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ABSTRACT

The denoising diffusion model has recently emerged as a powerful generative
technique, capable of transforming noise into meaningful data. While theoreti-
cal convergence guarantees for diffusion models are well established when the
target distribution aligns with the training distribution, practical scenarios often
present mismatches. One common case is in the zero-shot conditional diffusion
sampling, where the target conditional distribution is different from the (uncon-
ditional) training distribution. These score-mismatched diffusion models remain
largely unexplored from a theoretical perspective. In this paper, we present the first
performance guarantee with explicit dimensional dependencies for general score-
mismatched diffusion samplers, focusing on target distributions with finite second
moments. We show that score mismatches result in an asymptotic distributional
bias between the target and sampling distributions, proportional to the accumulated
mismatch between the target and training distributions. This result can be directly
applied to zero-shot conditional samplers for any conditional model, irrespective
of measurement noise. Interestingly, the derived convergence upper bound offers
useful guidance for designing a novel bias-optimal zero-shot sampler in linear
conditional models that minimizes the asymptotic bias. For such bias-optimal
samplers, we further establish convergence guarantees with explicit dependencies
on dimension and conditioning, applied to several interesting target distributions,
including those with bounded support and Gaussian mixtures. Our findings are
supported by numerical studies.

1 INTRODUCTION

Generative modeling stands as a cornerstone in deep learning, with the goal of producing samples
whose distribution emulates that of the training data. Traditional approaches encompass variational
autoencoders (VAE) (Kingma & Welling, 2022), generative adversarial networks (GANs) (Goodfellow
et al., 2014), normalizing flows (Rezende & Mohamed, 2015), and others. Recently, diffusion models,
especially the denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020), have emerged as particularly compelling generative models, gaining widespread acclaim
for their stable and cutting-edge performance across various tasks, such as image and video generation
(Ramesh et al., 2022; Rombach et al., 2022).

In ideal situations, the training and target distributions of generative models match each other.
However, this often does not hold in practice, where distributional mismatch between the training and
target distributions can occur due to various reasons such as possible privacy constraints, need for
computational efficiency, and knowledge gap between training and sampling processes. Specifically
for diffusion models, such mismatches exhibit between the scores obtained from the training data
and the scores of the target distribution from which we want to generate samples. One common
scenario that existing studies primarily focus on is conditional diffusion models in image generation
tasks (see Croitoru et al. (2023); Li et al. (2023); Moser et al. (2024) for surveys of diffusion models
in computer vision). Different from unconditional image generation, conditional image samplers
aim to generate images that are consistent with the given information, either be a text-prompt (as
in text-to-image synthesis) or a sub-image (as in image super-resolution). For example, in image
super-resolution, given the input of a low-resolution image, the goal is not to generate some arbitrary
high-resolution image but the one whose corresponding low-resolution part matches the given input.
Here the diffusion models are well-trained on the unconditional distribution of high-resolution images,
whereas the target distribution is the conditional distribution given the low-resolution input. If one
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uses these well-trained unconditional scores to generate conditional samples, there will be a mismatch
at each step of the sampling process.

One class of methods to tackle the conditional sampling problem is to include extra-guided training,
where a modified score function is trained with the extra knowledge of the conditioning information
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022). On the theory side, several recent works (Yuan
et al., 2023; Wu et al., 2024; Fu et al., 2024) provided performance guarantees for such conditional
diffusion samplers, where a score guidance is obtained through extra training based on the conditional
information. However, the additional guided training in these samplers requires extra computations
and needs to be conducted for every image conditioning, which may not be efficient in practice.

Alternatively, zero-shot conditional image samplers arise as a prevalent approach (e.g., Choi et al.
(2021); Chung et al. (2022b;a; 2023); Wang et al. (2023); Song et al. (2023a); Fei et al. (2023)) for
training-free conditional generation given well-trained unconditional scores. For each conditioned
image, zero-shot samplers require no additional training to modify the scores. Instead, they adjust the
scores during sampling by calculating rectified scores based on conditional information to mitigate the
mismatch between the oracle conditional scores and the approximated ones.! Despite their empirical
promise, theoretical guarantee on these zero-shot samplers is largely unexplored. In Gupta et al.
(2024), the authors provided a super-polynomial lower bound for zero-shot sampling as a converse
result. In Xu & Chi (2024), the authors proposed and analyzed a plug-and-play conditional sampler.
Their analysis relies on the properties of the Markov transition kernel specific to their plug-and-play
model, which does not appear to be applicable to several widely used zero-shot samplers, such as
Come-Closer-Diffuse-Faster (CCDF) (Chung et al., 2022b) and Denoising Diffusion Null-space
Model (DDNM) (Wang et al., 2023). Therefore, there is a need to provide the performance guarantee
for those popular zero-shot conditional samplers.

In this paper, we address two key theoretical research gaps in zero-shot score-mismatched diffusion
models: (i) We provide performance guarantees for general score-mismatched diffusion models,
extending their applicability beyond the primary focus of existing theoretical studies on the special
case of conditional image generation. (ii) We analyze zero-shot conditional diffusion models, which
are generally applicable to existing zero-shot samplers such as CCDF (Chung et al., 2022b) and
DDNM (Wang et al., 2023) to which the analysis in Xu & Chi (2024) is not applicable (as discussed
above).

1.1 OUR CONTRIBUTIONS

Technically, the main challenge due to mismatched scores is to analyze the expected tilting factor
(Liang et al., 2024) under a mean-perturbed Gaussian, providing an upper bound of the asymptotic
orders of all Gaussian non-centralized moments. Our detailed contributions are as follows.

Convergence of General Score-Mismatched DDPM: We provide the first non-asymptotic con-
vergence bound on the KL divergence between the target and generated distributions when there is
mismatch between the sampling and target scores in DDPM samplers, for general target distributions
having finite second moments. We show that the score mismatch at each diffusion step introduces an
asymptotic distributional bias that is proportional to the accumulated mismatch. We also provide the
first explicit dimensional dependency when the sixth moment of the target distribution exists. Our
result is applicable to general forms of mismatch between the target and training scores, which greatly
extend the focus of the existing theoretical research on conditional score-mismatch diffusion models.

We then apply our results to zero-shot conditional DDPM samplers, as long as the conditioning
involves certain deterministic or random transformations of the data. This provides the first theoretical
guarantees for several existing zero-shot samplers, such as CCDF (Chung et al., 2022b) and DDNM
(Wang et al., 2023). Notably, the theory in Xu & Chi (2024) does not apply to these samplers, as their
analysis relies on the properties of the Markov transition kernel specific to their plug-and-play model.
In contrast, our approach is based on the tilting-factor analysis from Liang et al. (2024), which is
applicable to general score-mismatched DDPM models. Moreover, the theory in Xu & Chi (2024) is
limited to cases where the measurement log-likelihood function is differentiable and bounded and
does not provide explicit dependencies on the data dimension. In contrast, our results do not require

'Note, however, that some zero-shot methods, such as DPS (Chung et al., 2023) and IIGDM (Song et al.,
2023a), might induce additional computational costs during sampling.
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the measurement log-likelihood function to be differentiable or bounded and explicitly characterize
the dependencies on the data dimension.

Novel Design of Bias-Optimal Zero-shot Sampler BO-DDNM: Inspired by our convergence
analysis of score-mismatched DDPM, we design a novel zero-shot conditional sampler, called the
BO-DDNM sampler, which minimizes the asymptotic bias for linear conditional models. Such a
sampler coincides with the regular DDNM sampler (Wang et al., 2023) when there is no presence of
measurement noise, and achieves faster convergence than both the DDNM and DDNM™ samplers
under measurement noise, as shown by our theory and numerical simulations.

Theory for BO-DDNM with Explicit Parameter Dependencies: We provide the convergence
bound for the proposed BO-DDNM sampler with explicit dependencies on the dimension d as well
as the conditional information y, for various interesting classes of target distributions including
those having bounded support and Gaussian mixture. For the case of Gaussian mixture, we further
show that three factors positively affect the asymptotic bias: (1) the variance of the measurement
noise, (2) the averaged distance between y and the mean of each Gaussian component, and (3) the
corresponding correlation coefficient for each component.

1.2 RELATED WORK

We provide a summary of works addressing unconditional and score-matched diffusion models in
Appendix B. Below we discuss related works on conditional diffusion models which are closely
related to our study here.

Extra-Guided Training: In order to achieve conditional sampling using DDPM models in practice,
one method is to introduce conditional guided training, where one either uses an existing classifier
(a.k.a., classifier guidance) (Dhariwal & Nichol, 2021) or jointly trains the unconditional and condi-
tional scores (a.k.a., classifier-free guidance (CFG)) (Ho & Salimans, 2022). Here a guidance term
is obtained to “guide” the diffusion sampling process at each step such that the sampling scores
correspond to the true conditional scores. On the theory side, Wu et al. (2024) investigates the effect
of the guidance strength in CFG on Gaussian mixtures, Bradley & Nakkiran (2024) shows that CFG
is an instance of predictor-corrector methods, and Chidambaram et al. (2024) finds that CFG might
fail to sample correctly on certain mixture targets. There are other theoretical works that investigate
sample complexity bounds for conditional score matching for a variety of target distribution models,
including the conditional Ising models (Mei & Wu, 2023), those supported on a low-dimensional
linear subspace (Yuan et al., 2023), and Holder smooth and sub-Gaussian conditional models (Fu
et al., 2024). Other than stochastic samplers, a conditional ODE sampler is proposed and studied in
Chang et al. (2024), which also requires extra training of the conditional score function.

Zero-shot Samplers: To achieve conditional DDPM sampling, a popular method is to use zero-shot
conditional samplers, with which one generates a conditional sample using approximated scores.
These scores are calculated from the unconditional score estimates and the conditional information
using simple (usually linear) functions without extra-training (Choi et al., 2021; Chung et al., 2022a;b;
2023; Wang et al., 2023; Song et al., 2023a; Fei et al., 2023). The only theoretical works on the
performance of zero-shot DDPM conditional samplers are Xu & Chi (2024); Gupta et al. (2024). In
Xu & Chi (2024), a diffusion plug-and-play sampler is proposed which alternates between a diffusion
sampling step and a consistency sampling step. The difference of our results from those in Xu &
Chi (2024) has been thoroughly discussed in Section 1.1. From an alternative perspective, Gupta
et al. (2024) shows that the sampling complexity with zero-shot samplers can take super-polynomial
time for some worst-case distribution (among the set of distributions where smooth scores can be
efficiently estimated). Instead, our result shows a consistent fact that there exists a non-vanishing
asymptotic distributional bias within polynomial time.

2 PROBLEM SETUP

In this section, we first provide some background on the score-matched DDPMs. Then, we introduce
the score-mismatched DDPM samplers and, as a special example, the conditional sampling problem
and zero-shot samplers.

2.1 BACKGROUND OF SCORE-MATCHED DDPMS

The goal of the score-matched sampling problem is to generate a sample whose distribution is close
to the data distribution. To this end, the DDPM algorithm (Ho et al., 2020) is widely used, which
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consists of a forward process and a reverse process of latent variables. Let zo € R? be the initial
data, and let z; € R%, V1 < ¢t < T be the latent variables. Let QQ be the data distribution, and let Q;
(resp., Q¢,:—1) be the marginal (resp., joint) latent distribution forall 1 <t < T

Forward Process: In the forward process, white Gaussian noise is gradually added to the data:

2y = /1= Brxi_1 +/Bewe, V1 < t < T, where wy b N(0,1;). Equivalently, this can be
expressed as:

Q-1 (welri—1) = N2 /1 = Brae—1, Bila), ()
which means that under ), the Markov chain Xqg — X; — --- — X7 holds. Define o := 1 — 3;
and a; = HZ:1 a; forall 1 < ¢t < T. An immediate result by accumulating the steps is that

Qejo(xt|mo) = N (243 VAo, (1—ay)Iq), or, written equivalently, 7, = /@ zo++/1 — @y, V1 <
t < T, where w; ~ N (0, I;) denotes the aggregated noise at time ¢ and is independent of x¢. Finally,
since each w; is Gaussian, each @Q; (¢t > 1) is absolutely continuous w.r.t. the Lebesgue measure. Let
the p.d.f. of each Q; be q¢, and g4 ¢ 1, Gyj¢—1, and q;_1); for £ > 1 are similarly defined.

Reverse Process: In the reverse process, the latent variable at time 7’ is first drawn from a standard

Gaussian distribution: z7 ~ N(0,1;) =: PT. Then, each forward step is approximated by a
reverse sampling step. Ateachtimet =17,1T — 1 define the frue reverse process as r;_; =
wi(z¢) + o¢z¢, where z ~ N(0, I). Here 02 := . For the typical DDPM sampling process,

wi(my) = \/% (¢ + (1 — ay)V1og qi(y)). Equ1valently, Pi_qjp = N(@y—1; pe(xy), 07 14). Here

V log g;(x) is called the score of ¢;, and u:(x;) is a function of the score. Let P; be the marginal
distributions of x; in the true reverse process, and let p; be its corresponding p.d.f. w.r.t. the Lebesgue
measure. Define p;_;|; and py;_, in a way similar to the forward process.

In practice, one does not have access to Vlogg;(z;) and thus p(x¢). Instead, an estimate of
Vlog q:(x+), denoted as s¢(x), is used, which results in an estimated /i;(z;) and the estimated
reverse process: T;—1 = ft(x:) + o¢z. Let 13t be the marginal distributions of z; in the estimated
reverse process with the correspondmg p.d.f. p;. Note that Pt e = N(e—1; fie(21), 021,) and

PT = Pr. Hence, under P and P Xr — Xp_1 — -+ — X; holds.

Performance Metrics: In the case where () is absolutely continuous w.r.t. the Lebesgue measure,
we are interested in measuring the sampling performance through the KL divergence between Qg
and P, defined as

KL(Q|P) := [log 3andQ Ex~q [log qui] > 0.

Indeed, from Pinsker’s inequality, the total-variation (TV) distance can be upper bounded as

TV(Qq, Py)? < %KL(QOHISO). When ¢p does not exist, we use the Wasserstein-2 distance to
measure the one-step perturbed performance, which is defined as

. 9 1/2
W2(Q. P) i= {minren.p) e o = yl* d0@.p)}

where I1(Q, P) is the set of all joint probability measures on R? x R? with marginal distributions Q
and P, respectively. Both metrics are widely adopted (Chen et al., 2023a; Benton et al., 2024a).

2.2  SCORE-MISMATCHED DDPMS

Differently from the score-matched sampling problem, the goal of the score-mismatched problem is
to sample from a different target distribution from the training distribution with which we estimate
the scores. Thus, there will be a mismatch between the target score and the estimated score at
each diffusion step. Let Q; (t > 0) be the training distributions used for training the score. Let

Qo be the target distribution that one hopes to generate samples from, and let Q¢ (t > 1) be its
Gaussian-perturbed distributions according to the forward process in (1). Define the posterior mean

under the target distributions as m;(Z;) := E KiinGiape [)N(t_l |Z¢]. Note that by Tweedie’s formula
(Efron, 2011), m; (%) = \/% (Z; + (1 — )V 1og G (&;)). Recall that P, and P, are the sampling

distributions of the true and estimated reverse process, respectively. For general score-mismatched
DDPMs, we leave the generic definition of p(2;) without providing any particular expression. An
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example of y(z) is given later in (6), yet our general analysis does not require any particular form
for p;. With these notations, the score mismatch at each step ¢ > 1 can be defined as

Au(ar) = 225 (Ex,_ingyy, Xomtlad] = Ex_ iy [Ketlad] ) = 25 (malae) = pa(e).
(@)
The goal, then, is to provide an upper bound on the distributional dissimilarity between the target

distribution (:20 and the sampling distribution }30. We use the same metrics as those defined in
Section 2.1 to evaluate the performance of the score-mismatched DDPM.

2.3 ZERO-SHOT CONDITIONAL DDPMsS

One interesting example of score mismatch is the zero-shot conditional sampling problem. Differently
from the unconditional counterpart, the conditional sampling problem aims to obtain a sample that
aligns in particular with the provided conditioning. Define y € RP to be the conditioned information
about x. Specifically, let y = h(xq), where h(-) is some arbitrary (deterministic or random) function
of only x( (apart from independent noise). Note that general score-mismatched DDPMs can be
specialized to zero-shot conditional samplers with the following notations:

Qt = Qt|ya my = Mgy, Mt = Hty, and A, = At,y~ 3)

Linear Conditional Models: In practice, one commonly adopted model is the linear conditional
model (Jalal et al., 2021; Wang et al., 2023; Song et al., 2023a), defined as

y:= Hxy+n, 4

where H € RPX4 (p < d) is a deterministic matrix and n ~ N(0, aglp) is the measurement noise,
which is assumed to be Gaussian and independent of x. For the case where there is no measurement
noise, let 05 = 0 and thus n = 0 almost surely. In applications like image super-resolution and
inpainting (Wang et al., 2023), H admits a simple form of a 0-1 diagonal matrix, where the 1’s occur
only on the diagonal and at those locations corresponding to the provided pixels. In these scenarios,
both H and y are fixed and given. The linear conditional model is studied in Section 4.

Conditional Forward Process for Linear Models: Write the Moore—Penrose pseudo-inverse of H
as HT, and note that HT H is an orthogonal projection matrix. With this notation, under (4), we can
re-express the forward process in (1) as

Ty = \/&t(Id — HTH)$(] =+ +/ dtHTy — \/dtHTn =+ 1-— Qi Wy
Here, since n is independent of wy, for fixed xy and y, we have that, for all ¢ > 1,
Qu10.y(T|T0, y) = N (26; Var (I — H H)xo + Va H'y, dtagHT(HT)T + (1 —=a)lg). ()
Also, since the forward process is a Markov chain, we have that Q;;—1,, = Q;—1 forall ¢ > 1.

Zero-shot Conditional Sampler for Linear Models: We employ the zero-shot conditional sampler
for linear conditional models in the following form: z;_; = ut}y(act) + o042, where

,Ut,y(ift) = \/% (CUt + (1 - at)Qt,y(%)) y Gty = (Id - HTH)Vlog Qt(l"t) + ft,y(l"t)~ (6)

Here f; ,(z:) is a simple function of y and z; computable without extra training and such that
(Is— H'H)f;,(x) = 0 for all x € R%. Intuitively, f; , characterizes the score rectification in the
range space of HH. Indeed, many zero-shot samplers in the literature have such fty(x¢)’s that
satisfy (6) (see Appendix D). Now, with the linear model in (4) and the zero-shot conditional sampler
in (6), the score mismatch at each time ¢ > 1 is equal to

Ay y(zy) = (Ig — HTH)(V log gy (z¢) — Vlog g (x¢)) + (HTH)Vlog Gty (we) = fry(we). (T)

3 DDPM UNDER GENERAL SCORE MISMATCH

In this section, we provide convergence guarantees for general score-mismatched DDPM samplers
under a general target distribution (J¢. Throughout this section we keep the generic definition for
score mismatch A; as in (2), without assuming any particular expression for y;.
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3.1 TECHNICAL ASSUMPTIONS
We will analyze general score-mismatched DDPMs under the following technical assumptions.

Assumption 1 (Finite Second Moment). There exists a constant My < oo (that does not depend on

dand T)such that By 5 || Xo|* < dMs.

The first Assumption 1 is commonly adopted in the analyses of score-matched DDPM samplers
(Chen et al., 2023a;d; Liang et al., 2024).

Assumption 2 (Posterior Mean Estimation). The estimated posterior mean fi; att = 1, ..., T satisfy

DI a2 Ex,~g, 1H:(Xe) = pe(X0)||? < €%, where e = O(T2).

The above Assumption 2 is made for the score estimation error for the general mismatched setting,
where we leave generic definitions of 1 and fi;. While the expectation is over Q;, Assumption 2
is very likely to hold when @ is close to @)y, i.e., when the score mismatches are moderate. For
zero-shot conditional samplers in linear models, this assumption is weaker than that for the estimation
error for unconditional scores (see (9)). Compared with the score-matched case, the estimation error
needs to be achieved at a higher accuracy because of the extra error term when there is score mismatch
(Lemma 2). Such a higher level of estimation accuracy also occurs in previous theoretical studies for
accelerated DDPM samplers (Li et al., 2024a).

Assumption 3 (Regular Derivatives). For all ¢ > 1 where §;_; exists, £ > 1, and a € [d]P where
la] =p>1,

Ey, .5, [081og @ (X)|" =0 (1), Ey, g, |081ogGi—1(mi(Xy))[ = 0(1).

The above Assumption 3 is useful for our tilting-factor based analysis, which guarantees that all
(higher-order) Taylor polynomials of log ¢; are well controlled in expectation. It is rather soft, and it

can be verified when Q has finite variance (under early-stopping) (Liang et al., 2024).

Assumption 4 (Bounded Mismatch). For all ¢ > 1 where ¢;_1 exists, and ¢ > 2,

Ex, .o, 1A(X0)] = Oa).

The above Assumption 4 is used to characterize the amount of mismatch at each time ¢ > 1. The
Qg = Hle «v; is necessary for the overall bias to be bounded.

In the paper, Assumptions 3 and 4 have been established in two cases of zero-shot conditional
sampling: (i) where ) has bounded support for any H, using a special a; in (8) (see the proof of
Theorem 4); and (ii) where @) is Gaussian mixture and H = (I, 0) (see Lemma 8). For Case (i),
the assumption that )y has bounded support has wide applicability in practice (e.g., images (Ho
et al., 2020; Wang et al., 2023)) and is commonly made in many theoretical investigations of the
score-matched DDPM (Li et al., 2024a;c). Finally, note that when ¢y does not exist (e.g., for images
(Ho et al., 2020; Wang et al., 2023)), Assumptions 3 and 4 are required only for £ > 2.

3.2 CONVERGENCE BOUND
Before presenting the main result, we first define a set of noise schedule as follows.

Definition 1 (Noise Schedule). For all sufficiently large 7', set the step size a’s to satisfy

1—ozt§1°§T7V1§t§T7 and ar ::Hleatzo(%).

An example of «; that satisfies Definition 1 is 1 — oy = %, Vt > 1 with ¢ > 1. Then,
T —clog
ar = (1—%) = exp (Tlog (1—%)) zO(eT#) =o(T71).

The following Theorem 1 provides an upper bound on the KL-divergence between the target distri-
bution Qo and the sampling distribution ]30, as a function of (general) score-mismatch A; at each
time ¢ > 1. Theorem 1 is the first convergence result for score-mismatched DDPM samplers for any
smooth Q) that has finite second moment (along with some mild regularity conditions).
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Theorem 1 (DDPM under Score Mismatch). Suppose that QO has a p.d.f. qo which is analytic, and
suppose that Assumptions 1 to 4 are satisfied. Then, with the o chosen to satisfy Definition 1, the

distribution Py from the score-mismatched DDPM satisfies

KL(QO”ﬁO) S Woracle + Wbias + annish, Where

Woracte = Xy U525, [Te(V2 log i1 (me(X0)) 92 10g (X)) | + (10g )22
Whias = Z;gr:l(l —a)Ey, 0, ||At(Xt)H2
Wianish = Zt 1 1\/& X0y {(Vlog Gi—1(my(Xy)) — /o V 10g6t(Xt))TAt(Xt):|
-, “—(‘j” Ey, 6, [A(X:)TV21og g1 (my(Xe) Ar(Xy)]

T G B, [3 T G log 1 0m (X)X,

+sz7j:1 3ilogcjt_1(mt(Xt))At(Xt)3 +InaXt21 EX ~O ||At(Xt)H2(10gT)€
k) J t~Qt
7]

When Q, does not have a p.d.f., a similar upper bound is applied to KL(Q1||131) such that
W2(Q1,Q0)* < (1 — aq)d (see Corollary 1 in Appendix F.5).

To explain the three error terms in Theorem 1, Wyy,cle captures the error assuming that one has access
to (a close estimate of) V log ¢y, V¢ > 1. This error is independent of the score mismatch A, and it
decays as O(T 1) under Assumption 3 (Liang et al., 2024, Theorem 1). The remaining two error
terms Whias and Wianish arise from the mismatched sampling process. Both terms become zero if
A; = 0 for all t > 1, which corresponds to the score-matched case. Under Assumptions 3 and 4,
Wanish decays as O(T~!) under an additional mild condition (see Lemma 5 in Appendix G), and
Whias asymptotically approaches a constant. Comblnlng all three terms, score mismatch causes an
asymptotic distributional bias between Qo and Po

To further understand Wi,s, note that 1 — a4 is usually summable under Assumption 4 (cf. Lem-
mas 7 and 10). Thus, the bias can be further upper-bounded by the maximum step-wise mismatch

maxi>1 Ey 5, | A (X,)||%. In case that i (a;) = \/% (¢t + (1 — a)ge(x)) (as for the zero-shot
sampler in (6)), define a measure P, such that g, (z¢) = Vlog pi(x¢). Then, from (2),

V log 4(X:e)

E (X0

1A(X)]|* = E

Xi~Qy Xi~Qy ‘ = ‘F(Qtht)

where F(Q|| P) denotes the Fisher divergence (or called relative Fisher information) between @ and
P. In Section 4, this distributional bias W;,s inspires us to design a novel zero-shot DDPM sampler,
the BO-DDNM sampler, that minimizes the asymptotic bias.

Next we provide an upper bound with explicit dimensional dependency, for any Q¢ that has finite
sixth moment such as Gaussian mixture (y’s and those ()¢’s having bounded support. To this end,
we consider a special noise schedule first proposed in Li et al. (2024c¢):

t
1—ay =6, 1—at:“‘;%Tmin{5(1+“‘;$T) ,1},v2<t<T (8)

for any constants (c, ¢) such that ¢ > 1 and de® > 1. Note that this noise schedule corresponds to
early-stopping in the literature (Chen et al., 2023a; Benton et al., 2024a). With the o in (8), we can
show that the regularity condition Assumption 3 holds for a quite general set of distributions (see
Lemma 5 in Appendix G).

Theorem 2. Suppose that EXONQO ||X0||6 < d3.  Further, suppose that N\, satisfies that

Ex.~a, ||At(Xt)|| < md with some ~y,r > 1 for all t > 2. Then, if the estimation
error satisfies Assumption 2 and if Ay satisfies Assumption 4, with the o in (8) such that 6 < 1 and
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¢ < log(1/4), we have, for some Q1 such that Wg(@l, Qo)z < dd,

KL(Qil|Py) S dvg (1 — ZeslijiesT)

r+

+ max{dB+1/25= 55 qirrg—(r=D} e | gr/25-1/2(log T)e.

Note that Theorem 2 provides the first performance guarantee with explicit dimensional dependence
for general score-mismatched DDPMs. Here the finite sixth moment is a technical condition to
guarantee small expected difference of the first-order Taylor polynomial in case of mismatched scores
(see Lemma 5 in Appendix G). Later, Theorem 2 will be useful to provide guarantees for zero-shot
conditional samplers under linear models (Theorem 4).

4 ZERO-SHOT CONDITIONAL DDPM SAMPLERS

As we discuss before, an important scenario of score-mismatched diffusion models is the zero-shot
conditional problem, where certain information y is given. In this section, we apply our general
results for score-mismatch DDPMs in Section 3 to studying zero-shot conditional DDPM samplers. In
the following, we are particularly interested in the linear conditional model in (4). We take the same
Assumptions 1, 3 and 4 (albeit with changed notations), and further adopt the following common
assumption on the unconditional score estimation (Chen et al., 2023a;d; Liang et al., 2024).

Assumption 5 (Estimation Error of Unconditional Score). Suppose that s, satisfies

LS Exinq, I150(X0) — Viog qi(X0)||* < €2, where €2 = O(T2).

Note that, with the zero-shot sampler defined in (6), since || I; — HH|| = 1, we have, Va € R¢,

(1 — Oét)z H (1 — Oét)Q |

Qi

2
(=

7y = s l® = (Ia — H'H)(s; — Vlog q:) |si = Viogail|*. (9)
Therefore, Assumption 5 directly implies Assumption 2, and thus Theorem 1 (as well as Corollary 1)

still holds under Assumptions 1 and 3 to 5.

4.1 A NOVEL BIAS-OPTIMAL ZERO-SHOT SAMPLER

Guided by the performance guarantee characterized in Theorem 1, we will propose a novel optimized
zero-shot condition sampler. With the zero-shot sampler defined in (6), the goal is to choose the f; ,
function that minimizes the convergence error for each y € R? and ¢ > 1.

Specifically, it is observed in Theorem 1 that the convergence error in terms of the KL-divergence
will have an asymptotic distributional bias given by Wyi,s. As follows, we characterize an optimal
f¢,4 that minimizes Wh;as, which thus yields a corresponding bias-optimal zero-shot sampler.

Theorem 3. Define ¥y, := &tO’ZHT(HT)T + (1 — ay)lq. Forany Qo andt > 1, we have

\Y log Qf|y(xt|y) = Eﬂé,y(\/O_TtHTy - xt) + 1@ (Id - HTH)EQOHy [XO‘xtv y]
Also, recall the sampler in (6) and define [, as

ft*,y(l"t) = E,ﬁol,y (\/ aH'y — HTth) . (10)
Also recall Ay, from (7). Then, f{, satisfies that, for all t > 1 and fixed y € RP,

fiy € arg min ||At,y||2, Qq|y—almost surely.
fey:(Ig—HTH) fy ,=0

The sampler ftfy(wt) defined in (10) provides a bias-optimal zero-shot conditional DDPM sampler.
In the case with o, = 0, such an optimal sampler coincides with the regular DDNM sampler in Wang
et al. (2023) (see Appendix D). Thus, we call this sampler as Bias-Optimal (BO) DDNM sampler.
With (10), we can also calculate the minimum step-wise mismatch as

2 aujy (Xo) ||?
| Vlog Qt(Xt) (Id—HTH),

min EXtNQt\y ||At1y

= E ~
Sy (LamHVH) 1y =0 K@ty
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Figure 1: Comparison of BO-DDNM, DDNM Figure 2: Distributional bias as a function of the
and DDNMT for Gaussian (left) and Gaussian conditioning y (left) and the correlation coeffi-
mixture (right) )y under measurement noise. cient p (right) for Gaussian Q.

which is the projected Fisher divergence between Qy),, and Q; on range(lq — H TH).

In the following lemma, we provide the performance bound for BO-DDNM when )¢ has bounded
support. For comparison, we also derive the theoretical performance of vanilla DDNM, denoted as

Ly

Theorem 4 (BO-DDNM vs. DDNM). Suppose that || Xo||* < R2d a.s. under Qq. Suppose that
Assumptions I and 5 hold. Then, with the conditional sampler fi, in (10), Theorem 2 holds with
v = Land r = 2. Also, with the conditional sampler [, := (1 — a;) ™" (VaxH'y — H'Hay), if
further HHT H < 1, then Theorem 2 holds with v = 1 and r = 4.

Theorem 4 establishes the first result applicable to DDNM-type zero-shot conditional samplers for
any linear conditional models on those target distributions having bounded support.

Advantage of BO-DDNM over DDNM and DDNM*: When there is positive measurement noise,
Theorem 4 indicates that our BO-DDNM sampler that uses f;,, = f/, enjoys a smaller asymptotic
bias than DDNM that uses [}, with the a; in (8) (5~2 vs. 6=*). Note that the DDNM sampler
corresponds to f;, = ft,]\; (see Appendix D). Such an advantage is also demonstrated by our
numerical experiment. In Figure 1, we numerically compared modified conditional zero-shot sampler
(as given in (10)) with the DDNM and DDNM™ sampler for both Gaussian and Gaussian mixture
Qo’s at different levels of measurement noise. It is observed that the optimal BO-DDNM sampler
achieves a much lower bias than both the DDNM and the DDNM™ samplers numerically, especially
when o2 becomes large.

4.2 BO-DDNM SAMPLER FOR GAUSSIAN MIXTURE Qg

In this section, we focus on the convergence dependency on other system parameters of the BO-
DDNM sampler, including the chosen y. In particular, we restrict our attention to Gaussian mixture
Qo’s and to a special conditional model, where H = (I, 0). This choice can be seen in many
applications, such as image super-resolution and inpainting (after reorganizing the pixels), where I,
corresponds to the locations of the given pixels (Wang et al., 2023; Song et al., 2023a). We assume
positive measurement noise. We introduce the notation [Xg],; to denote the variance components
that correspond to the space of a x b where a,b € {y, 7}.

The following Proposition 1 gives an upper bound on the asymptotic bias for Gaussian mixture Q).

Proposition 1. Suppose that Qg is Gaussian mixture with equal variance, whose p.d.f. is given
by qo(xg) = 25:1 Tnqo.n(To), where qo ., is the p.d.f. of N(pon,X0) and m, € [0,1] is the
mixing coefficient with 27]2121 7, = 1. Suppose that H = (I, 0), and adopt f;,, in (10) and o,
in Definition 1. Write \y > --- > A\g > 0 and 5\1 > > S\d,p > 0 as the eigenvalues of ¥ and
[Xo0]gg, respectively. Then,

2
EXtNQﬂy At,y(Xt)”
_ _ Solygll® N 2
< ayd + a? min{j\dJEJO}L Hllin{)\dJP max {d()\l +02) + Yo T ||[HYy — H Hpg | ,d}

S e (a+ S0 ma |[HTy = B Hpo||)
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Proposition 1 indicates that three factors affect (an upper bound on) the asymptotic bias. (i) The
measurement noise variance 0_3 determined by the system nature has an increasing effect on the bias.

(ii) The averaged distance 25:1 T |[HYy — HYHpo H2 between H'y and H' H i ,, captures the
quadratic dependency in y, as illustrated in the left plot of Figure 2. (iii) The correlation between H x
and (I; — H'H)x of each mixture component contributes positively to the bias, which is contained

I[Zo]ysll®

m the faCtOI' min{>\d71}2 :

To see this, consider 05 = 0 and a specific Gaussian example with d = 2,

o 0110 . . .

p=1,and ¥y = 11 P 112 22} . As the correlation coefficient p increases, Yo becomes
PO11022 039

2

closer to be singular, and thus A\ decreases to 0. Also, ||[Xo]yz |* = p%02,02, increases quadratically

with p. Hence, this factor % grows unboundedly as p — 1, as does Ex, .q,,, Ay (Xy) ||2

Such dependency on the correlation is illustrated numerically in the right plot of Figure 2.

The following theorem characterizes the conditional KL divergence when ()¢ is mixture Gaussian.
In particular, we can show Assumption 4 holds with any «; that satisfies Definition 1 when Q) is
Gaussian mixture (see Lemma 8 in Appendix L.5).

2
y > 0. Suppose that As-

sumption 5 holds. Take f;, in (10) and oy that further satisfies EtT:l(l —ay)ay = 1+ o(1).
Then, /

Theorem 5. Suppose the same conditions in Proposition 1 hold and o

KL(Qojyll Popy) S (d+ X0y ma [|HTy = H' Hpso||*) +

4\ (log T)2
(@ + SN | HYy — H g, *) €552 4 \Jd 4 SN o | HYy — HUHpo ol (0 T)e.

Although Proposition 1 and Theorem 5 assume H = (I, 0), extension to general H is straightfor-
ward by modifying the proof of Lemma 8 and using the fact that | HH|| = ||[I, - HTH|| = 1.

This is the first convergence result for zero-shot samplers where explicit dependency on the condi-
tioning y is derived for Gaussian mixture targets. Note that the extra condition on c; can be verified
for both constant oy (Lemma 10) and that in (8) (Lemma 7). Among the three terms in Theorem 5,
the first term is the asymptotic bias analyzed in Proposition 1. Since the last two terms decrease to
zero as T' — oo, the asymptotic KL divergence will also approach some non-zero limit of order d.

The proof of Theorem 5 is non-trivial because from Theorem 1 we need to figure out the dependency
on y in all first three orders of partial derivatives of a Gaussian mixture density, which is generally
hard to express. To this end, we restrict focus to a particular linear model where explicit dependency
can be sought. The result can be extended to the case of 05 = 0 with the oy in (8) (see Remark 2).

5 CONCLUSION

In this paper, we have provided convergence guarantees for the general score-mismatched diffusion
models, which are specialized to zero-shot conditional samplers. For linear conditional models,
we also designed an optimal BO-DDNM sampler that minimizes the asymptotic bias, for which
we showed the dependencies on the system parameters. One future direction is to explore zero-
shot samplers that use higher-order derivatives of the log-densities, which might achieve better
convergence results.
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A FULL LIST OF NOTATIONS

For any two functions f(d, d,T) and g(d, 9, T), we write f(d,6,T) < g(d,0,T) (resp. f(d,6,T) 2,
g(d, 8, T)) for some universal constant (not depending on d, d or T) L < oo (resp. L > 0) if
limsupy_, oo |f(d,8,T)/ g(d,6,T)| < L (resp. liminfr_, o | f(d, 0, (d,8,T)| > L). We write
f(d, 8, T) < g(d,6,T) when both f(d,6,T) < g(d,0,T) and f(d,0,T

that the dependence on ¢ and d is retained with <

g(d, 0, T) hold. Note

<, 2, <. We write T) = O(g(T)) (resp.
f(d,6,T)=Q(g(M))if f(d,6,T) < L(d, 0)g(T) (resp. f(d, 8, T) = L(d,§)g(T)) holds for some
L(d, §) (possibly depending on ¢ and d). We write f(d,d,T) = o(g(T)) if imsupy_, ., | f(d, 0, T)
/g(T)| = 0. We write f(d,8,T) = O(g(T)) if f(d,5,T) = O(g(T)(log g(T))*) for some constant
k. Note that the big-O notation omits the dependence on ¢ and d. In the asymptotic when e =% — oo,
we write f(d,e™') = O(g(d,e™Y)) if f(d,0,e71) < g(d,8,e71)(log g(e~1))* for some constant
k. Unless otherwise specified, we write xi(l < i < d) as the i-th element of a vector x € R? and
[A]¥ as the (i, j)-th element of a matrix A. For a function f(z) : R? — R, we write 0, f(z) as a

shorthand for % f (x)‘ , and similarly for higher moments. For a vector (resp. matrix), all norms,

r=z
if not explicitly specified, are referred to 2-norm (resp. spectral norm). For a vector = and matrix P,

define ||z|| p := V/aT Pa. For matrices A, B, Tr(A) is the trace of A, and A < B means that B — A
is positive semi-definite. For a positive integer n, [n] := {1,...,n}.

B RELATED WORKS ON UNCONDITIONAL DDPM SAMPLERS

Given time-averaged L? unconditional score estimation error (Hyvirinen, 2005), polynomial-time
convergence guarantees have been established for wide families of target distributions (De Bortoli
et al., 2021; Chen et al., 2023d; Lee et al., 2023; Chen et al., 2023a; Benton et al., 2024a; Pedrotti
et al., 2023; Conforti et al., 2023). For all target distributions with finite second moment, under L?
score estimation error, O(d log(1/4)? /e?) number of steps are sufficient to achieve ¢ KL divergence
between the d-perturbed target distribution and the generated distribution using the specially designed
exponential-decay-then-constant step-sizes (Benton et al., 2024a; Conforti et al., 2023). The analysis
usually involves applying the Girsanov change-of-measure framework and the Fokker-Plank equation
(Chen et al., 2023d;a) to either the original SDE diffusion process or some transformed process
(Benton et al., 2024a; Conforti et al., 2023), followed by an analysis of the discretization of the
continuous-time process. More recently, similar convergence guarantees have been established
using non-SDE-type techniques, such as with typical sets (Li et al., 2024c) and with tilting factor
representations (Liang et al., 2024). Here the new analysis introduced in Liang et al. (2024) is
applicable to a larger set of step-sizes (equivalently, noise schedules) than the ones commonly used in
previous analyses (Chen et al., 2023a; Benton et al., 2024a; Conforti et al., 2023). In this paper, we
employ the same analytical framework as in Liang et al. (2024).

Some other works analyzed sampling errors using a different measure (the Wasserstein-2 distance)
(Bruno et al., 2023; Gao et al., 2023; Gao & Zhu, 2024). Beyond stochastic samplers, another line
of studies provided theoretical guarantees for the deterministic sampler corresponding to DDPM
(Chen et al., 2023e;c; Huang et al., 2024). Besides, Cheng et al. (2023); Benton et al. (2024b); Jiao
et al. (2024); Gao et al. (2024) provided guarantees for the closely-related flow-matching model,
which learns a deterministic coupling between any two distributions. Also, Lyu et al. (2024); Li et al.
(2024b) provided convergence guarantees for the closely-related consistency models (Song et al.,
2023b). Finally, in order to achieve an end-to-end analysis, several works also developed sample
complexity bounds to achieve the L? score estimation error for a variety of distributions (Oko et al.,
2023; Shah et al., 2023; Gatmiry et al., 2024; Chen et al., 2024; Cole & Lu, 2024; Zhang et al., 2024,
Mei & Wu, 2023; Chen et al., 2023b).
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C DETAILS OF NUMERICAL SIMULATIONS

In Figure 1, we compared the performances of our optimal BO-DDNM sampler (with the ftfy in (10))
against the DDNM and DDNM™ samplers (Wang et al., 2023) at different levels of O'z. For Gaussian,
weuse g =0,d =4,p=2,andy = (0.5 0.5). We first randomly generate a positive definite
matrix ¥ and uniformly sample p € [0.4,0.7), and then this correlation coefficient is enforced for
any [Xo]" wherei € [p]and j € {p+ 1,...,d}. We use the noise schedule in (8) with ¢ = 3 and
6 = 0.0001 for Gaussian Q. For Gaussian mixture, weuse N = 2,d =2,p=1,and y = 1. We set
7, = (0.4 0.6), diag(Xo) = (0.1 1), and p = 0.6. We further uniformly sample {10, }2_; in
the space [—1,1) x [—1,1). We use the noise schedule in (8) with ¢ = 4 and ¢ = 0.02 for Gaussian
mixture QQg. We use 150000 samples to estimate the divergence when Qg is Gaussian mixture.

In Figure 2, we numerically verify the exact bias in KL divergence as a function of y and p for
Gaussian Q. Here Qg = N (0,%), d = 4 and p = 2. Suppose that 03 = (0. We assume that each

element of 3 has equal values. The correlation coefficient p is enforced for any pair of x* and z7
where i € [p]and j € {p+1,...,d}. We first randomly generate a positive definite matrix ¥y and
then enforce the correlation condition for any z* and 2/ where i € [p]and j € {p+ 1,...,d}. We
use a sufficiently large number of steps 7" = 20000. The conditional sampler is set as f;, = f/,
given in (10). The noise schedule in (8) with ¢ = 3 and § = 0.0001 is used.

D DERIVATION OF SCORE BIAS FOR EXISTING ZERO-SHOT DDPM
SAMPLERS

In this section we show some examples of zero-shot conditional samplers proposed in the literature
and in particular how they are related to the formulation of interest in (6). We recall the notations H,
vy, and oy from Section 2.3. Also denote

1
Kt : \/»xt \/»

which is the mean of the unconditional reverse-step at time ¢t > 1.

(‘rt) EXt—l“JQtfut("fEt)[thllwt]

D.1 COME-CLOSER-DIFFUSE-FASTER (CCDF)

We first examine the Come-Closer-Diffuse-Faster (CCDF) algorithm (Chung et al., 2022b). The
CCDF algorithm using DDPM samplers gives that

/
Ty = Ut + 021,

Ti—1 = (I - HTH)$;71 + @tHTy + 1-— @tZt’Q

jid. . . ..
where z; 1, 2 2 YN (0, 1) are standard Gaussian random variables. Thus, the conditional mean
of the update is

py = (I —H H)p + /a1 H'y

1 1— 1
(1 HYH)Vlog g;(x:) + Va:H'y — —HTth

in which
1
fey(wt) = T (VorvarH'y — HTth) .
- G
D.2 DDNM AND DDNM™

Next, we examine the DDNM algorithm and its modified version DDNM™ (Wang et al., 2023). We
first note that the unconditional DDPM satisfies that (cf. (Ho et al., 2020, Equations (7) and (11))),

Var—1(1 —ay) n @(1_dt—1)x

Mt = - Lojt -
t 11—y

ts

Tojp = ==t . f Vlogqt(wt) E xo~Qojs (-Jee) [Xol 2] (11)
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Combining these two lines, we have p; = \/%(xt + (1 — a¢)Vlog qi(z1)). In DDNM, gy, is
projected along the direction of the given y, which yields

Loty = HTy + (Id - HTH)‘TO\ta
and the corresponding conditional mean of the update becomes

Var—1(1 — o) n Vai(l — 1)

Mty = 1—a, Lolt,y 1—a, Tt
Thus,
Var—1(1 — ap(l — oy
Mty = M (HTy + (I — HTH)iEO‘t> + \/T(—_tl)xt
1—ay 1—oy
i Var—1(1 — 1—ay
O (1, B Y+ gt (YO0 ) Vel Zaey) g
].—Olt 1—Oét
L 12 LIy — HTH)V log g, (x;)
Tt d— e\t
TV Vo
(1 — 1 1
L(Vama) gy VEOLZ G g L g
l—O{t l—Oét Q-

where (i) follows from (11). Thus, to express this conditional mean in the form of (6),

fry(e) = va Hy + : <at(1 — O:[t_l) - 1> H'Hz,

1—Oét 1—0(,5 1—0475

1

= —— (VaH'Yy - H'Hz,).
1-— Qg

Here note that f; ,,(z;) is supported on range(H ' H). Also note that for DDNM, f; , = fiy» which
is the BO-DDNM sampler defined in (10), when there is no measurement noise (i.e., af/ =0).

Next we investigate its modified version, DDNMT, in particular when H = (I, 0). To relate the
notations of (Wang et al., 2023, Section 3.3 and Appendix I) with ours, note that ¥ = A = H,

U:Ip,V:Id,sl,...,sp:1,sp+1,...,sd:O,anda:7W.Ifat > aoy, we have
_ _ (o2 —a202)1p 0
Si=Is, ® = ( ) o2, )

Otherwise, if 0y < aoy, we have

], 0 _ (0 0
= < 0 Id—P) = <0 UtZIdp> .

Observe that the only difference is on the space that supports HH.

From (Wang et al., 2023, Equations (17) and (18)), we can write
ojt,y = (La — H H)wop + S Hy + (Ig — S¢) H Hagyy,

supported on range(H T H)

Thus, with similar arguments above,

Voar—1(1—ay) . Var(l —ap—1)
—1 — Loty +—————=——
— O 1-— (673

1 1-—
—x + (Id — H'H)V log q(x:)

~ Vet
1— oy _
+ a5 WVaHEy + (L = SO H' Hagy) — H' Ha)

Mty = Tt

supported on range(H T H)

where f; ,, is again supported on range(H ' H).
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D.3 SAMPLERS USING HIGHER-ORDER DERIVATIVES

Before we end this section, we note that the formulation in (6) only uses (estimates of) first-order
derivatives of (unconditional) log-p.d.f.s (a.k.a. unconditional score functions). This might not
correspond to the optimal zero-shot sampler, and in practice there have been methods that use both
first- and second-order derivatives (namely, in Oz (x¢)/0z¢) to achieve better zero-shot sampling
performance (Chung et al., 2023; Song et al., 2023a). Nevertheless, the second-order derivatives
might be hard to obtain, which require extra machine time and memory in the calculation. We leave
investigations to use second-order derivatives in zero-shot conditional samplers as future work.

E PROOF SKETCH OF THEOREM 1

We now provide a proof sketch of Theorem 1 to describe the idea of our analysis approach. The
main technical challenge due to mismatched scores is to analyze the expected tilting factor under
a mean-perturbed Gaussian, providing an upper bound of the asymptotic orders of all Gaussian
non-centralized moments. See the full proof in Appendix F.

pr(Xr)
T ~ Pe—1]s(Xe—1]X¢) T _ Pe—1)e(Xe—1|X+)
Zt:l EXt,Xt—lNQt,f,—l log Pr—11t(Xe—1[X¢) +Zt:1 EXf,-,Xf,—lNQt,t—l log DPro1)t(Xe—11X¢) |° These
three terms correspond respectively to the initialization error, estimation error, and reverse-step

error. The initialization error can be bounded by &rd in order using (Liang et al., 2024, Lemma 3)
under Assumption 1. Below we focus on the remaining two terms.

To begin, with Lemma 1, we decompose the total error as KL(Qq Hﬁo) <Ex,-6, [log qT(XT)} +

Step 1: Bounding estimation error under mismatch (Lemma 2). Ateachtimet = 1,...,7,
log(pi—1j¢(xt—1|7¢) /De—1j¢ (x¢—1]7¢)) has an explicit expression since they are conditional Gaussians
with the same variance. However, differently from the typical matched case, the mean of P;_y;

(i.e., pe(x¢)) is no longer equal to the posterior mean of Qt_l‘t (i.e., my(x¢)). Their difference is
contained in A (x;), whose asymptotic order needs to be upper-bounded in light of Assumption 2.

Step 2: Decomposing reverse-step error under mismatch (Equation (15)). First we decompose
the tilting factor as (; ;—1 (2, 1—1) = Cmis(Te, Te—1) + Gvan (24, T1—1), Where

Conis 1= VO A ()T (211 — (1))

Gvan = (V10g Ge—1(mu(z1)) — /arV1og e ()T (we—1 — ma(w1)) + Y Tp(10g Ge1, 1, ma (1))

p=2

Here C~mis captures the factor that contributes to the total bias within C~t,t,1. Define the oracle sampling
process as P}y = N(my,y, o21,). Then, the reverse-step error can be decomposed as

EQt,t—l [étvt_l] - EQtXPt—l\t [5t7t_1] = (EQt,t—l [gt’t_l] o EQtXPt—l\t Ktt_l])

Woracle, rev-step

+ (Eétxﬁt,m[gmiS] - EQ”tth,m[émiS]) + (Ethﬁt,l‘t[évan] - EQ”tth,m[C:van]) .

Wbias. rev-step annish. rev-step

Step 3: Bounding Woracle, rev-step aNd Whias, rev-step (Equations (16) and (17)). Under Assumption 3,
the dominant term of Wracle, rev-step 15 given by (Liang et al., 2024, Theorem 1). Also, the calculation
Of Whias, rev-step 18 reduced to the difference in conditional mean, which is proportional to || A () ||2

Step 4: Bounding Wyapish, rev-step (Lemmas 3 and 4). To upper-bound Wianish, rev-step» With results
on the matched case in Liang et al. (2024), we need only to characterize the mean of (,,, under the
mismatched posterior P;_;;. We determine the dominant order in the expected values of all Taylor
polynomials, which includes calculating all non-centralized moments. We first calculate the first three

non-centralized moments (Lemma 3) and then determine the asymptotic order of all higher moments
(Lemma 4). With these, we can finally locate the terms of dominating order in Wyapish, rev-step-
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F PROOF OF THEOREM 1 AND COROLLARY 1

Overall, the structure of the proof of Theorem 1 is similar to that for (Liang et al., 2024, Theorem 1).
To start, we note that with similar arguments in (Liang et al., 2024, Equation 13), an upper bound on

KL(QOHﬁO) is given by
KL(Qo|Py)
T
= KL(Qr||Pr) + > Ey o, {KL(Qtflht("Xt)Hﬁtfl\t("Xt))}
t=1

T

- ZEXt_W@t_l [KL(Ques (1 Xe 1) [ Byer (1X01)]
t=1
< KL(Qr||Pr) + Ex,~o, {KL Qr—1)e (X0 P 1 (- \Xt))}
L [10 ; }éE R ETAE
XTNQT pT XT Xt7Xt—1NQt,t—1 ﬁtfl‘t(Xt—ﬂXt)

t=1

Term 1: initialization error Term 2: estimation error

{og dtlt(Xt—1|Xt):|
Pt—l\t(Xt—l | X¢)

Term 3: reverse-step error

T
+Y Ex, xi inGuss (12)

t=1

The last equality holds because pr = pr. Now, we provide an upper bound for the reverse-step error
that is ready for further analysis. In the following lemma, we show that the mismatched g;_;; is an
exponentially tilted form of p;_y;.

Lemma 1. Fixedt > 1. For any fixed x; € R, as long as G, exists, we have

De— l\t(xt 1|I’f)€<tt 1(@e,xe-1)

EthlNPt—lh [eCt,t 1(me, X 1)]

gi— 1|t(fCt 1lze) =

where
Et,t—l(mt; xt—l)

= VarAp(z) T (@e-1 — ma(zt)) + (Viog Ge—1(me(z1)) — VarViog g (we)) T (z1—1 — me(a4))

o0
+ Z Tp(log Ge—1, xe—1, my(xy)).

p=2
Here we define the p-th order term in the Taylor expansion of f(x) around i as
1 d
T(fwm)=— >, %fw ]G —u)
YEN®YS, vi=p i=1

where a € [d)P are the indices of differentiation in which the multiplicity of i € [d)] is ¥*.
Proof. See Appendix H.1. O

We abbreviate C~t,t—1 = C~t,t—1 (z¢,2¢—1). Given the expression of C~t,t—1, the conditional reverse-step
error can be upper-bounded for any fixed x4 as

o e )
Xi—1~vQp—1pt pt_1|t(Xt71|xt)

= ]EXt,lvat,l‘t [Ct,t—l - logEXf,—l’VPt—lh [eCt,til]

E
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(4) - B
S By inGiiag {Ct’t_l} +Ex, j~py [— logegt”t_l}

= EX1—1~Q171H [gt,tfl] - Ext,1~P,,,1|,, [é,tfl] (13)

where in (¢) we use Jensen’s inequality and note that — log(-) is convex. Thus, from (12), we have an
upper bound as

. T
N5 Gr(Xr) Pt (Xe—1]Xt)
KL(Qol|Po) <Ey. .5 {logA ] +>» E 5 {logA
(Qoll o) Xr~Qr (XT) tzzl XerKeo1~Gee Peo1pe(Xe—1] X2)

Term 2: estimation error

Term 1: initialization error

T
+ Z]Ex,,_wq}t,m [Cta—1] = Ex,oynp, y, [Cee—1]
t=1

Term 3: reverse-step error
Here, using (Liang et al., 2024, Lemma 3), the initialization error can be upper-bounded as, when
T — oo,
qr(Xr) 1
- |1 < = -
Xr~Qr |: 0g ;’D\T(XT):l = 9 X0~Qo
This implies that, under Assumption 1 and if ¢ > 1,
QT(XT)] 1
5 |lo =o(T™ ).
Xr~Qr |: ng(XT) ( )

Also, under Assumption 3, the higher-order Taylor polynomials enjoy exponential rate of decay in
expectation, which is contained in powers of (1 — «;). Thus, we are allowed to exchange the limit
(of Taylor expansion) and the expectation operators (cf. (Liang et al., 2024, Lemma 11)).

E 1Xol* ar + O (a7 -

E

Now, we upper-bound the estimation error and reverse-step error under score mismatch separately.
F.1 STEP 1: BOUNDING ESTIMATION ERROR UNDER MISMATCH
The following lemma provides an upper bound for the estimation error under score mismatch.

Lemma 2. Under Assumptions 2 and 4, with the o satisfying Definition 1, we have

ET:E } o pt—l\t(Xt71|Xt)
Ly K Xem1 G gﬁt—l\t(Xt—ﬂXt)

Smax\/Ey, g, [Ai(X0)|(log T)e + (log T)e>.

t>1

Proof. See Appendix H.2. O

F.2 STEP 2: DECOMPOSING REVERSE-STEP ERROR UNDER MISMATCH
Now, we decompose ft,t,l(a:t, Ti_1) = fmis + gzvan where

Cis = VA (24)T (241 — my(zy)),

Guan = (V1og Gr—1(m (1)) — /@ V10g G ()T (-1 — ma(z4)) + > Tp(l0g Gr—1, -1, my (1))
p=2

(14)

Here 5van is the same tilting factor without score bias (cf. Liang et al. (2024)). Also, define an
auxiliary conditional probability P;_;|; such that

- l1—«
Py ::N<mt(xt)7 - tfd>,

t

which corresponds to the oracle reverse process that knows the true scores of the perturbed target
distributions. Thus, we can decompose the expected value of (13) in the following way:

EXtNQt (Extfl’”@t—l\t o EX‘—l“‘Ptfl\t> Kt’t_l]
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- EXtNQt (EXt—lNQt—lh o EthlNﬁtfl‘t) [Ct,t—l]

Woracle, rev-step

+ EXtNQt (EXt,lrvIS,,_l“ - EXt—lNPt—ut) [Cmis]
Wias, rev-step

+ EXtNQ,, (EXt_lwf’t,m - EXt—l"’Pt—l\t) [évan] . (15)

annish. rev-step

F3 STEP 3: BOUNDING WORACLE, REV-STEP AND WBIAS, REV-STEP

Among the terms above, (Liang et al., 2024, Theorem 1) shows that, under Assumption 3 and using
the oy in Definition 1,

M’ﬂ

(1 —ay)? Ex, o, [ (V2 log Gi—1(my(X;))V? logéjt(Xt)” . (16)

oracle rev- step
t=1

Also, for Whias, rev-step» Since direct calculation yields

IExt 1NPt l‘t[gmls(xtht 1)] EXt ]NQt l‘t[les(xtaXt 1)} 07
Ext,wpt_m[gmis(qut—ﬁ] = —(1—ay) || As(z)]?,
we have
Wbias, rev-step — EXtNQt (EthlNPt—l\t - EXt,lrth,l‘t) [gmis(XhXt—l)]

= (1 —a)Ex, g, [AX)I”. (17)

Next, for Whanish, rev-step» W€ first note that ]St,”t is conditional Gaussian. Thus, under Assumption 3,
we are able to exchange the limit (from Taylor series) and the expectation due to Gaussian-like
moments (cf. (Liang et al., 2024, Lemma 11)), which gives us

EXt—1~13t,1|t [5van(117t7 thl)]

1—-

= oa, Y Tr(V2 log Go—1 (ma (1)) +Z XeormPy vy, [ Tp(108 Gr—1, Xi1, ma(34))]

Here the expected value at p = 3 is zero because all odd-order centralized moments of Gaussian
vanish.

Now it remains to characterize the expectation of CN\,an(xt, x¢—1) under Pt_l‘t. To this end, we
introduce the following notation.

Definition 2 (Big-O in L? space). For a random variable Z7, we say that Zr(z) = Op(q)(1) if
(Ex~q |ZT(X)|p)1/p = O(1) forall p > 1 as T — oo. Define Oﬁp(Q) likewise.

One property is that if Z7(x) = Ozr(q)(1) then Exq |Zr(X)| = O(1). Another property is that
if Z1 = Orr()(ar) and Zy = Op(q)(br) for all p > 1, applying Cauchy-Schwartz inequality we
get, forall p > 1,

1/(2p)
(Ex~q|Z12:1")"" < (ExqZiPEx~qZ) " = Olarbr),

which implies that O vy (ar)Ozr (@) (br) = Orr()(arbr). Now, with this notation, the first lines
of Assumption 3 can be equivalently written as

(1= )™ 03 10g ¢+(X1)| = O (g, (1 = a)™), ¥Vp > 1,
(I—a)™ |8§ 10th—1(mt(Xt))| = Ol;p((gt) (1=ay)™), Vp=1.
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Also, Assumption 4 can be equivalently written as

(1 =)™ |Aey (X))l = Opp(g,) (@l —a)™), Vp > 1.

With these notations, the following lemma characterizes the expectation of fvan(:vt, 2¢—1) under
P;_y)¢, which involves non-centralized Gaussian moments.

Lemma 3. As long as q;_1 is defined, with the definition of @a,, in (14), under Assumptions 3 and 4,
we have V0 > 1,

EXt—lNPt—l‘f,[E\/an(xt7Xt71)}
1—Oét ~ ~
= — lo t—1\M\Tt)) — /O lo t\ Tt TAt Tt
@(VgQ(()) Vi Vlog g (w))T Ay (x:)
(1—Oét)

11—« - 2 ~
o tT‘I‘(V2 loth—l(mt)) + % At(l‘t)TVQ 10g qt_l(mt)At(xt)
t t

_|_

d d
11— ay)? ~ i ~ j
] (M) 3282‘314' log Gr—1(me) Ay + "21 a?ij log Gr—1(m1) A
i= i,j=
i#£]

+ ZEXt—lNPt—l\t [Tp(log qt—laXt—lvmt(‘rt))] + OL“(Qt) ((1 - at)?)) .
p=4

Proof. See Appendix H.3. O

The following lemma provides the rate of decay of the difference in expectation of all Taylor
polynomials with order p > 4.

Lemma 4. As long as §;—1 is defined, under Assumptions 3 and 4, we have, Vp > 4,0 > 1,

(EXt—1NPt,1|t - EXt*INPt—l\t) [Tp(logqtfhthhmt(Xt))] = Oﬁz(Qt) ((1 — Olt)g) .
Proof. See Appendix H.4. O

Thus, with the help of Lemmas 3 and 4, we can identify the dominating terms in Wyanish, rev-step When
1 — a4 is small. The dominating term is

annish, rev-step — EXtNQt (EXt—lNPt—lh - EXt_let,lh) [Evan(Xthtfl)]
1l—«a - -
= ——="Ex, g, [(V1ogdi-1(mi(X1)) = arV log i (X:))TA(X,)]
\/OTt t t
. (1 — ozt)Q
20[t

1 /(1= o)? d i .
+ 3 <(at3/;)) EXt,NQt, [3;813” log qt,l(mt(Xt))At(Xt)

Ex, .o, [A(X:)TV?1og G -1 (mi (X)) Ay(Xy)]

d
+ Y 0 ogdiam (X)X
i,j=1
iJ#J'
+O((1 = ar)?). (18)
Therefore, with the decomposition in (15) in mind, an upper bound on the reverse-step error is
achieved by summing up (16), (17) and (18). The proof of Theorem 1 is now complete.
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F.5 COROLLARY 1 AND ITS PROOF

Below we state and prove a corollary of Theorem 1 when ¢y does not exist. By (Liang et al.,
2024, Lemma 6), ¢ always exists, which provides us with the following convergence result with
early-stopping.

Corollary 1. Suppose that Assumptions 1 to 4 are satisfied. Then, suppose that the o satisfies
Definition 1 att > 2, the distribution Py from the discrete-time DDPM under score bias satisfies

KL(Qu[|Py)

T
S Z(l —a)Ey, q, 1A (X))
t=2
“1-a
+Y ‘Ex, .5, [(Vlog Gi—1(m(Xy)) — oz V log qt(xt))mt(xt)}
= Vv
— (1—ay)?
+3 T:EXWQ [Tr(VQ log G—1 (me(X1)) (V2108 G (X2) — Ay(X1) Ay(X,)T) )}
t=2
T (1— ap)? d ‘ d 4
+ Z WEXWQ,, 3 Z 855108 Gr—1 (m(X1))Ar (X)) + Z 5?1‘;‘ log Gi—1(m (X)) Ae(Xy)?
t=2 " i=1 ig=1
i#]

+amax By g, 180(X0) P (log T)z + (log T)%
where W1(Q1,Q0)? < (1 — aq)d.

Proof. The result directly follows with the same arguments as in the proof of Theorem 1. The only
difference is the guarantee under the Wasserstein distance, which can be obtained using (Liang et al.,
2024, Lemma 12).

G PROOF OF THEOREM 2
We first recall some of the properties of the noise schedule in (8). By Lemma 6, the noise schedule

in (8) satisfies that (1_1;1‘1),, < lsg ?,,lf%(Tl /%) for all p > 1 while ar = o(T~1), and thus such o

satisfies Definition 1 when ¢ > 2. Further, with the a; in (8), (Liang et al., 2024, Lemmas 15 and 17)
show that for any ()¢ with finite variance under early-stopping, Vp, £ > 1,

_ ¢ 1
]EXtNQt |05, log g1 (X¢)|” = O <(1_at)p4/2) )

~ 4 1
Ex, g, 05108 Gi—1(my( X)) = O (u_%l)pm> :

Thus, using Lemma 6, Assumption 3 is satisfied (since § is constant). In the following, we further
verify the last relationship in Assumption 3 holds.

Therefore, since Assumptions 1, 2 and 4 have been satisfied, we can invoke Corollary 1 and get

KL(Ql ||ﬁ1) < Woracle + Whias + Whanish- Now, we investigate the dimensional dependence for each
term of the upper bound in Corollary 1.

To start, from (Liang et al., 2024, Theorem 3), for any QO having finite variance, with the o in (8),

we have

d?log?®(1/6)(log T)?
T

Also, since by assumption Ey, 5, IA(X)|? < ujiigt)rdﬂ with the «; in (8), we have from

Lemma 7 that when § < 1,

Woracle S + (log T)€2 .

dy 2log(1/0)logT
s S — (1 - — 2 ).
Wias S 5 ( T
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Now we investigate each term in W,yish. The following lemma is useful to determine the rate of
difference of the first-order Taylor polynomials.

Lemma 5. WhenEy 5 1 X0||° < d3, with the o in (8), we have

- - d3/2 1— )2
(1= a0 Ex, g, [V log it (ms (X)) — yar¥ log du(Xo)|* $ 24

(1 — dt,1)3 ’
As a result, Assumption 3 holds.
Proof. See Appendix H.5. O
In other words, combining Lemma 5 and Lemma 6, we have
_ N ~ (1
(1 =)\ /Ex .5, IVIogg:—1(mi(Xt)) — /a:Viog @X))P=0 (). (19)
1~ Qi T2

Now, by Cauchy-Schwartz inequality and Lemma 5,

T
2 ﬂl@xw@t [(v log Gi-1(ma(X2)) — v/arV log at(Xt>>TAt<X”]

< Z T VExn, 18X P

wEXW@t IV 108 @1 (me(X,)) — v/ ¥ log (X,
LA PP
T U=ay7 " T—any

$+"r

log(1/6)2(log T)?
N Z sitr/272
_ d“” log(1/5)2(log T)?
= sir/2T :

To proceed for higher orders of Taylor polynomials, we first note that from (Liang et al., 2024,
Section G.2), the second and third derivatives of log g; are

1 1
2 ~ _ } _ -
V=log gi(x) = — & I+ AL (EXONQM(,;E) [(x — VvV Xo)(z — \/EXO)T}
— _ T
B (EXONQO\’L('|$) [x B \/OTtXO]) (]EXONQOH(“I) [I o \/OTtXO})
8%klog Gi(z) = —/Zizjzkd()o“(wom)

+ Z / 1on|t mo|m)/za2z“3dQ0|t(mo|x)

a1=1,7,k
az<as, az,azFai

~2 [ #4Qup(anfo) [ #aQuu(aole) [ #dQyulzolo

where z = “1\_/‘2””0 Thus, in order to provide an upper bound on the expected norm of the

second-order derivative of log ¢;—1(m;), we can calculate

2
Xi~Qy EXONQOH—I(""H) [(mt Y dt*lXO)(mt Y dtleO)T]HF
— — 2
< Exinr XonGopr (lme) e = Va1 Xo) (my = V1. Xo0) Tl
— 4
= EXtNQmXoNQo\ta('lmt) lme = /@1 Xo

E
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(%)
< (11— a-1)?,

and
T 2
Ex, o, (IEX0NQ0“_1 [me — \/@f,—lXoD (EXONQO\t—l [y — \/KXOD HF
4
= B, |[Bxonires (o) e = VAL Xl

_ 4
< EXtNQt:XONQO\t—l("mt) ”mt Vv Oét—lXO”
(i)
< dP(1— @),
where both () and (é¢) follow from (Liang et al., 2024, Lemma 16). Thus,

- 1
Ex,~o, HVQ 10th—1(mt(Xt))HfV S md?

For third-order derivatives, we can similarly use (Liang et al., 2024, Lemma 16) and get (cf. (Liang
et al., 2024, Section G.2))

d d
. 1 d
- 3 log § ol I — !  E——
EXtNQt ;(azu log qt—l(mt(Xt))) ~ (1 - 0751571)3 ;E(Z ) (1 — O 1)3
d 1 d 2/3 1/3
Ex,~o, Z (95 1og Gr—1(me(Xe)))? | S O—a. 7 Z (E(Z)°)"" (E(Z7)°)
i,j=1 T =1
2
<&
~ (1 — O_Kt—l)S

Here we denote Z ~ N(0, I;), and note that E(Z%)5, E(Z7)5 < 1.
Therefore, by Cauchy-Schwartz inequality,

—)? )
Z %Exw@ [A¢(X1)TV? log Ge—1 (mi (X)) Ay (Xy)]

(1 — O[t)2
2at

VEx,oa, 180X Ex, g, 12 1og s (me (X))

(1 — Oét)Q dY d2
— 20[t (1 _@t)r (]. —dt,1)2
< d**71og(1/8)?*(logT)?

T
t=2
T
1-a)? & ~ 2
< E 5 2] _ X
S o T ey Ve [V log i (m X
T

o+

and

T d
Z 3oy 3/2 XtNQt l3ZafmIOth—l(mt(Xt))At(Xt)i]

t=2 i=1

IN

3(1—
3la 3/2 \/E X0, 1D ( X |2$ ,NQ, 9% 1og Gr—1(me(X1)))?

d/? /
1 _ 2
( at 1 — O[t T/2 ]. — Qi 1
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_ dF log(1/0)*(log T)?
~ r—1 )

0= T
and, with M being a matrix such that M (z) := 93 1log G;_1 (mq(z)),

i1

T
(I*Ott
> Saar Exia, Z 05 10g i1 (ma(X1)) Ar(X,)?

t=2 i,j=1
i#]

T
< ME - WM(XIA(X
<3 xoe0, IMXDAX)],
=2 :

T
(1
3 VB IO B IO

T d
(1-« -
<> SO VA By o, 1M | Bxng, | 3 (00, logdios (ma(X0)?
t=2 i,j=1
T
dA+7)/2 d2
N Z(l — ) 7, )72 A 3
—~ (1—ay) (1—aq)
_ 475 log(1/6)*(log T)?
~ 57‘;1 T ’
and
dV/?
max VEx, -0, 18X (log T)e < - llog T)e.
Therefore, combining all the above, we get
SN 21og(1/6)log T
KL(Qu|Py) £ 0o (1 2OERL0ET )
2
+ max{ _<T_1>}7(logT )

+d"/25 " (log T)e.

H AUXILIARY LEMMAS AND PROOFS IN SECTION 3

H.1 PROOF OF LEMMA 1

We remind readers that throughout this proof x; is fixed. For brevity write m; = my(x¢), pe = pe(x4),
and A¢(z;) = A;. Recall that my = x,/\/o;; + (1 — o) /y/a;V log G (). By Bayes’ rule, we have
§t71|t($t71|$t)

_ ‘jt\t—l($t|$t—1)‘jt—1(xt—1)

B Qt(ﬂﬁt)

o Gr—1(T¢—1)Gepe—1 (Te|ws 1)

4 — 2
g() Qt—l(xt_l)exp (_ th 2(\/@1}}_1” >

1—O[t)

2(1—at)/at
_ |we—1 — xe/ /0w + w1/ /oy — MtH — ||we— 1—Z‘t/\ﬁH )

= Gr-1(xt-1)ps—1)¢(T1—1]71) exp( 2(1 — ay) /v

e—1 — el = ||z — xt/@W)

o Gt—1(Tt—1)pe—1)e(Te—1]7¢) exp (
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(w1 — l‘t/\/OTt)T(l‘t/\/OTt - Mt))
(1 — Oét)/Oét

where (i) follows because the forward process is Markov and G;;—1 = qy+—1. Here, the exponent is
equal to

(T1—1 — @/ \Jar)T (24 /\Jor — )

X Qtfl(ilftfl)l?t71|t($t71 |z¢) exp (

(1—ay)/oy
_ @ — i/ o)Tme — ) (@1 — @/ a) (L — o)/ /i) Vog Gy (1)
(1—ay)/oy (1—ay)/oy
= VAl (zi-1 — 2/ /o) — Vau(zi-1 — 24/ /or) TV 1og Ge (1)
Thus,
Ge—1)e(we—1|Te) < proqje(wi—1]|Ts) €XP (ét,tfl(xty xtfl))
where

gt,tfl(xta xi—1) = Vou Al (zi—1 —my) +10g Gi—1(x4—1) — V/ou(x—1 — my) TV log G ().
Finally, since all partial derivatives of g;_ exists for any ¢ > 2 (See (Liang et al., 2024, Lemma 6)),
the Taylor expansion of log G;_—1 around m; gives the desirable result.
H.2 PROOF OF LEMMA 2
Foreacht=1,...,T,

ptfl\t(xt—llxt) _ Qi

log — = (z_—Aa:Z—x_— 1:2)
gpt_ut(wtqlxt) 201 — o) |we—1 — fi(e) | lwe—1 — pe(ze) ||

Qg Qi

- m(xt—1 = pe(@e)) T (e (@e) — Be(ze)) + m [[pee(ze) — ﬁt(fﬂt)||2~
For the first term above,

]EXtaXt—lNQt,t71 [(Xt_l - :LLt(Xt))T(:ut(Xt) - ﬁt(Xt))]

=Eyx, .5, [(me(Xe) — p(Xe) T (pe(Xe) — Fe(Xe))]
= By [ (X (X0) 7 (X))

1—Olt

2 ~ 2
N \/ExtNQt [A(XOI" Ex, g, [l126(Xe) = 1 (Xe) ||

Here we recall the definition of A; from (2) where m(z) — pi(z) = 1\;{% A(z). Thus,

SN ST,
Z X, Xt—1~Qt,t—1 ﬁt_1|t(Xt—1|Xt)

<\/»\/]E Xon Oy 1A (X)) Ex, o, l1t(X:) — A (X)) +t7

M’ﬂ

—Exo. (X0) - ﬁt(Xt)HZ)

t=1

Qi

(1- at)\/]EXtNQ_t HAt(Xt)”Q X \/u_%)QEXtNQ_t [l 2e (Xt) — ﬁt(Xt)HQ

I
Me

t=1

T
+ 20— @) = B i (X0) = (X0
t=1
(1) logT T (o ~ 2
<Y VB IO 5 [ B, 1) o)
logT a o
t ~ 2
Ex,~ X)) — (X
+ T ;(1—6&)2 Xie~Qy H/’(‘t( t) /-‘Lt( t)”
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log T —~
< max \/]EXWQt 1AL(X)]| 2 Z\/ X, ~O, ([0 (X)) — Ht(Xt)||2

logT o ~ 2
Ex, ~ X)) — X,
T 7 ; (I —ag)?2 Xe~er [ (X)) — 11 (Xe) |

(i) 1 R
< max By g 18X Qo8 Ty | 13- (- e B, Ie(Xe) — Bu(X0) P
t:l

logT L oy

T p l(l—at)Q

~ 2
EXtNQt Hﬂt(Xt) - ,ut(Xt)”

< maX\/IE o, |18 (X0 P (log T)e + (log T)e?

where (7) follows from Definition 1, (i7) follows from the fact that for any non-negative sequence

ai, = Z?:l Var </ % Zthl a; by Jensen’s inequality, and (ii7) follows from Assumption 2. The
proof is complete.

H.3 PROOF OF LEMMA 3
Recall that P,_yj; = N (s, 7524 1g), and thus Ex, ,~p,_,, [Xio1 — me(ar)] = =252 A ().

Jar
Note that we can change the limit and the expectation under Assumption 3. Now, we can calculate

that

EXt,vat_lH [évan(xh Xt—l)]

l—at ~ ~
= 0g Gi—1(my(xy)) — Ve Viog G ()T Ay (e
\/OTt(Vlgq (me(24)) — Vo Viog Ge(x:)) T Ar ()

+ ZEXt—lf'VPt_ut [Tp(logq}flvXt71>mt<xt>)] :

Below we write m; = m;(x;). Since T is in quadratic form, the expected value under P;_,; for
this term is

Ex, y~p,_y, [T2(log Gi—1, Xi—1,m4)]

1—ay 2 ~ (1 - O‘t)z
= T I _ —_—
%00 r(V=log Gi—1(my)) + o0

At(xt)TV2 log G;—1(my¢) Ag ().

Recall the formula for Gaussian non-centralized third moment. If Z ~ N'(u,0?), then E[Z?] =
p? + o? and E[Z%] = p® + 3uo?. Thus, the expected value under Py, for T is

EXt—lNPtfln [TS(IOg qvt717 Xt*l) mt)]

d
= %Z 95108 Gi—1(me)Ex, ,~p,_,, (X{_y —mj)?
3 Z 9510 Gr—1(mo)Ex, ~p,_,, (X{_y —mp)* (X)) —m])
il
1< _ o ,
+ 31 ”zk: ) 8fjk log Gt—1(m)Ex, ~p,_,), (X{_1 — mi)(X7_y —mi)(X{, —m))
ijkall differ

i () () (5]
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1< l—a ;\? (1-a 1-a
- 3”1 G - tAi — W - tAj
g 2 ylogds 1(mt><< N t) +( o Jar

1,}]:41
i#]

d

1 < - 1*Oét : 1*0& 1 1*0&

— E 23,1 - — Al )| — A (- AF

HERP N 1(”“)( Vo t)( Vai )( Var t)
1jkdlld1ffer

1 1—oy)? d - ) d ~ .
== <—(t)) 3285’” log ¢:—1(me)A; + Z 83”» log Gi—1(my) Al

3! a*? i=1 ij=1
i#]
+O0pg,y (1 —a)®), vE> 1.

3

83]-k logdt—l(mt)‘ = Oﬁ((@t) ((1 — ozt)3) under

Here the last line follows because (1 — a;)? |0;

Assumption 3 and (1 — a)® [[A¢l| = Ope(g,)((1 = a¢)?) under Assumption 4, both for all £ > 1.
The proof is now complete.

H.4 PROOF OF LEMMA 4
Fix z; € R%. For brevity write m; = my(x4), e = p(z¢), and Ay = Ay(x;). Recall that

d
- 1
Ty(log Gs—1,T4—1,m1) = 3 E ob log Gy —1(my H ft 1~
" yENT:Y, yi=p i=1

where a € [d]P are the indices of differentiation in which the multiplicity of i is . First, for the

expectation under P,_; (i.e., Gaussian centralized moments),

d

d
EXt—lNPt—l\t [H(XZ—l —my) ] = HEthl"’Pt—l\t [(th—l —m)”
=1

i=1

d ~i/2
1-—- ) )
= H ( at) (v" = DN {~" is even}

=1 at
d
1— o \*? ; i
- ( t) [1( = D)!1afy" is even},
(677 ;
1=1
where we use the convention that (—1)!! = 1. Next, for the expectation under P;_y); (i.e., Gaussian
non-centralized moments),
d .
]EXt,—l’\‘Pt—l\t lH(X;—l - m;)“/ ]
i=1
1-— Qg

d
| LR [(Xz_l . A:)W’]

NGT
5 () ()™ (52)

i=1 Z:O
£ even

To investigate their difference, we divide into the following few cases. Note that under Assumption 4,
(I —a)™ [[A¢(ze)]| = Opeg,) (1 — ar)™) forany m > 1/2and £ > 1.

1. Case 1: pis even and all elements of fyi are even. Then,

d
EXt—1~Pt71|t [H(XZ1 - m;)'yl‘|

i=1

30



Published as a conference paper at ICLR 2025

= f[ ((1 ;tat)viﬂ (v =N+ Ore,) ((1 — at)w’/2+1)>

1-a p/2 d .
= ( t) [T =D+ 0p6, ((1 _at)p/“l)

Q
t i=1

2. Case 2: pis even and 3i* such that 4" is odd. Since Y, 7 = p, there exists j* such that
47" is also odd. Then,

* i*

o [ =] =00 (00”7,

- % . 5*
EXt—lNPt—llt |:(ng1 - mg )’YJ :| = OLK(Qt) ((1 — Oét)(’Y +1)/2> s

which implies that
d

]EXt—l"‘Pt—l\t [H(Xz—l - m;)'}/

=1

= Ouqy (1= a0”*™)

3. Case 3: pis odd and 3i* such that 4%~ is odd. Then,

s

i* i* At i* 1)/2
]EXt—lNPt—l\t |:(th1 —my )V ] = OLZ(Qt) ((1 —Ozt)(7 +1/ ) ,

which implies that

d
i iy +1)/2
]EXt—lNPtfl\t lH(Xt—l - Tnt)’Y ‘| = OEZ(Qt) ((1 - at)(p / )
i=1
Combining these cases, we get
d )
(EXt_lr\«I:’t,l‘t - EXt—lNPt—l\t) [H(Xgl - mi)’}/
i=1

p+1

_ Oﬁe(@z) ((1 - at)g“) , Vp>4even
Oren ((1 - at)T) . Vp>4odd

The proof is complete by noting that the rate does not change when we take the expectation over Q;
under Assumptions 3 and 4.

H.5 PROOF OF LEMMA 5

Note that Gjo(x|z0) = geo(z|20) is the p.d.f. of N'(y/asxo, (1 — &;)Iq). Thus, the gradient of
log ¢, (x) equals
meeRd V@t\o(ﬂxo)déo(ﬂio) 1

Vloggi(z) = (@) =1 a4 /xUERd (z — Vawao)dQop (wolz). (20)

Thus,
V IOg qt—l (mt) — \/oTtV log qt (If)

1 ~ Ja ~
S E— / (my — \/dt71$0)on\t—1($o|mt) + % (z¢ — thxO)dQ0|t(x0|xt)
1 -1 Jypera I—ay Jypera
1 1—aoy ~
=— -1 — Vo d —
1—a ( (1 — Qg1 > /vcoEJRd (me %t-120)dQoje—1 (To|me)

+/ . (my = v/@—120)dQoj—1 (wolms) — v (e — @zo)on|t(Io|It)>

zoERY
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(@ 1

=13, ((1 —ar— (1 —0a—1)) Vlogf?t—l(mO)

1
1—ay

(/ . (my — var—120)dQojt—1 (o|me) — Vo

Zo €Rd4

(z — @Io)dQOt($0$t)>

11—« . 1 Va1l —«a ~
_ t 1( _ t)VIqutil(mt)_ _ (mt _\/axt)_'_ t 1( _ t)/ deQO‘t(xO‘xt)
1 — Qi 1 — Qi 1 — Qi zoERY
term 1 term 2 term 3
O - ~
# VB (] adQuestaolm) — [ sodQuaalao)) @
— Oy zoERY zoERY
term 4

where (i) follows from Tweedie’s formula. Among the four terms in (21), the first term satisfies that

@t—l(l — at)
1— oy

o d1—oy)?

T (=) (1 - an)
by (Liang et al., 2024, Lemma 17). In the second term in (21), by Tweedie’s formula,
1-—

\/OTxt \ﬁ ?VIOth(fﬂt) \/OTtxt

Ex,~o, Vlog Gi—1(my)

1— oy -
= \/ait (xt +v10th(xt))'
Thus, by (Liang et al., 2024, Lemma 15) and Assumption 1, the second term satisfies that
1 2 d(l - ay)?

(my — /o)

Xo~Qy 1—ay ~ (1—07,5)3 :

The third term in (21) satisfies that

./&t_l(l — Oét) / ~ 2 d(l — Oét)Z
E A || d < A Tt
im0, & e Qope(zolzy)| < (1= a2
by Jensen’s inequality and Assumption 1.
To deal with the last term in (21), note that
q (my|xo)  ~ Gr—1j0(me|70) ~
dQoje—1(wo|my) = Giajolmelzo) dQo(wo) = o =——dQo (o),
Ge—1(my) Jyera @e—1j0(me]y)dQo(y)
Gejo(ze|To) | ~ Grjo(w¢|wo0) N
dQo)¢ (wo|ze) = ————dQo (o) = — = dQo(zo).
Gt(7+) ny]Rd Qtlo(xt|y)dQ0(y)

Thus, the last term in (21) is equal to
Q1

1-a (/ 20dQoje—1(wo|my) —/ xono|t($o|$t)>
— Oy ZI}QGRd CL‘()GRd

7 ?t(; : qt—l(mlt)qt(xt) </’v,y€]Rd x(@t—l\o(mﬂf)‘jt\o(xt‘y) - (jt|0(xt|x)(jt_1|0(mty))d@o(x)dQO(y)>

where
Gr—110(me| ) Gejo(2e|y) — Grjo(@e|T)Gp—1)0(me]y)

G—1j0(me| @) Go(2e]y) )
q~t|0($t|$)(jt—1|0(mt|y)

= Gejo(¢|T)Gr—1j0(mey) (

= Grjo(e|T)Gr—1j0(mely) X

— — 2 — — 2
(exp <|mt —Vael! eVl me— VEaTyl | - Vae] ) B 1)

2(1— ar1) 21—a) | 20 —ary) 21— ay)
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= Cjt|0(mt|x)(jt—1|0(mt‘y)(eA —1)

in which we have defined the exponent as A. Now,

— 2 = 2 = 2
A= Mme = volT e = Vall” e = Vel

— 2
|71 — V||

21— ay_1) 2(1 — ay) 21— ay_1) 21— ay)
_ V(@ —y)Tme + Iyl® = aa |z Vaie —y) Tz + alyl* — & )
2(1 — ay_q) 2(1—ou)
_1 \/(jTt(l—Oét) r ./&t_l(l—ozt) o i ( T —
=3 <at(15<t_1)(154t) t \/aﬁ(lfo‘zt_l)Vl g Ge( t)> ( Y)
Gl o) g2 ),

(1—au-1)(1—ay)

Now, with the o defined in (8), following from Lemma 6,

Vag(l —ay) —O( 1— oy )_O<logT)
Oét(l—dt_l)(l—&t) (1—dt_1)2 T ’
1—oy logT
=0
1— @ < T > ’

O_étjl(lfat)i :O< liO[t 2) :O<10gT)

(1—Oét,1)(].—at) (1—Oét,1) T

Thus, for fixed =, y, z;, A — 0 as T' — oo, and thus when 7" becomes large,

A —1=A+0(A*<|A], Yz, € R

Also, since Gy|o(¢|x) and §;_q)o(m¢|y) decay exponentially in terms of 2 and y (for any fixed x;),
we have

/(jt‘o(xtb:)poly(a:)déo(z) < 00,

[ @ sotmd)poly )a@o(y) < o

Thus, the limit and the integral can be exchanged due to Dominated Convergence Theorem. Thus,
the fourth term in (21) gives us

— i -
vl (/ 20dQoj¢—1(zolme) _/ deQOt(xomt))
1-— (677 zo€ERC zo€R?

< Va1 ! (/weRd G0 (e|T)Gr—1)0(mu]y) [A on(a:)on(y))

~M1l—ar G—1(me)de(xe)

_ Vo (/x’yERd(x . |A|)d@0t(xa?t)d(20|t1(y|mt)>

T l-—ay

and, from definition of A and using Cauchy-Schwartz and Jensen’s inequality, we have
2

EXtNQt

M/ ERd(x . |A|)d@0|t(1’|Xt)dQ0\t—l(y|mt(Xt))

1—ay
(1—ay)? .
~ (= a)?(1—a)

E  x~a [H@XW((llXt||2+<1—at)2|v10gq;(Xt>||2>

X~Qoje (- X¢)
Y ~Qojt—1(|me(X¢))

(Va4 Va1 + (Vax | + varr) )

(1 — Ott)2 )
(1 —ay—1)2(1 —ap)t
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— 4 2 _ ~ 2
E X,~0, [VarX || (11" + (1 = @) [V log G+ (X))
{(NQO\tHXt)
Y~Qopt—1(|me(X¢))

+ IVaX [P Va1 (XG0P + (1 - a)? [V log 4.(X0) %)
+ Vx| + ax P v

< (1*C¥t)2
T (1= ao1)?(1 — ap)?
_ 6 2/3 6 B 5 6 1/3
(B IVEX]) " (B, (10 + (1= 60)® [V 0g @i (X))
1/3
_ 16\ 1/3 _ 6
+ (Bxeg, IVEXIT) TE g, IVEAYI
Y ~Qoje—1 (+Ime (Xy))
6 _ 6 5 6 1/3
(B, (10 + (1 = @)° [V 10g du(X0)II%))
2/3
— (6 _ 6\ _ 6
B, IVEXI + (Bxeg, IVEXI") "B xg, V@Y

Y ~Qoje—1 (-|me(Xe))
(Z) d3(1 — oy)?
Y1 =) (L ag)t
where (ii) follows because, following (Liang et al., 2024, Lemmas 15-17) and by the lemma
assumption that By 5. 1 X0]|° < d®, we have

Ey.g, VX[ < &,
Ex,~q, I1Xill° < Ex, g, V@ Xo | + (1 = @) By ono.ry W] S &,
d3
(1 —ay)3’
E X;~Os ||\/O7t—1y||6
Y ~Qoje—1(-lme(Xy))

— 6 6
<E  x.g lme = Va1 Y| +Ex, oo, lm” < d°.
Y~Qope—1(-|me(Xe))

Ex,~5, [Viog a(X))° <

Hence, combining the rates of all parts, we obtain that

- - d3/2 1—a 2
(1- at)\/EXth IV log Go—1(me( X)) — VoV log G (Xo)|” < (1_(0%1;2

H.6 LEMMA 6 AND ITS PROOF
Lemma 6. The oy defined in (8) (with ¢ > 1) satisfy

- log T'log(1/6)

hile ap = o(T™Y), V2<t<T, p>1.
(1=~ oP—1T while ar = o(T™), <t<T1,p=

Proof. The proof is similar to that of (Li et al., 2024c, Eq (39)). We first prove the second relationship.
First, note that if T is large,
T
logT\ TeT
5<1+c°g ) T 6et > 1.
T
Thus, with any fixed r € (0,1) such thatt > rT (> %), we have

log T logT\"* log T
1fat:“;§ min{5<1+“;§ ),1}“;% .
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As a result,

T [(1-r)T
ar< [ a= <1 - ClngT) = exp <((1 — )T <—Ck;§T>> = O(T~(1-"ey,

(22)
Given any ¢ > 1, we can always find some r such that (1 —r)c > 1 (say, r = (¢ — 1)/2if c € (1,2)
and r = 1/4if ¢ > 2). This shows that o satisfies &7 = o (T!) if ¢ > 1.

Now, for the first relatinoship, define 7 such that

clogT\" clogT T
1 <1 1 . 2
e e I (R 23)

Here 7 is unique since 1 — ay is non-decreasing. In other words, 7 is the last time that 1 — o is
exponentially growing. Assume that 7" is large enough such that 7 > 2. Below, we show that

_ 1 clogT ¢
l—ap1>=60(1+ , V2<t<T. (24)
3 T
Ift =2,
1 clogT
l—ay1=1-a=1-a1=0>=60{(1 .
o1 o1 o1 =3 <+ T >

Here the last inequality holds when T’ is sufficiently large. For t > 2, suppose for purpose of
contradiction that there exists 2 < ty < 7 such that

clogT clogT

T

1 fo 1 ’
1—047501<3(5(1+ ) whllel—at1236<1+ ),VQStSto—l

In words, g is defined as the first time that (24) is violated. To arrive at a contradiction, we first write

Opg—2(1 — oy —
1— @to_l _ (1 _ &tU_Q) (1 + O[to 2( _ Ofto 1)>
1- Qty—2

15 (1 + ClOgT>t01 (1 n Qgy—2(1 — Oétol))
3 )

T 1—0yy—2

Vv

Here the inequality holds because ¢ is the first time that (24) is violated, and thus (24) stills holds for
t= to —1. AISO,

(i) 1 clogT\™ (i) 1 clog T\ " Gid) 1
l—ay_o<l—ay_1<-0(1 < Z5(1 < Z
Qpg—2 S 04t01<3(+ T) <3 + T <3

where (¢) holds because (24) is violated at ¢ = ¢, (i¢) holds when T is sufficiently large, and (i)
holds because tg — 1 < 7 and by the definition of 7 in (23). Thus,

to—1
1clogT clogT
atg—2(1 — agy—1) < 357 6(1+ T ) _clogT
1_6% -2 - 1 clogT to—1 N T ’
0 36 (14 1T
and thus
1 clogT to—1 apy—o(1 — ay,—1) 1 clogT fo
1—aqp_1>=0(1 1 0 0 > 61 .
O“f‘)l—:’)(+ T > R R =30\t

We have reached a contradiction. Therefore, we have shown that (24) holds.

Now, (24) implies that

1 logT\! 1 log T\ /7
1—at_1235(1+cog ) 235<1+63§ ) V2 <t<T

There are two cases:
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e If 2 <t <, then

t
clogT clogT
1—oy < T 5(1+ T ) _ 3PclogT
(1—a_1)P — | s (1_|_clngT>t sp—17 -

3p
e Ift > 7, then

clogT clogT
1— oy < 1— oy < CIOTgT T (1+ T)

o T = 3 () e (1)

3Pclog T (1 clogT>

1

p—1T T

In both cases, if T is large enough, noting that ¢ 2 log(1/4§), we have
1 -y < 4PclogT _ log T'log(1/96)
(1—ap_q)p — 1T ~ or—ir 7

because p and ¢ are constants (that do not depend on 7', d, and ). The proof is now complete. [

V2<t<T

H.7 LEMMA 7 AND ITS PROOF
Lemma 7. With the o, defined in (8), given any p > 0, if dp < 1,

T —pdlog(1/s) _
S - aal < (1<1 — e rlos/D) (1 gt 1) <1 o (k)gT)) |

—~ D 1—9p T

Further, when § < 1,

T
B 1 p+ 1Y\ clogT ~ 1
Z(l_at)aijgp_(l“r) T +O(TQ>

t=2 2p

Proof. Define the sum as sr. Recall that
log T logT\"
1—ay =3, 1—at:“;§ min{&(l—&—coﬁ >,1},v2gth.

We first note a relationship that for fixed § # 0 and p > 0. As z — o0,

(1 _ 5271)pz _ 6pzlog(lféz_l) _ epz(féz_1+62z_2/2+0(z_3)) _ 675P(1 +§2p271/2) + 0(272).
(25)
‘We also use the fact from binomial series that

1—zYY=1-—pz'+ Lp; 1)272 +0(z7%). (26)

t
Define t* := sup {t e[, T]:¢ (1 + %) < 1}. Thus, oy = 1 — % for all t > t*. Note

that when 7" becomes large, t* = © (%) To further understand the big-© term, note that using
(25),

Tlog(1/8) 1o
5 (1 ClogT) rrer T
T

_ <1+ 1og<1/§)TclogT 5 (;)) (1_ 1og<1/5T)c10gT 5 <T12>>

B log(1/d)clogT ~ (1
R e e
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<1 asT — co.

This implies that
T
t* >log(1/6 —-1]. 27
> 108(1/0) (o 1) @
To start, we suppose 7' > t* is large enough and decompose the sum as
t T
ST = Z(l —ap)ad + Z (1—ay)al
t=2 t=t*+1
clogT a clogT . clogT clogT AN
- 5(1—5)PZ<1+ )H(l—(S <1+ ))
T — T Pl T T
T p(t—t")
_p clogT 1 clogT )3
T t:tz*ﬂ ( T . .
Now we first focus on the second term in (28).
clogT zT: (1 B clogT)p(t_t*)
T T
t=t*+1
clogT p(T—t7)
B <1 clogT)pclogT 1= (1_ T )
N B T T . clogT \?
1- (1 - Tg>
clogT p(T=t%)
(i) <1_clogT>pclogT 1_(1_ 7 )
T - (1 - VG 40 ()

(-5 o)

where (i) follows from (26), and (i7) is because t*
T. Also, forallt =2,...,t*,

(i) 1 _pclogT - (1 (p—1eclogT ~ (1 B 1
_p<1T+O(W>>O+2T+O ) " O\ wer
+

©(T/logT) and thus T' — t* > T/2 for large

t

i\ P
logT clogT\"'
P _ (1 _ S\ _ ¢clog g
oy =(1 5)”(1 ) T <1+ ))

, T
=2

p(t—1)
< (1-4) (1 - 561‘;§T>

Thus, we have

loe T\ P =D
a. §(15)p<156? >

-
s clogT  ~ 1 B clogT\?
=(1-9) (1+6p T +0 T 1-9 T

(443)

< (1-96)Y (1 + dp(1 —|—log(1/5))01c;%T> X

logT ~ (1
—p010g(1/9) (1 4 52 10g(1/8) 28 o=

= (1 — §)PePolos(1/9) <1 + dp (1 +log(1/8) + (5/2) log(1/4)) ClofT> +0 (;) .
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Here (ii7) follows because using (27) and (25), we have that

pt* plog(1/6) (- 1)
1_5clogT < 1_5010gT
T T

T logT\ ~/ 1
(1 + oplog(1/6)< 3{5 ) o—p0l0g(1/5) (1 +0%plog(1/5) 28 ) +0 () .9

2T T2
Thus, the second term in (28) satisfies that
T
Z (1 —ar)ay
t=t*41

< gy on ) (1o (B log(1/0) + 3/2)x(1/5) ) T )

T
1
+0 T2) (30)

Now we turn to the first term in (28), in which the summation can be upper-bounded as

t t ot i\ P
clogT clogT clogT
;(1+ T ) H(l 0 (1+

T
=2

t t p(t—1) t*—1
logT logT logT
<X (1+5F) (1-05F) T = () X
t=2

T
t=1
clogT clogT\?
=1 1-6

logT I 2logT)2 -~/ 1
(14 DY (1= 5y gy ) SUBTE (1))

where

2772 3
B clogT ?p(p—1) AlogT)?  ~ (1
=1+ (1-0p) +( ) B 0 ().

Note that by assumption dp < 1. Also, by definition of ¢t* and (29)

. log T\ **
5qt g<1—5cog )

T

logT ~ (1
< e~Plog(1/9) (1 + dplog(1/6)(1 +6/2)C (;% ) +0 (TQ> .

Thus, we have

clotht

1 -
¢ clogT 46q" —dq
) T E q X

— T q—1

T (1+0plog(1/8)(1 +3/2) %% ) +0 (£) — o
T

qg—1
(iv) clogT e polosll/o) (1 + dplog(1/6)(1 + 5/2)%) +0 (%) —1-(1- 5P)CI%§T +0 (%)
= X

T (176p)01(§§T+<6p(§71)—@)MjLO( )
B (e—pélog(l/é) 1 N ((5p10g(1/5)(1—|—6/2) B 1) clogT) y

1—4p 1-46p T
2
5p—% clogT ~ (1
(12222 et (2
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e~ Polog(1/8) _ N dplog(1/6)(144/2) - ePO108(1/0) _ 1 §p(1—6(p—1)/2)\ clogT
1-6p 1—46p 1—6p 1—6p T

+0(7)

where (iv) follows from (26). Therefore,

t* t*—1
clogT clogT
(1— =(1-6r(1 ) E ¢
2T )ai = ) ( 7 ) ( T q)

t=1

pe—p6log(l/6) -1

<(1-
1—9dp
dplog(1/0)(1 +6/2)
+(1—5)p< T -1
e—polog(1/8) _ dp(1—6(p—1)/2)\ \clogT ~ (1
B (H L—dp )> r +O<T2)' .

Combining (30) and (31), we have that

1 e~ POlog(1/0) _ 1 log T
< [ Z(1 = §)Pe—PSlos(1/9) 1= 8P 1 .
ST_(p( e +( ) T +0 T

=00

Also, for all large T"s, since so — 1% and dlog(1/0) — 0as d — 0, when § < 1,

1 p+1\ clogT ~ /1
<-—(14+2= — .
"=y <+ 2p) T +O<T2>

The proof is now complete. O

I PROOFS IN SECTION 4

I.1 PROOF OF THEOREM 3
Fix ¢ > 1. Using the forward model in (5), we have that g;q ,, is the p.d.f. of N'(y/&;(Iq— H'H)zo +
VaHty, ¥t)0,y)- Thus,

Vioga (1) = ;s [ ayalro)dQo, ()

1
o | woy(leo)(w = VATl — H H)wo — VaH y)dQoy (vo)
duy (56) cRd
S0y (@ — \/07t fy)
+ \/CETt) EtIO y(Id — HTH)/ Qt|0>y($|x0)$0on\y(xo).
zo€ERY

Thus, the equality for V log ¢y, is established because by Lemma 9,
(oo H'HN)T + (1 —ay)la) '(la— H'H) = (1 — ay) "' (Ia — H'H).
To see the optimality with ff . fix t > 1 and # € R? First note that (I; — HTH)ff*y( ) =

(Ip— H'H)Y t\O (VaiH'y — H'Hz) = 0 by Lemma 9. Now, suppose that f, ,, = f/, + v such
that (I; — HTH)fty =0 = (I;— H'H)v = 0. From the definition of A, ,, in (7),

Ary(x) = (Ig — H'H)(Vlog gy, () — Viog g¢()) + (H'H)V log gy, () — fry(2)

where

(H'H)V log qyjy () — fry(x)
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(HTH) t\O (fH y—x) t\O (fHTy HTH"I") -
—(H'H)Sy (Ia — H H)z — (Ia — H'H)Y, g (V&H'y — H'Hz) — v

=—v
where the last line follows from Lemma 9.
Thus, if v = 0, then f; , = f;,, and we have
Ayy = (Ig— H'H)(Vlog gy, (z) — Vlog g:()). (32)
Also, if v # 0, since v is orthogonal to the space induced by (I; — H'H), we have
|80y @)I1° = |[(1a = H'H)(V log gy () — Vlog ai ()| + [[v]] (33)
which is minimized at v = 0. The proof is now complete.

1.2 PROOF OF THEOREM 4
Fix t > 2. Recall that the unconditional score V log g;(x) is

Vioga(e) = — [ Vapo(alao)dQo(a)

= TR0 o B V)0

Q j@t)x " (1 _ﬁt(ﬂf) / €Rd 410 ([20)20d Qo (o)

since ¢4 is the p.d.f. of N'(v/a; o, (1 — ay)la).

In the first half, we consider the case where 0’ is known, and thus f; , = f;, in (10). Note that from
Theorem 3,

VIOth\y( T) = t\O (\/>HT — )

Qt\/:) Zijo,Ta ~ HH) /:coe]Rd Gtjo,y (z|z0)w0dQojy (20).-

Here we also recall from Theorem 3 that

Sij0,y = Qoo H(HN)T + (1 — @)1

+

Since HT(HT)T is positive semi-definite, all its eigenvalues are non-negative. Write the eigen-
decomposition as H'(H')T = Pdiag(Dy, ..., D4)PT where Dy > --- > Dy > 0, Vi € [d]. Then,
Amin (Bt)0,y) > dtang +1—a; > 1— ay, and we get

1
=]l < =5 34
Also, from (6), with the ftfy in (10),

Gry(@) = f1 (@) + (Ia — H'H)Vlog q,(x)

Eioy (VaHy = HUHz) — q——s(ls ~ H'H)z
\/O’T
+ W(I — HTH) LDERd qt|0($‘l‘o)x0on(gjO)

sl (VaH'Yy ~ H'Hz) =55} (Ig— H'H)a

£10,y
\/a —1 t /
+ Rl y I;,— H'H
(@) 1o,y Ld ) e Gtjo (@] w0) 2odQo (o)

=%, (VaH'y — ) + qt(r)zt—o ,(Ia— H'H) / » a110(|20)20dQo (o)
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where (7) follows from Lemma 9. Then, the norm-squared of the score mismatch at time ¢ > 2 is

1ALy 1% = [V1og gy — gy’ = ||(Ta — HTH)(V log g1y, — Vog )|

2
< a HE_I H fmoeRd Qt\O,y(x‘mO)deQO\y(mO) _ fzoeRd Qt|0(33|x0)370dQ0(370)
— |0,y qfly(.’b) qt(x)

(i1)

Salsin,] [ e o Qo ()dQue(m)
Tq,xp ERY

<ay |2 ’ -

S T N e
xp€supp(Qo)

(35)

Here (i7) follows from Jensen’s inequality, and (i7i) follows by (34) and from the assumption that
(o has bounded support (and thus also for both Qg|; and Qgj;,,,). Therefore, with the a in (8) (cf.

Lemma 6), since 1 — &; > 1 — & which is a constant, Assumption 4 is satisfied for all O’Z > 0. Thus,

Theorem 2 holds with vy = 1 and r = 2.

Now, we consider the case where O’Z is unknown, and the conditional sampler of interest is gi\fy(x) =

Iy (x) + (Ig — HTH)V1og g () where f (x) = (1 —a,)~ " (VaH'y — H' Hz). With the

same notation as in the proof of Theorem 3, we can write v = ft]’\.; - fiy, = (1= ag) "ty —
S0, ) (V@ H'y — HT Hz). Note that v still satisfies that (I; — HH)v = 0. Using the result in

(33), we have

AN |* = || (T — HTH)(V log g, (x) — Vlog ge(x))|

+H t|0y —(1—a) ) (@ny—HTHx)"2

where the first term is the same as in (35) which can be upper-bounded in a similar way. To
upper-bound the second term, note that by Woodbury matrix identity,

dt0'2

-1
o2
= (1—761)2 HT (Ip + : _y@t (HT)THT> (HT)T

2

@tJy
(= o

_ 1
Hztoy 1- @tId

N

where the inequality follows because HH T|| < 1 is a constant and the minimum eigenvalue of

2
(I, + 2 (HT)THT) is at least 1. Thus,

1—ay

2
(She, — (1= a) 1) (VaHYy — HUHX,) H

(iv) a?
<

IEQ’ﬂly

oy, [va'y - Hx|

—24

:ﬁEQo‘yEQMDyHWHTy HUHX,|

__dioy
S (L)t

2d% ?’ T T 1 - 2
< - agEen | ||y — BYEXo|[" + Bq, , [|HTH (X, — V& Xo)|]

2070, .
< WEQOW [Oéf | H y|| + ay | Xo|* +d(1 — Oét)}

EQO\yEQt\o “@HTQ - ]{Tl{)(tH2
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2 4
W &z o,

———d

~ 1 -a)t
where (iv) follows from (36), and (v) follows from the fact that QQ¢|,, has bounded support. Similarly,
for general moments ¢ > 2,

/2
_ o — ¢ dtUQ
Eq., |[(She, = (1= a0 "' 1) (VaHy - HTHX)| < <(y)2d> .

1—oy

Therefore, with the a; in (8), since 1 —@; > 1—§ which is a constant, we still have that Assumption 4
is satisfied (see Lemma 6), and Theorem 2 still holds with v = 1 and » = 4. The proof is now
complete.

1.3 THEOREM 6 AND ITS PROOF

Before we enter the proof of Proposition 1 and Theorem 5, we first state a similar set of results
for Gaussian @)y, which turns out to be useful for analyzing Gaussian mixture Q)y’s. To begin,

the following lemma investigates Ex,~q,, [|At,y (X1)||* when @ is Gaussian. This quantity is
proportional to the asymptotic bias Whi,s.

Proposition 2. For Qo = N(po, o), if fry = f£, in (10) and H = (I, 0), with the oy’s
according to Definition 1, Assumption 4 is satisfied, and

L max{||HTy — H'Hyy 2+d()\1 +02),d}
Bey(xP < ap Uy — H Hpo ||+ d + o
min{Ag, 1}2 min{\4_,, 1}
S -(|Hty — H Hyol|" + )

ExinQuy 11Zo0yg[Zolgy

where \1 is the largest eigenvalue of o, and \; and S\d_p are the smallest eigenvalues of ¥ and
[Eo]gy, respectively.

Proof. See Appendix J.1. O

With this lemma, the following theorem characterizes the conditional KL divergence when () is
Gaussian.

2
Y

conditions as in Proposition 2, if o further satisfies Zthl (1 —a¢)ay =1+ o(1), we have

Theorem 6. Suppose that o2 > 0. Suppose that Assumptions 1 and 5 hold. Under the same

KL(Qopy | Poty) < (| H'y — H Hpo|* + d)

2 log T)?
+ (||HYy — H' Hpo||” + d)% + \/||ny — HtHpo|* +d- (log T)e.

Note that a similar result can be obtained for KL(Q || ]Sl‘y) (where W3 (Q1),, Qojy)? < dd) for any
general 05 > 0 using the a; in (8) (see Remark 1).

1.3.1 PROOF OF THEOREM 6

Throughout the proof we use the same notations as in (55). Since Assumption 4 is satisfied from
Proposition 2, in order to invoke Theorem 1, we still need to check Assumption 3. Since each
Q¢y (Vt > 0) is Gaussian, all partial derivatives of its log-p.d.f. higher than third-order equal

zero. For the first and second-order, note that Xy, = & (Iq — H'H)So(Iq — H'H) + (1 —
a) Iy + @tazHTH. Thus, when crf/ > 0, Mnin (Bi—1)y) > min{l — a; + @tUZ, 1—ay + @} >

min{1, o7, Aq} > 0, which yields
HE* H <1, V>l 37)

t—1Jy

Thus, we have, V¢ > 1,

Eq., ||VIOthIy(Xt)HZ
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=Eq,, Zt\y(Xt Ht|y H HE
<dY?=0(1),
¢
]EQt\y ||V10g qt—l\y(mt,y(Xt))H

¢
Sy My (Xe) = pugy)

_1 4
S (X0 = )|

tly

1

¢ ¢
-3 -1
EQtw Et\; (Xe — Mt\y)H + Hzt\yH ]EQtly

<d?=0(1),

V log gy (X3)]|°

Eq,,, [V2lozay, (X0 = 552 = 0w,

]EQt\y ||v loth 1|y(mt,y Xt | = Hzt 1|yH

Thus, Assumption 3 holds when 1 — «; satisfies Definition 1.

Now, we can invoke Theorem 1 and get KL(Qy, ||ﬁ0|y) < Woracte + Whias + Waanish, Where

1—oy)?
Woracle = Z (27t)EXtNQt\y {TI(VQ IOg (]tfl\y(Wlt,y(*)(t))v2 1Og Qt\y(Xt))} + (1Og T)EQ

=1 a
T
Wias = Z(l - Oét)]EXtNQﬂy ||At,y(Xt)||2
t=1
T
1-— (673
Wieanish = Z WEXtNQt\y [(Vlog Qt—lly(mt,y(Xt)) - \/CTtV log Qtly(Xt))TAt,y(Xt)]
t=1
(1 )
N Z T;EXWQM [At,y(Xt)Tvz log Qt—lly(mt,y(Xt))At,y(Xt)]
t=1
d (1-a 4 ;
3 G B, [3 3O bor i e (X0) B (X
t=1 =1
d .
Y, 1ogqt1.y<mt,y<Xt>)At,y<Xt>ﬂ]
ij=1
i#j

may/Bx 180y (X0 FlogT)e.

We first consider the estimation error (in both Wgacle and Wianisn), which can be upper—bounded as

max \/EXthW |1AL, (Xe) || (log T)e + (log T)e? < (HHTy HTH,uoH + d) (logT)e
from Proposition 2. Also, when Qt‘y is Gaussian, we can calculate, for any z; € R?,

Tr(V2logqt,l‘y(mt’y(xt))vzlogqt|y(xt)) =Tr(x L w-h)

=1y “tly
= Tr(3; lly(atzt,l‘y + (1 - at)Id)_l)

i) _ 1-—- _
= Tr(Et—ll\y( 1Zt 11|y Zt 1yt O((1 = ax)?)))

—

N

—TrZ 2
ST

where (7) follows from Taylor expansion when 1 — «y is small. Using (37), this implies that

d(logT)?
T

Woracle S + (log T)€2
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Also, from the condition on oy,

T
Z(I*at)EXwQﬂy 1A, (X1 S (| HYy HTHMO||2+d).
t=1

Now we focus on Wyanish (except the estimation error). Since Qt|y is Gaussian, all third-order partial
derivatives are zero, and only the first two terms in W,ish remain. In the following we fix ¢ > 1.
Also recall from (56) that when H = (I, 0),

Ay = —a(lg — HH)S, (I — HUH)So(H H) S, (20 — v/@upio)

t,s1g

= —a(@[Solgy + (1 — @) la—p) " [Solgy (B Ty (20 — Varho).-
For the first term of Wanisn, We first calculate for each x; that

Vlog Qt—1|y(mt,y) - \/OTtV log Qt\y(zt)
= \/@»tz,];(xt — Vo) — E:uy(mt,y — Va—1p0y)

Recall that
2 og (1) = s — S o~ )
me, zt — Gty (Tt Ot o
_ 11—«
Sy = (@S + (1= an)la) ™ zt 11‘y tht 1y 01— ar)?).
t
Thus,
Vlogg;— 1\y(mt y) - \/0715V log Qt|y($t)
1- — _
- \F( t— 1|y Et 1|y> (z¢ — \/OTt,UOkg)
— Z;_llly (\/>.’L't + ?V1qut‘y($t) \/m,uoy) + O((l — Ozt)Z)
1 —
=" 3/2 Zt 21\y( — Vaupopy) + \/7 Et llluzt\u( — Vo)) + O((1 - ay)?).

Combining with the definition for A, , in (56) and using Lemma 9, we have

Ex,~Qu, [Dty(Xe)T(V10g g1y (miry (X1)) — /i V 1og gy (X1))]

= aEx,~q,, {(Xt —Vapo) TS N HH) S0 (I — HUH)S, ) (1o — HTH)

1-— ap 1— B _
(Oﬁﬂzt21y Et 11y2t|y> (X — \/aﬂ0|y):| +0((1 —y)?)
t

Vo
Y aEx, ~q., kxe—\ﬂuuszt%fﬂfﬂzoud—fﬂfﬂzt;ALi—fﬂfn
1-— 1-—
- - - f
< 3/2 Et 1‘y(I —Ht H)Zt 1y \/cTt Et 1|y(I - H H)Et|y>

<amex¢mmﬂ+mu%ﬁ
= aEx,~q,, [( — Vo) [Z7 oy [Solyg (@ [Solgg + (1 — @) la—p) !

(1 _3/? 2 11|y}yy 1_\/07@:[& 11|y] [Eﬂy] ) (0 Ta—p) (Xi — @Mo)]

+0((1 - ar)?)
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= atTl"([E oy [Bolyg(@[Zolgg + (1 — @ la—p) ™" (1 3/2 [Et 11|y]yy i

O Tiey)Exmgn, [(Xi = Vi) (X, — v/aro)T] )
+0((1—ar)?)
(#47)
< = T | 1olyg | (@ [Solgg + (1 — @) a—p) ™| %
1—« 1—«
(7 il
Tr (EXtNQﬂy [(Xt - \/67tu0>(Xt - @MO)T])
) ([1-« l1-«a 2
S (1 =ao) (' = B Hp||” + a)

1
[Et 1ly yyH +—

where (ii) follows by Lemma 9 and from definition that (I; — HTH)uo, = (Iq — HTH)po,
(7it) follows because |Tr(UV)| < ||U|| Tr(V) if V is positive semi-definite, and (w) follows

from (58) and the same reasons for (57). In particular, we note that [X flij]yy = [Et_ siglis =
(Oét[zo]gg + (1 — Oét)[d_p) and H O[t EO]QQ (1 — O[t)[d_p IH =~ m < Q.
For the second term of WWyanish, We use the fact that [3, 11| lgg = (@—1[Z0)gg + (1 — au—1)Lg—p) "

and have

—Ex,~Qup, Aty (Xe) TV 10g qp11y (14,4 (X)) Ay (Xi)

t—1ly

= a/Ex,~q., [(Xt — Vo) TSy (HH)So(Ia — HTH)S L (I — HTH)S; !
(1o — HVE)S; L (1o — HU)S(HH)S; (X, fm))}
- a%Tr([z;ﬂ:y[zo]yy(at Solgy + (1= @) a_p) ™ (@1[Solgs + (1 — @) Iay) "

(@[Zolgg + (1 — @) la—p) ' [Solgy[Zr Ny Exonay, (X — @ua)(&—@mﬁ)
(v) T 1 _ —1112
< max { |ty — H Hpwol| + d( + 02), d} [|(@e[Solyy + (1 = @) Ta—p) |

(@1 [Zolgg + (1 @e—1)Lamp) | ||Z7 |7 11Z0)y5 Zolay |
< max{HHTy— HTHMOH +d(M +ay),d}

S ||HTy — HY Hpo||* + .

Here (v) follows from the fact that |Tr(UV)| < ||U|| Tr(V) if V' is positive semi-definite and (58).
The proof is complete by plugging all the results above into Theorem 1.

Remark 1. Before we end the proof, we leave a note for the case of 05 = 0 (indeed, for any general
05 > 0). The only difference is how to upper-bound W,cle. In particular, if 05 =0, (37) no longer

holds (i.e., we can no longer upper-bound HE:H@/ H as a constant). Instead, we can obtain an upper

bound as HE (1 — ay_1)~ L. Then, with the a4 in (8), we have

<
t—1ly|| ~

d(log T)? log(1/6)?

Woracle 5 T

+ (log T)e?.
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The rest of the proof still follows because the «; satisfies Definition 1 when ¢ > 2. Combining with
Lemma 7, we would finally obtain

3log(1/6)log T
KL(Qupy1Pyyy) S (|| HYy — H Hpo +d< Og(/)‘)g)

T

(log T)? log(1/6)?
T

+(HHTy—HTHuo||2+d +\/||ny HiHpo|* + d - (log T)e.

Here W (Q1y, Qopy)? S dd.

1.4 PROOF OF PROPOSITION 1

We first introduce some useful notations for this subsection. Recall that Q) has mixture p.d.f. in
which the mixture prior 7, is independent of y (= Hxo + n). Thus, using the fact that zy =
(I — H'H)zo + H'y — H'n, we can define Qg |, as (cf. Fldm (2013))

N
QO\y = Z WnQO,n|y
n=1

=3 T N((Lg— H H)po, + H'y, (Is — H' H)So(Iy — H'H) + o H'(H)T).
n=1

Note that when H = (I, 0) and 05 > 0, qo|y exists. From the conditional forward model in (5),
we further define

N N
Qt = Zﬂ—th,Tu Qt|y = Z ’/Tth,n\gp Qt,n = N(,Uft,na Et)a Qt,n\y = N(.ut,n\ya Zt\y)

n=1 n=1

= VQpton, B¢ := a0+ (1 —a)ly, Pt nly = Vo (Iqg — HTH)MO,n + v@tHTy
Sty = Btsig + Qoo H (HN)T, Sy g = a(la — H'H)So(Ig — H'H) + (1 — ;) 1a.  (38)

Similar to (37), we still have

Hz ’51, vt > 1.

t— 1\y)

We can also calculate the scores of (); and @y, in as follows.

Vlogg: (xt .’L‘ Z Tndt,n xt ( Ty — Nt,n)v
t :
1 N
VIOgQHy(l‘t) = - Zﬂ-th,n\y(]}t)Z;; (xt - Mt,n\y)~ (39)

Gtly (Tt) oyt

Now, with f; , = ft’iy (in (10)), from the expression of A, , in (32), under the assumption H =
(I, 0), the score mismatch at each diffusion step is equal to

At,y =(la— HTH)(VIOgQﬂy — Vlogq)

- Qt(l t) Zﬂ"q”‘ (we)(Ia — H H)Z (2, — Vaupo,n)
1n 1 N
- m; Tnqt n\y(mt)(Id*HTH) t|y( \/7MO n|y)
N
=2 (q;t"xft q;;ﬁiﬁ)) (Ia — HVH)S; (20— /aipio )

n Z qt n|y xt I _ gt H) ( ( \/7'u0 n) — E;;(l‘t — @HO,n\y))

(Jf\y )
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_ . qt,n It) _ Qt7n|y(~rt) ot 1
- \ﬁz < al) g @) )(Id HUH)S 0.0

n=1

= - m, [ &2 (ze) Gt nly (Tt) - o
- \ﬁz n( qe () Qe|y(2t) )Ud HYH)Y, po,n

dt.n — — —
+ Z qt‘;yxt (I;— H'H) (E Yy — Vo n) — Et‘;(xt — \/atuo)n‘y»

N
- @t Z 7ant’L(waAtZO(I{ H) ( \/7/10 n) (40)

n—1 qt|y(xt)
where A; == (I; — HTH)X, gllg(Id — HTH). Here (i) follows from similar arguments as in (56).
Note that since = (I, 0), we have equivalently A; = (I; — H'H)Z, | Y(I; — HTH). Since
HUH — (I 0

0 0) we can also re-express the second term in A, ,, such that [A, ], = 0 and

[Aryls fzﬁn (q“L Ty) ‘It,nly(fft)) 1

qi(ze) Qt|y($t) K ]g:MO,n
al q ()
_@tzﬁn%(dt[zobﬁ(1—54t)fdfp) 2ol gy (27 Ny (21 — V@ipio,n)

(41)

I, 0 0
i
since when H'H = (O 0) A = (O (@[Zolgp + (1 — @t)fd—p)l)'

Now, for the second moment, we follow similar analyses in (57) and get

2
Exinu, [[Beyll

< 4@tEXtNQt\y T{Ielax ||Et_1/1'0,n’|2
+2a7 || (@[Zoyg
al qt n\y Xt 2

Ex,~q., Z ||Xt Vaiho,n||

— Qt\

+ (1= @) Lay) P 157 e NZ0)usll?

where

n=1

Ey XN:WMHX—\/EN I
t~Qtly n Qt|y(Xt) t tHo,n

= EXtNQt\yENNH*\t,y ||Xt B \/O_Tt#OvNHQ

=En~n, Ex,~Q, npy || Xt — \/0715/10,1\7”2

(2) ENNH_‘y [Tr(Eﬂy) + 5[15 ||HTy — HTH,LL07N’|2:|

N
= T‘I‘(Eﬂy) + dt Z Tn HHT?/ - HTHMO,TLHQ

n=1
where (ii) follows from (58) and note that Q) N|y is Gaussian for each N = n. Denote A\ - >

Ag > 0 and 5\1 > -+ > Ag—p > 0 to be the eigenvalues of 3y and [Zo]yy, respectively Similarly
as the proof of Proposmon 2, we have H[ZO]WH < |20l = M, lo: |l < 1= H < (g +

(1 _at)) ' < m’ (at[zo}yy + (1 )Id*p) 1” = EVE p‘lf(l at) < mm{)\d ps1}’ and
12| < @ (M +02) + (1 — ). Therefore,

2
]EXtNQt\y ||At7y||
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2
< st ol .
min{Ag_p, 1}2min{Ag, 1}2

N
<d(1 — dt) + dtd()\l + 0'3) + Z Tn, HHT:U - HTHMO,nHZ)

n=1

e Solugl” v )
Sad+a; 3 Il max{ d(M +02) + Y m, ||[H'y — H' Hpo,||” . d p -
' tmin{)\d,p,l}2 min{\g, 1}2 (A1 y) Z H Y Ho, H

The proof is complete.

n=1

1.5 PROOF OF THEOREM 5

We first recall all the notations in (38) under Gaussian mixture. We also recall the scores from (39):

Vlog gi(z¢) = (1) ZWthn ()5, (- [it,n)
= 72;11'25 + ZWth n xt " HJt n
n=1
1 N
Viog giy(xt) = ———— T )X Ny —
1y (2t) Gy (1) ; ntnly(Zt) t\y( t.nly)
N
Ef‘yl"t + M Z Tnqt n|y($t)2t|y/1t nly

n=1
Also, we recall the explicit expression of A, ,, from (41), such that [A,; ], = 0 and

Bl \ﬁzm (Lol b)) o,

q¢(¢) Qt|y($t)

N
= S B (s (1= @) ap) Sy 55 e — Vo)

ne1 Qt|y(xt)

In order to invoke Theorem 1, we need to check Assumptions 3 and 4. From (Liang et al., 2024,
Lemmas 13 and 14), since H E;; H < 1forall ¢ > 0, the absolute values of any-order partial derivative

are bounded by O(1) in expectation, and thus Assumption 3 is satisfied. The following lemma verifies
Assumption 4 using the a; in Definition 1.

Lemma 8. Under the same condition of Theorem 5, Assumption 4 holds if the o, satisfies Definition 1.

Proof. See Appendix J.2. O

Now we start to upper-bound the conditional KL-divergence of interest. Recall that from Theorem 1,
KL(QO\y”PO\y) f, Woracle + Whias + Wianish, Where

T
(1- Oét)z 2 2 2
Woracle = tzzl TEXWQWJ [Tr(V log qt_l‘y(mt,y(Xt))V log qt‘y(Xt))} + (logT)e
T
Whiss = 3 (1= at)Ex,~q,y, 1A (X0
t=1

T
1-a
Wasa =3+ 8B, (V10 m1,(X0) ~ VAT o (X)), (X0

T
1—ay)?
-3 %Ext%&w [A¢y (X0)TV?10g 11y (M, (Xe)) Ay (X¢)]

Qg

48



Published as a conference paper at ICLR 2025

T d

1 — ozt i

+ Z 3,32 32 EXenQuy { > 08108 g1y (e (X1)) Ay (X2)
t=1 i=1

d
LY 8, 1ogqt1|y<mt,y<xt>>At,y<Xt>ﬂ]

i,j=1
i#]

2
+max Ex,,, A1, (X0 (log T)e.

From (Liang et al., 2024, Theorem 2) (and by assumption N < d), if the oy satisfies Definition 1,

d?(log T)?
Woracle S, #

+ (log T)&?
Also, from Proposition 1, under the assumption on oy, Whiss can be upper-bounded as

N
2
Whias S d + Z T ||H'y — H Hpo |
n=1
Among the terms in W,nisn, the last estimation error term can be upper-bounded using Proposition 1
as

max \/Ex,~aqu, [ A1, (X0)]*(log T)e S 043 o | HYy— HYHpo (0B T)e.

n=1

It remains to analyze the rest of the terms in Wpish- In the following we fix £ > 1. We remind
readers of the notations in (38). For the first term in W,ish, We first provide the following useful
calculations. Note that by exchanging the order of expectation, for any function fn we have

N
Qt,n|1/(;<t)
Ex, ~ E n———Mm(X;,n E Ex, ~ fn(X¢,n).
Xy Qty[ Tn Qt\y(xt) t Tl X, ~Qy. nly ( t TL)

n=1

Thus,

N
EXtNQt\y Z an ’(Xt - @u07n)TXt‘

el Qt\y(‘rt)

N
> TnEx g, [(Xe = Varpon)TX|
n=1

N N
< Z/]T”LEXtNQt,n‘y HXt - \/O_Ttﬂ(),nH2 + \/O_th Tn ||:U’U,TL|| \/EXtNQt,n\y HXt - \/O_Ttﬂo,nnz
n=1 n=1

) N
(7‘:) TI‘(Et‘y) + at Z Tn ||HTy - HTHP’OnH2

n=1
N N
+Var> wnlponll | Te(Syy) + 6 > m | Hiy — HT Hpg o |®
n=1 n=1
N 2
Sd+ Y m |[Hly — H Hpo || (42)
n=1

where (4) follows from (58).
Also, note that (I; — H'H)%, iy (HTH) = 0 using the following simple induction argument.

For the base case, we have (I; — HH)X ' (HTH) = 0 from Lemma 9. Then, suppose

t—1ly

49



Published as a conference paper at ICLR 2025

(Ia—H'H)S, D (HTH) = 0, we have (Ig— HUH)S,", (HUH) = (Ig— HUH)S, 0 (1 —

HYH + HYH)S Y (HUH) = (I, — HH)S, S V1, — HUH)S (HUH) + (1 -

HUH)S, G V(HTE)S Y (HUH) = 0. Thus, for all 7 > 1 and any fixed vector v, with the
definition of A; ,, in (40) and (41),

EXth\y (Et_—rl|yv)TAt7y‘
< O Exinqu, | B 11, At|| = 01 Exi gy, [|AT—1A¢,]]
< Aol |[(@-1[Solgg + (1 = @—1)la—p)~"| Jmax [[oor PTIR|

+ 2o [|(-1[Zolgg + (1 — @—1)Ta—p) ™" || || (@ [Solgg + (1 — @) la—p) " [Zolgy[Sy ]| ¥

N

qt,nly X — 2
]EXWQM;W W 1 X: = Vo ||
N 2
Sd+ Y m||HYy — H Hpg | 43)
n=1

where the last line follows from (58). Similarly,

N
Sy Aey| S d+ 3 [HYy = H Hpso] |

n=1

EXtNQﬂy

Also, forall » > 1,

EXtNQt\y (E EXtNQt\y XJE (Id - H H)At Y

t— ‘1|th) At,y
= EXquy ’Xt At—lAt,y|

t—1ly

< 4[(@-1[S0lgg + (1 — @—1)Ia—p) 7| max 1127 g:tt0m || Ex, ey, 1Kl

+ 2| (@1 [Solgg + (1 = @) La—p) ™" || | (@:[Bolgg + (1 — @) La—p) ™" [So)g B e || %

N
Gt,nly(Tt) _
E’XtNQt\y ;WWW ’(Xt - \/OTt,uO;n)TXt‘
al 2
Sd+ Y m||[HYy — H Hpo | (44)
n=1

where the last line follows from (42) and the fact that, from (58),

N
Vi Exngy, 1X] VY 700/ 2Bxnq, 1Ko = el + 2

n=1

N
< \/&Z?Tn\/Tr(Zt‘y) vy | Hy — HtHpo o> + d

n=1

N
<d+ ﬁZﬂ'n HHTy—HTHMOWH
n=1

N
Sd+ > m | HYy — H Hpo ||
n=1

Similarly, we also have Ex,~q,, (EJ;X,&)TAW‘ Sd+ 22;1 T | H Ty — HTH/LOJLHZ.

Also, for all 7 > 1, using the expression of V log gy, in (39), and noting that by definition (/; —
HH)(zy = pyny) = (Ig — H'H)(z — pe,n), we have

Exi~qu, oo 1|yV10th|y(Xt))TAt,y‘
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— E ~
K@iy qt\y Xt

< 4[(@-1[S0lgg + (1 — @—1)Ia—p) || |[(@[Solgg + (1 — @) a—p) || x

N
qGe,0)y (X _
ZWM[& — Vatpo,ely

—1 Qt|y(Xt)

+2|[(@—1[Solgg + (1 — @r—1)Ta—p) " || || (@ [Solgg + (1 — dt)fdfp)_le X

E  xo0 [[Xt—\/auo,ﬂ;[zowzt11y:<Xt—¢a7uo,N>
[X¢)

N,L~TL gy (-

n=1

T
r qt,n
<At 1 Z - ‘y (Id - HTH)(Xt - Mt,n|y)> At,y

Ex,~Q., x max 1127 g0, |

N
< ZﬂnEXtNth‘y HXt - @No,n‘IQ x Vd
n=1

+E  xonqy, X = Vaor|| | Xe — Vaipo ||
N, LA (-] X0)

N
SdWL ZT"nH]_[Ty*I{Jr]{,L’IO,nH2 45)
n=1
where the last line follows because, from (58),

E  x,~q,, [[|1Xt—Vapor| || Xe — Vauonl||]

N, LTy (1 X0)

< \/E XemQu, || Xt — \/5775/~L0,L||2 X \/E X~Qu, |1 Xt — \/O_TtNO,NH2

L~TL g, (1 X) NIy (] Xe)

_ 2

=E x,~q,, || Xt—Vaon|

NATL e, ([ Xe)
ol 2
Sd+ Y mn||H'y — H Hpo |
n=1

Now, we start to analyze the first term of Wigpish. Recall that my ,(z;) = E X 1~Qi 1ty [Xi—1] =
\ﬁxt + F (sr:t) Using the score expressions in (39), we can calculate that given x;

(and thus my , = mtyy(mt))
Vlog Qt—l\y(mt,y) —v/aVlog Qtly(xt)
= \/atE;‘ylxt — Z;ll‘ymt_,y

qt—l’"\y(mhy)

Qr—1)y (M)

Gty (T¢) Ly i
Tn———— Ht,n Tn
Gy (z¢) t,nly t— 1|y

n=1

Ht—1,nly

\ﬁztly

n=1

«
\/{zt @+ Viog gy (1))

N
_ Qt—1,nly(Mey)
+1—a Ej Tp———~ Mt—1,nl
( t)%, 1\1/2 11y (Mt y) t—1,nly

<Et\y1 ;1\y> Vs —

n=1
N — _
Zn,é:l TnTye (qt—l,n\y(mtﬁy)qt,ﬂy(xt)ztjl‘y - qt—l,@\y(mby)qt,nw(zt)zﬂyl) /fft—l,n|y

Qtflly(muy)(Iﬂy(xt)
Here, using similar analyses as in the proof of Lemma 5, we get
1-— \/ Ot l—«
(mt,y - :utfl,n|y) - (Jf‘t - Mt,n|y) = \/CTt Ty + \/a»ttvlog Qt|y('rt) - (1 -V at)//"tfl,my
_ 1-— _ 1- _
Y o Zt 1n+ a2 Et 1n+0((1_04t)2)

t— 1|y
t

+ oy

By
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Qt—l,n|y(mt,y)Qt,e\y(iﬁt)E;}”y Gi—1,01y(Mit,y)qe, n|y(xt)2t|y
= Ge—1,nly (Mt,) 1,01y () (5, t—l\y — anl)

+ (G—1,n]y (Mt ,y) @t 01y (21) — Qt—l,e|y(mt,y)%,n|y(ﬂct))zf‘;
= Qtflmly(mt,y)Qt,ély(xt)(Et__lHy - Zayl)

1 _
+ (2((mt7y — fe—1,0y) — (21 — Ntl\y))TZt_luy(mty — Hi—1,]y)

+ 7(xt - ,Ut,ﬁ\y) (Et_ 1)y Zt\;)(mt,y ,Uftfl,fly)

— N

+ 5 (@ = pe,e1y) TS5, (M — pe—1,01y) = (26 = pireyy))

2
1 _
- 5((mt,y - .ut—l,n|y) - (xt - /Lt,n|y))TEt_11|y(mt,y - ,ut—l,n|y)
1 _
- i(xt - :ut,nly) (Et 1ly Et|y1)(mt y Nt—l,nly)
1

e ) T (e — e my) — (0 — ut,ny)))z;;
O((1 - ar)?)

[\)

Thus,

’]EXwQﬂy [(V log q;— 1)y (Mmi,y) — v/ Vlog Qtly)TAt7y:|

S EXtNQt\y |:‘X1;r<2t|; t 1| )At,y‘:|
1— Q¢

NCT
ZN (m1,,) '
Qt—1,n|y (M,
—+ (1 — Oét)EXtNQt‘y |:‘ < 7Tnnyylut_1)ny> i 1|yAt7y

n=1 qt*1|y(mt,y)

+ EXWQ”y“(Xﬁvmng) (=, 1y)Aty”

|

Qtfl,n\y(mt,y)qt,ﬂy(Xt) 1 Qtfl,ﬂy(mt,y)Qt,n\y(Xt)

N
- 21) L1 nlyl -
Qe—1)y (M) @)y (Xo) t—1ly 11y (Mey ) a1y (X2) tly | Pt—1nly

T
+ EXtNQt\y Atyy TnTe (
n,f=1

Among the four terms above, the first term < d + Zfl\] 1T n HH ty— HTH 1o,n ||2 from (44) (along
with the similar result for ¥, ) the second term < d + Z 17 ||[HYy — HT Hpg "H from (44)

and (45), and both the third and the fourth term < d + Y0 7, |Hty — HTHMo,nH from (43)
(along with the similar result for E ) Thus,

N
5 d+Z Tn HHT?J - IJTI{HO,TLH2 5

\ExtNQtly [(Vlog Gio11y (me.y) — /@ V log qﬂy(Xt))TAt,y]

n=1
and the first term in Wanish satisfies that
l—«
Z \/»tEXwQuy [(ng Gr—1]y (Mt (X)) — /o Vlog Qty(Xt))TAt,y(Xt)}

N 2 2
< (d > Ty - HTHuo,nHQ) tos(1/0) Mo 17

n=1

For the second term in W,pish, We first provide the following useful calculation. Similar to (43), for
all » > 1 and any fixed vector v,

2
EXfNQHy ( ) Aty
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2 2 2
< ol Exinqy, (| Xy Aty "=l Exinqu, 147 A0y

t|

< ol (@ [Solgg + (1 — @t)—rd—p)frHQ max [[>2 y:,uo,nH2

+ ol || (G [Solyg + (1 — @t)fdfp)_rH [(@:[Solgg + (1 — @) la—p) " [Solgy[Zi 'y H

N
(Xe)
]EXtNQt|y Z Tn % ||Xt \/d»t,U*O,nH2

n=1
N 2
Sd+dY m, ||H'y— H Hpg | (46)
n=1
where the last line follows from (58).

Also, similar to (44), for all » > 1,

EXtNQt\y (% t\ymt,u) Ay
2
EXt"‘Qt\y X Et|yAt y‘ + (1 - at)]EXtNQt\y (V IOg Qtly(Xt)) t|yAt7y
(%) 2
5 EXtNQt\y ngt_‘;([d - HTH)At,y’ = EXtNQt\y |XtTA:Atyy|2
_ _ —r2 2 2
S (@fSolgg + (1 — @ la—p) || Jmax 1157 g:t0.n ]| Exymyy, 1 Xel
_ _ _ _ 2
+ |(@e[Solgg + (1 = @) Tap) " ||* |G [Bolgg + (1 = Ge)La—p) ~ [Solgy (57 s |
N
qbnly(Xt) — 2
Ex,~0q, Tp——— (X — vV TX
Xe~Q \ynz::l n Qt|y(Xt) |( t tﬂO,n) t|
N 4
S+ m|[HYy — H Huo,nl| @47
n=1

2
where (i) follows from the fact that Ex, ~q,, ‘(V log qt|y(Xt))TEJ;At7y’ < d? (using a similar
argument for deriving (45)), and the last line follows because

N
d-Exinaq, IX0* <43 w0 (2Bxiny 1K = el + 2 10l )

n=1
(i47) N
S dZﬂ'n (TI"(Eﬂy JrothHTy HTHMOnH +d>

<+ dZ 7o || HTy — H Hpso )

n=1
where (i73) follows from (58), and also

N
Qt,n|y(Xt) — 2
Ex,~q., ;an |(Xe — Vo) T Xy

_ 2
=E x~q, (X — Vagpo,n)TXy)
N~TL gy (1 X))

<2E  x,~qQ, ||Xi— \/>MON|| +2\/E XonQu, || Xt — \/>/$0NH VEN~m o v

NNHIty(‘ t NNH\ty(l t

S+ Z o || HYy — H Hypg o)

n=1
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where the last line above follows because for all » > 1 and each n € [N],

]EXtNQt,n\y HXt - @MO,n||T
S EXtNQt,n‘y HXt - \/T/J/O n\yHr + H\/T,LLO n|y — @u07n"r

HE D 3 (X, — Vapto )| + (@) | HYy — H Hyo |
Sdr/Z"’HHTy_HTH,UO,nH ) 48)

T

tly

Now we are ready to analyze the second term of W, ;5. Note that

V2 IOg qt— 1|y(mt y)

Gt—1,ny(Mey) -
= Z # (Et|y1(mt Yy Nt,n\y)(mt,y B ﬂt,nly)TEt\y) Et\y

n—1 qi— 1ly mty)

Y G—1,n)y(Mey) 4 3 G—1,nly(May) (4 '
— Z Wnizﬂy(mt,y - Ht,n|y) Z Wnizﬂy (mt,y - Mt,n\y) .

= gy (maey) = gy (maey)
Thus,

Ex,~qQu, |AT, V2108 ¢i11y (miy) Aty

N
Qtfl,nly(mt,y) — 2
< 3Ex,~ Ty ————= (AT Ymy,y, — p ))
Qe nz::l " Qt—1|y(mt,y) byl Y bl
+ 3EXtNQt\ At yzt\yAtvy

N 2
qt—1,n| (mt, )
+3Ex,~qu, (Z 7T"#Atyztly (me.y “t’"y)>

n—=1 qt—l‘y(mtiy)

< 3Ex,nqy, ‘A LA, y’

ty t\y

N
Qt—1,n]y (Mty) 2
+ GEXtNQ”y [Z Tn v ! (Agyzﬂy (mt y Nt,n\y)) ‘| :

n—1 Gt—1]y(1m1.y)

To determine the rate of these two terms, we get

N
At,y‘ S., d+ Zﬂ-n HHTy_ HTH/JO,nHQ;

n=1

A

Atﬂ/

EXtNQt\, ]EXtNQﬂy

ty t\u

and

N

Qt—l,n|y(mt,y) ’ -1 2
Ex, E — " (. — TS A
Xi~Qyy Tn Qt71|y(mt,y) (Mmey = fit,nly) tly =ty

n=1

< ]EXtNQt|y :fé‘?ﬁ,{] ’(mt,y - ,Uft,n|y) t‘yAt,y
1

2
y tlyA vy‘

]EX’NQtly my yz Atvy’ +EXtNQt\y ;naX ‘:u’t n|

N
<N <d2 + > m ||HYy — HTHMO,nH“)

n=1

tly

where the last line follows from (46) and (47). Thus, the second term of YW, s Satisfies that

T
1—ay)?
Z (QTOEXfNQt\y ‘At,y(Xt)TVQ 108 @11y (M4, (X1)) Ay (X1) |

t=1
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N
<N <d2 + > m ||HYy — B Hpsg |

n=1

> c2(log T)?
—

For the third term of Wyanish, We provide the following useful calculations. Denote v°3 as the
element-wise (Hadamard) third power of a vector v. For each n € [N], we have

Ex,n@u, [ (M = penpy) > (Lo — HTH) Ay | = Bx,ny, |[Aty]Fmey — ]|

2 6
‘ \/EXt,NQt\y ||V log Qt|y(Xt) ||6

< Exnany B I — el + (= 00)\/Exinay, [0y

(iv)
rg EXtNQt\y [Atyyg[Xt - Nt,n]gg‘

_ 6 4
< max [|[Z; 5 p0,¢| \/EXtNQt\y 1Xe = pnllg +E - xomqy,  I1Xe = perlly
¢ LTy, (1 X0)

6 6 4
s\/n«: T b P TN N b oy

LT,y (1 X0) LT,y (1 X0)
N 4
S+ ||[H'y — H Hpo | (49)
n=1

where (iv) follows from Lemma 6 (using the « in (8)) and (Liang et al., 2024, Lemma 15), and the
last line follows from (48). With a similar argument,

Ex,~Qu, |(Mey = eny)Ta — HH) Ay | SE - xingy, 11X — per]?
LATL g (| Xt)
N 2
Sd+ ) m||[HYy — H Hpo || (50)
n=1

Now, employing the notations from (Liang et al., 2024, Section G.1), we define

, SH .= max‘[zfi]ij .
n :

ze () == E;; (T = pemly),  &(z,i) = max |z§n(x)

When H = (I, 0), we note that

<(1 -y +awoy) ', 0 )

Eiy = 0 (@ [Solgy + (1 — @) I_p) "

tly

Thus, we have 2 = 0 whenever (i,7) € [1,p] x [p+ 1,d] or (i,5) € [p + 1,d] x [1,p] and
max; je(p11,4 5 = O(1). Since 02 > 0, we also have HE;; <1

From (Liang et al., 2024, Section G.1.2), an upper bound for third-order partial derivatives is
|05 108 qujy ()| < 66u(w, D)8 (. )& (. k) + 25 & (2, k) + 256w, ) + 250 61, 0).
We also remind readers that A, , is supported on range(I; — H'H), namely that [A; ,], = 0.

Now, the third term of W, nish can be upper-bounded as

Exon@uy | D 05108 @11y (M (X2)) Aty (X)

d ‘
i=1

d
=Ex,~q,, Z 031108 qu— 1y (M 4y (X1)) Ay (X3)*

i=p+1

d d
SEx,~q,, Z e(mu gy (X0), 1) Ay (X0)'| + Exongy, Z S mey (X1), 1) Ay (Xy)*
i=p+1 i=p+1
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N d
- —13 i i i
Z a[Yolgg + (1 — ae)la—p) 1“ Ex,~qu, Z (M, (Xe)" — Mt,n|y)3At,y(Xt)
n=1 i=p+1
N d
+ ) @[Zolgg + (1 = a)Ta—p) M| Bxona,, | D (Mg (Xe)" = pif 1) Aty (X
i=p+1

N
<N <d2 + o ||HYy - HTHHOJLH“) :

Here the last line follows from (49) and (50).

We provide the following useful calculations to upper-bound the fourth term of W,apish. First, for all
r > 1 and any fixed vector v,

T

X + Vlog Gy (X¢) —
W NG v
Xi —oll" + (1 — a)Ex,~q,,

Exin@y, Imey —oll" = Ex,~q,,

V log qujy (Xe) ||

5 EXtNQﬂy

o)
SE xi~qy, IN1Xe—perl” +Epemllpen — vl
LNH_‘tyy(-|Xt)

N
SAP 4y m | HYy — H Hpo || (51)
n=1

where (v) follows from Lemma 6 (using the «; in (8)) and (Liang et al., 2024, Lemma 15), and the
last line follows from (48). Now,

d
]EXWQ,“, th (my ot Z &e(my, 2y J J)A, y(Xt)
i=1 j=p+1
N 2
S Z Exinqu, Hmt,y - Mt,nly” ‘(mt’y - Mt’“y)TAt’y(Xt”
n, =1
N 1/4
<> \/EXtNQ”y [mey — tesay || (EXtNQt\y ey = eyl Exinan, 1180 (X0 )
n,{=1
N 4
< N2 <d2+27rn||HTyH*Huo,n|| ) (52)
n=1

where the first inequality follows from ‘ EJ; H < 1 and the last line follows from (51) and (59). Also,

d
Ex,~q., Z i?ft(mt,yvj)At,y(Xt)j

1,j=p+1
d

d
= Z 51 Exonqy, Z &(mu gy, §) Ay (X1)!

i=p+1 j=p+1

d N
Z iéz ’ Z EXt"’Qf,\y |(mt~,y - Nt,n)TAtyy(Xtﬂ

<
- i=p+1 n=1
d N
SIS0 S ST VB, Imey — el VEximan, 10, (XOIP
i=p+1 n=1
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N
< Nd <d+Z7rnHHTy—HTHuO7nH2> (53)
n=1
where the last line follows from Proposition 1 and (51). Also,
Ex,~q,, Z S (M ys 1) Ay (Xt )
1,j=p+1

d d
SEx,~q, Z §e(myy, 1) Z Ay (Xp)

i=p+1 j=p+1

4 By, [ 3 Elmen 22 |\ Exoea, 180X
i=p+1

IN

N
2 2
Sald S Exieay, Imey — el Jd-Exongy, 180, (X))

n=1

N
SVNd <d+zwn|yHTy—HTHu0,nHQ> (54)

n=1
where the last line follows from Proposition 1 and (51).

Now, the fourth term of W,anish can be upper-bounded as

d
Exn@uy | D 057108 Qo) (mey (X)) Ary (Xe)

ij=1
d d A
= ExonQu, [ D 0010801y (mey (X0) Ay (Xe)?
1=1 j=p+1
d d
EXth‘y th iy (Xt), Z Ee(mey(X1),5) Ay, y(Xt)
=1 Jj=p+1
+Ex,~q,, Z & (M (Xt ), ) Ay (Xi)?
ij=p+1
d _ .
+Exi~Qu, Z B e (my (Xt), 1) Ay (Xp)?
ij=p+1

For the three terms above, the first term < N2 (d2 + 25:1 Tn HHTy — HTHuoynHél) from
(52), the second term < Nd (d +3N |HTy — HTHuo,n||2> from (53), and the last term
S VN (d+ S0 mo | By = HiHpo||*) from (54).

Thus, overall, with the o in (8) (cf. Lemma 6), the third and fourth terms give us

(1-«
Z 3/t2 EXtNQt\y [3 Z 8uz IOg qt— 1|y(mt y(Xt))At y(Xt)

t=1 i=1
d
+ Y i log gy (miy (X0) Ay (X0)!
ij=1
%
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N 2
(024 Sty ) 52

n=1

Therefore, combining all the above, since N is constant,

(QO|yHPO|y (Cl‘|'z:7'rn||}IJr HTH,UO,nH2>

(duzﬂnumy HH Mu) (og )"

n=1 T
N

+ | d+ > m | Hy — HT Hpo || (log T)e.
n=1

Remark 2. In case of general o, > 0, the same upper bound can be applied to HE_l as detailed

=
in Remark 1. Thus, with the a; in (8), we similarly have

d*(log T)*1og(1/6)?
T
The rest of the proof is similar. Combining with Lemma 7, we would finally obtain

2log(1/6)logT
K0P % (4 3wty ) (1 - 22510 T

Wordcle ~ + (log T)€2.

N N
log T)2 log(1/6)2
+ <d2+zﬂn”HTy_HTHMO’nH4> (logT) Tog( /0)° , 0+ o [y — H Hpso |2 (log T)e.

n=1 n=1

Here W2(Q1)y, Qojy)? < 6d.

J AUXILIARY LEMMAS AND PROOFS IN SECTION 4

J.1 PROOF OF PROPOSITION 2

Given Q¢ = N (po, Xo), from the conditional forward model in (5), we can calculate
Q1 = N(Varpo, Yo + (1 — ag)la) = N (pe, 3e)
Quy = N(Vai(Ia — H'H)uo + Va,H'y,
ay(Ig— H'H)So(Ia — H'H) + auo HN (HDT + (1 — @) 1a).
Note that when H = (I, 0) and 05 > 0, qojy exists. Define
fiyy = Vo (Ig — H H)po + Va H'y
Ytsig = (I — HUH)Yo(Ig — HTH) 4 (1 — @)1y
Sty = Ssig + Qo HI(H)T. (55)

Here ), 44 is the signal variance at time ¢, and Et‘y is the total variance of the signal and the
measurement noise. Note that when H = (I, 0), [E;;]gy = [¥ L gy We also calculate the
respective scores of 0y and Q)

Vlog g () = _Zt_l(xt — ), Vlog Qt\y(l’t) = —EJ;(% - Mt|y)-
Since f;,, = f{, (defined in (10)), from (32), the bias at each time is equal to
Ary = (Ig— H H)(V1og gy, (x1) — V1og g (1))
= (g = HYH) (27 (@0~ Vo) = Syb(a — Vi)
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= (Is— H'H)S; (2 — Vo)
— (la— HTH)S ) (20 — V@i (Ia — H H)po — Va H'y).

Now, define
Vi = (H H)So(Iy — HH) + (I, — HTH)So(H H) 4+ (H H)Yo(HTH)
A=y - HH)SL (I, — H'H)

t,sig
Thus, we have ¥y = ¥4 g5+ Vi and Xy, = 3y 549 +O_étO'§HT (HT)T. By Woodbury matrix identity,

for any two matrices A and B, their sum can be inversed as (A + B) ! = A~ — A"1B(A+ B)~!
Thus, we get

S = (Shsig + @ Vi) _z;sw &yl vyt

t,sig

Sy = (Stsig + oy HI(HNT) ™ =5, 5 — a0y s, o HI(HN)TS,
Owl, —aols L (HTH)S, !
where () holds under assumption H = (I, 0). Thus,
vy = (Lo — H'H) (87 (20— Vo) — 5 (@ — Vo) )
= (Lg — H'H) (S 35 — @Sy 33, ViZ; 1) (20 — Varho)
— (Iy— HH) (zt L atUQE;%g(H H)Z‘tly) (20 — a(Iy — HY H)po — a H'y)
D (L - HUH) (84, — 650, Vis) (@0 — vapo)

— (la— H'H)S,, Szg(xt - f (Is — H' H)po — vazH'y)

= _at(‘[d - HTH)Et sng;5 ( \/7/10)

+ (L= HUH)S L, (e — HUH) (e = Vapo) + H H(wy — Vo))

— (1a— HUH)S; Ly (L — HUH) (50 = Vo) + (H' H)we — /G H'y)
= —ay(Iy— HH)S; ) Visy (@ — vaugo)
Y a1y~ BH)S; L (1o~ HTH)So(HTH)S; @, — Vo)

= — Ao (HTH)S, (2 — Vaipo) (56)

where (i7)—(iv) hold because (I; — HTH)Egslig(HTH) = 0 by Lemma 9.

Now, since HTH = (IO 8) we can re-express A; and A, , as follows.
A= (Ia— H'H)S; ), (Is— HYH)

- (8 Ido_p> ((1 _oatﬂ a[Solgy + (()1 —at)ld_p> ) (8 Id0_p>

a (8 (@[Xolgy + (1 —ai)la—p) )

Ary = (o‘zt(o_zt[Zo]yy +(1- at)Id—p) olgy[2r ] (1t fﬂo))

and we have

(dt[zo].@?"‘(l_dtﬂdfp) [E(ﬂyy[z ] (X \/>/$0)H

= Q?EXwQ“,TY((Oét[ZO]yy + (1= ae)La—p) " [Solgy 2 y: (Xe — Vaupo) (Xe — Vaipo)T

2 _
EXtNQﬂy ||At7y|| = Q?Ext’\’@t\y !
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57 oy [Solys (@ [Solgy + (1~ at)fd—p)‘l)
(%) a7 |[(@[Solyy + (1 — @t)fdfp)_le H[Efl]y:HQ I1Z0]yg[Zolgyl Ex,~qu,, || Xt — \/57th2
(57)

where (v) follows from the fact that |[Tr(UV)| < ||U| Tr(V) if V is positive semi-definite. To
analyze each norm above, denote \; > --- > Ay > 0 to be the eigenvalues of Y, and note that
1Zolgyll < 0]l = A1. The largest eigenvalue of ¥, ' is (@A + (1 — @;))~", and note that
|| [Et_l]y: || < ||Et_1 H Also, since [£g]y7 is positive semi-definite, denote Ay > -+ > Ag—, > 0to
be its eigenvalues, and thus

1 1
a[Solgg + (1 — ap)lg—p) | £ — < . < 00
|@lZolg + (1 = @ la—p) ™| Girdp+ (1—ar) ~ min{Ag_p, 1}

Also, since
Ex,~qQ,, (Xt — Vasi0)(X; — Vaipo)T
= Ex,~qu, (Xt =ty + Vi (H'y — H Hpo))(Xy — ey + Var(H'y — H Hpso))T
=%y, +a(H'y — H Hpuo)(H'y — H'Hpo)T,
we have
_ 2 _ 2
Ex~@u, [ Xe = Vamo|” = Tr(Syy) + a |[H'y — H Hpo|
(vi) 2
S @t(>\1 + UZ) + (1 - dt) + ||HTy - HTH/J,()H
Smax{HHTnyTH,uoH2+d()\1+0§),d} (58)

where (vi) is because X, is positive definite with

|Sey || = [|owe(Ia — HT H)So(Ig — HTH) + awo HT (HT)T + (1 — @) 14|
< ay ||Zo|l + @tUZ +(1—a)
= (M + o))+ (1—ay).

Therefore, for the second moment,
max{”HTy - HU'-I,LLQH2 +d(M\ + 05),d}

min{Ag, 1}2 min{j\d,p, 1}2
<a?- max{HHTy - HTH/L0H2 +d(M + 05)7(1}

2 _
Ex,nqu, 1Aey]” < &7 [I=0]ys[Zolg

since ||[Xo]yg[Xo]gy || < 20]|* = A2. Also, for general moments with m > 2,
1Ay 1™ < a7 [[(@lSolgg + (1 = @) la—p) " [Solgy[E5 s (@t — Vaeuo) |
< &y [[(a[Solgg + (1 — ae) Ta—p) ™ IZ0l™ |7 ™ |2e — vaupol|™
S ap e — Vapol|”

and thus

1 m
Aoyl S @ (Bximan, ||Z (X0 = ma)|| -+ [VaH Yy = B Hpo) | ™)

< ap ((m—=1)u-am27 4 | Va Yy - H Hpo)|™) = O(a).

EXtNQf«\y

Therefore, Assumption 4 is satisfied if the o, satisfies Definition 1. The proof is now complete.
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J.2 PROOF OF LEMMA 8

We continue from the expression of A, ,, in (40) when ()¢ is Gaussian mixture. For m > 2, we have

Wl

< 277 (@)™ max |2y o

EXtNQf\

+2" N @) " xpmq,, ||(Ia— HTH)S, L (Io— HUH)So(HTH)S (X — Vaguon)||™
NATL gy (] X)
(i) N
< (a)™2d™? + (@)"E  x,~q, || Xt — Varon||
NATL g,y (1 Xe)
= (@t)m/2dm/2 +(@)™E N~ HXt — \/dtuo’N’|m
Xt~Q¢ Ny

(i4) N
< (dt>’rﬂ/2d7‘rl/2 + (dt)m (dm/Q + Z T HHTy _ HTHMO,nHm) (59)

n=1
Here (i1) follows because
|(Ia — HYH)S; 4 (Ta — HTH)So(HTH) S| = | (@ [Solgg + (1 — @) Ta—p) ™ [Zolgy[Z7 |
A

< < =0(1),
min{Aq_,, 1} min{\g4, 1}

and (¢i¢) follows from (48). Therefore, this verifies Assumption 4 when the «; satisfies Definition 1.
The proof is now complete.

J.3 LEMMA 9 AND ITS PROOF
Lemma 9. Given a positive semi-definite matrix ¥, o > 0, and o € (0, 1),
1
(o HT(HNT + (1 —a)Iy) '(Ia— H'H) = (- H'H)
—
(I — H'H)(a(ly — HHH)Y(Iy — H'H) + acH'H + (1 — a)I;) " (H'H) = 0.

Proof. The key of the proof is the Woodbury matrix identity, which states that for any matrices
U e R¥*P YV ¢ RPX,
(Ig+UV) ™t =1, - U, +VU)"'V.

For the first equality, we apply Woodbury with U = , /1% H fand V =, /% (H )T and we get

1 ao
HYHHYT+(1 —a);) ! = I, — Hf
(acH"(H")T 4+ ( a)ly) 1—a<d T

(HT)THT> o (HT)T> .

Since p < d, the pseudo-inverse equals HT = HT(H HT)~*, and by the orthogonal property we have
(HNYT(I;— H'H) = (HHT)'H(I; — H'H) = 0.

We have thus shown the first equality.

For the second equality, we first consider the case where o = 0. Write S = (1 — «)I; + (I —
HTH)Y(I; — H'H). Since ¥ is positive semi-definite, there exists matrix L such that ¥ = LLT.
Thus,

-1
S = ((1 —a)lg+a(ly— HH)S(I; - HU{))

-1

_ ((1 _a)Id—l—Oé((Id_HTH)L) ((Id —HTH)TL)T)
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1 o
= I—
1—ad l—«a

(07

((I;— H'H)L) <Id + o LT(a - HTH)L)l LT(I;— H'H),

—

where in the last line we have applied Woodbury with U = VT =, /19— (I — H T H) L. The equality
is achieved because

(I — H'H)S™Y(HTH)

_ % (Lo — HUH)(H'H)

=0

« «

1l -« -«

-1
(Is— H'H)L (Id + o LT(a— HTH)L> LT (I;— H'H)(HTH)
=0

=0. O

When o > 0, we can apply Woodbury identity to sum of matrices A and B and get (A + B) ™! =
A7t — A7'B(A + B)~!. Thus,

(S+acHH)™ =5 —aoS Y (HTH)(S + acH'H) ™!
and
(I — H'H)(S+acH H) Y (H'H)
= (I, - H'H)S Y(H'H)
=0
—ao(Iy— HH)S Y (H'H)(S + acH'H) ' (H'H)

=0

=0.

The proof is now complete.

J.4 LEMMA 10 AND ITS PROOF

Lemma 10. With1 — o = loéT, Vt > 0 (which satisfies Definition 1), given any p > 0,
L 1 2pclog T 1
—p ~
tzéz(l —Oét)O[t = ]; (1 — T> +O (1_’2> .

Proof. Define the sum as sp. Then,

)p(T—l)

log T

iclogT <1 clogT)pt clogT (1 clogT>2p 1= (1_ =7
ST = — = — 7
= T T T T 1— (1_ clc;gT)

clogT <1_clogT (14 0(T—"))

>2p 1
T T clogT\?
1_(1_75)

1 2pclog T RPN
= (1 T > +0O(T™2). O
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