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ABSTRACT

Accelerated diffusion models hold the potential to significantly enhance the ef-
ficiency of standard diffusion processes. Theoretically, these models have been
shown to achieve faster convergence rates than the standard O(1/¢?) rate of vanilla
diffusion models, where € denotes the target accuracy. However, current theoretical
studies have established the acceleration advantage only for restrictive target distri-
bution classes, such as those with smoothness conditions imposed along the entire
sampling path or with bounded support. In this work, we significantly broaden
the target distribution classes with a new accelerated stochastic DDPM sampler.
In particular, we show that it achieves accelerated performance for three broad
distribution classes not considered before. Our first class relies on the smoothness
condition posed only to the target density g, which is far more relaxed than the
existing smoothness conditions posed to all ¢; along the entire sampling path. Our
second class requires only a finite second moment condition, allowing for a much
wider class of target distributions than the existing finite-support condition. Our
third class is Gaussian mixture, for which our result establishes the first accelera-
tion guarantee. Moreover, among accelerated DDPM type samplers, our results
specialized for bounded-support distributions show an improved dependency on
the data dimension d. Our analysis introduces a novel technique for establishing
performance guarantees via constructing a tilting factor representation of the con-
vergence error and utilizing Tweedie’s formula to handle Taylor expansion terms.
This new analytical framework may be of independent interest.

1 INTRODUCTION

Generative modeling is a fundamental task in machine learning, aiming to generate samples out
of a distribution similar to that of training data. Classical generative models include variational
autoencoders (VAE) (Kingma & Welling, 2022), generative adversarial networks (GANs) (Goodfellow
et al., 2014), and normalizing flows Rezende & Mohamed (2015), etc. Recently, diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019) have arisen as an appealing
generative model and have received wide popularity due to their excellent performance over a variety
of tasks and applications as summarized in many surveys of diffusion models (Yang et al., 2023;
Croitoru et al., 2023; Kazerouni et al., 2023).

The empirical success of diffusion models has also inspired extensive theoretical studies, aiming to
characterize the convergence guarantee for diffusion models. The convergence rate (i.e., the total
number of steps to attain a target accuracy ¢) for standard vanilla Denoising Diffusion Probabilistic
Models (DDPM:s) has been established to be O(¢~2) for wide classes of target distributions (Chen
et al., 2023a; Benton et al., 2024a; Conforti et al., 2023) (see Appendix A for a more complete
summary). More recently, various accelerated samplers have been proposed and been shown to
achieve an improved convergence rate of O(e~1). One such acceleration approach is to redesign the
(stochastic) DDPM reverse process. This includes augmenting the original reverse process with an
additional estimate (Li et al., 2024c), introducing intermediate sampling points along the generation
path (Li et al., 2024a), and employing special Markov-chain Monte-Carlo (MCMC) algorithms
(Huang et al., 2024b). Another acceleration method is to sample with the corresponding probability
ODE (Li et al., 2024c¢; Chen et al., 2023c; Huang et al., 2024a; Li et al., 2024d).
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Target distribution (), Method Num of steps Results
Vlogqs, s; L-Lips. Vi | ODE-based | O (@) (Chen et al., 2023¢, Thm 3)
V log ¢; L-Lips. Vt DDPMaccl. | O (W—L) (Huang et al., 2024b, Thm 4.4)1
p+1 *
|0ksi(x)| < LVa,t,a ODE o (d 2 ) (Huang et al., 2024a, Thm 3.10)f
and Vk < p+ 1, Qo v
Bounded Support
V2log qo M-Lips. DDPM accl. | O (W) (This paper, Thm 4)
Qo Gaussian Mixture DDPM accl. O (dl °NT 5) (This paper, Thm 2)
(Li et al,, 2024c, Thm 4)
DDPM accl. o ( ) (Li et al., 2024a, Thm 2)*
Qo Bounded Support ODE o ( & ) (Li et al., 2024c, Thm 2)
Ve (Li et al., 2024a, Thm 1)1
ODE %) (d?) (Li et al., 2024c, Thm 1)
(o Finite Variance DDPM accl. o (4 ) (This paper, Thm 3)

Table 1: Summary of accelerated convergence results in terms of the number of steps needed to
achieve e-accuracy in total variation, where d is the dimension. For Gaussian mixture, assume
that N < d. The first 4 rows of this table correspond to the results under those target distributions
with some smoothness conditions imposed, while the last 4 rows correspond to the results under
(possibly) non-smooth targets with finite variance. (x) Those results correspond to an early-stopped
procedure that compares the sampling distribution to Q1(0), where W2 (Qo, Q1)2 < dd. Here the
dependencies on 0 are omitted. (1) Those studies are concurrent to our work based on the time that
they were posted on arXiv. Note that this table does not include the studies within two months of the
conference submission, but those are discussed in the related works.

However, existing results on the acceleration guarantee suffer from strong assumptions on the target
distribution. (i) For smooth target distributions, the analyses of Chen et al. (2023c); Huang et al.
(2024a;b) require that all the scores (or their close estimates or both) satisfy certain Lipschitz-smooth
condition along the entire sampling path, i.e., the smoothness condition is posed to the density q; for
all iteration time ¢t. However, such smoothness at intermediate steps is generally restrictive and hard to
verify in practice. (ii) For (possibly) non-smooth targets, the analysis of Li et al. (2024a;c;d) requires
the distribution to have finite support for early-stopped sampling procedures. Such an assumption
is, however, restrictive if compared to that for early-stopped vanilla samplers, where convergence
guarantees have been established only under the assumption of finite variance (Chen et al., 2023a;
Benton et al., 2024a). The above discussions raise the following important open question:

Question 1: Can we obtain an accelerated convergence rate for a much broader set of target
distributions? Namely, for smooth target distributions, can the smoothness condition be imposed
only on the target distribution; and for (possibly) non-smooth targets, can we broaden the target
distribution to only have finite variance?

Further, the existing accelerated diffusion samplers suffer as high dimensional dependencies as
O (d®) or O (d?) (Li et al., 2024a;c) for target distributions with bounded support. This motivates us
to explore the following intriguing question:

Question 2: While addressing Question 1 to relax the assumption from finite support to finite variance
for possibly non-smooth distributions, can we achieve a lower dimensional dependency?

This paper will provide affirmative answers to both of the above questions.

1.1 OUR CONTRIBUTIONS

Our main contribution is to provide accelerated convergence results for a significantly wider range
of distributions than those addressed in previous works (see Table 1 (particularly column 1) for a
comparison). To this end, we design a new accelerated stochastic DDPM sampler and develop a
novel analytical technique that characterizes its acceleration guarantees across this broader spectrum
of distributions. Our detailed contributions are summarized as follows.
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Broadening Target Distributions: Inspired by optimization methods, we design a new Hessian-
based accelerated sampler for the stochastic diffusion processes. We show that our accelerated
sampler achieves an accelerated convergence rate of O (d'® min{d, N}!:5/¢), O (d'-/¢), and

@ (dl Slog!® M / 5) respectively for Gaussian mixtures, any target distributions having finite variance
(with early-stopping), and any target distributions having M -Lipschitz Hessian of log-densities. In
particular, (i) for smoothness (g that has p.d.f., the smoothness condition is only imposed on the
log-density of (o, which is much less restrictive than that imposed on all ();’s (Chen et al., 2023c;
Huang et al., 2024a;b); (ii) for possibly non-smooth QJg, we only require () to have finite variance
for the early-stopped procedure, which is a much broader class of distributions than those having
bounded support (Li et al., 2024a;c;d); (iii) we provide the first accelerated convergence result for
Gaussian mixture Qg’s.!

For possibly non-smooth targets with bounded support, our sampler improves the dependency of the
convergence rate on d by O (d1'5) compared with previous accelerated diffusion samplers (Li et al.,
2024a;c).

Novel Analysis Technique: We develop a novel technique for analyzing the accelerated DDPM
process. Our approach features two new elements: (i) characterization of the error incurred at each
discrete step of the reverse process using tilting factor; and (ii) analysis of the mean value of tilting
factor via Tweedie’s formula to handle power terms in the Taylor expansion. Such a technique enables
us to (a) analyze more general distributions beyond those with restrictive distribution assumptions;
(b) tightly identify the dominant term and reduce the dimensional dependency; and (c) handle the
estimation error in accelerated samplers for both score and Hessian estimation. This analytical
framework is different from the main previous theoretical techniques for analyzing the convergence
of diffusion models: (a) the SDE-type analysis for regular diffusion samplers (Chen et al., 2023a;
Benton et al., 2024a; Conforti et al., 2023), (b) any ODE-type analysis (Li et al., 2024d; Huang et al.,
2024a; Gao & Zhu, 2024), and (c) the use of typical sets (Li et al., 2024a;c).

1.2 RELATED WORKS ON ACCELERATED SAMPLING

Here, we focus on the related studies of accelerated samplers. Note that all of these works we discuss
below, only except Chen et al. (2023c;e); Li et al. (2024c), are concurrent to or after ours based on
their posting time on arXiv. In Appendix A, we provide a thorough summary of convergence analysis
of standard samplers as well as other theoretical perspectives of diffusion models.

Accelerated Stochastic Samplers: In Li et al. (2024c), accelerated stochastic variants to the original
DDPM sampler are proposed and analyzed, when there is no estimation error. In Li et al. (2024a), a
new accelerated stochastic sampler are proposed by inserting intermediate sampling points along the
diffusion path. Both algorithms are analyzed only when the target distribution has bounded support
and suffer from large dimensional dependencies. In Huang et al. (2024b), the authors proposed the
RTK-MALA and RTK-ULD algorithms which uses MCMC algorithms, such as the Metropolis-
adjusted Langevin Algorithm or the Underdamped Langevin Dynamics, at each diffusion step. The
analysis is performed under the assumption that all the scores of log ¢;’s are Lipschitz-smooth. In
comparison, our work substantially broadens the set of target distributions to include those with
unbounded support and with smooth log-density only imposed upon Q)¢ with a completely different
analytical technique. Our result also improves the dimensional dependencies of accelerated stochastic
samplers in Li et al. (2024a;c) for distributions with bounded support.

Deterministic Samplers: Beyond stochastic samplers, another line of research to achieve an accel-
erated convergence rate is to sample from the corresponding probability flow ordinary differential
equation (PF-ODE). Early work provided polynomial guarantees under rather restrictive Lipschitz
conditions Chen et al. (2023e). Later in Chen et al. (2023c), an accelerated convergence rate was
first derived with the DPUM sampler by mixing the deterministic predictor steps with stochastic
corrector steps. The analysis was performed under the assumption of Lipschitz V log ¢;’s and s;’s.
Note that this assumption is relatively restrictive and hard to verify in practice. After that, for target
distributions having bounded support, Li et al. (2024c) provided the first analysis of a purely deter-
ministic sampler (along with an accelerated deterministic sampler), albeit with a high dimensional
dependency. Recently, under strong assumptions on s;’s, Huang et al. (2024a) provided an acceler-
ated rate using the p-th order Runge-Kutta time integrator for ODEs for those target distributions

! Although the technique in Huang et al. (2024a) may be applied to Gaussian mixtures, the authors do not
provide explicit dependencies in their paper. Also, Huang et al. (2024a) is posted on arXiv after our first draft.
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having bounded support. Specifically, for first-order Runge-Kutta methods, it is assumed that the
first two orders of partial derivatives of s;’s are uniformly bounded in space and time, which implies
Lipschitz-smoothness of s; and its derivative along the entire sampling path. Most recently, Li
et al. (2024d) obtained a linear convergence rate both in d and e~ ! using PF-ODEs as long as s;’s
(and their derivatives) are well estimated. However, it is analyzed only on bounded-support targets.
Beyond these works, further acceleration to deterministic samplers is sought in Li et al. (2024a;c) that
gives the convergence rate of (9(5*1/ 2), which are still performed under bounded-support targets. In
comparison, our work substantially broadens the target distributions to include those with unbounded
support (yet with finite variance) while achieving an accelerated convergence rate.

2 PRELIMINARIES OF DDPM
In this section, we provide the background of the DDPM sampler (Ho et al., 2020).

2.1 FORWARD PROCESS

Let zo € RY be the initial data, and let z; € R%, ¢ € {1,...,T} be the latent variables in the diffusion
algorithm. Let Q¢ be the initial data distribution, and let ); be the marginal latent distribution at
time ¢ in the forward process, for all 1 < ¢ < T'. In the forward process, white Gaussian noise is

gradually added to the data: z; = /1 — Byxs_1++/Brwy, YVt € {1,..., T}, where wy i N(0, Iy).
Equivalently, this can be expressed as a conditional distribution at each time ¢:

Qt\t—l(wtmtfl) = N(xt; V1= Bixi_1, Bila), (D

which means that under @, Xog — X1 — -+ — Xp. Here 8; € (0, 1) captures the “amount” of
noise that is injected at time ¢, and (3;’s are called the noise schedule. Define

Qi Izl—ﬁt, Q1= szlai, 1§t§T
An immediate result by accumulating the steps is that
Qejo(xt|o) = N (24 Vayxo, (1 — ar)1a), ()

or, written equivalently, z; = /@0 ++/1 — agwy, Vt € {1,...,T}, where w; ~ N(0, I;) denotes
the aggregated noise at time ¢. Intuitively, for large 7', since Qo &~ N (0, I;) (which is independent
of ), it is expected that Q1 ~ N (0, I;) when T becomes large, as long as the variance under Q) is
finite. Finally, since the conditional noises are Gaussian, each Q;(¢ > 1) is absolutely continuous
w.r.t the Lebesgue measure. Let the corresponding p.d.f. of each Q¢ be ¢;(t > 1). Similarly define
qt,t—1> q¢)t—1- and g;_1|; for ¢ > 1. In case Qo is also absolutely continuous w.r.t. the Lebesgue
measure, let gg be the corresponding p.d.f. of Q.

2.2 REGULAR REVERSE PROCESS

The goal of the reverse sampling process is to generate samples approximately from the data
distribution QQg. We first draw the latent variable at time 7" from a Gaussian distribution: x7 ~
N(0, I;) =: Pr. Then, to achieve effective sampling, each forward step is approximated by a reverse
sampling step, in which the mean matches the posterior mean of ;1 ;. Define

pe(ae) = \/%Tt (@t + (1 — ) Viog g () - 3)

Here V log g:(x) is called the score of g, which can be estimated via a training process called
score matching. Ateachtimet = T,T — 1,...,1, the true regular reverse process is defined as
2 1 = pe(x4) + 02, where z ~ N(0, I;). Two choices of o are commonly used in practice, where
o?=1—-q oro? = 13‘7‘;1 (1 — ay), and similar results are reported for these choices (Ho et al.,
2020). Let P; be the marginal distributions of z; in the true regular reverse process, and let p; be the
corresponding p.d.f. of P, w.r.t. the Lebesgue measure.

2.3 METRICS

In case where () is absolutely continuous w.r.t. the Lebesgue measure, we are interested in measuring
the mismatch between () and P through the total-variation distance, defined as

TV(Q, P) = SUP ACB(RY) |Q(A) — P(A)]

4
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where B(R?) contains all Borel-measureable sets in R?. This metric is commonly used in prior
theoretical studies (Chen et al., 2023a). From Pinsker’s inequality, the total-variation (TV) distance is
upper bounded as TV(Q, P)? < 1KL(Q||P), where the KL divergence is defined as KL(Q|| P) :=

J log dQ > 0. Thus, we control the KL divergence when @ is absolutely continuous w.r.t. P.

When ¢¢ does not exist (say, when g has point masses), we use the Wasserstein distance to
measure the mismatch at ¢t = 0, namely W1(Qg, Q1), which is a technique commonly adopted
(Chen et al., 2023a; Benton et al., 2024a). The Wasserstein-2 distance is defined as Wa(Qq, Q1) :=
\/minFEH(QO)Ql) Jpasga llz — y|I> d0(z, y), where TI(Qo, Q1) is the set of all joint probability
measures on R? x R? with marginal distributions Qg and @1, respectively.

3 ACCELERATED DIFFUSION SAMPLER

To generate samples from the data distribution (J, the idea of DDPM is to design a reverse process
in which each reverse sampling step well approximates the corresponding forward step. Below,
we propose a new accelerated sampler along with a new variance estimator, in which both the
conditional mean and variance of the reverse process match the corresponding posterior quantities.

3.1 ACCELERATED REVERSE PROCESS

Ateachtimet = T,T —1,...,1, define the true accelerated reverse process as ;1 = p(x) +
Y72 (x4)z, where p is defined in (3), z ~ N (0, I4), and (cf. Lemma 8)
() = 1= Lo (Ia+ (1 — ) V2 log g4 (¢)) - 4)

Let P/ be the marginal distributions of x; in the true accelerated reverse process, and let p; be the
corresponding p.d.f.. Thus, the transition kernel can be written as P/, , = = N(ze—1; pe (), Be(xe)),

and we let P := Pr = N (0, I4). When (1 — «) is vanishing for large 7", 3;(z;) > 0 for all large
T’s, and thus the conditional Gaussian process is well-defined.?> The above accelerated sampler has
a close relationship to Ozaki’s discretization method to approximate a continuous-time stochastic
process (Ozaki, 1992; Shoji, 1998; Stramer & Tweedie, 1999).

In practice, one has no access to either V log ¢; or V2 log ¢;. Thus, their estimates, denoted as s; and

~1
H;, are used. Define the estimated accelerated reverse process: x;—1 = fir(x) + X7 (z+)z, where
fe(we) =z + (1 — ay)se(x4), )
it((ﬂt) = I;fét (Id + (1 — Olt)Ht(.’Et)) . (6)

Here, s, can be obtained through score-matching (Song & Ermon, 2019). In Section 3.2, we propose

an estimator for V2 log q;, which we refer to as Hessian matching. Let ﬁt’ be the marginal distributions
of x; in the estimated reverse process with corresponding p.d.f. p}.

3.2 HESSIAN MATCHING ESTIMATOR FOR ACCELERATION
Below we provide a method to obtain H,(z), which estimates V2 log g; (). Note that

V?log g () = %’(I) (Vlog gi(x))(Vlog s (x))T

= (Tl + o n) - L (Vieg (@) (Vieg ()T, (D)

Apart from the original score estimate, we require an additional Hessian estimate:

vg(Xit) — (Vqtq(t)((i(t I—a )H

In order to train for vy, the following lemma provides an analogy to score matching, which we refer
to as Hessian matching.

Ut (33) = arg minvg:]Rd—HRdXd EXtNQt

*More rigorously, we can project the matrices ¥ and ¥; onto the space of positive-semi definite (PSD)
matrices for those x;’s where either of these two matrices is not PSD. Since the probability of the events
containing such bad z+’s decreases to zero asymptotically, all theoretical results in this paper, which are derived
in expectation, will not be affected.
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Lemma 1. With the forward process in (1), we have
Vg, (X, 2
vg(Xt) — ( qtq()((t)) + 15 Id)HF

’ua(\/@(o +VT=aW,) — 2 W)

arg minvg :RI—RAXd EXtNQt

2

= argmin,, .pd_,Rdxd E(Xo,Wt)NQO@)N(O,Id) F

With the Hessian estimate v; using Lemma 1, from (7), an estimate for V2 log ¢;(z) is given by
Hi(z) = vi(z) — 1—7154,5['1 — s¢(x)s] (). (8)

With the estimator of H; in (8), the Hessian-based sampler using the 3; later in (9) is the same as the
accelerated stochastic sampler in Li et al. (2024c¢). Yet, our analysis is applicable when estimation
errors exist, whereas in Li et al. (2024c) the estimators are assumed to be perfect for the accelerated
sampler. In the literature, several other estimators have been proposed for higher order derivatives
of log ¢;(x) (Meng et al., 2021; Lu et al., 2022; Dockhorn et al., 2022). In our paper, we proposed
another method, the Hessian matching method, which can guarantee accurate Hessian estimations
with extra computation resources. Yet, our analysis can be applied to any estimator for H; as long as
Assumption 3 is satisfied.

4  ACCELERATED CONVERGENCE BOUNDS FOR BROADER TARGETS

In this section, we provide convergence guarantees for the accelerated stochastic samplers for general
Qo. We will first establish our main result for smooth (g, and then extend it for more general
(possibly non-smooth) ()o. We will also provide a sketch of proof to describe key analysis techniques.

4.1 TECHNICAL ASSUMPTIONS FOR ACCELERATED SAMPLER

We first provide the following four technical assumptions for the accelerated sampler.

Assumption 1 (Finite Second Moment). There exists a constant M5 < oo (that does not depend on
d and T)) such that Ex, ., || Xo* < Mad.

Assumption 2 (Absolute Continuity). @ is absolutely continuous w.r.t. the Lebesgue measure, and
thus g exists. Also, suppose that qq is analytic * and that go () > 0.

The above Assumptions 1 and 2 are commonly adopted in the literature (Chen et al., 2023a;d).
Assumption 3 (Score and Hessian Estimation Error). The estimates s;’s and Hy’s satisfy

A S Ex,mo, 156(X0) = Vieg g (X)|* < €2 = O(T2),
A Exomo, |[Hi(X0) — V2log qi(Xo)|| 5 < e = O(T ).

10
Also, suppose that H; satisfies sup,> (EXtNQt HHt(Xt)H[) =0(1).

The above assumption (Assumption 3) describes the estimation error for both the score and Hessian.
In particular, compared with regular samplers, the score function needs to be estimated at a higher
accuracy in order to achieve acceleration. Such higher accuracy is also required in previous analyses
of ODE samplers (e.g., Li et al. (2024a;d)). The regularity condition on H; can be satisfied, for
example, when || H|| is bounded as O(1). As another example, it suffices that | H;(x)|| has a
polynomial upper bound in z when @), is sub-exponential. In Lemma 2 (in Appendix C), we provide
sufficient conditions such that the H; in (8) satisfies Assumption 3.

Assumption 4 (Regular Partial Derivatives). Forallt > 1,¢ > 1,and a € [d]P such that |a| = p > 1,

Ex,~q. |05 1ogq:(X)| = O (1), Ex,~q, 105 loggi-1(p(X2))| = O(1).
When ¢ does not exist, this is required only for t > 2.4

The above regularity assumption (Assumption 4) on the partial derivatives is needed for our analysis
based on Taylor expansion. It is rather soft, and it can be verified on the following two common cases:
(1) when @ has finite variance, and (2) when @) is Gaussian mixture (see Section 5). Case 1 clearly
covers a broad set of target distributions of practical interest, such as images, and many theoretical
studies of diffusion models have been specially focused on such a distribution (Li et al., 2024a;c).
Case 2 has also been well studied for diffusion models (Chen et al., 2024; Gatmiry et al., 2024).

3Here a function is analytic if its Taylor series converges to the functional value at each point in the domain.
*In the Appendix, we have provided the more general Assumption 5 under which Theorem 1 would hold.
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4.2 ACCELERATED CONVERGENCE BOUNDS

We first define a new noise schedule as follows, which will be useful for acceleration.
Definition 1 (Noise Schedule for Acceleration). For large 7"s, the step-size o satisfies that

1_at§10’§“T7Vt€{1a---7T}a @T:HZ;IO%:O(T_Q)'

When ¢y does not exist, the upper bound on 1 — a4 is only required for ¢ > 2.

In Definition 1, the upper bound on 1 — o requires that o is large enough to control the reverse-step
error, while the upper bound on & requires that «; is small enough to control the initialization error.
An example of « that satisfies Definition 1 is the constant step-size: 1 — ay = ClogT , Vt > 1 with

T —c 1o,
¢ > 2. Then, ar = (1 — %) = exp (Tlog (1 — %)) =0 (eT%) =o(T72).
Thus, such «; satisfies Definition 1.

The following theorem provides the first convergence result for accelerated diffusion samplers for
general smooth target distributions that have finite second moment (along with some mild regularity
conditions). The complete proof is given in Appendix D.

Theorem 1 (Accelerated Sampler for Smooth Qo). Under Assumptions 1 to 4, with the oy satisfying
Definition 1, we have

KL(QOHﬁO) (logT)E + log T H
+ Zt (1= Oét) Ex,~q. Zz k=1 971 10g qr—1 (1 ( X)) 03y, log qe (X

Theorem 1 characterizes the convergence in terms of KL divergence (and thus TV distance) for
smooth (possibly unbounded) . The bound in Theorem 1 will be further instantiated with explicit
dependency on system parameters for example distributions )y in Section 5. To further explain
the upper bound in Theorem 1, the first two terms arise from the score and Hessian estimation
error, and the last term captures the errors accumulated during the reverse steps overt =7T),...,1,
which can be further bounded by O(T ’2) under Assumption 4 (cf. (52)). Thus, when 5%{ satisfies
Assumption 3, the upper bound in Theorem 1 can be more explicitly characterized w.r.t. T" as
KL(Qo||Po) < O(T~2) + (log T)e2 (where the dependency on d will be explicitly characterized
for specific distributions in Section 5). Thus, in order to achieve O(¢?) error in KL divergence, the
number of steps required is O(¢~1). This improves the dependency of the convergence rate on ¢ of
the regular sampler by a factor of O(e~1).

We next extend Theorem 1 for smooth Q) to general () that can be possibly non-smooth and hence
the density function gy does not exist. Such distributions occur often in practice; for example, when
Qo has a discrete support such as for images, or when @) is supported on a low-dimensional manifold.
For non-smooth @)y, its one-step perturbation ()1 does have a p.d.f. g;, which is further analytic
(Lemma 6). This enables us to apply Theorem 1 on )1 to obtain the following convergence bound.
Also, we use the Wasserstein distance to measure the perturbation between )y and @)1 (Chen et al.,
2023d;a; Lee et al., 2023).

Corollary 1 (General (possibly non-smooth) Q). Under Assumptions 1, 3 and 4, if the noise

schedule satisfies Definition 1 att > 2, the distribution P; satisfies
KL(Q:[|Pf) S(log T)e? + 5L,
+ 31— Oét) Ex, Q0 3t et 51108 qim1 (110(X0)) 02, log 1 (Xy),
where Q1 is such that W2(Qo, Q1) < (1 — aq)d.
In particular, Corollary 1 applies to any general target distribution when the second moment is finite.

4.3 PROOF SKETCH OF THEOREM 1

We next provide a proof sketch of Theorem 1 to describe the idea of our analysis approach. The full
proof is provided in Appendix D. Our approach is very different from previous SDE-type approaches,
which invoke Fokker-Planck equation to express the evolution of p.d.f. and use Girsanov’s Theorem
to bound the divergence, both along the continuous diffusion path. In comparison, we develop a
novel Bayesian approach based on tilting factor representation and Tweedie’s formula to handle
power terms, which is applicable to a much wider class of target distributions, including those having
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infinite support. In particular, compared with Li et al. (2024a;c;d), our approach does not assume that
the target distribution has finite support.

To begin, we decompose the total error as

KL(Qo||P)) < Expngnr {log fﬁg]

initialization error

’
T Py_qye(Xe—1|X3) T Gr—1)t(Xt—1]X¢)
+2 i Ex, X 1~Quin {log 1 (Xe11%0) + 2 =1 Exo X @i [log P KXo |

estimation error reverse-step error

The initialization error can be bounded easily (Lemma 3). Below we focus on the remaining two
terms in five steps.

Step 1: Bounding estimation error (Lemma 4). At each time ¢ = 1,...,7, rather than upper-
bounding via typical sets as in Li et al. (2024c), we directly evaluate the expected value of

log(p}_ ¢ (#e—1|2e) /Dty (€1—12¢)). This is straightforward since P/, , and ﬁt’_l‘t
sian. We then use Taylor expansion for the log det(-) function and the matrix inverse to identify the

dominant-order terms under the mismatched variance.

are Gaus-

Step 2: Tilting factor expression of log-likelihood ratio (Lemmas 5 and 6 and Equation (20)).
With Bayes’ rule, we show that g;_;; is an exponentially tilted form of p;ffl\t with tilting factor:

Ct/,tfl = (Vlog qi—1(pe) — VarViog qi(x4)) T (w1 — p1s)
+ 2 (@em1 — )T (V2 log qi—1(pe) — 724 Bt(%)) (w1 — pe) + Z;o:z; Tp(logqi—1,Te—1, fit).

where By (x;) describes the correction due to the modified variance for acceleration (see (14)), and
T, (f,z, 1) is the p-th order Taylor power term of function f around « = . With this tilting factor,
we can upper-bound the reverse-step error as, for each fixed x,

qe—1)t(Xe—1]ze)

EXt—hXtNQtfl,t {log pzfui(xf*l‘wf) < EXhthlNQt,t—l [Q,t—l] - EXt~Qt7Xt71NPt,71H [Ct/,t—l]'
For regular DDPMs, there is no control for the variance of the reverse sampling process, and thus
B;(x¢) = 0. In this case, the dominating rate is determined by the expected values of T5. With the
variance correction in our accelerated sampler, the corresponding By (z:) enables us to cancel out
the second-order Taylor term (see Lemma 11). As a result, the rate-determining term becomes the
expected values of T3, which decays faster. Thus, the acceleration is achieved.

Step 3: Explicit expressionfor Ex, g, x, ,~ Py,
of g;,H, this step can be reduced to calculating the expected values of the power terms, which are
the Gaussian centralized moments. They are calculated using the classical Isserlis’s Theorem.

[¢t.+—1] (Lemma 7). Given the Taylor expansion

Step 4: Explicit expression for Ex, x, ,~q,, ,[(;; 1] (Lemmas 8 to 10). While Q;;_; is
Gaussian, (;_1; is not Gaussian in general, rendering the calculation of all moments non-trivial.
To calculate posterior moments, we extend Tweedie’s formula (Efron, 2011) in a non-trivial way.
Whereas the original Tweedie’s formula provides an explicit expression for the posterior mean for
Gaussian perturbed observations, we explicitly calculate the first six centralized posterior moments
and provide the asymptotic order of all higher-order moments, drawing techniques from combinatorics.
The results also justify the expressions of y; and ¥, in (3) and (4).

Step 5: Bounding reverse-step error (Lemma 11) In order to employ the moment results for
Taylor expansion, we guarantee that it is valid to change the limit (in the Taylor expansion) and the
expectation operator. Finally, substituting the calculated moments into Ex, x, ,~q,,_,[(i¢—1] —

Ex,~Qu, X 1~ Py, [¢f.+—1] and noting that higher-order partial derivatives do not affect the rate (by

Assumption 4), we can determine the dominating term and obtain the desirable result.

5 EXAMPLE )y’S: ACCELERATED CONVERGENCE RATE WITH EXPLICIT
PARAMETER DEPENDENCY
Now, we specialize Theorem 1 and Corollary 1 to several interesting distribution classes, for which

convergence bounds with explicit dependency on system parameters can be derived. The key is to
locate the dependency in the dominating terms in the reverse-step error.
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5.1 GAUSSIAN MIXTURE Qg

We first investigate the case where () is Gaussian mixture. This is a rich class of distributions with
strong approximation power (Bacharoglou, 2010; Diakonikolas et al., 2017). The following theorem
establishes the first accelerated convergence result with explicit dimensional dependencies for such a
distribution class.

Theorem 2 (Accelerated Sampler for Gaussian Mixture Qo). Suppose that Qg is Gaussian mixture,

whose p.d.f. is given by qo(xo) = 22;1 Tnqo,n (o), where qo ,, is the p.d.f. of N (10,n, Xo,n) and

7 € [0, 1] is the mixing coefficient where 25:1 7w, = 1. Under Assumption 3, if the o satisfies
Definition 1, we have

D 3 min 31og® og2
KL(Qo||B)) < it N7l Ty (160 T)e2 4 log T2

Therefore, for any Gaussian mixture target ()9 with N < d, it takes the accelerated algorithm
O (d'°N'5/¢) steps to reach convergence under accurate score and Hessian estimation. This is the
first result for accelerated DDPM samplers to achieve an accelerated convergence rate for Gaussian
mixture targets under score and Hessian estimation error. Compared with the results for regular
samplers, the number of convergence steps improves by a factor of O(c~1).

The proof of Theorem 2 is non-trivial because in order to show that Assumption 4 holds for Gaussian
mixture distributions with any a; according to Definition 1, it is generally difficult to evaluate and
provide an upper bound for all orders of partial derivatives of the logarithm of a mixture density. To
this end, we employ the multivariate Fad di Bruno’s formula (Constantine & Savits, 1996) to develop
an explicit bound (Lemmas 13 and 14).

Below we numerically evaluate the performance of our Hessian-accelerated DDPM when @ is

Gaussian mixture. The original accelerator requires calculating the square-root matrix of ¥; (see
(4)), which might be computational burdensome. Below, we propose an approximated Hessian-based

accelerated sampler, where i, is still defined in (5) and it is replaced by f)t(xt) where

3 —oy — O 2 e . L=y — Qg 2
Yi(we) = % (Ia+ 1522V iog qi(we)) ™, Silay) == 1Tt (Ig+ 522 Hy(zy)) " ©)

[

With a similar tilting-factor analysis as in Theorem 1, we can verify that the approximated sampler
still achieves an accelerated convergence rate (see Corollaries 2 and 3 and Remark 3).

In Figure 1, we compare the following four accelerated samplers: (1) the regular DDPM sampler
(in blue); (2) our Hessian-accelerated sampler (in red); (3) the accelerated stochastic sampler in Li
et al. (2024a) (in cyan); and (4) the deterministic sampler using PF-ODE, which is analyzed in Li
et al. (2024c;d); Huang et al. (2024a). Here N = 4 and d = 4. The performance is averaged over 30
different trials. In a single trial, 200000 samples are used to estimate the KL divergence. The o in
(10) is used with ¢ = 4 and § = 0.001. From the comparison, it is observed that our Hessian-based
sampler achieves the best convergence (at similar computation levels) in non-asymptotic regimes.

.. - Regular
- Hessian-accelerated

- Acceleration by Gen Li et al
ODE

- Regular

- Hessian-accelerated

- Acceleration by Gen Li et al.
ODE

RRR)
IRER)

KL(Qo[Po)
-
»

e
I < =S P

10! 102
T Trial Computation Time (sec)

Figure 1: Comparison of different accelerated samplers for Gaussian mixture (Jo’s. The z-axes are
the number of steps (left) and the computation time of a trial (right), respectively.

5.2  FINITE VARIANCE Q9 WITH EARLY-STOPPING
Next, we specialize Corollary 1 to a special noise schedule, first proposed in Li et al. (2024c):

t
1—at:‘:1°7§Tmin{6(1+Cb7§T),1},V2§t§T, (10
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and 1 — a; = 4. Here c and ¢ satisfy that ¢ > 2 and de® > 1. Intuitively, J characterizes the amount
of perturbation between (), and )y (Lemma 12). Note that any noise schedule satisfying the above
condition also satisfies Definition 1 at ¢ > 2 (see (49)), and hence Corollary 1 still holds here.
Theorem 3 (Accelerated Sampler for ()¢ with Finite Variance). Under Assumptions 1 and 3, using
the o defined in (10) with ¢ > 2 and ¢ < log(1/0), we have

o~ 3 o 3 o 3 ° 2
KL(Qy||B) < Sl Wl T | (1 7)c2 4 Lo T 2

where Q1 is such that W(Qo, Q1)* < éd.

Theorem 3 indicates that for any )y having finite variance, it takes the accelerated algorithm
O (d*® log'?(1/6)/ £) steps to approximate an early-stopped data distribution Q1 within O(2) error
in KL divergence (or O(¢) in TV distance). For early-stopped procedures, this theorem significantly
relaxes the previous assumption on the target distribution that requires () to have bounded support
(Li et al., 2024a;c; Huang et al., 2024a; Li et al., 2024d). Compared to previous accelerated diffusion
samplers for bounded-support targets (Li et al., 2024a;c), our number of convergence steps to achieve
e-TV distance has improved by a factor of O(d*%).

The proof of Theorem 3 involves the following novel elements. (i) Verifying Assumption 4 requires
evaluating and providing an upper bound for all orders of partial derivatives of the logarithm of
a continuous mixture density. Differently from the case of Gaussian (discrete) mixture, here we
can only have an upper bound in expectation (i.e., in £LP(Q;)) (Lemma 15). (ii) The second half of
Assumption 4 requires an upper bound for the one-step perturbed score, which can be shown using
the change-of-variable formula and the data processing inequality for large 7' (Lemmas 16 and 17).

5.3 Qo WITH LIPSCHITZ HESSIAN LOG-DENSITY

With the o in (10), we derive a convergence result when only the log-density of Qg is smooth.
Theorem 4 (Accelerated Sampler for Smooth Hessian Log-Density). Suppose that V* log qo(x) is
2-norm M -Lipschitz. This means that AM > 0 such that

HV2 log qo(z) — V? logqo(y)H <Mlz—y|, Va,yecRd

e

Then, under Assumptions 1 and 3, using the o in (10) with § = 1/(M3T3) and ¢ > log(M3T
we have

),

~ 3 3 3 3 2
KL(Qo||Py) < dlos Mg Dlos T (155 T)e2 4 log T2

We also provide an accelerated convergence result with linear d dependency when all the
V2log g;(z) (t > 0) are 2-norm M -Lipschitz (see Theorem 5 in Appendix G.3).

Theorem 4 provides us with the first accelerated DDPM result with only a smoothness constraint on
log qo, under the score and Hessian estimation error. In words, in order to reach O(g) TV-distance
when €2, /T < £, the number of steps needed under Lipschitz-Hessian Qq’s is O(d"° log'® M /).
This is different from Chen et al. (2023c); Huang et al. (2024a;b) in which some smoothness
condition is imposed on all V log ¢;’s (or s;’s or both). Compared with Theorem 3, this upper bound
in Theorem 4 is directly over KL(Qo| |]36) instead of for some early-stopped distribution. Our results
provide new contributions that complement existing studies by exploring different assumptions of
distributions, which enriches the existing set of distributions studied in the literature.

Our analysis is significantly different from that in (Chen et al., 2023a, Theorem 5). There, the
Poincaré inequality is key to guarantee that the Lipschitz smoothness in V log g is preserved when
§ is small, but this inequality may not hold in our case with smoothness only in V2 log qo. Instead,
with smooth V2 log g, we expand the tilting factor only to its third-order Taylor polynomial and
directly provide an upper bound with techniques used in proving Theorems 3 and 5.

6 CONCLUSION

In this paper, we have provided accelerated convergence guarantees for a much larger set of target
distributions than in prior literature, including both smooth ) and general Q) with early-stopping.
The accelerated rates are achieved with a new accelerated Hessian-based DDPM sampler using a
novel analysis technique. One future direction is to further shrink the d dependency for general Q.
It is also interesting to investigate other acceleration schemes to further improve diffusion samplers.

10
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A RELATED WORKS

Theory on Regular DDPM Samplers: Many works have explored the performance guarantees
of regular DDPM models. Specifically, a number of studies perform analyses under the L°° score
estimation error (De Bortoli et al., 2021; De Bortoli, 2022). Later, under L? score estimation error,
Lee et al. (2022) developed polynomial® bounds for distributions that have Lipschitz scores and
satisfy log-Sobolev inequality. Soon after, Chen et al. (2023d); Lee et al. (2023) concurrently
developed polynomial bounds for those smooth distributions having Lipschitz scores and those
non-smooth distributions having bounded support using early stopping. Later, Chen et al. (2023a)
improved the number of steps for those target distributions with finite second moment. Recently,
the convergence result was further improved to linear dimensional dependency using stochastic
localization (Benton et al., 2024a). In Conforti et al. (2023), by transforming the original process to
the relative-score process, it is shown that linear dimensional dependency can also be achieved for
those target distributions having finite relative Fisher information against a Gaussian distribution. In
all the works above, the analysis technique is to discretize some continuous-time diffusion process
to use SDE-type analyses. In Li et al. (2024c), by carefully design a typical set, polynomial-time
guarantees are obtained directly for the discrete-time samplers under the L? estimation error for target
distributions having bounded support. Other than the works above, Pedrotti et al. (2023) analyzed a
different sampling scheme (e.g., predictor-corrector), and Bruno et al. (2023); Gao et al. (2023); Gao
& Zhu (2024) analyzed sampling errors using a different error measure (the Wasserstein-2 distance).

Theory on Score Estimation: In order to achieve an end-to-end analysis, several works developed
sample complexity bounds to achieve the L? score estimation error for a variety of distributions.
To name a few, this includes results for those having bounded support (Oko et al., 2023), Gaussian
mixture (Shah et al., 2023; Gatmiry et al., 2024; Chen et al., 2024), certain families of sub-Gaussian
distributions (Cole & Lu, 2024; Zhang et al., 2024), high-dimensional graphical models (Mei &
Wau, 2023), and those supported on a low-dimensional linear subspace (Chen et al., 2023b). More
recently, Li et al. (2024¢) considered the generalizability of the continuous-time diffusion models,
and Wibisono et al. (2024) proposed a regularized score estimator that attains the minimax rate of
estimating the scores.

Other Theoretical Works: Other than the works listed above and in Section 1.2, Gao & Zhu (2024)
studied the ODE convergence for strongly-concave target distributions under Wasserstein-2 error.
Cao et al. (2023) compared the performance of SDE and PF-ODE and investigated conditions where
one might outperform the other. Besides PF-ODE, Cheng et al. (2023); Benton et al. (2024b); Jiao
et al. (2024); Gao et al. (2024) provided guarantees for the closely-related flow-matching model,
which learns a deterministic coupling between any two distributions. Chang et al. (2024) proposed a
novel ODE for sampling from a conditional distribution. Lyu et al. (2024); Li et al. (2024b) provided
convergence guarantees for the more recent consistency models (Song et al., 2023).

Relationship to GENIE (Dockhorn et al., 2022): To obtain higher-order scores, another method
is to use automatic differentiation, as in GENIE (Dockhorn et al., 2022). There, higher-order
score functions are used to accelerate the diffusion sampling process empirically. In particular,
Dockhorn et al. (2022) shows that GENIE achieves better empirical performance than deterministic
samplers such as DDIM (Song et al., 2021). Our paper theoretically justifies the accelerated empirical
performance of Dockhorn et al. (2022) in the regime when the Hessian of log ¢; is well-estimated.

By “polynomial” we mean that the number of steps has polynomial dependency on the score estimation
error, along with other parameters.
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B FULL LIST OF NOTATIONS

For any two functions f(d,§,T) and g(d, 8, T), we write f(d,0,T) < ( ,0,T) (resp. f(d,0,T) 2,
9(d, 0, T)) for some universal constant (not depending on §, d or T) < oo (resp. L > 0)if
limsupp_, o |f(d,6,T)/ g(d,0,T)| < L (resp. liminfr_, |f(d,d,T)/g(d, 6, T)| > L). We write
f(d,8,T) = g(d,8,T) when both f(d,8,T) < g(d,8,T) and f(d,8,T) > g(d,5,T) hold. Note
that the dependency on ¢ and d is retained with <, > <. We write f(d,d,T) = O(g(T)) (resp.
£(d,6,7) = Q(g(T) if £(d,0,T) < L(d, )g(T) (resp. /(d,3,T) 2 L(d, 6)g(T)) holds for some
L(d, ) (possibly depending on ¢ and d). We write f(d,d,T) = o(g ( ) if limsupy_, o | f(d, 0, T)
/g(T)| = 0. We write f(d,8,T) = O(g(T)) if f(d,8,T) = O(g(T)(log g(T))*) for some constant
k. Note that the big-O notation omits the dependency on § and d. In the asymptotic when e =1 — o0,
we write f(d,e™') = O(g(d,e™")) if f(d,6,e7) < g(d, 8,6 *)(log g(1))* for some constant k.
Unless otherwise specified, we write 2°(1 < ¢ < d) as the i-th element of a vector z € R and [A]"

as the (1, 7)-th element of a matrix A. For a function f(x) : RY — R, we write ; f(2) as a shorthand

for ay f (a:)‘ , and similarly for higher moments. For matrices A, B, Tr(A) is the trace of A, and

r=z
A < B means that B — A is positive semi-definite. For a positive integer n, [n] := {1,...,n}.
C PROOFS OF LEMMAS 1 AND 2
In this section, we provide lemmas and proofs related to Hessian estimation.

C.1 PROOF OF LEMMA 1
The idea is similar to score matching. Define vy (z) := vg(z) — —Id For each i, j € [d],

g 0L (X, i=7
Ex,~q, (”;J(Xt) B ( th()((t)) * ]11{_ af}>>

32 Qt(Xt)
Qt(Xt)

:]EXtNQt ([vé(Xt)] J

D) 822] t Xt
=Ex,~q: ([t§(X)]7)” — 2Ex,~q, l[ﬂé(Xt)]wq:I()((t))

—Exno, (16(X0))")° =2 [ 6h(e)] 70 an(ar) ey + const

where const denotes terms that are independent of €, and
JEE e
/ ()] / 5 4t10(Tt|20)dQo (7o) d,

15 0%5ar10 (4] 0)
//qt|0 (wsa0) [vh ()] 222 4 Qg (g ) dary

Qt\o(l‘t\l’o)

-+ const

9 //Qt\o(xt‘fﬂo)[vé(xt)w (aij log Qt|0($t|I0) + 0; log Qt|0(93t|1'0)3j log Qt\O(xt|x0)) dQo(zo)dw,

— [ [ awotaleo)ty(w” (“ =0} | o voury o - ﬁ) dQo(xo)dz,

l—at 1—0(,5 1—Oét

= E (x0.W)~QooN (0.10) [[%(Xt)] / (— =+ ——WW/

Xi=var Xo+vVI-a: W 1- Qt 1- at
2
where (i) follows because for any function f(z) we have 97 logf(z) = 6’]{{5 ) _

(0;log f(x))(0; log f(x)), and (i) follows because x; = v/ xo + /1 — &y w;. Therefore,
2
” %qi(Xy)  1{i=j}
ij | Y _
Bxe~a. <v€ (%e) < (X 1—a,
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/ ij 1 {Z = ]} 1 g 2
= E (x0,W)~Qoen(0,1a) [vp (Xe)] — | — 1-a + T—a e + const
Xi=vVar Xo+vVI—a;Ws Q Qi
2
i 1 —
= E (X0, W) ~QoaN (0,14) (M(Xt)} e W W,ﬁ) + const
Xi=va Xo+vI=arW; e

and the result follows immediately after we sum up over i, j € [d].

C.2 LEMMA 2 AND ITS PROOF

The following lemma provides sufficient conditions such that the H; in (8) satisfies Assumption 3.
Lemma 2. Under Assumption 5, with the o, defined in Definition 1, suppose that v, and s, satisfy,
asT — oo,

2 2 ~
F S Exoma (X0 — (G + s L) |, =0, (an
maxi<;<7(l — at)_Q\/EXth lse(X2) = Vg q:(X:)|[* = O(1). (12)

10
Also suppose that the H; defined in (8) satisfies sup,> (IEXtNQt ||Ht(Xt)||€) = O(1). Then, the
H; and the s, from score matching (Song & Ermon, 2019) satisfy Assumption 3.

Proof of Lemma 2. The condition on the score estimation error in Assumption 3 is immediately
satisfied using Jensen’s inequality. We next focus on the condition on the Hessian estimation. Recall
that

1

Hy(z) = v(z) — T I; — s¢(z)s] (x).

The goal is to show that H, is close to V2 log ¢, (i.e., the second relationship in Assumption 3). Given
2

that V2 log ¢;(x) = %‘X) — (Vlog q:(z))(Vlog q:(x))T, the key is to control the error incurred

by s¢(x)s¢(x)T, which is

d

Bxima, Y (SHX0H0X) — [V g (XF [V log (XY )
N d , o o N2
=Ex,~o. Y, ((510X) ~ [Vogai(X)))s{(X0) + [VIogan(X)]' (s} (Xe) ~ [V log (X))

. d
< 2Ex,~Q. Z (51(Xs) = [V1og ge(X0)]")* (51 (X0))? + ([V log 0(X0)]")? (57 (Xo) — [V log q:(X,)})?

= 2B, [l15:(X0) — VIogar(Xo) I (17 log ae(X0) I + 1o (X0)])

where (i) follows because (a + b)? = a? + b> + 2ab < 2a? + 2b%. To continue, we use the
Cauchy-Schwartz inequality and obtain

Ex,~q, [15:(Xe)s] (X¢) — (V1og q:(X1))(V1og q: (X)) 7|1

< 2\/EXt~Qt [[s¢(X:) = Viog Qt(Xt)||4\/2EXt~Qt {HVIog a(XOII* + s (XN

Here the second term has that
E[[lse(Xe)[|'] < 8E[||s¢(X:) — Vlog qr(X:)]| '] + SE[[|V log ¢ (X:) "]
S E[||V log gi(X¢)]| "]

Therefore,

1 T
13 Exea, (X0 - T 1o ()2
t=1
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2

oo (i et

F

T

Z Xe~Qr
1 T T2

+ 7 ZEwat 56(Xe)sT (X2) = (Vog go(X0)) (V log g¢ (X)) TII7

t=1
qut(Xt) 1 )
X)) — + —1
t) < qt(Xt) 1—ay ¢

T 2

1
S T ZEXtNQt
t=1
1 T
+ = Ex,~q, |5:(X:) — Viog q:(Xo)|"\/ Ex,~q, |V log g:(X:)*
T

t=1

. T 2

(i) 1 \Y% Qt(Xt) 1

= — E Ex, X)) — I
T t=1 X |[ro(X) ( q:(Xy) * 11—y ¢

F

2

F

T
~ 1
+0 [ | 7 220 - a)Exing [V loga (X))

Vth(Xt) 1
wol(Xe) — ( 03 latfd)

2
+0(T™Y)
F

i) 1 g
= T Z EXtNQt
t=1

where (i) follows from (12) using the fact that 23:1 Var </ = 23:1 a; by Jensen’s inequality,
and (¢i%) follows under Assumption 5. Combining this with (11), we finally get
2

T
1 V2q,(Xy) 1 1
— EXt~ . X)) — ( + — 1y =0(T™
T ; Q t) qt (Xt) 1 _ at P ( )
and thus the second relationship in Assumption 3 is satisfied. The proof is now complete. O

D PROOF OF THEOREM 1

Instead of Assumption 4, we will prove Theorem 1 under the following more general assumption,
which obviously implies Assumption 4 for any ;.

Assumption 5 (Regular Partial Derivatives+). For all ¢ > 1, ¢ > 1, and @ € [d]P such that
la|=p>1,

(1= a)""/*Ex, g, |05 log g:(X1)|" = O ((1 - at)l’é/?) ,

(1= )P ?Ex g, |08 log i1 (X)) = O (1 = an)??).
When g does not exist, this is required only for ¢ > 2.

To begin the proof of Theorem 1, note that

- Xo,..., X
KLQUP) = Bx.. xpmq |0 S0

(i [1 q0(Xo) H?Zl Qt|t—1(Xt|Xt—1)‘|
0og

)
= Ex,,...Xr~Q

P (Xo, ..., X7)

(ﬁ) EXO L XT~Q [IOg

q0(Xo) Hthl Qttl(Xt|Xt—1)]
Po(Xo)HtT—l Py (Xe| Xe1)

QO(XO):l Qje—1(Xe| Xi—1)
=Ex,~q, |10 +§Et Qi1 |log ]
XO QO |: g ]6\/0 X() X 17X Q 1 g @‘til(Xﬂthl)

q0(Xo Qeje—1 (X Xi1)
=Ex, ~ 1 E ~ Ex, log ——————=
o o S *Z o l e lOgﬁ (XX)

t]t—1
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T
= KL(QlIB) + D B, iy [KLQupea (X )l (X0 1))]

t=1

Here () holds because of the Markov property of the forward process. We explain (ii) below. By
the backward Markov property of the reverse process, for any ¢ > 1, given X;_; = x4_1, each of
Xi_9,..., Xy is independent with X;. This implies that

IA’;M—L...,O(It‘xt—la @) = ﬁ\t_1($t|$t—1)7 vt > 1.
Thus, P’ (o, ..., 27) = ph(x0) Hthl 13;|t71(xt|xt,1). In other words, X, ..., X is also forward
Markov under P

Following from similar arguments,

T
KL(QIIP') = KL@QrIPr) + Y Exna, [KL(Qu 1o X0 PLy (1X0))] -

t=1
Since KL-divergence is non-negative, an upper bound on KL(Qo| \]3(’)) is given by
KL(Qo||Fp)

T
= KLQrlIPp) + Y Exnay [KL(Quo1jo (X0 1Py, (1X0))]
t=1

T
~ Y Ex e K@t (X 1P (X))
t=1

T
< KL(QrlIPh) + " Eximqn [KL(Qu-1ie C1XO 1Py (X))

t=1

qr(Xr) =
— Ex, o |log & T]+§EH~”
o QT[ & p(Xr) =1 Mo Qe

Term 1: initialization error

log

pg—lt(Xt1|Xt)]

Pl (XX

Term 2: estimation error

T
Qtfl\t(Xt—1|Xt)
+ IEXuXt—lN t,t—1 I .
; o l Pho1e(Ke-11Xe)

(13)

Term 3: reverse-step error
The last equality holds because Dl = p/r..

Next, we bound the above three terms separately in a few steps.

D.1 STEP 0: BOUNDING TERM 1 — INITIALIZATION ERROR

Lemma 3. Suppose ar \, 0 as T — oo. Then, under Assumption I,

QT(XT):|
Ex,~r |lO

Remark 1. Under Assumption 1, if the noise schedule satisfies Definition 1, we have

1
< §M207Td + O (o’z?p) , asT — oco.

Exr~rqr |:10g ;Z:E);;;] = O(T_z)'

Proof. See Appendix F.1. O
We now introduce the following notation for analyzing the estimation error and the reverse-step error

for the accelerated sampler.
Definition 2 (Big-O in L" space). For a random variable Z7, we say that Zr(z) = Opr (1) if

(Ex~q|Zr(X)|)"" = 0@1) forall r > 1 as T — oc.
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One property is that if Z7(x) = Ozr(g)(1) then Exq |Z7(X)| = O(1). Another property is that
if Zy = Ogr(@y(ar) and Zo = Opr () (br) for all r > 1, applying Cauchy-Schwartz inequality we
get, forallr > 1,

(B[, 25" < (Bz2E227) " = O(arbr),

which implies that Oz (o) (ar)O2r Q) (br) = Orr () (arbr). Now, with this notation, the regularity
condition on H; can be written as

(1 — Oét) ||Ht(Xt)|| = O~£1(Qt)(1 — O[t), VT Z 1.

Also, Assumption 5 can be equivalently written as, Vr > 1,
(1= a0/ |95 Tog s (X0)| = Ocr(n (1= a)??)

(1- Oét)p/2 |8§ 10th71(Mt(Xt))| = OLT(Qt) ((1 - at)p/Z) .

D.2 STEP 1: BOUNDING TERM 2 — SCORE AND HESSIAN ESTIMATION ERROR

We first bound the estimation error, which includes the errors that come from the score and the
Hessian estimation. In particular, Assumption 5 guarantees that all higher Taylor terms are well
controlled in expectation over X; ~ (.

Lemma 4. Under Assumptions 3 and 5, with the o satisfying Definition 1, we have

T / )
pt—l\f,(Xt—ﬂXt) ,  log®T ,
]EXtth— ~Qyt - 10g— S logT e” + 4.
tz::l e [ ﬁt—l\t(Xt—ﬂXt) ( ) n
Remark 2. Under Assumption 3, Lemma 4 guarantees that
T /
pt—1|t(Xt—1|Xt) ~ (1
Ex, x, 1~Qi .1 |l0g§ =————| =0 = |-
; B [ ﬁ:ﬁ—1|t(Xt—1|Xt) 17
Proof. See Appendix F.2. 0

Before we proceed to the reverse-step error, we provide the following lemma to provide an upper
bound when we use the 3, and its estimate according to (9).

Corollary 2. Under the same conditions of Lemma 4, the upper bound in Lemma 4 on the estimation
error still holds with the slightly perturbed >, provided in (9).

Proof. See Appendix F.3. O
D.3 STEP 2: EXPRESSING LOG-LIKELIHOOD RATIO VIA TILTING FACTOR

Next we focus on the reverse-step error for the accelerated process. Recall that ()¢ is smooth under
Assumption 2. We introduce the following notations for analysis. Let

Ai(ze) = (1 — ) V?logqe(zy), Be(we) = Ig — (Ia+ Ae(z) 7, (14)
which imply that
11—« _ o
Se(xe) = SIg+ Ad(z), S (@) = —— (Lo — Bu(xy).
Qi 1— oy

Now, with the notation in Definition 2, for each i, j € [d], A (2;) = Orr(q,) (1 — o) forall > 1
under Assumption 5. Also, when (1 — «) is small, we can perform Taylor expansion on B;(-) around
A¢(+) and obtain, under Assumption 5,

By(X3) = A(X1) + Orrqu) (1 —ar)?). (15)
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Remark 3. In general, suppose that we choose P/_,,, whose conditional covariance satisfies

t—1t

~ 11—«
S (Xy) = L

(Id + At(Xt) + O~£T(Qt) ((1 - Oét)2>) = Zt(Xt) + OLT(Qt) ((1 - at)S) 5

Qi

where a small perturbation is added to the covariance matrix. An immediate consequence is that

~ fe% ~ _ ~
57X = o (Id — Bi(Xy) + Orion (1 — at)Q)) =57 Y(Xy) + Oprigy (1— ).
- &t
Then, with such Pt’_1| , having a slightly perturbed covariance, the following Lemmas 5 and 7 still

hold with A, (z,) and B, (z;) such that

Ay(zy) = Se(x) — Iy, By(my) :=Ig — (Ig 4 Ag(2y)) 7L

Note that A;(X;) = A¢(X¢) + Orr () (1 — )?) and By(X;) = By(Xy) + Orr(,) (1 — ar)?).

In the following we write p; = ui(xt), Ay = Ai(x¢), and By = By(x) for brevity.
Lemma 5. For any fixed x; € R%, as long as g, is defined, we have

Py 1jy (e wg)eSim rm)

qt—1 (xt—1|-73t) =
e ]EXt,—l"‘Pt/—l\t[eq‘tfl(m“Xt_l)] ’

where

Ct,tfl(xtaxtfl) = log Qtfl(xtfl) — log Qt—l(lit) - (xtfl - Mt)T(\/CTtV log qt(xt))v (16)

and
a1 (T, me1) o= Cep—1 (e, 1) — ﬁ(%_l — 11¢) T Be(wp—1 — pe)
=1og qr_1(x—1) —log qe—1(11t) — (w1 — pe) T (V/ar V log qe(2¢))
- ﬁ(%fl — )" Be(e—1 — fur). (17)
Proof. See Appendix F.4. .

In the following we write (; ;1 = (¢ ¢—1(w¢, 2¢—1) and (i, 1 = (/1 (2, 7¢—1) and omit depen-
dencies on x; and x;_ for brevity. As we will see, (16) is the tilting factor for the regular diffusion
process. Given the definition of ¢, ; in (17), below we analyze log ¢; 1 () around & = y; using
Taylor expansion. We first provide the following notations for the Taylor expansion.

Definition 3 (Taylor Expansion). Recall that 2 (1 < i < d) denotes the i-th element of a vector .
Given an analytic function f(z), its Taylor expansion around x = p is given by

f@) = F() + > Tp(f, 2, 1)

p=1
d d
= 0+ VI @ = )+ 5 > ORIt =+ 5 O ) — ) — )
i=1 Z;j;é:jl
+ Z Tp(f, z, /j‘)
p=3
where, for p > 1, we define
d .
HIEEE D SENE 710) | (CEToM (1)

' YEN:Y " yi=p i=1

where in a € [d]P the multiplicity of i (€ [d]) is 7.
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If we specialize it to the case where f = logq;—1, * = x¢_1, and . = p, we need the following
lemma to guarantee the validity of Taylor expansion for ¢ > 1.

Lemma 6. Fixt > 1. For any Qg (not necessarily having a p.d.f. w.r.t. the Lebesgue measure), given
any k > 1 and any vector of indices a € [d]*, q; exists and |0% log q; ()| < 0o, Va; € RY (which
possibly depends on T). Further, q; and log q; are both analytic.

Proof. See Appendix F.5. O

Thus, by Assumption 2 and Lemma 6, since log ¢;—1 is analytic, its Taylor expansion around
Ty—1 = py is equal to (cf. (16))

Cri1 = (Viog g1 (pe) — VarViog gu(w)) (w1 — ) + Y Tp(log g1, w11, 1),  (19)

p=2
and the Taylor expansion of Ct’7t_1 (z¢,2¢—1) around z;_1 = py is (cf. (17))

(i1 = (Vioggr—1(pe) — Var Viog gy ()T (w4—1 — par)

1 «

+ (@1 — )T (V2 og qior () — ——By | (w1 — )
2 1—ay

+) Ty(log gimy, w1, pue)- (20)
p=3

In order to differentiate the second-order terms in (19) and (20), we reserve T for (19) and employ
for (20):

Qi

1
Ty(log i1, o1, j1t) = 5(«’1315—1 — )T <V2 log q;—1 (1) — Bt) (o1 — p1e)-

1—0(,5

Compared with the tilting factor for the regular process in (; 1, an additional term that is related to
Y; (and thus By) is introduced in Ct’7t_1. From the perspective of Taylor expansion, we can further
control the second-order term in the Taylor expansion of log ¢, around p,; through this extra term,
which improves the accuracy of posterior approximation at each step.

To use Taylor expansion to upper-bound the reverse-step error in (13), we first note that, for any fixed
Tts

q]‘,—lt(thxt)‘|

Ex, ,~o,_ log
t—1~Qe 1|t [ p;—l\t(Xt_llxt)

- EXt—l"‘Qt—lH |:Ct/,t—1 - IOg EXf,—l’\‘Pt/_l‘t [ecttilﬂ
= EthlNQt,—lh, [Cé,tfl} - log EXt—lNP, [eCt’til}

t—1[t
(4)

< Ex iy [Gemr] + By, [logethin]
[y (21)

where in (¢) we use Jensen’s inequality and note that — log(-) is convex. In the remaining steps, we
analyze the expected values of the tilting factor separately.

’
= EXt—lNQt—IH [Ct,t—l} - EXt,lePt',l‘t

D.4  STEP 3: CONDITIONAL EXPECTATION OF (;, ; UNDER Ptht

With Taylor expansion around the posterior mean, the calculation of the expected values is reduced
to that of all the (centralized) moments. To start, it is useful to examine the rate of 1;—?“ A direct
implication of Definition 1 is that, with some constant C1, since a; \,0as T — oo,

(1 — )P CVlog? T/TP
< S(1—ao)?, V >1,t > 1. 22
ag = (1 7 Cl IOgT/T)q ~ ( at) ) b,q = 1,1 = ( )

Below, we first calculate the centralized moments under Pt’71|t. We employ Isserlis’s Theorem for

our help, which constitutes the main idea in the lemma below. Note that the results in this subsection
hold as long as ()¢ has a p.d.f..
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Lemma 7. Fixt > 1. For brevity write Z; = X]_; — ut, Vi € [d), A = Ay(z;), and E[] as a
1‘t[~]. Note that we have Ay (v;) = Orv(q,) (1 — ay) for all i,j € [d]
under Assumption 5. Thus, the following results hold: ¥Vp > 1,

shorthand for E Xi—1~P/_

E|[[%]| =0 Va:la| odd,
i€a
A la]
E HZi = Orr(Qy) ((1 —ay)? ) , Va:|a| even.
i€a

Specifically, for i, j, k,1 € [d] all differ, the fourth moment is

2
]E[Zf]:B(l;at) (1+ A%
t
1—a\? y

E[Z}Z;] =3 <a t) AV (14 AY)

t

1—o\” y . ~
E[Z?Zf]:( - ‘*) (14 A") (1 4+ A7) + O, (1 — o))
t

— oy

Qi

2
1 o .
B[222,20) = (2™ ) (14 A4+ Ocnig (1~ a0
E[ZlZJZkZZ] = Ol:p(Qt)((l — Ozt)4).
For i, j,k € [d] all differ, the sixth moment is

l—Ozt

i =15 (120Y 1

1—Oét

3
E[Z!Z2] =3 ( ) (L+ A" (14 A7) + Opog,) (1 — ar)?)

].—th

E(Z] Z; Z}) = < ) (14 A%)(1+ A9)(1 4+ A*) + O oo (1 — ar)®),

Qi

and B |[];cq:a)=6 Zz} = ng(Qt)((l — ay)*) otherwise. All the rates are under Assumption 5.

Proof. See Appendix F.6. O

D.5 STEP 4: CONDITIONAL EXPECTATION OF gt’,t_l UNDER Q;_1|¢

Although each @, is conditionally Gaussian, the posterior (;_;; is not Gaussian in general. In
the following, we analyze the posterior centralized moments under (); _1; using the idea of Tweedie’s
formula Efron (2011). Then, we apply them to analyze Ex, ,~q,_,, [Ct,t—1]. again using the Taylor
expansion in (19). Again, the result is more generally applicable to non-smooth @)y at ¢ > 2 due to
Lemma 6.

Lemma 8. Fixt > 1 such that q._1 exists. Define Ty := 1@ ¢, and
1-— 1-— d
k(Z¢) == log q ( \/a»(jt 95t> + 20;% HgEt”2 + 5 log (27(1 — au)) - (23)

Let 1 <14,7,k,1 < d, which are possibly equal to each other. The first 3 centralized moments under
Qi—1)¢ satisfy
EXt—lNQt—uf, [thl] =VE =i
1-— Qi (1 — Oét)

Ex, im@eayy [(Xem1 = o) (Xemy — )T = VPk = I+
(673 Qi

2
v? log Qt(fct)

EXt—th,NQf,—l,f, (Xti—l - /u’z)(thfl - :u’g)(th—l - uf)
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— )3 ~
a ) Ex,~q, [81'3jk log ¢:(X:)] = O((1 — Oét)s)-

=Ex,~q, [3?jk’f] =7 32
QY

The fourth centralized moment satisfies
Ex,o1 Xem@uoss |(Xio = )Xy — i) (XE, — i) (XL, — uh)
=Ex,~q. [(aizj@(alzz’i) + (3i2k“)(ajz‘l“) + (5121%)(532‘%) + @i‘kz“]
2 ~
3(4) +0(-a) irizj=k=t
= () Ho -, iri=k#i=1,

O((1 — ay)?), otherwise.

Note that all derivatives above are w.r.t. T4. All the rates are under Assumption 5.
Proof. See Appendix F.7. O

Lemma 8 also justifies the expression of y; and ¥, in the diffusion process (i.e., (3) and (4)), which
match the posterior mean and variance, respectively.

Next we turn to calculate the fifth and sixth centralized moment under Q);_1;, again drawing the idea
of Tweedie’s formula (Efron, 2011). This is a direct extension to Lemma 8.

Lemma 9. Fixt > 1 such that q,_1 exists. Fix x; € R<. Under Assumption 5, with the same
definitions of T+ and k(Z+) as in Lemma 8, the fifth centralized moment is

Exeim@e e |(Xion = 1) (XPy = i) (X = i) (XL = i) (X7 = )]

= Z (8525)(8?i,j,k,l,m}\fn) + 85jklm‘% = Oﬁp(Qt)((l - at)4)
ge({“'vjrkévlvm})

where, given a set A, we define

(3) = {{al,ag} tay,a0 €A, a #£ Clg}.
Let PP be the set that contains all distinct size-k partitions of [n). Define
party(A) = {((a;, a;) : {i,j} € p) : p € Py }.
The sixth centralized moment is
Exiinye | (Xioy = 1) (KT = 1) Xy — ) (XEy = 1) (X7 = 1) (X0 — )

= Z (02, k) (02,K)(92,K) + O o (1 — ar)*)
(&1,€2,€3)€party ({i,5,k,l,m,n})

3 .
15 (122)" + Ognu (L~ an)t), ifi=j=k=l=m=n
3
_J3(5) + Oman(-a?), imk=m=nzj=
(1—%) +O~£p(Qt)((1—Oét)4); ifi=1,5 =m,k =nwhile,j,k all differ

at

ONU’(Qt) (1 - Oét)4)7 otherwise

Again note that all derivatives above are w.r.t. Ty.
Proof. See Appendix F.8. O

The following lemma provides the correct order (in terms of (1 — «)) for all higher-order posterior
centralized moments. In other words, this shows that (); _|; has nice Gaussian-like concentration.
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Lemma 10. Fixt > landp > 2. Let a = (a1, ...,ap) € [d|P be a vector of indices of length p.
Under the same conditions as in Lemma 8, if p is odd,

P
EXt—l»XtNQt—l,t lH(Xfil - M?i) =0 ((1 - at)pTH) , Va € [d]p (24)
i=1
If p is even,
u @ a; ~ b3
EXt—hXtNQt—l,t [H(Xtil - /’Ltl) = O((l - at)2 )7 Va € [d]p (25)
i=1
Proof. See Appendix F.9. O

D.6 STEP 5: BOUNDING TERM 3 — REVERSE-STEP ERROR

We are now ready to assemble the respective moments into the final convergence rate. In the following
lemma, we use the results in the previous lemmas to control the difference Ex, ,~q,_,,[¢ft—1] —
Ex, ,~p’

A [Cf.4—1] in 21).
Lemma 11. Suppose that Assumption 5 holds and that q,_1 exists. Then,

EXtNQt (]EXt—INQt—l\t - EXt—1NPt/,1|t) Kié,tfl]

1— ) & ~
= 0000 S B 0% dom g (1e(X0))0% log ar(X)] + O((1— a)?).
3!0%/ i,5,k=1

Proof. See Appendix F.10. [

Therefore, under Assumptions 2 and 5 we combine Lemma 11 and (21) and get

d Qt—l\t(Xt—l‘Xt)
Z EXt—l»XtNQt—l\t log 7

t=1 pt—1\t(Xt—1|Xt)
d
SU—a)® D Exonq, 05 10g g1 (pe( X)) 1og g1 (X0)]. (26)
ijk=1

This completes the proof of Theorem 1.

Before we end this section, we provide an upper bound of the reverse-step error when the conditional
covariance of Pt’_1| ; 1s slightly perturbed (see Remark 3).
Corollary 3. Suppose that Assumption 5 holds and that q;_1 exists. Suppose that the conditional
covariance of Pt’_l‘ , is slightly perturbed, which satisfies

~ 11—«
Yi(ze) = :

(Ig + A¢(xy) + E¢(24))

Qg

where Z4(X;) = OU(Qt) ((1 — at)Q)for allr > 1. Then,

ET:E log Qt—l\t(thl‘Xt)
Xoo1,Xe~nQy 112 —— o
£ 1, Qi1 I (Xi1|Xy)

t—1|t
S —(1— a)Exmng, Tr (V2 1og qro1 (e (X1)) — 0 V2 log qi(Xy)) E4(Xy))
d
+ (=)’ Y Ex,nq 05 108 g1 (1 X)) 03 log g1 (Xy)]
ij k=1
~ 1
-0().
Proof. See Appendix F.11. [
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E PROOF OF COROLLARY 1

Note that ¢; always exists and is analytic by Lemma 6. Therefore, it remains to upper-bound the
mismatch between )y and @;. In the following lemma we provide such a common bound in
Wasserstein distance, which is provided only for completeness.
Lemma 12. For any Q,

W2(Qo, Q1) < (1 — o) (M + 1)d.

Remark 4. If 1 — oy = §, this implies that
WQ(QOa Q1)2 5 ad.

Proof. See Appendix F.12. O

The proof of this corollary is thus complete. A consequence of Lemma 12 is that, in order to obtain
convergence guarantees for general distributions, one can view 1 — ¢y as controlling the mismatch
between (g and @)1 (in terms of the Wasserstein distance), and 1 — «, V¢ > 2 as controlling the

mismatch between @1 and P (in terms of the KL-divergence).

F AUXILIARY PROOFS FOR THEOREM 1 AND COROLLARY 1

In this section, we provide the proofs for those auxiliary lemmas in the proof of Theorem 1 and Corol-
lary 1.

F.1 PROOF OF LEMMA 3

First, note that
qr(r1) = Ex,~qo a0 (z7]X0)]-
Also note that the function f(x) = x log(x) is convex. Thus, by Jensen’s inequality,

Exr~qr [loggr(X7)] = /]EX0~Q0 lar|o(z7|X0)]log Ex,~qolqrio (x| Xo)|dzr
< /EX0~Q0 [ari0(z7|X0) log g0 (27| X0)] dar
=Ex,~0, [/ qrio(xr|Xo)log qrio(zr|Xo)dzr

Since Q7| is conditional Gaussian N (y/arxo, (1 — ar)ly), its negative conditional entropy equals

2 2
for any zg € R<. On the other hand, since P} = /\/(O7 1),

d d
/QT|0(33T\$0) log g7jo(zr|20)drr = —5 — 5 log(2n(1 — ar))

Ex,nar logp(Xr)] = —5 log(2m) — L Exs~ar | Xrl
where
Exreqr |1 X7]* = arEx,eqo 1 Xoll* + (1 = a0) By no.n |[Wr ||
= arEx,~0, [ Xol* + (1 — ar)d.
Putting the two together,

qr(X
Exrar 108 250 = Bxygr log gr(Xr)] ~ Exy- logp (Xr)]
pT(XT)
d d d 1
< —5 — 5 10g(27r(1 — dT)) + 5 10g(27r) + 5 (@TEXONQO ||XV()||2 + (1 — dT)d>
1 9 dar d _
= 507Ex0~q0 [ Xol™ - = "3 log(1 — ar).

When T is large (and thus when a is small), the Taylor expansion w.r.t. &7 around 0 yields

log(1—ar) = —ar + O (a7) .
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Therefore,
gr(Xr) 1_ o dar d, _ _
Exr~qr [log pép(XT)] < iaTEXon [ Xoll” — 5 5(*0@) +0 (OK%)

1
< SarMad + 0 (G7) .
F.2 PROOF OF LEMMA 4
To start, note that both P/ 1)t and Pt 1)¢ are Gaussian (yet having different mean and variance).

Thus, foreacht =1,...,T,

p;,w(ﬂctq |7)

CARNES

= log (det(Et) ) log (det %) %)

1 1 PN ~
- 5(%—1 — ) TE  (@emy — ) + i(xt—l — 1) TS (oo — Fie)
1 S 1 T(y—1 -1
= 5 (log(det(£4)) — log(det(20) ) + 5 (w1 — 1) (E7" = =7 ) (@1 — o)
1 PO - 1 ol
+ 5 (@1 = L) TS N — i) — 5 (@1 — )T N — )
1 ~ 1 ~
= 5 (log(det(£4)) = log(det(£0)) ) + 5 (w1 — )T (E7" = 27 ) (o1 — o)
1

1 P ~
o (e — ) T2 l(ﬂt — i)

1 N ~_ ~_ N
+ 5(’” —)TY, 1(1’1‘/71 — )+ = (xem1 — )T 1(,Ut — ) + 5
27

[\V]

There are five terms in (27). We first consider the third and the fourth term, for which we have
Ex, 1~Q, 1 {(Mt —)TE (X — Mt)} = (e — ﬁt)TiflEXHNQFm [(Xi—1 — ] =0,
EXt—1~Qf,_1\t {(thl - Mt)TZ;I(Nt - //;t)} = EXt—INQt—IH, [thl - :ut]T E;I(Mt —pt) = 0.
Now consider the expectation of the last term in (27). From the definition of f]t in (6), for small 1 — o

we have it > 0, and we can define Et =T~ (I;+(1—ay)H;) ™!, and thus i;l = 1‘_12“ (Id—ﬁt).
From Taylor expansion, we have B, = (1 — ay)H; + Oﬁp(Qt) ((1 — a)?). Thus, for each t > 1,

Exinq. (1(X0) = (X)) TS (X0) (e (X0) = fu(X0))]

= (1 - a)Ex,~q, [(St(Xt) — Vlog q¢(X+))T(1a — ét(Xt))(st(Xt) — Vlog Qt(Xt))}

= (1 — a)Ex,~q, [(st(Xt) — V1og qi( X)) (Lo + (1 — ar) Hy (X1)) ™ (s6(X:) — Vg qi(Xy))]
S (1= a)Bx, g, [I56(Xy) — Vg g (X,)|

where the last line follows from the regularity condition on H; in Assumption 3. Therefore, the
expectation of the last term in (27) can be bounded as

ZEXth [(Mt(Xt) (X)) TS (X)) (e (X) — e (X))

T
S D1 - an)Ex,na [lse(Xe) - Viog gi(X0)]?
t=1

< (log T)e?, (28)

where the last line follows by the score estimation error in Assumption 3.
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Next we turn to the first two terms in (27). First, note that forall 4, j € [d], we have (1—ay ) H? (X;) =
Orr(0,)(1 — o) under Assumption 3. Now, the first term of (27) is given by

log(det(it)) —log(det(2;)) = log(det(I4+ (1 —ay)Hy)) —log(det(Ig+ (1 — )V log qi (24))).
When (1 — «) is small, we can use Taylor expansion for the functions det(-) and log(-) to get
log(det(Z4 + (1 — o) Hy))

ay)?

= log (1 + (1 — o) Tr(Hy) + A-a)

()2 = () + Ocrio (1 - )

= (1 — ay)Tr(Hy) + %(Tr(fw — Tr(H?)) — %Tr(m)? + Orr(gn (1 — ar)?)
(1 — O[t)

2 ~ P
= (1 — a)Tr(Hy) — Tr(H?) + Ocrr(on((1 - ar)?).

Similar expression can be obtained for log(det(I; + (1 — a;)V?log g;(z¢))). Thus, the first term in
(27) is equal to

log(det(it)) — log(det(%;))

— )2
=(1-w) (Tr(Ht) — Tr(V? logqt(xt))) - % [Tr(HtQ) — Tr((V?log qt(:vt))z)]

+O0cr(g) (1 = ap)?).
For the second term in (27), we first take expectation over z;_; and get
Exoinuyye |[(Xim1 = )T (S = 27 (Koo — )| = T (S5 = 57H)%) -
To proceed, note that
Lo+ (1—a)H) "D I, — (1= a)Hy + (1 — 00)2H2 + Opoon (1 — ar)?).  (29)

To see (#ii), we write S as the true inverse of I; + (1 — o) Hy. Its existence is guaranteed if (1 — ay)
is small. Since

(Lo + (1 — a)Hy)(Ia — (1 — a)Hy + (1 — o) 2H?) = Iy + O o0 (1 — ar)®),
we have
(Ig+ (1= o) Hy)(Ig — (1 = o) Hy + (1 = ) HE = Sp) = Oy (1 — o))

which implies that Sy = Iy — (1 — au)Hy + (1 — )2 H? + O (0,)((1 — a)®). This shows the
validity of (7i7). Therefore,

Tr ((i;l - zgl)zt) — Te(S1s, — 1)
- Tr< [Id — (L= ap)Hy + (1 — o) HE 4+ Oro(gn (1 — o))

[Is+ (1 — o) V?log qu(zy)] — Id)
= (1 — o) [Te(V?log qi(1)) — Tr(Hy)]
+ (1= a)? [Te(H?) — Tr(HV? log i (w4))] + Orwguy (1 — ar)®).

Adding this to the first term of (27) and taking expectation over X; ~ @Q; (noting Assumption 5 here),
we get

Exe s Xem@ior. | (108(det(S:(X2)) — log(det(S:(X0))
(Kot — (X)) TS (X0) = 57 (X0)) (Xt — pu(X0))]

= 00 g [T(HL(X0)?) — 2T (H (X0 V log 4o (X)) + Tr((V2 log 0 (X,))?)]
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+0((1 —ay)?)

i) (1 —« 2 ~
w %EM@ [H(X0) — P2 og g (X0) |5 + O((1 — a)?),

where (iv) follows because for two symmetric matrices A and B,
Tr(A?) — 2Tr(AB) + Tr(B?) = Tr(A?) — Tr(AB) — Tr(BA) + Tr(B?)
= Tr((A—~ B)(A~ B)) =Tr((A~ B)T (A~ B)) = | A~ Bl

Thus, following from Assumption 3,

T
> Ex, x| (log(det(Si(X0)) — log(det(Si(X,))) )

log? T
T
Here ¢ is the Hessian estimation error. Combinigg (28) and (30) yields the desired result for the

accelerated estimation error, which is in the order O(1/7?).

(Kot = e (X)) T(E7 (X)) = 7 (X)) (Koo — (X)) € 25 (G0)

F.3 PROOF OF COROLLARY 2
Given the perturbed i]t in (9), following the definition in (14), we define, Vp > 1,

- 1—ay)?
Api=(1- ozt)V2 log q: () + (Tt)

4

(V21og qs(x4))?

=(1— o) (V2 log qu(w¢) +

1— oy -
- IS =1~ A+ A7 4+ O (1 — aw)?)
t

].—th

o
L v? log g; (xt)) )

Bt = Id—

.E[t = Ht+

H;.
Note that under Assumption 3,
(1~ ) | | £ (1 a0) [ + (1= 02 LI = Orig (1 — o), ¥ > 1.

Then, the rest of the proof Lemma 4 still holds with V2 log ¢ () and H; replaced by V2 log q; () +
=292 0g ¢;(2+) and Hy. The proof is complete by noting that

2

(67
o Vilog qt<Xt)>

Hi(Xy) — <V2 log q:(X:) +

EXtNQt
F

2
S+ (1= aw)Ex,~q, |[Hi(X:) — VZ1og Qt(Xt)HF
NG T

F.4 PROOF OF LEMMA 5
By Bayes’ rule, for any z;_ given fixed z;, we have

Qtfl\t(xt—l |z¢)

(08 %—1(%—1) exp (

e = v |
2(1 — Oét)

Nz —xt/@!F)
2

1 _
X q—1(Te—1)Py_ 1) (T1-1]|2¢) eXP ((It—l — )8y (wemy — ) 20— )/
- &t t

2
ay e = w/ad|

= Qt—l(xt—l)pg_”t(xt—ﬂxt) exp ( (w1 — p)T(Lg — By)(xe—1 — pe)

2(1 - ay)

30
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(by Equation (14))

= )(xt—l — )T By(we—1 — Mt)) :

X p;—1|t(55t—1\$t) €xp (Ct,t—l(xtaxt—l) 21— )
- &

where the last line follows from the definition of (; ¢—1 (¢, ;1) in (16). Now, with the definition of
Gi—1(zt, 1) in (17), we have

Dy (w1 |my)eStama(momess)

Qt—1|t(xt71|xt) = .
]EXf,_wP,{_m[eq’t‘l(zt’xtﬂ)]

F.5 PROOF OF LEMMA 6

Recall Equation (2). Let QO denote the distribution of \/&;x¢, and let g(z) denote the p.d.f. (w.r.t.
the Lebesgue measure) of the distribution of /1 — ayw,. Note that g is a scaled version of the unit
Gaussian p.d.f., and fzeRd g(z)dz =1 < oo. Now, for any event A C B()),

o= [ [ sw-mads= [ ([ o= )dGoizo)

by Fubini’s theorem. If A has Lebesgue measure 0, by continuity of g(x) we get [, _, g(x —Zo)dz =
0, and thus Q;(A) = 0. This shows that (); is absolutely continuous w.r.t. the Lebesgue measure,
and its p.d.f. exists, denoted as g;.

Now, since any order of derivative of the Gaussian p.d.f. is bounded away from infinity and Qoisa
probability measure, we can invoke the dominated convergence theorem here to change the order of
derivative and integral as

Okq(x) = o /

To €Rd4

9z — 70)dQo(i0) = / Okg(z — 50)dDo(30). (D)

To €Rd

Thus, for any k£ > 1 and any vector of indices a € [d]k, we have
0ba)| < sup |oko(a)| [ aQu(a0) = sup |ohg(a)] < .
z€ERY ToERC z€R4
This also implies that the Taylor term |Tj(g¢, x, )| < oo for any « and u, and

~ (’L) p ~
ww) = [ o= a0a@utan [ i S Tulate — 0.2 Qi)

P

i) . . 5 (5
= hm Tk(g(x—xo),x,u)on(xo)
p—00 iOGdeZ:O

P
(iii) ..
= plggokZ_OTk(qt,m,u)

where (7) follows because (scaled) Gaussian density is analytic, (i¢) follows from dominated conver-
gence theorem and the fact that g is a Gaussian density and has an upper bound independent of Z,
and (#i7) follows from (31). This shows that g; is analytic.

Finally, since 0% log q; is a smooth function of ¢, d'qy,...,0%q;, we have 9% log q;(x;) < oo
(possibly depending on T') for all k£ > 1 and fixed (finite) x; € R%. Also, log ¢; is analytic because
log(-) is analytic and g;(z;) > 0, Vx; € R9.

F.6 PROOF OF LEMMA 7
The result follows directly from Isserlis’s Theorem, which says that

=3 I] Elzzi=Y ][ Cov(.z)

peEP?2 {i,j}€p peEP2 {i,j}€p

n

[

i=1

E

31



Published as a conference paper at ICLR 2025

since each Z; is centered. Here P2 is the set that contains all distinct size-2 partitions of [n]. For

example, P? = {({1,2},{3,4}), ({1,3},{2,4}), ({1,4},{2,3})}. Thus, since 4; = OLP(Q)(I —
ay) under Assumption 5,

E([[Z| =0, ifnisodd
i=1
n . -\ 2\ - oy

E H Zi| = Ocr(q,) 5 = Orrq (1 —ay)?), if nis even.
i=1 t

More specifically, following from Isserlis’s Theorem, the fourth moment is

E[ZlZJZkZl] = COV(Zi, Zj)COV(Zk, Zl)+
Cov(Zi, Zx)Cov(Z;, Z)) + Cov(Zs, Z))Cov(Z;, Zi), i, j, k.1 € [d].

Here Cov(Z;, Z;) = +5%(1 {i = j} + (1 —a;) A¥). The fourth moment result follows immediately
by plugging into the formula. Turning to the sixth moment, we note that we are interested only in the

coefficients for the terms that grow at a rate O o) (1 — ay)?). Since the sixth moment consists
of sum of product terms in which three covariance matrices are multiplied (giving us a rate at least

Ocp(Qt) ((1 — a4)?)), at least one product term in the sum must take covariance values only on the
diagonal of the matrix. Therefore, only E[Z{], E[Z} Z?], and E[Z7 Z? Z}] with i, j, k all differ satisfy
this requirement, and we immediately get the desired result from Isserlis’s Theorem.

F.7  PROOF OF LEMMA 8

We first fix z; and will take expectation at the end.  Note that gqu_q(2¢|zi—1) =

2
e D (—%) Following from the idea of Tweedie Efron (2011), we have

Qtfl\t(xt—l |z¢)

qt—1\Tt—1
= tntxz))Qtlt—l(xt|$t1)
C]tfl(-thl) 8% Q¢ 2
= _ 0 Toe 1 — ——— ||
L) sl exp (LT = 5 )

TR P Ja
(qt,l(xt,l)e -ap 2=l ) exp (1;%{%1 —log qi(w¢) + log Qtt—1($t|0))
—

=: f(w4_1) exp (xtT_lit — n(:Et)) (32)

where we have used the definitions of Z; and (&) in (23). This shows that ;1 is a conditional
exponential family given Z;. Thus, the first moment can be found as (cf. Prop. 11.1 in Moulin &
Veeravalli (2018))

0=Vz, [ g1t(zi-1|ze)dzi1 = V5, /f(xH) exp (2]_ & — k(i) dai—s
= /f(act,l)vit exp (xtlljt - /{(56,5)) dxs_q
= /f(a:t,l) exp (x{_lfct — /i(;fct)) (xe—1 — Vi, k(%)) drs—1

= /f(xt_l) exp (xtT_ljt — Ii(i‘t)) xp_1das_1 — Vi, k(%)

which implies that
EXt—l"‘Qt—l\t [thl] = Vk. (33)

For the second moment,

0=20; /Qt71|t(xt—1|xt)dl't—l
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/f Ti—1) exp (It 12— H(:ct)) (mi_l — 87;/1(5%)) )dxt_l

= / fl@ior) exp (arz,lft = (@) ((@iy = B(@0) (] — O3(30)) — O () ) dayy
which yields
1-— Qg (1 — Oét)Q

EXH]NQFW [(Xe—1 — pe) (X1 — pe)T] = Vi = I+
O (227

V2log qi(z;). (34)

Below, we write x = x;_1 and k = k(Z:) for brevity. We remind readers that all derivatives are w.r.t.
T, instead of x = x;_;. For the third moment,

0= 8fjk /qt,”tdx =: /f(x) exp (272 — k) D3(x, 7)dx
where
Ds(z, &) = exp (—27 % + k) ak(exp (273 — k) (2" — Opk) (27 — Ojk) — afjm) )
= (2 — Oyr) (2" — Oik) (27 — 9yK) — 03k)
+ (=05k) (27 = 0jk) + (=05k) (2" — Bir) — Oy (35)
Now, for any function fn(#;) and 1 <i < d,
/f(x) exp (27%; — k) fn(F;) (2" — O;k)dx = 0
by the first moment result (33). Thus, we get
Ex,in@u vy |(Xioy = i) (XEy = i) (XEy = )] = O,
and by Assumption 5, Ex,~q, [03,,5] = O((1 — ay)?).
For the fourth moment, we have
0= 3§1ij /qt_l‘tdx =: /f(x) exp (27%; — k) Dy(z, Z4)dx
where
Dy(z,2y) = exp (—2TZ; + k) O (exp (27%; — k) (2" — Oiw) (27 — 9jk)(a* — Opk)

- afjn(xk — Opk) — O k(2! — Ojk) — a%cﬁ(:c" — Oik) — 8fjkm))

= (' — Biw) (2 — B;k) (a* — ) (2! — Oyr) + al( o — Oi) (27 — 0) (2" — 3k/1)>
— 8%—/{( k Bkm)(;vl OIK) — ]lm(x — Okk) + Iiakllﬂl
— Ofr(a? — Ojk) (&' — Bik) — Oy r(a? — D) + Ok
— r(a’ — k) (x! — Oyk) — k(@' — 0ik) + k0K
- ijk’f(x — Ok) — 8ijkl“<5 (36)

and
8;((xi — 0;k) (27 — Ojk) (2" — 8k/<a))
= —0%k(a? — (%/@)(J:k — OkK) — 8]2l/£(a:i — 0;k)(z* — Opr) — Rk (x’ — 0;k) (27 — 0jK).
Using the first and second moment results in (33) and (34), we get
Exoin@u o |(Xioy = i) (XEy = i) (XEy = i) (XD = )] =
(a?j’f)(algz’f) + (azzk"i)(a?l”) + (81'21“)(351@“) + 8%1@15-

And the fourth moment result follows directly by applying (34) to each of the terms and taking the
expectation over X; ~ @Q;. The rate follows from Assumption 5 (cf. Definition 2).
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F.8 PROOF OF LEMMA 9

The proof continues the idea of Lemma 8. The idea is to use the inductive relationship (provided in
the proof of Lemmas 8 and 10):

Ds(z,24) = exp( -2 + k) 0, (exp (7% — k) D4(x,£t))
= (2™ — Omk)Dy(x, &t) + O Doz, Tt)

Deg(z, %) = exp (—2TZ: + k) O, (exp (7% — K) D5(x,jt))
= (2" — Onk)D5(x,Z4¢) + OnDs(x, ZT4).

Let PJ be the set that contains all distinct size-k partitions of [¢]. We use the definitions:

k
party (A) == {((ai,a;) : {i,j} € p) : p € Py}
Recall the formula for Dy in (36), which can be abbreviated as (here |a| = 4):

Dy(z, %) :H ' — 0ik) — Z 02k H zt — Oik) + Z 02k02k

ica e(2) ica\b (b,c)epart,(a)
— Z@a\{i}m z' — 0;k) — Oik.
i€a

Also recall the definition of f(z) in Lemma 8 and that [ f(z)e® #~*D,(x,#;)dz = 0, through

which we can find the expected p-th moments of Ex, ,~q,_,, [[T;ca(Xi 1 — pi)]. For reference,
the first four moments are

/f(:c) exp (273 — k) (z° — O;x)dz =0

/f(a:) exp (273 — k) (2" — Oik) (27 — 9jk)dx = 8%/{ = Orr(gn(l — o)

A
< > = {{al,...,ak}:al,...,ak €A, ay,...,ax alldiffer}7 kE <|A]

/f(m) exp (278, — k) (2 — k) (27 — Ojk)(z¥ — Opr)dx = 8f’jk/<c = ng(Qt)((l —y)?)

/f(x) exp (27, — k) (2" — 9;k) (27 — 9k) (2" — Opk) (2! — Oyw)da
= (05,R)(OR1k) + (07:k) (01,) + (0R)(O75k) + Ok = Oro(y (1 — aw)?)
where we note that 9%k = Or»(g,)((1 — a;)¥) forall k > 3.

We can calculate Dj as (with |a| = 5):

Ds(x, %) = (2% — Oysk) Doz, Tt) + Ous Do, Zt)

= H(zl — Oik) — Z ik H (" — Oir) — Z 52\an(x

ica be(‘;) ica\b be(‘;) 1€b
+ > k02K (2t — k)
ica
(b,c)epart,(a\{:i})

- Z ai\{i}ﬁ(xi — Oik) Z 8b/<;8a\b/<;

i€a be(2)

Therefore,

EXt—1~Qz—1\f, H (Xtifl _M;)

i€a:|a|=5
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Z Bgnai\b/i—i— Z 83\b/€6§/$— Z 05&82\,,/{—1—335

be(3) be(3) be(3)
= Y OgrOYph + 0ak = Opwgn (1 — ar)?).
be(3)

Now we turn to calculate Dg (and let |a| = 6):
Dg(x,@) = ( a6 — (“)aGn)D5(x ft) + 8a6D5(x i‘t>

:H(mi—aﬁ Z@an rt— OiK) — Z@a\bﬁznx—an

i€a ( ) i€a\b (3) icb
- Z 8a\b“H(xz_ai’i)+ Z 82/182,{1_[:5 — Oik) +an (" — Oir)
be(‘;) icb be (s i€b ica

(c,e)€epart,(a\b)
— > RROIROZE+ D Ogrdapr+ Y, Oprdik — OSk.
(b,c,e)epart,(a) be(;") (b,c)€epart;(a)

Here fn(k) is a function of x which does not depend on x. Note that fn does not affect the expected
value because Ex, ,~q,_,, [X¢—1 — pt] = 0. Therefore, we have

EthlNQt—l\t H (Xtifl _Nz)

i€a:|la|=6

bE(;) (c,e)epart, (a\b) be(‘;)
+ 3 e Y Ogwoiwdln
be(2) be(3)
(c,e)€epart, (a\b)

+ Z 0RO k02K — Z agnaﬁ\bn — Z D3k02 K + 0%k
(b,c,e)Epart,(a) be(‘;) (b,c)eparts(a)
Z 8§m8i\b/f + Z DROZK + Z OpkO2K0%K + Sk
bE(g) (b,c)€eparts(a) (b,c,e)€epart,(a)

Z 3§nagnagn+égp(@)((1 —y)”).

(b,c,e)eparty(a)

The proof is now complete.

F.9 PROOF OF LEMMA 10

We fix x; first and will take the expectation at the end. We first introduce some notations used in the
proof. We write © = x;_1 and x = k(Z;). Given a set of indices A, define its bipartition as

bipart(4) := {(B,C) : A= BUC}

where B and C' are both sets of indices (and therefore the order of indices within each of B and C' does
not matter). Here LI refers to the disjoint union of the two sets (which is only defined when the two sets
are disjoint). Next, given a set B, define allpart>2(B) as a set containing all partitions of B such that
there are ar least 2 elements in each part of the partition. As an example, allpart>2({1,2,3,4}) =

{{{L,2}, {34}, {{1.3}.{2.4}}, {{1. 4}, {2.3}}. and {{1}.{2,3.4}} ¢ allpart>({1,2,3,4})

despite the fact that it is a valid partition. For each partition b € allpartzg( ), define

dyn = [[ 0.

£eb
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Here note that ¢ is also a set, and 9y« is well defined since the order of indices to take partial
derivative with does not matter. Define

Dy(z,24) :=1
Dy(z,2¢) := exp (7% + k) Oq,, (exp (7% — k) Dp_1(z, a?t))
for all p > 1. We again remind readers that all derivatives are w.r.t. Z instead of x = x4_1.
By working out the derivative, a direct implication of the definition of D, is a recursive relationship:
Dy(z, &) = (2% — 04, k) Dp_1(x, %) + Oa, Dp_1(x, T¢).

Also, if we unroll the recursion of D), we get
Dy(x, %) = exp (—27Z + k) Oq,, (eXp (7%, — k) Dp_1(x, i‘t)>
= exp (=27 + K) Oa, (exp (x7% — k) exp (—2T% + K)
Oa, (exp (7%, — k) Dp_o(x, :Et)))

=exp (—2T%; + K) 831”%71 (eXp (7% — k) Dp_o(x, it))

=exp (—zTZ: + k) agpwal (exp (T3 — H))
and thus

0=0, o, [aoside = [ F@0L, o, (e @70~ 1) )ao
= /f(a?) exp (7%, — k) Dp(x, Z¢)dz 37)

where we recall the definition of f(z) back in (32).

In the following, we present the entire proof into two parts. In part 1, we inductively show that each
D, (x, %) satisfies a particular polynomial form. In part 2, we inductively show that this polynomial
form results in the desired rates.

Part 1 of the proof of Lemma 10: The first step toward proving the desired results is to obtain the
form of D, for all p > 2. Now, we aim to show inductively that

p

D,(x,%;) = H(:L‘“’ — 0, k) — Z Z dy(b,C) (k) H(m% —0,,k) (38)

i=1 (B,C)ebipart([p]) beallpart 5 (B) ceC

where d, (b, C) is a constant from combinatorics, which is possibly 0 and which only depends on p.
From Lemma 8, the bases cases have been established that (cf. (35) and (36))

Dy(x,24) = (xl - 5‘i/<;)(xj — OjK) — afjﬁ

Dy(x,3;) = (2' — 9ir) (27 — 0jk)(2* — Oxk)
- (‘3%/1(3:’“ — Ok) — 05uk(3) — 9;K) — Fpk(x’ — Oik) — Ok

Dy(z, %) = (2" — 0;k) (27 — 0jK) (2" — Opr)(a! — Oyr)
— afjn(xk — Ow) (2! — Oyw) — OZk(ad — Ojk)(z! — Oyk) — 3?k/<;(xi — ;) (2! — Oyk)
+ (2" — Opk) (27 — Oj) (2F — Opw)) — a?jkn(ml —O|k) — (“)f’jl(xk — OkK)

— 03, (27 — 0;K) — B?kl(xi — 0iK) + afjmaﬁln + afknafln + a?kﬁafm — 8fjkl/i.

In particular, each term of D, (p = 2,3,4) is in the form of either [[?_, (2% — 8,,x) or
(Op) [[occ (2% — Oa k), where [§| > 2, V€ € b, and (Ugep§) LI C' = [p]. Therefore, Do, D3, Dy
all satisfy the hypothesis (38).
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Turning to the inductive step, we suppose that Dy, satisfies (38), i.e.,

k

Dy(x, %) = [[ (2™ — Ba,5) — > S dw(b,C) (k) [ (2% = Oa,r).

i=1 (B,C)ebipart([k]) beallpart s 5 (B) ceC

Then, using the recursive relationship, we have

Dk}+1(xa j‘t)
= (2 — O, k) Dy (2, 1) + Oay ., Di(x, %4)
k41
SIS S 0@ [] @ - R = 0yy)
i=1 (B,C)ebipart([k]) beallpart 5 (B) ceC
Ty

T

k
- aak+1 <_ (xai - am"ﬂ) - Z Z dk(bv C)(abm) (aak+1 H (xac - 8116’{))
i=1

(B,C)ebipart([k]) beallparts, (B) ceC
Ty 1
- > > d(6,C) (Oupy, (B4k)) [ (@ — Oa, k)
(B,C)ebipart([k]) beallpart 5 (B) ceC
Ts
=T —-T,—-T5-T,—T;
where we define each term as 77, . .., T5. Now we discuss these terms separately:

1. T3 (and only T) is in the form Hfill(xa’? — Da,; K).

2. Ty is a summation of individual terms: (9yx) [[.cc (2% — Ou k) (x**+* — Oy, ,, k). Here
b € allpart,(B) and (B, C) € bipart([k]). Thus, by definition of bipart and allpart.,,
foreach & € b, |£] > 2 and (Ueepé) U C = [k]. Therefore, k + 1 ¢ B U C and

(Weep§) UC Uk + 1} =[kJu{k+1} = [k+1].

This implies that each individual term of 7 is in the form of (9y%) [[.cc, (#¢ — Ocr) where
b € allpart,(Bz), such that By := B and Cy := C U {k + 1}. Here Cy is well defined
because k + 1 ¢ C'. Since (Bg, C2) € bipart([k + 1]),

Ty = Z Z da (b, C)(Bpk) H(m“c — Oy, K)

(B,C)ebipart([k+1]) beallpart s, (B) ceC

for some constant dy (b, C').

3. Ts is the derivative of product, which is a summation of individual terms:
(02 K) H%l(xai —04,K), j =1,..., k. Therefore, foreach j = 1,..., k, each term is
k2

Qj,ak+1
J
of the form (9yx) [ [ .c o, (¥%¢ —Oa, k) where b € allparts,(Bs), such that By := {3, k+1}

and C5 := [k] \ {j}. Since (B3, C3) € bipart([k + 1]),
Ty = > > ds(b,C) (k) [[ (@™ — Oa,r)

(B,C)ebipart([k+1]) beallpart s, (B) ceC

for some constant ds3 (b, C').

4. Ty is a summation of individual terms: (8yx) (Oaysy [[oec (2% — Oa,k)) Where b €
allparts(B) and (B, C) € bipart([k]). Now,

(abﬂ) <8ak+1 H (xac - 8%/{)) - *(6b’€)(82j,ak+1 K:) H(xai - aaa,ﬁ)

ceC ieC
i#c
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= —(Op, k) H (2% — Oy, k)

1€Cy

where by :=bU{k+1,c}and Cy := C'\ {c}. Here by is well defined because k + 1, ¢ ¢ b.
Define By := [k + 1] \ C4, and we have b, € allpart,(By4). Since (By, Cy) is a valid
partition of [k + 1], we have

Ty = > S du(b,C)(8k) [[ (@ = Oa,r)

(B,C)ebipart([k+1]) beallpart >, (B) ceC

for some constant d4(b, C').

5. Ts is a summation of individual terms: (8q,,, (%)) [[.cc (2% — Ba.k), where b €

allparts,(B) and (B, C') € bipart([k]). From definition of 9y,

D (Ok) = Ouy, [ TT0MIR ) =7 (0lehil ) [T 01k = 3 B

£eb £eb CEedb ceb
€23

where, for each § € b, we have defined a new partition b such that k + 1 is added to the
& in the partition b. Formally, define b¢ := b\ £ U {{ U {k + 1}}, which is well defined
because £ ¢ (b\ &) and k+1 ¢ B. Define B; := BU {k + 1} and C5 := C, and note that
(Bs, C5) is a valid partition of [k + 1]. Since || > 2, V(¢ € b, we have [¢’| > 2, V(' € be.
Since b € allpart~,(B), we have bs € allparts,(Bs) for all £ € b. Therefore, for any

fixed C(= Cs)
> di(b,C) (Oay, (Bpr)) = S D db,C)dk
beallpart,(B) beallpart,(B) £€b

= > ds(bs, C) By,

bs €allpart s, (Bs)

for some constant d5(bs, C'), and thus

Ts = > > ds(b,C) (k) [[ (& = . 5).

(B,C)ebipart([k+1]) beallpart >, (B) ceC

Finally, letting

5
i1 (b,C) =Y d;(b,C)
Jj=2

for each b € allpart~,(B) and C such that (B,C) € bipart([k 4+ 1]), we have shown that if

Dk(l‘,
p>2.

#;) is in the form of (38), Dy 1(, Z;) is also in this form. Thus, claim (38) is valid for all

Part 2 of the proof of Lemma 10: First, we remind readers of the definition of x(Z;) in (23). Also,
the partial derivatives within the expectation over X; ~ @Q; do not affect the rate by Assumption 5.
Note that Vk = p; from direct differentiation. From (37) and (38), for fixed z;, we have

P
]EXt,—lNQt—l\t lH(bel - :u‘?i)‘|

=1
O~ sSup abﬁ(jt)EXt—lNQtflu H(Xtail - :U’?C)
(B,C)ebipart([p]) ceC

beallpart ,(B)

@ ( sup < sup Bw(it)> Ex, 1~ [H(Xgil - M?C)D - (39

(B,C)ebipart([p]) \ beallparts,(B) e
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We first consider the term Sup,caiipart. ,(5) Ok (Z¢). Given a partition b € allpart.,(B), direct
differentiation yields -

1— 1— ) -
815!,4 = L (1— o) agg log qi(z) = O(1 — ), if |¢]=2and & =&
o7 (673
1— a,)lél -
lei"ﬁ = (7%)5? log ¢ (x) = O((1 — ozt)‘f‘), for all other £.

e

Since by definition 9k = ng b alfsln and Lgep€ = B, the slowest rate of 9y« (as a function of B)
is determined by the partition b containing the most number of equal pairs. The slowest rate is

sup Byk(Fs) = {(? ((1 — at)(\Bl—l)/Q(l _ Oét)?’) -0 ((1 _ at)(\B|+5)/2) if | B|is odd
beallpart ., (B) O ((1—ay)Bl72) if | B|is even

To proceed, we will again use induction to find the overall rate. From Lemma 8, base cases have been
established that

2
EXt—hXt,NQt,—l,t H(Xi?il - .u“;,“> =0 (1 - at) ’ Va € [d]2
=1
3

0 (1—a)?), Va e [d?

EXt—l’XtNQt—l,t H(Xfil - M?i)

i=1

EXt—hXt,NQt,—l,t H(Xi?il - .u“;,“> = O ((1 - at)Q) ) Va € [dri
Li=1 _
These rates satisfy (24) and (25) when p = 2, 3, 4. Now we turn to the inductive step. Suppose k > 4
is even. For purpose of induction, suppose (24) and (25) hold for all p = 2,. .., k. Then, following
(39), for p = k + 1 (odd number), we have

k+1
EXt71,XtNQt71,t [H(Xfil - M?i)]

i=1

(B,C)ebipart([k+1])

= O( sup (1- at)(lB\+5)/2(1 _ at)|C\/2
|B| odd, |C| even

n sup (1= a)IBI2(1 — q)IC1+3)/2
(B,C)éebipart([k+1])
| B| even, |C| odd

=0 ((1 — at)(k+1)/2+5/2 +(1- at)(k+1)/2+3/2)
-0 ((1 _ at)(k+1)/2+3/2) .

Then, for p = k + 2 (even number), we have

k+2
EXt—hXtNQt—l,t [H(ngl - :u‘tal)‘|

i=1
-0 sup (1 — oy )UBIT9)/2(1 — ) (IC1H3)/2
(B,C)€ebipart([k+2])
|B| odd, |C| odd
+ sup (1 — oy)!BI2(1 — ) IC1/2
(B,C)€ebipart([k+1])

|B| even, |C'even

-0 ((1 — )RR/ (] at)(k+2)/2)

These show the validity of the claims (24) and (25). The proof is now complete.
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F.10 PROOF OF LEMMA 11

Before analyzing the rate of each moment, we need to guarantee the validity of exchanging the
limit (in the Taylor expansion) and the expectation operator. Intuitively, this is achievable under
Assumption 5, where the Taylor series is absolutely convergent in expectation due to its Gaussian-like
moments. Specifically, since log ¢;_1 is analytic, all its partial derivatives exist. Following from the
Taylor expansion of ¢/, ; in (20),

lim
k—oco

E Xi~Q [Ci—1] —E XinQs |:T1(loth—17Xt—17.ut)JFTQ/(lOth—lth—ly,ut)
Xia~Ply, Xy 1~P!_

—1t

k
+) Ty(log g1, Xi1, ,Ut)]

p=3

< lim E XtNQt

k—oco X, 1~P

Cloo1 —Ti(log g1, Xo—1, ) — To(log qe—1, X1, ur)

1)t
k

- Z Ty(log gi—1, Xt—1, put)
p=3

oo

lim E X~Q, Z T, (log qr—1, Xt —1, 1)

k—
C Xem1r~Pyy | p=htl

IN

INE

lim lim inf Z E Xi~Q |T,(log gr—1, Xi—1, te)]

k— —
o° o p=k+1 Xt 1NPf 1)t

(i)

0.
Here (i) follows from Fatou’s lemma, and (ii) is because, under Assumption 5 and Lemma 7, we
have B x,~q, |Tp(logqi—1,X¢—1,:)] = O (T~P/?), and thus the infinite sum is convergent
Xi—1~Pe1pe

for all (k, ¢) such that 1 < k < £ < oo since

o0

~ 1 d?
ZE Xi~Qy | p(lqut—lvxt—lnutﬂ =0 (Z o Tp/2> < 0.

—1 Xi—1~Plyy, p=1

The proof for E  x,~qg, 1is similar due to its Gaussian-like concentration of all centralized
Xi—1~Qe—1)¢
moments (see Lemma 10). Thus, we are able to exchange the infinite sum and the expectation under

either P, 1 X Q:or Qi1 +.

Next, we put together the rates of the conditional moments. We use abbreviated notations as
T, = Tp(logqi—1, X¢—1, pit). To investigate the dominant term, we analyze the expected difference
of the first 8 moments in the Taylor expansion (20) separately. First, for any fixed x;,

EXt—1~Qt—1|f 1] =0= Ex,_ 1~P g, [T1].

Also, for T4, note that for any random variable Z (regardless of its distribution) with EZ = 0 and
Cov(Z) = X, the mean of the quadratic form (with fixed matrix Z) is

E[ZTZ2Z] =E[Tr (ZT2Z)] = Tr (EX).
This implies that, for any fixed x¢,

1
t— W[TQI] = EXt 1~Plg, [(Xt—l —pe)T (V2 log gr—1 (1) —

]EXt 1~P/
2 Qy
;Tr ((V log qs—1(pt) — 1 Bt) Et)
Y

1 o
= 5BX1nQioye [(th — )T (VQ log gr—1(pe) — 1 ;at Bt) (X—1 — Mt):|

Qg

Bt> (Xe—1 — Mt)}

1—O[t
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= EXt—INQt—l\t[TQI}'
Using Lemmas 7 and 8, the rate for 75 is
) [Ts(log i1, X1, 0)]
= ]EXt,—hXtNQt—l,t [T3 (log -1, X¢—1, Nt)}
(1 — Oét)g

d
= D Exinq 05108 g1 (1e(X1)) 055 log g (Xy)).
QT k=1

EXtNQt (EXt—INQt—l\t - Ext—l'\/Pl

t—1|t

Using Lemmas 7 and 10, and when the partial derivatives satisfy Assumption 5, the rate for T3, T%,
and T),(p > 8) can also be determined:

) [T5(log qi—1, X¢—1, pit)]
= EXt—hXt"’Qt—l,t [T5(10g Gr—1,Xt—1, ;Uft)]
= O((1 —ay)*),

Ex,~qQ. (]EXt—l"‘Qt—l\t - EXt—lNPf

t—1]t

EXtNQt (Ext—lNQt—l\t - EXt,—l"‘Pl

t—1|t

) [T2(0g a1, Xo-1, )]
=Ex, , x,~Qi_r, [T7(log g1, Xi—1, 1¢)]
=0((1 - )%,
Ex,~q, (]Ext_th,m - Ext—sz_m) [Tp(log qi—1, Xt—1, f1t)]
=0((1 — )b, Vp > 8.
The remaining orders are 74 and Tg. The following proof will draw from the results in Lemmas 7

t0 9. Fix p > 1. Write Z; = X} | — put and AY = [A;]¥ for i, j € [d]. For Ty, leti, j, k,1 € [d] all
differ, and the difference (in expectation) of each term of 7 is

EXt—l’VQt—ut [Zz4] - ]EXt71~Pt’71‘t [Zz4]

-\’ (1— ) 1- o\’ N2 | A 4
= 5 +6 o2 8iilogqt(xt) -3 (1—|—A ) +O£7)(Qt) ((1—04,5) )
t

t Qi

1-a;\? ii A
= -3 < o t) (A )2 + Oﬁp(Qt) ((1 — Oét)4) y
Ex, 1~Qu 120 2] = Ex,_ynpy 2 Z)]

1—Oét

1—a;)?
— 3%8% log g (x¢) — 3 (

t

2
)‘““*Aﬂ+0m@wa—wﬂ

Qg

2
1— P ~
- (aat) ATAT 4+ Oca(qn (1= ar)*)
t
Ethl"/Qt—l\t [ZZQZ]2] - EXt—lNPl

t—1|t

2 72
12 Z]]

- (1 _at)2+ < _St)g (02 1og qi(x¢) + 02 log qr (1)) — (1 _at)2(1+Au>(1+A,-j)

(673 (&% (673

+Orr(q,) (1 —ar)?)

1— 2
T ( at) ATAY 4 Opog (1 —an)?),

Qi

EXt—l"‘/Qt—l\t [ZZQZ]Z’V] - EXt71~Pt/7 [Z?ZJZIC]

1)t

1—oy)? 1—ap\? o -

= (Q'S)f)?klogqt(xt)_( o t> (1+A“)Ajk+O[)P(Qt) ((1—0425)4)
1—oy)? i i -

= A O (1= 00)),
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EX, in@u 12252620 = Bx, npy | 22326 20) = Opoiqn) (1= au)?) .

Recall from (14) that A; = (1 — o) V2 log qi () = Oﬁp(Qt) (1 — o) under Assumption 5. Hence,
many low-order terms above are cancelled, and we get

(Ext,th_m Ex,yory ) [Ty(log gt—1, Xi—1, 11e)] = Orn(,) (1 — ar)?).

Now we turn to Tg. Let 4, j, k € [d] all differ, and the difference (in expectation) of each lowest-order
term of Tg is

Ex,_1~q.- l|t[Z] Ex,_ 1~P)_ m[Ziﬁ]

1— 3 1— 3 g .
- ( at) - (aat> (14 A" + O (1 — o)),
t
EthlNQtflh[Z;lZ]Q] Ex, ,~p [Z4 2]

t—1tt v

N (1 a at)g - <1 . at) L+ AP A+ A7) + Opr(q (1 = ),

s

Qi

(1 . at) - (1 . at) (1+A")(1+ A7) (L + A) + Oro(@) (1 — ar)?).

Also, by Lemmas 7 and 9, the rest of the terms already satisfy O » (@) ((1—a;)*) under Assumption 5.
The low-order terms cancel in the same way as for 7}, and thus,

(EXt—lNQt—l\f ]EXt 1~P/ ) [Tﬁ(logqtflet*hMt)] = Oﬁ”(@f)((l - at)4)'

t—1|t

Therefore, the lowest order term above is T3, whose order is O £r(@.) (1 — ay)?). The proof is now
complete.

F.11 PROOF OF COROLLARY 3

The proof is very similar to Lemma 11 and (21), except with a perturbed covariance matrix. We

employ the notations A, and B, from Remark 3. Here we have that At(Xt) A (Xy) + 24(Xy),
and thus, Vr > 1,

Bi(X1) = Bi(Xt) + Orrg,y (1 — ar)?) = A(Xy) + Orr(guy (1 — ay)?)
ES (1 — Oét)VQ 10g Qt(Xt) + O~£T(Qt) ((1 - Oét)2) .

Compare with the proof of Lemma 11, the only difference is the expected difference of T3. Since
At(Xt) = At(Xt) + Oﬁr(Qt) ((1 — Ozt)Q) and Bt(Xt) = Bt(Xt) + OL:T(Qt) ((1 — Ozt)z), the
expected differences of all higher order T},’s have the same rate as the non-perturbed case.

Now, for any fixed z; and r > 1,
Ex, ~p T3]
1 T 2 67 ®
sEx, .~p (X1 — )T | V7 log qe—1(pee) — By | (X1 — pie)
2 t—1]t 1-— (67
1 ar =\ =~
= §TT ((V2 log qr—1 (1) — T —tozt Bt> Et> ,

and, from Lemma 8,

—1|t

EthlNQt—l\t [TZI}

1 ap o
= 5EX1nQiye {(th — )T <V2 log g1 () — —— Bt) (X1 — Mt)}

1-— Qg
1 lo} ~
= §TT ((V2 log qs—1(pt) — 1 7tat Bt) 2t> .
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Thus,
! m) (T5(log q—1, X¢—1, pit)]

_ %Tr (<V2 log q1—1(pe) — 1 iytat > ( )>
1_
. =5)%)

= T ((V2 log qr—1 (111) —
((V log qt— 1(/,615) - atV log qt Xt)) Et) + O[:T(Qt) ((1 - Ozt)4) .
)

(Ext—l'\/@t—l\t EXt 1~P/

1-— at
20y

Note that here the first term is in the order O £7(Qy) ( (1 — o)
Opr (@u) ((1 = a)?). Therefore, under the perturbed case,

EXtNQt (]Ethl"’Qt—l\f EXt 1NPt l\t) [Ct/,tfl}

2C¥t
3

under Assumption 5 since = (X;) =

1l-«a ~
=~ Exina.Tr (V2 log g1 (1 X)) — V2 log ar(X)) 24(X1))
t
(1- at 5 o3
+ W Z EXtNQt[ ijk IOth I(N/t(Xt)) ijk 1qut(Xt)]
@ i,7,k=1

+ O((l — O[t)4).
The final result can be achieved using (21). The proof is complete.
F.12 PROOF OF LEMMA 12
From (1), the forward process at the first step is

1 =orxg + V1 —ogw
where wy ~ N(0, I) is independent of Q. Thus,

2
EXINQhXONQO HXl - )(0”2 = EW1NN(O,L1),X0~Q0 || V1—aWi + (\/ Qy — 1)X0H

@) 2 2
= Epy (0, 1) V1= a1 Wi + Exonqo Il (Ver — 1) Xo|
(@)
S (1 — Oél)d + (\/011 — 1)2M2d
)
< (I—o)(My+1)d
where (i) follows from independence, (ii) follows from Assumption 1, and (ii¢) follows be-
cause (y/z —1)2 < 1 — z for all z € [0,1]. The proof is complete since W2(Qo, Q1)? <
Ex, 01, Xo~00 || X1 — Xo ||* by the definition of Wasserstein-2 distance.

G PROOF OF THEOREMS 2 TO 4 AND 5

In this section, we instantiate Theorem 1 (along with Corollary 1) to provide upper bounds that have
explicit parameter dependency for a number of interesting distribution classes. In order to obtain an
upper bound that explicitly depends on system parameters, we need only to provide an explicit bound
on the reverse-step error, which is the main topic that we address in the following subsections.

G.1 PROOF OF THEOREM 2

We first introduce some relevant notations. Given that Q) is Gaussian mixture, the p.d.f. of ¢; at each

time ¢ > 1 can be calculated as
N

q:(x) :/ a10(x|70) D ™o n(w0)do
zoER? n—1
N
= Zﬂ-n/ 4t)o (z]z0) qo, n(xo)dxo = Zﬂ'th n(T).
0€R? n=1

Since the convolution of two Gaussian density is still Gaussian, we have that g, ,, is the p.d.f. of
N (ft,ns Xt ), Where iy, := /Qqpio,n, and Xy, := X0, + (1 — @) I4. Note that 3, ,, has full
rank.
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G.1.1 CHECKING ASSUMPTION 4

We first verify Assumption 4 for Gaussian mixture )y for any o, that satisfies Definition 1. The
intuition is that its Gaussian-like tail (for all ¢ > 0) is sufficient to control all higher-order derivatives
of log g;.

In the following, Lemma 13 provides an upper bound on any order of partial derivative of a Gaussian
mixture density for any fixed x4, as long as each mixture component is well controlled. This
directly implies that the partial derivatives are also well controlled in expectation, and thus we verify
Assumption 4 for Gaussian mixture in Lemma 14.

Lemma 13. Ler g(x|z) be the conditional Gaussian p.df. of N(u.,X.). Define q(x) =
[ 9(z|2)dI1(z), where 11(z) is a mixing distribution (and denote Z its support). Suppose b :=
Sup, ¢z ||| < oo, and suppose the following conditions on ¥, hold for all z € Z:

1. There exist u,U € R such that u < det(X,) < U;
2. There exists V € R such that | S| < V;

1
3. There exists w € R such that sup ¢ z ; jc(q2 2. 2]”‘ <w
Then,
) 2k 1 k d2* 1 k
0% log g(a)| < min {Ck B, % kRS eI+ % (poly, ()] b,
U m

where By, is the Bell number, C is some constant, and poly,,(z) is some k-th order polynomial in .

Proof. See Appendix H.1. O

Lemma 14. When Qg is Gaussian mixture (see Theorem 2), Assumption 4 is satisfied.
Proof. See Appendix H.2. O

G.1.2  EXPRESSING 97, log g;

Now we continue from Theorem 1 to work for an explicit dependency on d. We first calculate the
second partial derivative of its log-p.d.f. as

\v& log qi(x)

( (Z TnGt,n( t n( — pen) (T — Ht,n)TE;}z - Etﬁi))
T
Z Tindt, n — M, n > (Z Tnqt, n ( — Mt n)) > . (40)

Now write z,(z i (@ — pg,). Note that Ozl = [E;}L]Z , and that Orq; () =
Gt (2)(—2f (). We can rewrlte (40) as

O logan(e) = s ( Zﬂann ) (st (@) (@) = (20207)

Qt

N1

— (anqtm(az)zfn )(Zﬁnqtn ztn )))

N2

To calculate the third partial derivative of its log-p.d.f., we need first to calculate the partial derivative
of N1 and N2. The derivative for N1 is given by

o Z @) (b ()20, () — [57017)
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N
=3 (@) (2, (@) (21 (@) (@) — [2727)
n=1

N
3 Tt (0[S 2 0 (2) + Tt (0[S0 172 (),

and the derivative for term N2 is given by

N
k (Z 7Tn‘]t,n Zt n Z Tnqt, n Zt n ))

Z Tndt,n( Zf,n(x))zl,n( Z Tngt,n( Zt n(

+ Z TGt ()2 ( Z Tndtn ( (=2t ()2 () + [
n=1

Combining these, the derivative for the numerator is

O(q:(z)N1 = N2) = 8k(Qt( )INI + q;(2)9)(N1) — 0k (N2)

== 2 maten (@)t anqt n(@) (44 n@)2d u(2) = (27117
+ qt <Z Tndt, ” Zt,n( )) <Z§,n(95)2g,n(37) - [E;’rll]”)
+ Tnlt,n (x)[zt n]lk t,n(x) + Tnqtn (x)[zt n]jk% n(x)>

N
=Y Muden(@) (—2f (@) 0 (@) + [S)) anqtn 2)2] (@)

n=1

N
- Z 71—th,n Zt n Z Tngt, n ( —Z n(x))zg,n(l‘) + [E;ﬂjk)

n=1

t,n

N
= 7qt Z Tnqt, n Zt n ) x)zf,n(x) - Z Wth,n Zt n Z Tingt, n

+ § 7Tth,n Zt n g Tngt, n Zt n Zt n + E Tingt, n Zt n

+qi(x Z TnGen (@) [Si 728 () + Y Tngrn(@)[S )7 Z Tngtn(
+ @ () Z qutn(x)[z;rlz]ikzin () — Z Tt (2)[3 ] Zk Z Tt (
n=1
N
+ g (l‘) Z Tnqt,n (LL') n szz n Z Tnqt, n Zt n Z Tnqt, n
n=1

Since

1, 1og g1 () = Oy (qt(x)Nl)—Nz)

g (x

45

Z Tndt, n

Zt

Zt

Zt

n

n

Py

n

(z)

(z)

Sralt

N
== <8k(qt(ﬂc)N1 —N2)gi(z) + 2(q:(x)N1 — N2) Z qutn(m)zfn(x)> ;
n=1

Ln(@)

Zt n

()20 (2)
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we get

Q?(x)aigjk log Qt(x)

= _qt ZWthn Ztn ) ! (x)ztn +qt Z'ﬂ—thn Ztn Zﬂ-thn Ztn ) ! (il?)
+qt<x)zmqt,n 2)2l, ( anqm )2} (2)2F ()
n=1

N
+ qt (l.) Z Wﬂqt,n Zt n Z Tndt, n Zt n )Zf,n(x)

n=1

-2 <Z TnGt,n (x)zz n > (Z TnGt,n zt ol ) (Z T Gt,n zt n ))

+qi (x Zﬂ'n%n e REAM( Zﬂ'th n(2) 2 )7 Zﬂ'thn )2, (z)
+q; () Zﬂ-nqnn(x)[zg'}z]i ) — @l ZWthn Sial ZWthn )7, (@)
+ i (z Z Tt (D) [Zr 01 * 2] o (@) — qu(@ Z TnGe,n ()24, ( Z Tngen(2)[Z 01

Below, we write & (2, ) 1= max, |2} , ()| and £ to be a matrix such that £ := max,, |[S; 1]|.
Also write hy ,(z) = Tpqe,n(z)/q: (). Note that for any x, anl hin(x) = 1. Therefore, we take
max,, within each summation above and get

|02 1og qu(x)| < 6&u(2,0)&(w, )& (w, k) + 257 & (2, k) + 257, (2, j) + 2577, (2, 4).

G.1.3 ASYMPTOTIC EQUIVALENCE OF pi;(x) AND 24
Intuitively, u(z;) and x; are asymptotically close when 1 — «a is small, which will be useful for
later analysis. In this subsubsection, we will show that &1 (11¢,7) — &(e, 1) = O(1 — ).
Note that for each n and fixed x; (writing ¢ (z¢) = pt),

Zt—l,n(ut) - Zt,n(lﬂt)

=30 (ke = pre-1,0) = B (@ — pen)

= (S = Bea) (e = pe—1,0) = Sea((@e = pien) = (e = pe—1,0))- (41)

Here, since X;_1 ,, is real symmetric, we can write the eigen-decomposition as ;1 , = UDUT,

where U is an orthonormal matrix (having unit 2- norm) and D is a diagonal matrlx (with all diagonal
elements positive). In the same notation, Zt 1n = UD™ U7, and Yin = (uXi—1n + (1 —

ai)lq) ™t =U(uD + (1 — o)1) "tUT. Since
1 1
(1—ay)(|D] +1)
= 9D £ (1= o)D"

= O(l — Ott),

D7 = [(uD + (1 = an)La)']"| =

the following holds:
||Et 1,n th_ 1—&,5

Denote [A]** as the i-th row of a matrix A. Thus, following from (41), for any i € [d],

2t = 2] s, — Sidll = 00— a), (42)

46



Published as a conference paper at ICLR 2025

. ; 1-— VAT 1-— (673 ~
y— x| = P — 0; 1 =01 — ),
|y — i T o Oilosar (2t) (1—ay)
‘M;n_ﬂéfln‘:’]'_\/a Méfln}:O]'_at)
where (%) follows from the definition of matrix 2-norm and from the fact that [%3,; e =nr1, 1

is the unit vector where the i-th element is 1, and recall that X;_ !is symmetric). This 1mphes that
|Zt—1,n(ﬂt) Ztn Ty | = (1 — ay), Vi. Thus,

€01 () — €, 8) = max |2y ()| — max |24, )|

< max |25y, (1) — 20 (21)| = O(1 — ), (43)
where the last inequality follows because max,, |a,|+max,, |b,| > max, (|a,|+|bs|) > max, |a,+
bnl.

Following from Theorem 1, we have

d

Ex,~q. Z a?jk log g;— 1(;U’t(Xt))a?jk log q:(X¢)
i,5,k=

1
d

< EXth[ Z (65 1 (X), 0)& (e (X), )E (e (X), k) + 257 E (e (X ), ) + 257€ (1o (X, )
j, k=

28R (e (X0), ) ) (66X, (X, 7)E(X, B) + 25TE(X0 k) + 25RE(X0, ) + 2574€(X0, )

d
CExea | 30 (60X DEX 7)EX B) + STEX, k) + SH¢(X0, §) + SI€(X,, 1))
i,5,k=1

< 2Ex,~nq. Z E(Xe,1)2€(Xe, 1)2E(Xe, k) + (59)%6(Xe, k) + (B7)26(Xe, 1) + (57°)%€( X4, 1)
i,5,k=1
(44)
where (i) follows from (43).

G.1.4 EXPLICIT PARAMETER DEPENDENCY

We are now ready for the explicit parameter dependency for Gaussian mixture )g. In the following,
we provide two different ways to upper-bound the terms in (44) depending on how N is compared to
d. The first approach can be applied when N < d. For the &(z, ) (Vo € RY) terms,

d N
ax([S; )™ (2 — pie.n) SZZ [Seal™ (@ = pe,n))?

™
I
®
%
= ‘:'M“
3B
g

= S = )| < N max 272 max [l —

) )
S Nmax ||z = penl”,

where (i) follows because of the following. Since Y¢.p 1s a (full-rank) covariance matrix, all its
eigenvalues are positive. Let Ay, min > 0 be the smallest eigenvalue of ¥ ,,, and thus
1 1

max by - — < — -
H Ay Ming Ay min + (1 — &) ~ min{1, min, Ay min}

inll, < < 0. (45)

In particular, this bound does not depend on d or 7. Also, for the 3 terms,

d _ @ N g N
E (£4)? E max )% < E E ([Et_,flb]”)z = E : HZ ||F S Nd,
n=1

ij=1 ij=1 i,j=1n=1
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where the last inequality follows from (45) and the fact that for any matrix full-rank A, || Az <
V/d||Al|,. The second approach can be applied when N > d, where we can bound the &(z, -) (Va €
R?) terms instead as

d d

Y &) =) max([S0,]" (@ — pen))?

=1 i=1

d d
< > max (=il e = peal®) < D7 max [0 max e = el
=1

—

=1
d .
991 ) (iv)
<5 max [P max e — pe? S dmax 2 — g o

Here (i¢) follows from Cauchy Schwartz inequality, (i¢7) follows from definition of matrix 2-norm
and the fact that [2; }]** = %11, (1; is the unit vector where the i-th element is 1), and (iv) follows
from (45). Also, for the second term, we can obtain an alternative upper bound as follows. Write
the eigen-decomposition as X ,, = Qndiag(An. 1, . ., An,a)QF, where Q,, here is an orthonormal
matrix (that does not depend on T'). Then,

S = Qn(@diag(An1, ..o Ana) + (1 — @) la) ' QT
= Qndiag((@tAn,l + (1 - O7¢t))717 ey (@tAn,d + (1 - @t))il)Ql’u

and thus
d . .
max [[Z,]7| = max ;(wn,k + (1) ' QY
< (min{LH&lin)\n’mm}) e[N] ,]e[d I(Ql*) (Q7)
< (oin{ T min i)~ pmex @3 ¥

= (min{1, min A min}) %,

where the last line follows because Q,, is orthonormal for all n € [N]. Note that this is a uniform
bound that does not depend on N, T or d, which further implies that

d
Y (ZI) S d

i,j=1
Combining the two cases, we get
d
Zf(ﬂc,i)Q < min{d, N} maXHx—pthZ, (46)
i=1
d ..
> (£Y)* < dmin{d, N}. (47)
ij=1

Therefore, using (46) and (47), we can continue from (44) and get

d
Ex,~q, Z 8i3jk10g qt—l(ﬂt(Xt))a?jklog q(Xy)
i,j,k=1

< min{d, N}’Ex,~0, [||Xt||6 + max ||,ut’n||6} + (dmin{d, N})(dmin{d, N}).

Now, note that . .
max a4, |” < max | pon]” < d°
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since [to,, < 00 is a fixed vector. Also, the expected sixth power of the norm can be bounded as
_ — —12\3 — 116
B = & | (Vako + vI=aibil?) | SENlf B Sl + o,
and, when Qg is a Gaussian mixture,
N
[ 2ol ao(ao)dzo = 3= [ ool 0 (o)do = i
n=1

Therefore, we finally obtain a bound on the reverse-step error with explicit system parameters:

XT:EX . o Bt (X1 |X0) | d min{d, N} log® T
po t—1, t,NQt,—l,t p;_”t(thllXt) ~ T2 .

G.2 PROOF OF THEOREM 3

Throughout the proof of Theorem 3 we adopt the noise schedule a; defined in (10). We first
investigate some nice properties of the noise schedule in (10). Since ¢ < log(1/4), we have
1 —ay Slog(1/6)log T/T. Using a similar argument from (Li et al., 2024c¢, Equation (39)),

- 11— 11—y <10g(1/5)logT

V2<t<T 48
Oét—dt71—07ét71—07ét,1rv T ’ - - ’ ( )
1 *7O[t 1= Oét_1(17* Oét) S 1 *7O[t _ O~ IOgT ’ V2 <t<T
1-— (e} 1— [e T 1-— [e T} T

We note that Li et al. (2024¢) does not highlight 6 dependency in their results. Also, note that if 7" is

large,
logT 5T
5<1+C & ) = et > 1.

T 2

Thus, with any fixed r € (0, 1) such that t > rT (> —logT)

log T log T\ " log T
l_at:COﬁ min{(5<1+0(;g ),1}:0(;% .

, we have

As a result,

T [(A-r)T1 ~
ar < H o = (1 - CIC;%T) = exp <[(1 — )T (—CIC;{;T)> = O(T~ (")),

(49)
Given any ¢ > 2, we can always find some r such that (1 — r)c > 2. For example, this is satisfied
when r = (¢ — 2)/4if ¢ € (2,4) and r = 1/4 otherwise. This shows that the o4 in (10) satisfies
ar =o0 (T*Q) if ¢ > 2. Therefore, the «; in (10) satisfies Definition 1.

Since the parameter dependency is clear in the bound for the initialization and estimation errors
(Lemmas 3 and 4), it remains to provide a bound on the reverse-step error that depends explicitly on
the system parameters, which is the main topic below.

G.2.1 CHECKING ASSUMPTION 5

Instead of Assumption 4, we check the more general Assumption 5 below. In particular, we verify
Assumption 5 with the oy in (10). In the following, Lemma 15 is used to establish the first half
of Assumption 5. Next, the following Lemma 16 is used to establish the behavior of the expected
moments under the perturbed posterior Qo|¢—1 (+|1¢(X¢)) when X; ~ Q;. Both Lemmas 15 and 17
will be useful for establishing the second half of Assumption 5 with the c; in (10).

Lemma 15. Forallt > 1, ¢ > 1, and a € [d]? such that |a| =p > 1,

de/Z

J4
Ex,~q, |08 1og q:(X,)|" < (A=’
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Proof. See Appendix H.3. O
Lemma 16. Forallt > 2 and p > 1, with the oy in (10),

/ [l e (e) — Va—1aol|” dQoje—1(zolpe(2))dQe(ws) S dp/2(1 - @t—l)p/Q-

Proof. See Appendix H.4. O

Finally, the following Lemma 17 verifies the second half of Assumption 5 with the a; defined in (10).
Lemma 17. Forallt > 2, ¢ > 1, and a € [d] such that |a| = p > 1, with the a; in (10),

de/Q

¢
Ex.~q. [0g10g qi—1 (1 (X)) < A= a1 )

Combining this with Lemma 15, Assumption 5 holds.

Proof. See Appendix H.5. O

Now, Assumption 5 is satisfied since 1% < 1= o = = ¢! forall t > 1if§ is constant. Thus,

if § is a constant, Assumption 4 is already satlsﬁed (as is Assumption 5). This is not necessary,
however, when § = 1/poly(T) is vanishing with T". Fortunately, in this case, from (48), we still get
117;% = O(1 — o4). Thus, Assumption 5 is still satisfied.

G.2.2  EXPRESSING 9} log ¢;
We begin by investigating V2 log ¢, (¢ > 2), for which we can derive the Hessian of log ¢, () as

B (f:coemd Vqt|o($|$0)on($0)>

V2o T) = —
84:() Oz fzoeRd qrjo(z|20)dQo(z0)

4t(@) [, cpa V2q110(x|20)dQo(z0) — (fmoeRd Vqt|o(l"|$o)on(Io)) (fmoeRd VQt|0(JC|$0)dQ0(~’E0))T

q; (x)
1 - - _
=— <Qt($)/ . @10 (z]mo) ((z — Vauwo)(z — Vauwo)T — (1 — ay)1a) dQo(zo)

(1= an)?q7 (x)

=t (g (B (e~ VAN~ VEo]
- (]EXWQM@) [z — \/57th]) (EXONQW(.M X \/EXO])T > (50)
For the third-order partial derivatives, we employ the notation
2= BT VA0
S

Note that dyqs(0(x|z0) = qjo(x]w0)(—2"). Then, we can write (50) as

0% ot u(a) = s (9(0) [ aalelen)s 7 dQu(oo)
N1
~ [ antele0)=aQulan) [ alatan)saQuten) ) - I

N2
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Note that the last term is a constant. The derivative for term N1 is given by
ak/Qt|0(9«"|$0)ZiZjdeo(900)

- / Qoo (@lr0) (—#9)2'57 + L(k = Daupo (l0)(1 — Gg) =127
+ 1(k = j)quo(x|zo)(1 — &)~ '2'dQo(wo),

and the derivative for term N2 is given by
o1 ([ aotalan)="aQo(e0) [ ap(ole)='aQu(eo))
— [ aalzn) (=)= + 10k = )(1 = @) dQu(eo) [ auolilao)='dQu(zo)
+ [ agololeo)=Qutzo) [ agoleleo) (24127 + 1k = )1 - @) ) dQofen)
= ([ atatan)(—24aQu(a0) + 16 = (1 = @) (2) ) [ aolaten)= A (oo
+ [ anntelen)=*aQutan) [ analolen)(—+)7aQu(an) + 106 = )1 - &) ae) )

Combining these, the derivative for the numerator is given by

O (g2 (2)N1 — N2) = Oy (g0 (2))NT + ¢4 (2)0(N1) — 9, (N2)
— (o) [ auo(alon)='s’2*dQu ()
/qﬂo (w]0) Qo xo)/qt|0(m|x0)zizde0(a:0)
+/qﬂo x|z0) 27 dQo( :1:0)/qt|0(x|x0)zizdeo(zg)
/qﬂo (2]0)#1dQo( :UO)/qt|0(x\x0)zjzdeo(x0).
Thus,

3 4 qi(z)NI —N2
aijk log qt(‘r) - ak th(x)

= qf’ix) (ak(Qt(m)Nl — N2)g¢ () + 2(qe(w)N1 — Nz)/Qt|0($|$0)2deo($o)>
— (- @) [ ann(elan)=' (oo

+ q¢(x) Z /Qt|0 r|zo)z 1on(ﬂUO)/qt|0(95|330)2 23dQo (o)

a1=1,j,k
asz<ag, az,azFai

9 / du0(]0)2dQo (o) / du0(]70)2 Qo (o) / qtowo)zkdczo(xo))
= —/Zizjzde()\t(x0|x)
+ > / Z*dQoy $0|$)/Za22a3dQ0\t($o|$)

a1=1,j,k
az<as, az,a3#ay

~2 [ #dQuutanle) [ #dQuu(zols) [ FdQuu(zolo) (51)
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G.2.3 EXPLICIT PARAMETER DEPENDENCY
By Cauchy-Schwartz inequality, we have

d
Ex,q, | Y O%plogar1((X:))05, log q:(X1)
i,j,k=1
d 2 d 2
< | Exi~q Z (81‘3‘7']@ log g¢—1 (Mt(Xt))> x Ex,~q, Z ( ik 108 Gt Xt)) :
i,5,k=1 i,5,k=1
(52)

We now analyze the two terms in (52) separately.
We begin with the second term in (52). Recall that Z = ‘ﬁxo is standard Gaussian under Qg ;.

Also note that for a standard Gaussian random variable Z, E HZH =d(d +2)(d+ 4) < d3. Now,
substituting (51) into the second term of (52), we get

d 2
Z Ex,~qQ. (/Zizjzdeou(xOXt))

i,j,k=1
1 d X1 = i\ 2 J = J 2 k = kN 2
< EX < Z t \/atXO Xt — \/O[th Xt — \/OétXO
- (1—6ét)3 0,Xt~Qo.e ikl \/1_6% \/1—@,5 \/1—5[t
. Xo = Vak|
(1 — dt)g X0,Xt~Qo,t m
1 6
<
~ =)
and

d 2
Z Ex,~q. (/ZidQ0|t(330|33)/ijdeOt($0|$)>

i,7,k=1
2 d . 2
:EXtNQt H/deOt(x0|x) Z </ijde0|t(:170|l')>
jk=1
6\ 1/3 d 2\ ¥/2 2
< <EXtNQt /Zon“(I‘(]‘I) ) EXtNQt, Z (/zjzdeOt(xopﬁ))
jk=1
X, — VaiXo ||°
<E ~ _
> L X0, X:~Qo,t 1—ay
1 6
=—E|Z
=l
3
<4
~(1—ay)?

and

d 2
> Exan ([ #aQuutalXi) [ aQuutzal) [ #aQuu(aolxo))

i,7,k=1
d X} — \Jayat 2\ °
- t
= EXtNQt (Z (/ tl—oétOdQOt(xOXt)) )
i=1
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1 Xt — ;g 6
=— "FEx,~ ———d X
(1 — 54,5)3 Xi~Qt / m QO\t(x0| t)
1 6
<—E||Z
< s BN
3
<&
~ (1 — @)
Thus, the second term of (52) satisfies that
d , 9 &3
Ex,~q Z (8ijk IOth(Xt)) S 7(1 PR
i,j, k=1

Now we turn to the first term in (52). Note that Z = XD =Va1X0 while 7 is no longer standard

1—a¢—1
Gaussian under () ¢, we can still achieve moment bounds using Lemma 16. Now, substituting (51)
into the first term of (52), we apply Lemma 16 and get

d o 2
Z Ex,~q, (/Zzzjzde()t1($0|,ut(Xt>))

i,5,k=1
< 1 E e (Xe) — o1 Xo 6 < d3
< T EXonQup i (e (X0) — Sz
( at—l) Xe~Qt V/AAAEJ:I ( at—l)

and similarly,

zd: Ex,~q (/Zionn—l(xoNt(Xt))/ijdeOIt—l(l'O:“t(Xt))>2

1,5,k=1
dS
(1 —ay_1)?’

Ed: Ex,~0, (/ Zionu—l(ﬂUoMt(Xt))/Zdeot—1($0|l~tt(Xt))/zdeon—l(fﬂth(Xt)))z

,5,k=1

<

3
< 4
(1 — Oét_1)3

Thus, the first term of (52) satisfies that

d 9 e
Ex,~q. Z (8?jk10gqt71(:ut(Xt))) S m-
i,j,k=1

, We arrive at

l—oy _l—a; « log(1/6)logT
T

Finally, since {=2*, 75~ <

d®log®(1/8)log® T
T3 '

d
(1= )’ Ex,~q, | Y. 05 log g1 (u(X0)0 log qu(Xy) | S
i,5,k=1

Summation over ¢ > 2 gives us the desirable result.

G.3 THEOREM 5 AND ITS PROOF

Before we enter the proof of Theorem 4, we introduce an intermediate result which might have
independent interest. Previously, for regular samplers, linear dimensional dependency can be shown
when all Q;’s (V¢ > 0) have Lipschitz score (Chen et al., 2023a;d). The following Theorem 5
provides an accelerated convergence guarantee when all Q;’s (Vt > 0) have Lipschitz Hessians.
Theorem 5 (Accelerated Sampler for All-Path Lipschitz Hessians). Suppose that V2 log q;(x), Vt >
0 is 2-norm M -Lipschitz, i.e., 3AM > 0 such that

[V?log gi(x) — V2 log qi(y)|| < M ||z — y (53)
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forall x,y € R* and t > 0. Then, under Assumptions 1, 3 and 5, if the o satisfies Definition 1, the
distribution P} from the accelerated sampler satisfies
d2M?log® T

log> T
T

KL(Qol|Fy) S og T)e? + €

G.3.1 PROOF OF THEOREM 5

In order to continue from Theorem 1 (in particular, the reverse-step error in (26)), we need to introduce
some useful notations for the distribution class in (53). For a matrix A, define its vectorization as

vec(A) = [AM, .. AM A AY)T ¢ RT | Define K, € RY*? to be the matrix that
reorganizes the third-order partial derivative tensor, i.e.,

[Kt(:c)]mk = ?jklog q@(x), st.m=(i—1)d+j, Vi, j, k € [d].

With these notations, consider y = z 4+ £u where u € R? satisfies [|u]” = 1 and £ € R is some small
constant. Then,

vec(V2log qi(y)) — vee(V?log qi(z)) = Ki(a™)(y — o) = EK(a")u.
Here 2* = vyx + (1 — «)y for some vy € (0,1). Also, we have

||vec(V2 log q;(y)) — vec(V?log q;(x H
= [|V*log ¢:(y) — V*log gs() | .
< Vd ||V loggi(y) — V?log gi(w)|| < VM ||y — x|

where the last inequality comes from (53). Thus, noting that y = z + &u and that ||u]|® = 1, we take
the limit of £ to 0 and get

| K, (2)|| < VdM, Vze R vt >o0. (54)

We now derive an explicit upper bound on the reverse-step error. Using Cauchy-Schwartz inequality,
forany ¢ > 1 and x; € R?, we have

d
Z 61‘3jk-loth—l(,Ut)a?jklogqt(xt)
i,5,k=1
d d
< Z (8?jk10th—1(Mt))2 Z (a?jkIOth(It))2
i,7,k=1 i,j,k=1

= [|[Ki—1(pe)ll p % [ Ke(ze) || o

< (\/gHKt—l(,ut)H) X (\/gHKt(xt)H)

< d’*M?3. (55)
Therefore, following from Theorem 1, we obtain

Z]E lgqt 1|t<Xt 11 X4) d2M21og T
th )XtN t—1,t
-1 ! Qe P 1\t(Xt 1| X¢) T2

G.4 PROOF OF THEOREM 4

Throughout the proof of Theorem 4 we adopt the noise schedule a; defined in (10) with § =

1/(M3T%) and ¢ > log(M3T3). Note that such a; satisfies Definition 1 for all ¢ > 1, and thus
the bound on the estimation error still applies. Also, Assumption 5 is satisfied for ¢ > 2, as shown
in Appendix G.2.1. Thus, Theorem 3 can be applied and the reverse-step error at ¢ > 2 satisfies,
vt=1T,...,2,

d
(1—)’Ex,~q, Z 0351, 108 qr—1 (111(X1)) 05,1, 1og (X )

i,5,k=1
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< d*(log® M +10g” T)log” T
In order to determine the dimensional dependency of the reverse-step error, the key is thus to establish
a similar upper bound at £ = 1.

(56)

Now, we provide a modified version of Theorem 1 which does not require gg to be analytic (as in
Assumption 2) or to have regular partial derivatives (as in Assumption 5). We recall from (21) that
the reverse-step error at time ¢ = 1 can be upper-bounded as

QO|1(X0|=T1)

Ex. / Ey . r
p(’)‘l(X0|x1) = L Xo Qo\l[(l,o] Xo Pml[Cl,o]

EXONQou |}Og

Instead of the Taylor expansion in (20), we employ the following different expansion from Taylor’s
theorem. The only difference is that the expansion stops at the third-order term.

Clo= (Vlogqo(p1) — vaoVlogqi(x1))T(xo — p1)

1 o
+ S (zo — )7 (V2 log qo(p1) — _an Bt) (zo — p1)

2 1

1 < R

ta Z 031 log qo (3 (wh — i) (@ — ) (26 — pit)- (57)
7,k=1

Here uj(x1, z0) := su1(x1) + (1 — ¢)xzg for some ¢ € [0, 1]. Note that ] is a function of both x;
and xg.

A remarkable difference from the proof of Theorem 1 is that we do not require g to be analytic for
this expansion. Indeed, it only requires that the third-order partial derivative exists. With this new
expansion, we have the following lemma, which serves as a counterpart of Lemma 11.

Lemma 18. Suppose that qo exists and V? log qq is 2-norm M -Lipschitz. Then, with the o in (10),

we have 52

(1 — 041)
Exo~qo (EXONQou ]EXONP ) [Cl O} S 3] 3/2 d*M.
laj

Proof. See Appendix H.6. O

2

Finally, with the chosen § = 1 — a; = 1/(M3T'3), the rate at the first step satisfies

(L—a)’? < d* _ -2
WdMNTQM—O(T )-

As T becomes large, the rate of the total reverse-step error, which decays as O(T‘Q), is not affected.
The proof is now complete.

H AUXILIARY PROOFS OF THEOREMS 2 TO 4

In this section, we provide the proofs for the lemmas in the proofs for Theorems 2 to 4.

H.1 PROOF OF LEMMA 13

Fix k > 1 and @ € [d. Recall that v < det(¥.) < U, ||E7Y < V, and
SUDP,cz i jeld? [2;§]ij’ < wforall z € Z. Also write ¢(y) as the p.d.f. of the unit Gaus-

sian. We are interested in upper-bounding the absolute partial derivatives of log g(x) with a function
of x where

where, using the change-of-variable formula,

! 3
glals) = sy e (B - ) (58)
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We first identify an upper bound on the absolute partial derivatives of ¢(x). Now,

/ (z]2)dII(2)

(”)
< Hlfzegdlet(z)/ k¢ ( (‘T - Mz)) dIl(z)

where () follows from the dominated convergence theorem (see (31)), and (i7) follows from (58). To
obtain an upper bound on the k-th derivative of Gaussian density, we invoke the multivariate version

_1
of the Fad di Bruno’s formula (Constantine & Savits, 1996, Theorem 2.1). Since y = X, 2 (x — p.)

is linear in z, only the first-order partial derivative is non-zero and is equal to an entry in X, 2. Thus,
we have

fo (2 @) =) ¥ o [] g 57 H e =l

< Z ¢Elkz) (Ez_%(-r — ,u/z)> max {w, l}k ,Va: |a| = k.

Here we define qﬁ(k)( ) := 0k ¢(y). Since ¢(y) is a Gaussian density which is infinitely differentiable
and decays exponentially at the tail, its k-th order derivative satisfies qbgk) (y) = poly, (y)é(y) where
poly, (y) is a k-th order polynomial function in y1, . . ., y4 (and thus in 21, . . . , 24 by linearity). Also
note that, for any a € [d]*,

lim
llyll—o0

o w)| = Im_lpoly(1)é(y)] =0

By the continuity of qbgk) (y), there exists g, such that
S R?. Now, for all x € R?,

< poly(ga) for all

()] < [0 ()

o) < [ders) ¥ foko (573 - o) |ant2)
< max o, 11 [ der() 73 3 [polyi (35H @ = )| 6 (3@ = ) anca
a€(d] 59)
< (MW |p01}’k (ga)‘ o (ga) . (60)

We have thus obtained a constant upper bound on all partial derivatives of g(z) of order k.

Next, we convert the partial derivative bound into that for log ¢(z). We again invoke Fad di Bruno’s
formula Constantine & Savits (1996). Note that

k
_ b;
Ohloga(z) = q(x)™" > [0 a@) = > 1y (@) (61)
by,....bg j=1 bi,...,b
in which we define each summation term as 7. Here {by, ..., bg} is some (possibly empty) partition

of a,ie., > ;bj =aand}_;|b;| = k (thus, at most k partitions). We order this partition such
that £ > |by| > --- > |bg| > 0. Note that the total number of partition can be upper-bounded

by d* Zle Byi(1,...,1) = d*By, where By (-) and By, are the Bell polynomials and the Bell
number, respectively.

We first showcase a simple yet useful upper bound. From (60), we get,

k k
[T 05" ()| < TT [0 at)|
j=1

Jj=1
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d 11) 2251851
( mrzil{i 1}1;);@/2 max{max¢ 1R H ‘poly‘b | (Ub;)

_ (dmax{w, 1})%bs] K

k _
min{u, 1}/2 max{max ¢(y), 1} max ’POIY\bj\(ybj)

d*F max {w, 1}"
b min{u, 1}%/2
where, as noted above, ¥p, does not depend on z. Here Cbl,..‘,bj is some constant which depends
only on the partition {b, ..., b;} and is independent of 2. On the other hand, we can also obtain

a simple lower bound on ¢(x). Observe that g(x) is continuous and always positive. Recall that
b= sup.¢z |p:|. Thus,

o(z) = /Z g(x]2)dTI(z)

< Cy,,

/ZeXp < sup(z — )78 (2 — uz)) dIl(z)

ZGZ
T (2m) 42 sup,c 5 det(E

/;xp (—supHE el =+ fe >) Ti(2)
> ! l/exp (—1sup||221||(|x||2+b2)> dIl(z)
(27T)d/2 Sup.ez det(zz)§ Z 2 z€EZ

]. V 2 2
> = .
= Gmiu exp ( 5 (|z||” + b ))

Therefore, if we set C := maxp, .. b; Cb, ... b;, WE Obtain

~ (2m)?/2sup, eZ det(X,)2
T
2

d2k max{w 1}k v 2,12
k k ) E_kY (||z]|?4+b%)
|0k logq(z)| < C B’“—min{u,1}k/2 Ukelz . (62)

The upper bound above, though it depends only on parameters u, U, V, w, has an exponential depen-

dency on z, which is not desirable. We next derive a more refined bound in x. For brevity of analysis,
we re-express 7 (defined in (61)) to avoid empty partitions:

p
_ b,
Ty, b (%) = ()77 | [057'q(x), st |bpya| =+ = bk| =0.

Now, by the boundedness of ||z,
such that, Vz € Z,

‘poly|bj| (EQ%(x*uz))‘ < ’poly\b | ( "(fv — [in, ))’ < oo.

bed] |" | be d]|b’|

on Z, for each z, there exist (bounded) E_]bj and jip,

=

Then, following from (59), we obtain

P P
_ b;
7o (@) = a(@) 7 | [T 007'a(@)| < a(e) 7 []
j=1

Jj=1

b;
O a(x) ’

(d max{w, 1})>i=1/b5]
<
- up/2

JAtS)ES ) [Potviny (52— )0 (82— o)) ami(e)
[det(2.)"%¢ ( S (o - uz)) dIl(z)

X

P
j=1

< (dmax{w, 1})*
= min{l,u}k/2
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p
HC’

= [ det(£) 4 (2H @ — ) ) dII(2)
- (Crlnia{xl{i}gz ﬁ Z| | polyiey (%4, (7 = )|
I=t el

Note that for each j, the number of terms in the summation above is upper-bounded by d!%3!. Thus,

expanding the product of summations would result in no more than H§:1 dbil = d* terms. Also,
__1

since |polyy, (¥)| - |polyy, ()| = |polys, 4, (¥)| and since any Ly, (z — fip;) is linear in z and

independent in z, each product term is a k-th order polynomial in x. Therefore, we obtain

d?k max{w, 1}*
7y ,....bk (T)] < Tmin{L, ub? max |poly, ()]

and thus
d?k max{w, 1}*

‘ (x)’ y min{1l,u}*k/2 by, b
C‘7

max |poly,, ()] . (63)

We have thus identified an upper bound on |6k log q(x | )| which is polynomial in . The proof is now
complete by combining (62) and (63).

H.2 PROOF OF LEMMA 14
We first identify u, U, V, w for ¥ ,, such that they are independent of 7" and k forall t > 1. Fix ¢t > 1.
We use the fact that 3, ,, = &; X0, + (1 — &) Ig. fwelet A, 1 > -+ > A, ¢ > 0 as the eigenvalues
of X, (which do not depend on T'), the eigenvalues of X ,, are {@ A\, ; + (1 — o‘zt)}le. Therefore,
foranyn=1,...,Nandt > 1,
d d
(u:=) [ [ minfmin Ay i, 1} < det(S ) < [ [ max{max ,, 4, 1}(=: U).
i=1 i=1
-1
min{l,min, A, q}
Yon = Qndiag(An 1, ..., A\n,q)QT, where Q,, here is an orthonormal matrix (that does not depend
on T'). Then, for any ¢t > 1,

Also, following from (45), we have V := . Next, write the eigen-decomposition as

52 = QuladiagM, -y Ana) + (1 — @) 1a) "2 Q]
= Qudiag((ahn + (1 — @) 2, ., (@Ana+ (1 — @) 2)QF
and thus, forall ¢ > 1,

d
2017 =Y (@hns + (1— @) "2 QiFQY
k=1

Z Q?ka]

Since the identified u, U, V w are all independent of T" and k, by Lemma 13 we have obtained an
upper bound on ’6’“ log q(z ‘ )| for any fixed = which is independent of T'. Thus,

< (min{1, min )‘md})_% maX
n Nl,i,5€[d]

(1 — o) ?Ex, 0, |0Flog q:(X¢)|, (1 — )" ?Ex,~q, |05 log qr—1(pe(Xy))]

-0 ((1 - ozt)k/2> -0 (Tiﬂ) :

Hence, we have shown Assumption 5.
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H.3 PROOF OF LEMMA 15

Fix t > 1. We will draw some notations introduced in Lemma 13. Specifically, we recall from (61)
that

9g log qi (1) = qu(z)™" Z Hatl,J‘Qt (zt)

bi,...,bp j=1
T \/ +x
=qi(ze)” Z H/ dtjo (zt]zo) POIY\b \ < L O> dQo(z0)
by,....bp j=1
— Vo
= Z H/ poly|p| ( T O) dQoj¢ (wo¢) (64)
b1,...,b To Vi-a
in which we have defined poly, (y) as a k-th order polynomial function in y1, ..., y4. Recall that

here {b1,...,bp} is some (possibly empty) partition of @, i.e., >, bj = aand ), [b;| = p
Thus,

Ex,~q, |92 log q:(X:)|"

p
S Z Ex.~q ][]
(1- j=1

L

/mJ poly p,| ( \/%x0> dQo¢ (0| X¢)

m"ﬁ

() p
(I—Oét

2 .bp =1

Xt—\/atl‘0>

poly s ( dQo¢ (xo] X

/zo y\ba\ m O\t( 0‘ t)
]

|b>"

|J|>

< (1 _@t L Z H (EXlLXtNQOt m

.,bp j=1

poly | (Xt WXO)

) » |”|
= Z H(E‘p01}’|b| )"bj>

(1_@ 7 .Lbp j=1
<Lﬂ
(1—0&,5)

where Z ~ N (0, I) is a standard Gaussian random variable (that does not depend on T here) and
any r-th order of polynomial of 71, ..., Z4 has finite expectation (that does not depend on 7" and
with at most d’/? dimensional dependency) Here (%) holds by Holder’s inequality, and (i) holds by
Jensen’s inequality since p¢/ |bj| > 1 for all b; and £ > 1. The proof is now complete.

H.4 PROOF OF LEMMA 16

Fix t > 2. We first introduce the following notations. Write p; = u:(x¢). Let Q u, be the distribution
of p1,(X;) where X; ~ @y, and let g,,, be the corresponding p.d.f. (w.r.t. the Lebesgue measure). Let
Q .,z be the joint distribution of i, and xo.

Now, we can re-write the integral as
[ Mnten) = VATl dQoj - (aol())ds ()
Z0,Tt
= [ e = Vol dQup s o)A@y )
TosHt

= / e — Va—1zol|” Md@()\tfl(xo|Nt>th71(Ht)
To, Mt Qt—l(,ut)
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< \// e — va_1mol| " dQoj¢—1 (2ol e )dQs—1 (p1¢)
o, Mt

\// P ) dQoje—1(xolp)dQe—1 (1) ()
Lot

(Jt 1,ut

where the last line follows from Cauchy-Schwartz inequality.

Now, for the first term of (65) we recovered the matched moment, and we have

\// 12 — v/@—1wol| dQoj¢—1 (ol e )dQs—1(p1¢)
oMt

— 2
= \// zi—1 — Var—12o| ™" dQot—1(w0, T—1)
L0, Tt—1

=(1—a1)* /
Z0,Tt—1
= (1— @) E|Z)7 S dF(1 - a,)

where Z ~ N(0, 1) is a Gaussian random variable.

2p
Tt—1 — \/Oét 120

VI—a—1

dQO,tf 1 (SUO, Tt— 1)

Now we upper bound the second term in (65), whose square is equal to

/ww (W)QdQOt—l(onut)th_l(ﬂt)

%—1(,&75)

= G, (T-1) 2
= / Gi—1(241) qs—1(we_1)dwy_q
= 1+ x*(Qu.[|Q1-1)

(4)
S 1 + Xz(Q/L,,,onQt—l,O)

= /IO </m <M)2%—1|0(Ht|xo)dut> dQo(zo)
LU Eiios o (562) e
2L i) s

d,u x) -2
/ d t ¢ ¢ ) thyo((Et,"Eo)

where x2(P||Q) is the chi-squared divergence between P and ). Here (i) follows from the data
processing inequality for f-divergence, and (i¢) again follows from Cauchy-Schwartz inequality. We
can calculate the determinant term above as

dt(jﬁj) det(\ﬁld \ﬁ logqt(xt))_Q

= (1(1 (1 + (1 — o) Tr(VZ log q¢ (1)) + eT(xt))>

9
Qg

< atg (1 —-2(1- oz,g)Tlr(V2 log g (x¢)) + eT(xt))
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where we denote the residual terms as e (2;) := 307 o (1—)? 0 p. ir1=p 1 i jyer 95 2 log qi (),
where cy is some coefficient that does not depend on 7. Since from Lemma 15,

1

¢~ o
Ex,~q, |0 log qi(X:)| = O <(1_at)p> , Vi, jeld], Ve>1,

and note that 1 ‘“ =0 (%) with the oy in (10), we have that

EXtNQt ‘GT(Xt)| < Z(l - at)p Z cIEXtNQt H ’aZQJ 10g Qt(Xt)’

I:|I|=p (i,g)el

3
||
N

1

=a) Y e I] (Bxina, 0310z a(x0)]")"

L|I=p (i)l

M

3
||
o

M

P
-0 <10§ §)2> ’
and thus
Ex, o, det (j;‘z) —af +0 <1°§T> <1+0 <1°§T> .
Also, since

2 17 7 exp _M
< gtjo(we|zo) > B (=) T—ay
Qtfl\o(ﬂt‘l‘o) 1 <_|I‘+(10‘t)V10th(If,)\/OTtx0|2>

(1—@/571)‘1 exXp

1—a 1 \® 1
(5 e 25
1-— (673 o — Qy 1 — Qi
2(1 — )V log gy (24) T (2 — \/Geo) + (1 — a)? ||V log g () ||
Qp — O
(i42) 2 — Vo ||? 1— o
<
= &P ( \/1—707@ oy — O_Zt x
ox 2(1 — ay)Vi1og g (z¢)T (2 — /agzo) + (1 — ay)? ||V log qt(xt)||2
P ap — Qg
— 2
(iv) = Vaxo||” 1— oy
- eXp( J—a at—at> X
<1 0 <<1 — )V log () (e — Vi) + (1~ ) ||v1ogqt<xt>||2>>
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where (4i7) follows because < 1, and (iv) follows because e* = 1 + O(z) when z — 0 and

because 1 o e — <1°§,T> with the «; in (10). Thus,
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1+ O (EXhXONQt,O

ap — Oy
_ 2
() X —vVaXo||  1-« log T
= EthXONQt,U exp < ’ tm o — 62‘ b O T

where (v) follows from Lemma 15 and Cauchy-Schwartz inequality, and
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EXtyXONQt,O exXp t d aj
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=—— [ e 2 dz
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Therefore, we arrive at a bound for the second term in (65):

logT
\// qm Nt ) dQojt—1 (ol pe)dQs—1(1e) < 1+O( e )
Zo,Ht Qf 1 T

and the lemma follows 1mmed1ately.

H.5 PROOF OF LEMMA 17
Fix t > 2. From (64), we also have

Ex,~0, 102108 g1 (1 (X1))|*
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where the last line follows from Lemma 16. Now, together with Lemma 15, Assumption 5 is

established noting that 17‘% =0 (IOgT> =O(1 — ) forall t > 2.

H.6 PROOF OF LEMMA 18

Recall the expansion of (] ; in (57). As in the proof of Lemma 11, with the choice of 41 and ¥, we

still have
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IE:XUNP[;|1 [T2/] = EXO"’QU\] [TQI]

d * 7 i j J * * :
Define T3 := gy 375, 1y O 10g qo(ui) (wh — pi) (g — p17) (26 — pf). Here pif = pi (21, 20) is a
function of both x; and xy. A useful result from Lemma 15 is that, with the oy in (10), we have,
Vi, j, k € [d] and £ > 1,

4 < (1—0(1>Zd€ _

(1 - al)eE)ﬁNQl ‘822] logql(Xl)‘ ~ (1 — 5[1)g = dea (66)
. 1—ap)3d3
(1 - 01)*Ex,nq, [0 log an (X1)]” < Uzo)d (67)

(1 — @1)3
First, using Lemma 8, we have that
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3laj Ayt el
(1—aq)3 d 5 )
S s WM, | Exica > (3 logai(X1))2.
3laj e

Here in the last line we have used a similar technique in (55), which assumes that V2 log qq is 2-norm
M -Lipschitz. Now, from (67) we have

(1 _ a1)3/2

]EXO’XY“QO,l [Té} S 3/2 d*M.
3lay
Also,
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@ 1 6
< gt Exoapy, [ Xo — pa (X1)|

X1~Q1

d
1 5 i )6
< gd M E Exonrpy, (X§ — pa(X1)?)
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d 3

ii) 1 l1-a

D M 3015 (1) Eximan (14 (- an)dh oga (X))
’ i=1

(i) (1 — ay)*?

d*M
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where (i) holds with a similar technique in (55) assuming V2 log qq is M-Lipschitz, (i) holds by
Lemma 7, and (#i¢) holds by (66). The proof is now complete.
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