 4.3 with constants C; > 0 and p; € (0,1). To
guarantee 2L (||0 — y*(®*)|| + ||® — ®*|| + 1)dCy p¥ < 5(|0 — y*(®*)|| + ||® — ®*|| + 1), we have

log(1/6) + log(2L,C1d)
= log(1/p1)

(23)

Using the same procedures we can show that
IE[g(0, @, X)|[Xo = 2] — E,[g(8,®, X)]|| < 2L1([|6 — v (®")[| + [|@ — @*|| + 1)dCap5,
hence we have

< log(l/d) + 10g(2L102d)
0= log(1/p2) ‘

By setting 75 as the largest value in (23) and (24), we arrive at the final result in Lemma 4.12. ]

(24)
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F PROOFS OF MAIN RESULTS

F.1 PROOF OF THEOREM 4.13

For notational simplicity, in the proofs, we use h(6},,,®;) to denote h(8;, ;, ®;, { X}, _,}i)).
and g(ﬂi,k_l ,®;) to denote g(0§7k_1 , P, X;k_l). In the following, we first focus on the update of
the global representation @, and characterize the drift of it.

F.1.1 DRIFT OF ®;

The drift of ®, is given in the following lemma.
Lemma F.1. The drift between ®,1 and ®, is given by

E[|®:41 — @]
g - (I 2
= E[|®, — 27" + T5E D h(6i 1, ®)| | +2B.E (@ - &, N Zh P41, ®0))
i=1
Term 1 Term 2
N
* 1 % 1./0°
+26,E | (®, — ® ,NZh(am,@t) —~h(6.,,,®))|. (25)
i=1
Term 3
Proof. Based on the update of ®; in (11), We have the following equation
E[|®:+1 — @°|%] - E[|@; — @]
= E[@")? + [®es1]l* — 2(@", @e1)] — E[|@]* + [|@¢]* — 2(2", &¢)]
= E[[®:41]*] — E[|®¢]*] - 2(2", ®141 — By)]
=E[(®¢41 — D, @111 + B4)] — 2(27, @111 — By)]
=E[(®rr1 — @1, Pry1 — @4)] + 2E[( @y 1 — @4, By)] — 2(R7, By 1 — B4)]
8 1 p ol
=LE||Y h@},,.®)|| | —28E — &, — Zh 6i,,,®) |, (26)
i=1
which directly leads to
E[|@: 11 — @[]
52 N _ 2 N
= E[|® — &[] + 155E || D001 ®0)|| |~ 26E (@~ &, Z 6i1,@
i=1 i=1
27)
Rearranging the last term yields the desired result. O

In the following, we separately bound Term 1 to Term 3. We first bound Term 1 as follows.

Lemma F.2. For anyt > 7, we have

4p21? [ ,
Term 1 < 467 (L* + L*)E[||®* — &,|]*] + ﬁ;\, E lz 10101 — ' (®)I1° | +4676°  (28)
=1
Proof. Note that
52 N N ' N . 2
Term 1 = N—ZE > h(6;,, @) - ) h(y'(®,),8")+ > h(y'(®:),®")
i=1 =1 =1
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2
triangle inequality 9 ,82 N i N i "
< B || 006,20 - > h(y'(@,),97)
=1 =1
Lipschitz property of h
N 2
2/875 7 *
+ﬁ ;h(y (®:), @)
2@ L2

S

l2NZ H tr1 — ZJZ-(‘I’t))H2 +2N? || (®, — ‘I’*)||2

267
*mE[ .

N ) N ) N ‘
> h(y' (@), @) - Zh(yl(‘b*)@*) + Zh(yl@*)@*)

42L2
<aprE]e’ - )+ UL

Z 16741 — v ()]

LB AN A
+ 2 E [ [ DB/ (®).8%) ~ > h(y/(®),8")
i=1 i=1

Lipschitz of h, y?
r 2

432 N ,
+ Y S nei @), @)
=1

(a2) . L
< ABLPE[|@7 — &%) + —— Z||0t+1 (@)

42 N ’
+4BIL°E [|@, - @ |*] + TEE ~-Sh
i=1
(ag) * 4B2L2 7
< ABF(L2 + LYE[|@° — @4|*] + ——E Z 10e1 — o' (@o)|17| + 45707,

N

=1

where the (aq) is due to || Zi\;l x;]|? < Nzij\il |Ix:||?, (az) is due to the Lipschitz property of
functions h and 4%, and (a3) holds based on the mixing time property in Definition 4.3.

O
Next, we bound Term 2 in the following lemma.
Lemma F.3. We have
* 6t OétL 2
Term 2 < S;(L/a; — 2w)E[||@* — ®;|?] Z 1651 —y' (@) (29)

Proof. We have

Term 2 = 28,E 'I>t, N Zh i, @

—®, — Zh

=26,E
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N
+28E | (®" — @, Z S G )
Lipschitz of h
1. .
<2BE (@~ B, Zh +2BLE (@ — @y, > (4 (@) — 0))
i=1
(b1) N
< 2BE 9, — N )| + BeL/aE[]|@* — &7
i=1
ﬂa .
= HZ 0i 1 —y' (@)
(b N
< 2B:E Zh )| + BiL/oyE[[|@* — @]
y ok ZH% ‘@)
* ﬁtat 2
< Bi(L/ oy — 2w)E[[|®* — @[] Z 1071 — ' (@)l

where (b;) holds because 2xTy < B||x||? + 1/8|yl|?, V8 > 0, (be) is due to || Zivzl x||? <
N Zf\il [|xi]|?, and the last inequality is due to Assumption 4.10.

O
Next, we bound Term 3 in the following lemmas.
Lemma F4. Forallt > T we have
Term 3 < (7B;/c + 2B L? + 68,0467 E[||@4—r — @]
+ (68 /v 4 660 6% (1 + L?) + 4Bro L2 (3 + 4L%))E[||®; — @*||?]
168:0: L2 + 680002 [ .
+ ﬁtat N Btat E Z ||0'L,* _ 0t+1 ||2 + 116t04t62- (30)
i=1

Proof. We first decompose Term 3 as follows

N
* 1 I h
Term 3 = 2,E | (@, — 8", — ; h(6;,,, ®;) —h(b;,, ®,))
1 X ) _
=2BE | (®; — @, ~ Z h(9;,,,®:) — h(6;,,,®))
N — .
+ QBtE <Qt77 - Z t+17 h(oiJrl’ q)t)>
1 : _
=26E [(®; — @/, N Z: h(f;,,,®:) — h(0t+1a ®,))
Cy
1N N
+26,E [ (¢, — @7, N ; h(@; ,,® z:: t+1v<I)t )
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N
1 o
+ 2BE | (@ — @ Z 0;,,, 9 ) —N h(0; 1, ®:—-))

i]=

C3

+26E | (@, — ®"

1
"N

1

B(Oi-&-l’ <I>t—T) - N B(ei-&-lv q)t)> .

M=
=

Cy
Next, we bound C as
N

<:Dt Ty Z t+1aq)t (0£+1aq)t)>

C1 =2B,E

N

Z 0125+1;q)t (9i+1’q>t) + ﬁ(yi((p*)’q)*)
|
|

< Bi/auE[||®; — B, |*] + BrouE {

|

N

. ,
< Be/uE[|® — By |°] + 26, 4E | || Z 0:i1,0) ]

N
1 o0 (BF * 1
+28;4E N;h(y (@), @) — h(0t+17¢t)

|

h(y'(2"),®") —h(8;,,, )

206
= B/ uE[| @ — 1 |?] + ~ G 'E

N .
Z h(0125+1a q)t)
=1

1

+ 2604 E N

uMz

Lemma F.2

Bi/ouE[[| @ — @ TIIQ] + SBtat(L2 + LYE[|@* — @]

8,8 oL
— Z”ot-H (I)t ||2

+ 8ﬁt06t(52

N
+ 2BtO[t]E Z B(0t+17¢t)

Lipschitz of h
< Be/uEl]| @ — o ||°] + Sﬂtat(Lz + LYE[|@* — @]

8,8 oL
~ Z||9t+1 (@)

N

Z —®) +2(0;,, — ' (2))

=1

+ 85,50[,55

+ 28,04 L°E [

2]
< Bi/uE[)|®; — @[] + 85t0lt( + LYE[|@* — &, |’

85 oy L
~ Z||9t+1 (@)

45tat

+ 8B;06°

+ 4600 L*E[| @ — @¢|*] +

Z 161 — ' (@")]

= Bi/ouE[[|®; — @4+ |]*] + 8Bray (L + LYE[[|@* — @]
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8Bra L?
il Znom (@)

4ﬁ « L2 1 *
tNt E Z||9t+1 (@) +y' (@) — (@)

< Be/ouE[| @, — @, [*] + B (L2 + LYE[|@" — @, ]

SBtatLQ
+ TE leé’m (@)

+ 8B 6% + 45t05fL2E[||¢‘* (I)tHQ]

+

+ Sﬁtozt(52

N 8Bra L
+ 40, B2 — ) 1

Z 161 — v (@)l

+ 86,0 L'E[||®* — &, %]
= Bi/ouE[||®; — @, ] + 4ﬂtatL2(3 +4L*)E[|®* — &, ]

16[3 oL
= ZII‘%H (@)

where the last inequality is due to the Lipschitz of the function y°.

+ SBtOét(s

Next, we bound C5 as follows.
N

N
L1 1
Cy =26 | (@, — @, > h(0,,, @)~ N; 0111, ®1r)

|

N
< By E[||®;—r — ®*|?] + BiwE [HN E,l h(@; ,,®;) — N 21 h0; ,,® )

Lipschitz of h
< i/ B[ @1 — %] + Bra L’E[||@; — ;- |?]
= Bt/ uE[|®; - — & + &, — "|*] + B L’E[|®; — @, . |]
<281 /B[ @17 — @4[|*] + 28t/ B[| @1 — @] + B L*E[[| @ — @~ |°]
= (2Bt/as + B L)E[||®; 7 — ®¢[|*] + 26/ E[[| @ — @*?].
Similarly, Cy is bounded exactly same as C5, i.e.,
Cy < 281/t + Bra L*)E[[| @17 — ®4[|°] + 26:/ o, E[[|®; — @*[|°].

Next, we bound C5 as follows.

N N
1 )
Cs=2B,E |(@r — ", D> 00,1, 80 r) Z 041, ®:-)
=1 =1
1 N N 2
< BefnE|@1—r — (%] + Bra 55 || 001 Ber) Z (041, 91—-)
=1 =1

Definition 4.3

ﬁt/atE[H‘I’t—T - ‘I)*”Z]

2
1 3 *
+ a5 E <N6||¢I>t ,—® ||+J\/5+52H¢9t+1 Yy (®*) ) ]
=1

< B/ B[ — ®°[*] + 3,0,0%E [ |1 — & [°] + 35,0407

38,0002 [ ,
y Pl g = |3k vl
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= By uE[|®_r — *|2] + 35, 0°E [H@H - <1>*||2} + 38,048
r N

3 5?2 i
+Bt% ZH‘%H H®) +y (@) — Y (@) ’

< ool — &[] + 350 [[8, — 8" 2] + 351008"
[ N

6 52 X .
- S0 15 01, — @) | + 650 L2 [, — 9]

N
< (2B¢/au + 6810, 6% E[|| @, — ‘I’t||2] + (2B¢/ou + 6Bt 6” + 68,0, L*6%)E[|| @, — @*|]
65 Q 5 . 2

= Z 10541 — ¥ (@)

where the last inequality comes from E[||®;_, — ®*||?] < 2E[||®;_, — ®;|?] + 2E[|®; — ®*|?].

+ 36tat52

Hence, we can write Term 3 as follows

Term3 =Cy + Cs + Cs + Cy
< Bi/auE[[|® — @+ |%] + 480 L (3 + 4L*)E[||@* — &, %)

165 o L2
= [ZI@H Y@

+ (2Be/ar + Broy LP)E[[| @47 — ®4[|*] + 28; )/, E[[| @, — @*[|]
+ (2B1/c + 68101 0%)E[[| @4 — @4|°]
+ (25,5/0% + GIBtOét(SQ + 66tOlfL252)E[”¢t — Q*”Z]

6 52 ;
B | o - @

+ (2Bi/ou + Broy L*)E [||<I>t—r — @ %] + 2B/ E[||®; — @*|?]
< (78:/aq + 2BtatL2 + 65t06t52)E[||‘I)t—7 — q>t||2]
+ (66;/ay + 6600062 (1 + L2) + 4B L2 (3 + 4L%)E[||®; — @*||?]

16ﬁtO{tL +6Btozt(5 i
+ Z 1y (@:) — 074

which completes the proof. O

+ SﬂtOét(S

+ 3B 0° +

+ 11862,

To bound Term 3, we need to bound E[||®; — ®;_,||?], which is shown in the following lemma.
Lemma F.5. We have Vt > 21

E[|®: — ®—-|°] < 47255 /agE[|®* — ®|°] + 865 L*B*7* + 853677, 31

Proof. The proof is similar to that of Lemma 3 in Dal Fabbro et al. (2023). Starting with

N 2
> h,.®)

i=1

. . g
|2~ @0pa])” = @7~ @4)° + 15

N
—26,(®" @1, ;h(etﬂ,@t»

2

* 60‘ +62 al /07
< (1+ Bi/ao)||® *‘I)t||2+( t ;)\72 2 Zlht(ot+1vq>t)
2
20
< (14 B o) [@° — 2 4 200 S 0,90 (32)
=1
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where the first inequality holds due to 2xTy < v||x|>+1/7|ly|/?, ¥y > 0, and the second inequality
holds since B;ap > 32. We then have the following inequality according to Lemma F.2,

E [Hq)* — ‘I)t+1H2} < (1 + ﬁt/ao + 857&@0[42(1 + L2))E [H‘I)* - q>t‘|2]

8Bl [ & 4
+ &TOE Lz_; H0t+1 - yz(‘I)t)H2 + 85t04052
< (14 Be/ao + 8Ba0L? (1 + L?))E [[|@* — @4]|*] + 8B:ao(L* B + 6%).
(33)
By letting oy < m, we have B /ag > 88;a0L2(1 + L?), and hence
E [[|@* — ®:41]%] < (1+2B0/c0)E [||@* — ®¢]1*] + 8Boo(L*B? + 6%). (34)

Therefore, for all ¢’ such thatt — 7 < ¢/ < ¢,

T—1
E[||®* — &4 %] < (1 +280/c0) E[||®* — &;_.||?] + 8foco(L*B? + §?) Z + 260/ )’
£=0

(35)
Using the fact that (1 + z) < e® (Dal Fabbro et al., 2023), if we let 8y/ag < 2=, we have
(14280/c0)" < (142B0/c)” < *? <2,
and
T—1
> (143284 <2
=0

Hence, we have
E[|®* — <I>t/|\2] < 2E[||®* — <I>t,TH2] + 16,6’00407(L2B2 + 52).

Since [|@; — @, |2 < 7301 @1 — el = 74 YL IS b8, 1, ®0)]1%, when
t > 271, we have ¢ > 7 and thus

E[|®; — @[]
t—1 N o
= O 1D hi6 1,20
l=t—7 =1
t—1

<7 (4B3(L* + LYE[||®@* — ®||%] + 435 L*B>7* + 4336° 72
t=t—

<ABF(L? + L) 7?(2E[||@* — @, [|%] + 1650007 (L* B® 4 6%)) + 455 L* B*7° + 4836°1°

=863(L* + LY)T°E[[|®* — &, ||°] + 453 L> B*7> 4 45336°

< 7265 /odE[||®F — ®¢—.||°] + 485 LB + 4656° 77

< 27262 Ja2E[|®* — @] + 272ﬁg/ag1E[||<1>t — &, |’] + 485 L B>7* + 4B35° 2.
Since 27283 /a < 1/2 when By/ag < 5=, we have

E[|®: — @] < 47?55 /agE[|®" — ®|*] + 865 L*B*7* + 833677,
This completes the proof. O
Lemma F.6. Term 3 is bounded as follows
Terms < (76;/as + 2Bsas L? + 6B:0:0°) (47262 /a2 E[||®@* — ®¢||?] + 8BEL2B*7% + 8825°7?)
+ (68:/ v + 651 6°(1 + LQ) + 4By L2 (3 + 4L7))E[| @ — @7||?]

168 o L% + 6 a5 ik
i Bra = Brau 2”0 0|
i=1

+ 11B,046°
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Proof. Substituting the bound of E[||®; — ®;_.||?] in (31) into Term 3 in Lemma F.4 yield the final
results. O

Provided Term 1 in Lemma F.2, Term 2 in Lemma F.3, and Term 3 in Lemma F.6, we have the
following lemma to characterize the drift between ®,,; and ®,.

Lemma F.7. Fort > 27, the following holds
E[||®* — @:41]]
< (1+4B7(L* + L*) + (T8 /cu + 2By L? + 68,0742 53 /o
+ (68¢ ) + 6B 6% (1 + L?) + 4Bro L*(3 + 4L%)) + Bi(L/ay — 2w))E[||®; — ®*|?]
AB2L2 + By L + 16804 L% + 68,082 _ [ | o
+ Bt /Bt t ﬁt t ﬁt t E Z ||o R _0t+1||2
=1

N
—+ (7515/0[)5 —+ Qﬂt()étL2 —+ 66t04t($2)(8ﬁngB27_2 + 8535272) + 4&?52 —+ 11/8tat52-

Proof. Substituting T'ermy, Terms and Terms back into Lemma F.1, we have
E[[|@* — @14

48212
N

Z 107, — y' (@)
+ (7Bt) s + 2B L? + 681067 ( 47250/04(2)E[||‘I’* — &, |°] + 863 L*B*7* 4 8336°77)
+ (68¢ /o + 6810 6%(1 + L?) + 48,0 L7 (3 + 4L?))E[|| @, — @*|?]

1680, L + 68,006% _ [N o
+ — N ——E 2”‘9’ —0t+1||2

= (1+4B2(L* + L*) + (7B¢/as + 2Bra L + 6B:0:0% )42 32 | o
+ (6615/&15 + 66,50[7562(1 + L2) + 4,8t0étL2(3 + 4L2)) + ﬁt(L/at — QW))E[”Qt — Q*”Q]
AB2L2 + By L + 168 L2 + 68,0462 [ 1o
+ B Bro Bra Bro E Z ”01, . 0t+1”2
=1

N
+ (7575/0475 + QﬂtOétL2 + 6Btat62)(858L2B272 —|— 8ﬁg(527'2) —|— 4ﬂ?(52 + 11,8t0ét(52.

This completes the proof.

N
E[|®" — ®[|°] +467(L* + LYE[[|@* — @¢]*] + E D 11601 —y' (@)l | + 45767

=1

L
+ By(L/ay — 20)E[||®* — &[] tc”

+ 115t05t52

F.1.2 DRIFT OF 6}, Vi.

Next, we characterize the drift between 8}, ; and 6.

Lemma F.8. The drift between 0, | and 0}, Vi is given by

K
E[10; 1 — v @)% = E | |6 = y'(@11) + 00 > g 51,0 | +E [y (@) - v (@0)][]
i Terms
Termy
. . K . . .
+2E <032 =y (Pr—1) + Zg(off,kqu)t%yi(q)tfl) - yz(q)t)> .
k=1

Termeg

(36)
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Proof. According to the update of 8% in (7), we have

K
E[6f1 — 4" @)IIP] = E |||6; =y (®c—1) + ar > &0 k1, @) + ' (®1-1) — y'(@1)
k=1
- X 9
i i i i i 2
—E |||6; — v/ (@) + a0 Y @i 1, @) | +E |[v'(@-1) - v'(@)]]
k=
! Terms
Termy
. . K . . .
+2E <0;L: =y (r—1) + Zg(off,kqu)t)ﬂyi(q)tfl) - yz(‘l’t)> )
k=1
Termeg
(37
where the second inequality holds due to [|x + y||? = ||x[|* + |ly|I* + 2(x, y).
O

We next analyze each term in (37). First, we bound Term 4 in the following lemma.
Lemma F.9. Witht > 7, we have Term 4 bounded as
Term4 < (1+ 28,1/ — 20, Kw)E {HO; — yi(ét,l)Hz}
+ (120262 K2 + 6 K26%a2 /B 1 )E[|| @1 — ®*|?]
+ (12076° K2 + 2023 /By—1 + 6K26%a3 /By 1) E[||®; — &1 ||?]
+6a70°K%(1 + B?) + 202 K2L*B? + 2L*K*B%a} /Bi_1 + o} /B 1(3K* B? + 3K?5?).
(33)

Proof. According to the definition of Term 4, we have
2

K
0; — ' (®-1) + Z C{CHN )
k=1

Term4 = E

K 2

Zg(ei,kqv‘l’t)
K

+2at< Y (®4-1) Z 05— 1a‘I’t>

k=1

K
<012£ - yi((ﬁt—l)a Z g(ai,k—17¢t)>

—E[[6; - '(@-1)|*] + afE

—E 6 - y'@-1)|"] + 20

k=1
K K K K 2
+afE Zg(ai,k—lv‘l’t) - Zg( fhe1, @) + Zg(ai,k—pq)t) - Zg Y (P
k=1 k=1 =1 =1
K K 2
E[[6; - v’ (@ 0)|"] +207E || Y @i 11, @0) - > 804 1,20)
k=1 k=1

2
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+ QOZfE

K
— Y @1),> 8041 B

k=1

>>ﬁ

E [He;‘ - yi(Qt,l)lﬂ + 60262 K?E [||d> g || + 6020 K2(1 + B?) + 202 K2L?B?

r K
+ 204 E <0? Y (@i1), ) g(9§,k—17‘1’t)>
L k=1 |
Term 4.1
r K K
+ 20E < Y (@11 ,Zg th—1,Pt) Z b1, ® > ; (39)
L k=1 k=1

Term 4.2

where the first inequality holds due to the fact that ||x + y||* < 2|x]|? 2, and the second

inequality is due to the mixing time property of function g as in Definition 4.3.

<0i_ iQt 17 ik 1a¢t)>

K
< q’t 1 72 gzaq)t 1 >
k=1

r K
+20:E <ei_yi(¢t—l)a g(0;,1,9:) Z (6}, @1 >
L k=1

Next, we bound Term 4.1 as

i,

k=1

Term 4.1 = 20, IE

20[t]E

MMEMw

< 20, KuE [0} — ' (@)
_ K -
+ 204 E <9§— v (@i1), Y 801, B) — > 80,8 >
L k=1 k=1 ]
< —20,KwE [0} — y'(®,_1)|%] + Bi_1/ouE [Hw (@, 1)”}
+a} /BB O 51:®) = ) 8(0;, 1) (40)
. K ipi K /pi 2
In particular, we can bound E MZk_l g0 1,9) =D 1y g(ﬂi,@t_l)H } as
K _ K 2
DN-{C/ DR Y-I( Jy
= k=1
om [ 2] 2
<2L°E |||®; — @ _1||°| + 2L°E 0,
] i K
<2L°E (@, ~ @1 [*] +2L°KE | (601 — ot||2]
) . k=1
< 2L°E ||®; — ®;_1 || + 2L>K>B>. 41
Substituting (41) back into (40), we have Term 4.1 bounded as
Term 4.1 < —20, KW [[0% — 4 (®,_1)||2] + Bi—1/E [Heg — (@) ]
+a?/B_1(2L°E [||<I>t - <I>t_1|ﬂ +2L2K2B?). 42)
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‘We next bound Term 4.2 as

K K
<9Zl/ (11 7Zg 0: 1. ®:) Z 01— 17‘I>t>
=1

k=

Term 4.2 = 204 E

< Bio1/uE [Ho —y' (®e—1)|| } + a2 /B 1(3K?B? 4 3K?6* + 3K25°E|[|®; — "))
< B—1/E [||o;‘ —y (@ )| ] +a2/B_1(3K2B? + 3K?5?)
+6K?0% 07 /B E[| @1 — @7||*] + 6K?0% 0} / i1 E[|| @ — B4 [|°] (43)
Substituting Term 4.1 and Term 4.2 back into (39), we get the final result

Termd < E [[6; =y (@, )||"]| + 60302 KB [|@, — |°] + 606 K>(1 + B?) + 20} K12 B
+ Term 4.1 4+ Term 4.2
—E[[6; - v’ (@ 0)|"] +6026*K°E [|@ — || + 60262 K2(1 + B2) + 203 K212 B2
i i i i 2
— 20, KWE [|10} — ' (@0 1)[12] + Bi1 /e [[|0] — ' (@0 )||]
+af/Bi1 QLR [[|@, - & 1|°] + 202 K2 B?)
i i 2
+ Bo1/uE [Ho; — (@) } + /B 1(3K2B? + 3K25?)
+6K°0%07 /B B[| @1 — ®*[*] + 6K%0%a /511 E[|®; — @41’
< (14 281/ — 204 Kw)E [||0; — (@) }
+ (12020° K2 + 6 K25%a3 / B 1 )E[|| @1 — ®*|?]
+ (12076°K? + 2L%a} /Bi—1 + 6K26%a} / By—1)E[||®¢ — ®4—1]|?]
+ 60262 K?(1 + B?) 4+ 202 K2L*B? + 2L° K*B%a} / B4
+al/Bi_1(3K?B? + 3K?%6?) (44)
This completes the proof. O

Next, we bound Term 5 in the following lemma.
Lemma F.10. Witht > 7, we have Term 5 bounded as

L al
Term 5 < 457 (L* + LOE[|®* — @, 1[*] + i L7 1 [Z 16—y (®e—1)|1?| +4L2B7_16°.
) (45)
Proof. We have
Term s = E [y (@) — y'(@)]|"] = LE [|]@, — & 1|
2
LB} AN
- Ng “E [|1) h(8;, @)
i=1
452 L4 N
<ABE (L' + LOE[|@" — @y *) + — 17— lz 16: —y' (®e- 1)||2] +AL?BE 6%,
(46)
where the last inequality holds due to Lemma F.2. O

Next, we bound Term 6 in the following lemma.
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Lemma F.11. We have Term 6 bounded as
Term 6 < ;1 /c;Term 4 + oy /B;—1Term 5. 47

Proof.

K
Term 6 = 2 [<01 —y' (@) + Zg(oi,k—la(pt)vyi(q)tfl) - yi(q)t)>
k=1

K 2

< Bi—1/auE |||0: — v (®i-1) + Zg(oi,kq + oy /B E {Hyi(‘btq) - yi(‘I’t)HQ}
=t Term 5
Term 4
(48)
O

Providing Term 4 in Lemma F.9, Term 5 in Lemma F.10, and Term 6 in Lemma F.11, we have the
following result.

Lemma F.12. Fort > 7, the following holds
E[l67, 1 —v' (@)

< (A4 Bi—i/ow) ((1 + 281/ — 20 Kw)

482 L2
+ (12020° K2 + 2L%03 /Bi—1 + 6K262af/6t1)t1> + (14 o /Bi—1)

467, L*
N

N
B[]0 - y'(@:-0)|]

_|_

(1+ Bi—1/an) ((12&?521(2 +6K%5%a} /Bi_1)
+ (1207 6°K? + 2L7a} /By—1 + 6 K6 [ By—1) (4811 (L* + L4))>

+ (14 ay/Bioa)4B7 1 (LY + LO) | - E[|®" — @]

+ (14 B_1/a) ((12a§52K2 + 2020} ) Bio1 + 6K25°a} | Bi—1)4B7_ 16
+ 60262 K2(1 + B?) + 202 K2L2B? + 202 K*B2% /By + a3 /i1 (3K2B? + 3K2§2))
+ (1= ar/Beg) - 4L 71 6°. (49)

Proof. According to (36), we have
IE[HG%H — 3" (®,)||?] = Termy + Terms + Termg
Lemma F.11
(14 Bi—1/ap)Terms + (1 + ap/Bi—1)Terms
. . 2
< (1 + ﬁt,l/at) ((1 + 25t71/at — 2OZtKW)]E |:||07i — yl(étfl)” :|

+ (120262 K2 + 6 K26%a2 / B 1 )E[|| @1 — ®*|?]
+ (120262 K% + 20203 /Bi_1 + 6K25%3 /3,1 )E[|®; — &1 ||*]

+ 6020 K%(1 + B?) + 202 K2L*B? + 2L°K*B%a? /11 + o /81 (3K*B? + 3K262)>
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+ (1 +ai/Bi1) (4531@4 + LOE[|®" — ;17

N

Z 18 — ' (®e—1)]I?

(14 Bi—1/a) ((1 +2Bi-1/a — 200 Kw)E {Ho:5 - yi(¢t71)||2}

4ﬁt 1L4

+4L%B7 152>

Lemma F.10
<

+ (120262 K% + 6 K26%a2 / B 1 )E[|| @1 — ®*|?]
+ (12030° K? + 2L%a} /B 1 + 6 K260 /B 1)

467, L2
N

N

E > 10—y (@)

i=1

(482, (12 + LYE[|@" — @, + +452,0%)

+ 60762 K?(1 + B?) + 202 K2 L?B? + 212 K?B%a} /31 + &} / Bi_1(3K? B? + 3K262)>
+ (1 +a/Bi-1) <4ﬂf_1(L4 + LOE[|®* — @1

Z 10: — ' (@)

(14 Bi—1/a) <(1 + 2811/ — 204 Kw)

4ﬁt 1L4

+4L%B7 152>

+ (12070°K* + 2L%0} /B + 6K26%a} /B1—1)

4@5271[’2 4@52711/4
N > + (14 ay/Bi-1) N ]

E (6} —v' @)l

+

(14 Bi—1/an) ((12&?621(2 + 6K252af/ﬁt_1)
+ (12a70° K2 + 2%} [ Br—1 + 6K26%a3 /B 1) (4B 1 (L? + L4))>

+ (1 + g /Bi—1)4B7_ 1 (L* + LO) | - E[||®* — ®;_4]?]

+ (14 B /o) (120362 K2 + 202 By + 6K20%07 /Bi-1)452,6°

+6a262K2(1 + B?) + 202 K2L2B? + 2L2K?B%3 /By + a3/ Bi1 (3K2B? + 3K262)>

+ (1 +ay/Bi—1) - AL*BE 167, (50)
This completes the proof. O
F.1.3 FINAL STEP OF PROOF FOR THEOREM 4.13

Now, we are ready to proof the desired result in Theorem 4.13.

According to the definition of Lyapunov function in (14), We have

i /3 1
M({6; 5}, @111) = [®141 — @7 + Z 10712 — v (R0

< (14 4B2(L2 + LY + (76; ) o + 2ﬁtoth2 + 6@%52)472,30/%
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+(68;/c + 68,040% (1 + L?) + 4By, L2 (3 + 4L2)) + Bi(L/ar — 2w))E[|@; — @]

4B2L2 + Bioy L 4 1630, L2 + 6B 62
+ t ttt N Xt tt Z||0t+1 Qt ||2

+ (7ﬁt/0ét =+ Q,BtOttL2 + 65t01t62)(8ﬁgl/23272 =+ 8ﬁ0(527'2) =+ 4ﬂt (52 + 116,*,0&,562
B

Qi1

+

(1 + Be/asqn) <(1 + 26 /a1 — 20441 Kw)
2 272 2 3 22 451:2L2
+ (1204t+15 K= +2L O‘t+1/5t + 6K t+1/5t) + (1 +ay1/Br)——

Z»lam y'(@)|’

(L4 Be/ous) ((120%2“52[(2 +6K%6%0,, /Br)

4821
N

—]E

+

+ (1207 1 0°K? + 2L% 0| / B + 6K26% a1 /) (4B (L? + L4))>

+ (1 + aps1/B)4BE (LY + LE) | - E[||@* — &%)

(14 B o) (1203, 02K + 218,/ + K250, 1/ 645707

+ 607, ,6°K*(1 + B?) + 207, | K°L*B* + 2L°K*B*a 1 /B + o1 /B (BK* B + 3K262))
+ (1 + agr1/Bt) ~4L26t262]. (51)

To simplify the notations, we define
Dy == (4B (L2 + L) + (TBe/y + 26,00 L2 + 65,048%)47% 53 /o
+ (684 + 6B, 6%(1 + L?) + 4810 L*(3 + 4L?)) + B L/ cvy)
B

Q41

+

(1+ Bt/cs1) ((12a§+152K2 +6K26%, | /B)
+ (1207, ,6°K? + 2L%a} 1 /By + 6 K26 1/ Be) (4B, (L* + L4)))

+ (1+ ouy1/B)4AB7 (L + LO) |, (52)

and

Dy := 4833 Joay 1 L? 4+ o2 L + 1602 L* + 606>

2712 2714
<<2ﬂt/at+l>+(12a$+162f<2+2L2a?+1/5t+6f<262 Y >+<1+at+1/ﬁt>4ﬁtL ]

N

+ | B/t <(1 + 28 /apy1 — 20441 Kw)

4B2L
N

4 2L2
+ (1204?+152K2 + 2L20‘§+1/5t + 6K2620‘t+1/5t) i ) + (14 a1/Be) ] . (53)
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+ (1447 K?L?6% + 4L* /N) Byov 41

+ (1447 K2L?6% + 4L* /N) Brovs

Since D; is of higher orders of o(3;) and D5 is of higher order of o(ayt1), we can let D1 < wp;
and Dy < Kway4 1. Therefore, we have
M({8;12}, ®i41) < (1 —wB)M({8;41}, @)
N
* 1 i i 2
B[l @ - @"[2) + - E [Z 18:41 — @) ]
i=1
+ a1 8K (36%(1 + B?) + L?B?) + 20}, (3K*B? 4+ 3K?6° + 2L* K* B?) + 8a1413:6°
< (1—wB)M({8;41}, 1)
1 N 2
E[[#: - &[°) + E [Z 1671 — v'(@0)]| ]
i=1
+ 403 K2(36%(1 + B?) + L?B?) + 202 (3K?B? 4+ 3K20 + 2L2K?B?) 4 8c; 3,0,  (54)
where the first inequality holds by omitting the higher order of learning rates, and the second in-
equality holds due to the decreasing learning rates of .

We now set the proper decaying learning rates. Let ay = a/(t + 2)%/% and 8, = By /(t + 2). We
then have

(t+2)% (1-wh) = (t+2)*(1—who)/(t+2) < (t+1)2 (55)
if wB, < 2. In addition, we have the following inequalities
(t+2)? - @B < apfolt +2)'/3,
(t+2)2-a? = ad(t+2)%
Hence, multiplying both sides with (¢ + 2)2, we have
(t+2)°M ({6, 5}, Brs1) < (t+1)°M ({841}, B1)

+ (14472 K2 1262 + 4L% /N) oo O (t + 2)/3

N
. 1 . .
E[|®, - @"|*] + LE [Z 1671 — ' (@)
i=1
+ (400 B0 K%(30%(1 4+ B?) + L2B?) 4+ 202 (3K2B? + 3K%6% 4+ 2L? K2 B?) + 809 00%) (t + 2)/3.
Summing the above equation from ¢t = 0, ..., T, we have
(T +2)*M({0;15}, ®e1) < M({67}, B0)

+ (14472 K2 1262 + 4L% /N) o 82T + 2)*/3

N
* 1 % A

E[|[® — @["] + LE lz 167 — ' (@)l
i=1

+ (40BoK?(30%(1 + B?) + L2B?) + 202(3K?B? + 3K26° + 2L? K2 B?) 4 80 800°) (T + 2)*/3.

Dividing both sides by (T + 2)2, we have

M ({83}, 20)

(T +2)2

M({oi—&-Q}a q’t—&-l) <

N . .
D116 =y (@)l

2=t

+ (400 B0 K%(30%(1 4+ B?) + L2B?) 4+ 202 (3K?B? + 3K26% 4+ 2L°K?B?) + 80 300%)(T + 2)~2/3.
This completes the proof.

1
+ (14472 K2 1262 + 4L% /N) o Bo (T + 2) =23 |E[|| @0 — ®*|?] + +E

F.2 PROOF OF COROLLARY 4.15

If g = By = o( N~Y/3K~1/2), we have

1 1 1 1
M({6i42} ®er1) < O ((T 12)2 T N2A(T 1228 T KENS/(T 228 | KENZA(T + 2)2/3) ’

which is dominated by O (
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Table 2: Parameter setting
I Parameter \ Description |
Input size 4
Hidden size 128 x 128 x 128
Output size 2
Activation function ReLu
Number of episodes 500
Batch size 64
Discount factor 0.98
€ greedy parameter 0.01
Target update 30
Buffer size 10000
Minimal size 500

Learning rate

0.002, decays every 100 episodes
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Figure 8: Comparison of control by DQN, FedDQN and PFEDDQN-REP in Cartpole Environments.
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G ADDITIONAL EXPERIMENT DETAILS

Compute resources. The experiments are performed on a computer with Intel 14900k CPU with
48GB of RAM. No GPU is involved.

PFEDDQN-REP in the CartPole environment. We evaluate the performance PFEDDQN-REP in
a modified CartPole environment (Brockman et al., 2016). Similar to Jin et al. (2022), we change
the length of pole to create different environments. Specifically, we consider 10 agents with varying
pole length from 0.38 to 0.74 with a step size of 0.04. We compare PFEDDQN-REP with (i) a
conventional DQN that each agent learns its own environment independently; and (ii) a federated
version DQN (FedDQN) that allows all agents to collaboratively learn a single policy (without per-
sonalization). We randomly choose one agent and present its performance in Figure 3(top)(a). The
results of the other agents are presented in Figure 8. Again, we observe that our PFEDDQN-REP
achieves the maximized return much faster than the conventional DQN due to leveraging shared
representations among agents; and obtains larger reward than FedDQN, thanks to our personalized
policy. We further evaluate the effectiveness of shared representation learned by PFEDDQN-REP
when generalizes it to a new agent. As shown in Figure 3(top)(b), our PFEDDQN-REP generalizes
quickly to the new environment. Detailed parameter settings can be found in Table 2.
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Figure 9: Comparison of control by DQN, FedDQN and PFEDDQN-REP in Acrobot Environments.

PFEDDQN-REP in Acrobot environment. We further evaluate FEDDQN-REP in a modified
Acrobot environment (Brockman et al., 2016). The pole length is adjusted with [-0.3, 0.3] with
a step size of 0.06, and the pole mass with be adjusted accordingly (Jin et al., 2022). The same
two benchmarks are compared as in Figure 3(top). The parameter setting remains the same except
number of episodes decreases to 100. Similar observations can be made from Figure 3(bottom) and
Figure 9 as those for the Cartpole enviroments.

G.1 MORE COMPLEX ENVIRONMENT: HOPPER

We consider another environment, Hopper from Gym, whose state and action space are both con-
tinuous. To induce heterogeneity within between the agents’ environments, we vary the length of
legs to be 0.02 + 0.001 - ¢, where ¢ is the i-th agent, while keeping other parameters (such as healthy
reward, forward reward, and control cost (the [2 cost function to penalize large actions), the same.
We increase the number of agents to 20, and plot the return with respect to the number of frames. In
addition to training, we also generate a new sampled transition to validate the algorithms’ ability to
generalize.

In order to fit the algorithm to the continuous setting, we modified the proposed algorithm to
a DDPG-based algorithm, similar to the DQN-related benchmarks. For FedQ-K, LFRL and
FedAsynQ-ImAvg, we discretize the state and action spaces. Similar to Cartpole and Acrobot envi-
ronments, our proposed PFedDDPG-Rep achieves the best reward and generalizes to new environ-
ments quickly, as shown in Figure 10.

G.2 VERIFYING THE LINEAR SPEEDUP RESULT

We now verify the main theoretical result empirically. In the personalized setting, verifying this re-
sult is not as straightforward as in the non-personalized setting because Theorem 4.13 and Corollary
4.15 hold when parameters defined across environments (e.g., 75, C, and others) remain constant as
the number of agents (environments) increases.

To properly address this issue, we design an experiment that duplicates 2 initial environments with
pole lengths 0.36 and 0.42. We duplicate these two environments with 2, 3, 4, and 5 times, thereby
obtaining situations with N = 2,4, 6,8, 10. Because of this duplication, we know that the across-
environment parameters (e.g., 7s, C, and others) remain constant.
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Figure 10: Hopper environment.

As shown in Figure 11, as we increase the number of agents, we see an approximate linear relation-
ship in the convergence time. Of course, note that in practice, there is certain amount of unavoidable
overhead in the experiments, which means the speedup will not be exactly as efficient as predicted
by theory.
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Figure 11: Linear speedup for cartpole with duplicates of environments.

G.3 COMPUTATION AND WORST CASE PERSONALIZATION ERROR TRADE OFF

We now show another experiment that quantifies the tradeoff between computation and personal-
ization quality, which we define as the worst case personalization error across agents:

max ESN i
i€[N] s

7@, 00) - v () 56)

The intuition behind this metric is that if all agents achieve good estimation error, then this metric is
small (meaning we have personalized well), but if some agents perform poorly while others perform
well, then this metric will be large (detecting that we did not personalize well).

We vary the number of agents from 2 to 10 and examine naive DQN that runs independently on
each environment, FedDQN (no personalization), and PFedDQN-Rep (our approach). In the left
panel of Figure 12, we show the computational resources needed to run each algorithm, while the
right panel shows the personalization quality. We notice that for naive DQN, we can achieve no
personalization error at the cost of high computation. At the other end of the spectrum, FedDQN
leverages parallelization and reduces the computation, but has high personalization error. Finally,
our algorithm, PFedDQN-Rep achieves the best of both worlds: low computation, while attaining
low personalization error.

40



Published as a conference paper at ICLR 2025

----- DQN —— PFedDQN-Rep - - ~FedDQN
4000 ‘ ‘ ‘ ) 60

401

20 ¢

Time to convergence(s)

N

o

o

o

\

\
\

Worst case
personalization error

2 4 6 8 10 2 4 6 8 10
Number of agents Number of agents

Figure 12: Computation versus worst case personalization error trade off.

G.4 THE EFFECT OF ENVIRONMENT DISCREPANCY ON PERSONALIZATION ERROR

Recall that in the previous Hopper experiment, we vary the length of legs to be 0.02 4 0.001 - ¢,
where ¢ is the i-th agent and 0.001 - 10 = 0.01 is the maximum pole length discrepancy between
environments. In this section, we vary the maximum pole length discrepancy between O (all 10
environments are identical) to 0.04 (the environments have substantial differences).

We compare the performance of the three algorithms that include personalization, PerDQNAvg,
FedAsymQ-ImAvg, and PFedDQN-Rep (ours). The results are in Figure 13.

‘We notice that as the discrepancy increases, all algorithm encounter degradations in personalization
quality (measured in terms of the worst case personalization error defined in (56)), but our proposed
algorithm achieves the least degradation.

60 T T
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50 | —O—PerDQNAvg
FedAsynQ-ImAvg
40
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20

10 T

Worst case
personalization error

0 0.01 0.02 0.03 0.04
Pole length discrepancy

Figure 13: Worst case personalization error with varying pole length discrepancy across environ-
ments.

G.5 ANOTHER LOOK AT PERSONALIZATION

Here, we give another look at how personalization is achieved by PFedRL-Rep. We first compute
the cosine similarity matrix of transition probabilities between pairs of agents. This represents the
similarity of environments between any two agents. After the algorithm converges, we compute the
cosine similarity matrix for the policy layer (last layer) of the neural network. This represents the
similarity of the learned policy between any two agents.

In Figures 14 and 15, we observe that all agents reach their unique personalization, and the cosine
similarity of personalization layer shows close distribution as the similarity of transition probability.
This essentially means for environments of similar transition probability matrices, their personaliza-
tion layer will reach similar stage. Since the agents share the representation layer, the heatmap stays
identical.
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Figure 14: Heatmap of Cartpole environment.
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Figure 15: Heatmap of Acrobot environment.

G.6 MORE STATISTICS OF THE EMPIRICAL RESULTS

We report the return average, variance average, return median and total running time for 10 environ-
ments for Cartpole and Acrobot environments. Among all algorithms, our PFedDQN-Rep achieves
the best return average and median, with top variance and running time, as summarized in Tables 3
and 4. We also provide a zoom-in shortened plot for both environments to show the quick adaptation
speed when sharing representations as in Figure 16.

Table 3: Statistics for Cartpole environment.

I Algorithm | Return average | Variance average | Return median | Total running time(s) ||

PFedDQN-Rep 143 43 154 466
DON 135 54 127 3840
FedDQN 101 67 88 387
FedQ-K 112 34 107 490
LFRL 117 47 99 434
PerDQNAvg 127 48 131 520
FedAsynQ-ImAvg 119 51 117 501
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Table 4: Statistics for Acrobot environment.

I Algorithm | Return average | Variance average | Return median | Total running time(s) |
PFedDQN-Rep -42 37 -29 618
DQON -63 67 -57 5854
FedDQN -714 162 -625 571
FedQ-K -213 41 -202 621
LFRL -207 58 -194 676
PerDQNAvg -295 64 =277 602
FedAsynQ-ImAvg -191 36 -186 664
----- PFedDQN-Rep ~-=-DQN FedDQN FedaK ~-=-PFedDQN-Rep -+-DQN FedDQN FedQ-K
s PerDQNAvg ~-- FedAsynQ-ImAvg ——-LFRL === PerDQNAvg -~ FedAsynQ-ImAvg
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Figure 16: Shortened plot for cartpole and acrobot environment.
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