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ABSTRACT

The denoising diffusion model has recently emerged as a powerful generative
technique, capable of transforming noise into meaningful data. While theoreti-
cal convergence guarantees for diffusion models are well established when the
target distribution aligns with the training distribution, practical scenarios often
present mismatches. One common case is in the zero-shot conditional diffusion
sampling, where the target conditional distribution is different from the (uncon-
ditional) training distribution. These score-mismatched diffusion models remain
largely unexplored from a theoretical perspective. In this paper, we present the first
performance guarantee with explicit dimensional dependencies for general score-
mismatched diffusion samplers, focusing on target distributions with finite second
moments. We show that score mismatches result in an asymptotic distributional
bias between the target and sampling distributions, proportional to the accumulated
mismatch between the target and training distributions. This result can be directly
applied to zero-shot conditional samplers for any conditional model, irrespective
of measurement noise. Interestingly, the derived convergence upper bound offers
useful guidance for designing a novel bias-optimal zero-shot sampler in linear
conditional models that minimizes the asymptotic bias. For such bias-optimal
samplers, we further establish convergence guarantees with explicit dependencies
on dimension and conditioning, applied to several interesting target distributions,
including those with bounded support and Gaussian mixtures. Our findings are
supported by numerical studies.

1 INTRODUCTION

Generative modeling stands as a cornerstone in deep learning, with the goal of producing samples
whose distribution emulates that of the training data. Traditional approaches encompass variational
autoencoders (VAE) (Kingma & Welling, 2022), generative adversarial networks (GANs) (Goodfellow
et al., 2014), normalizing flows (Rezende & Mohamed, 2015), and others. Recently, diffusion models,
especially the denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho
et al., 2020), have emerged as particularly compelling generative models, gaining widespread acclaim
for their stable and cutting-edge performance across various tasks, such as image and video generation
(Ramesh et al., 2022; Rombach et al., 2022).

In ideal situations, the training and target distributions of generative models match each other.
However, this often does not hold in practice, where distributional mismatch between the training and
target distributions can occur due to various reasons such as possible privacy constraints, need for
computational efficiency, and knowledge gap between training and sampling processes. Specifically
for diffusion models, such mismatches exhibit between the scores obtained from the training data
and the scores of the target distribution from which we want to generate samples. One common
scenario that existing studies primarily focus on is conditional diffusion models in image generation
tasks (see Croitoru et al. (2023); Li et al. (2023); Moser et al. (2024) for surveys of diffusion models
in computer vision). Different from unconditional image generation, conditional image samplers
aim to generate images that are consistent with the given information, either be a text-prompt (as
in text-to-image synthesis) or a sub-image (as in image super-resolution). For example, in image
super-resolution, given the input of a low-resolution image, the goal is not to generate some arbitrary
high-resolution image but the one whose corresponding low-resolution part matches the given input.
Here the diffusion models are well-trained on the unconditional distribution of high-resolution images,
whereas the target distribution is the conditional distribution given the low-resolution input. If one
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uses these well-trained unconditional scores to generate conditional samples, there will be a mismatch
at each step of the sampling process.

One class of methods to tackle the conditional sampling problem is to include extra-guided training,
where a modified score function is trained with the extra knowledge of the conditioning information
(Dhariwal & Nichol, 2021; Ho & Salimans, 2022). On the theory side, several recent works (Yuan
et al., 2023; Wu et al., 2024; Fu et al., 2024) provided performance guarantees for such conditional
diffusion samplers, where a score guidance is obtained through extra training based on the conditional
information. However, the additional guided training in these samplers requires extra computations
and needs to be conducted for every image conditioning, which may not be efficient in practice.

Alternatively, zero-shot conditional image samplers arise as a prevalent approach (e.g., Choi et al.
(2021); Chung et al. (2022b;a; 2023); Wang et al. (2023); Song et al. (2023a); Fei et al. (2023)) for
training-free conditional generation given well-trained unconditional scores. For each conditioned
image, zero-shot samplers require no additional training to modify the scores. Instead, they adjust the
scores during sampling by calculating rectified scores based on conditional information to mitigate the
mismatch between the oracle conditional scores and the approximated ones.1 Despite their empirical
promise, theoretical guarantee on these zero-shot samplers is largely unexplored. In Gupta et al.
(2024), the authors provided a super-polynomial lower bound for zero-shot sampling as a converse
result. In Xu & Chi (2024), the authors proposed and analyzed a plug-and-play conditional sampler.
Their analysis relies on the properties of the Markov transition kernel specific to their plug-and-play
model, which does not appear to be applicable to several widely used zero-shot samplers, such as
Come-Closer-Diffuse-Faster (CCDF) (Chung et al., 2022b) and Denoising Diffusion Null-space
Model (DDNM) (Wang et al., 2023). Therefore, there is a need to provide the performance guarantee
for those popular zero-shot conditional samplers.

In this paper, we address two key theoretical research gaps in zero-shot score-mismatched diffusion
models: (i) We provide performance guarantees for general score-mismatched diffusion models,
extending their applicability beyond the primary focus of existing theoretical studies on the special
case of conditional image generation. (ii) We analyze zero-shot conditional diffusion models, which
are generally applicable to existing zero-shot samplers such as CCDF (Chung et al., 2022b) and
DDNM (Wang et al., 2023) to which the analysis in Xu & Chi (2024) is not applicable (as discussed
above).

1.1 OUR CONTRIBUTIONS

Technically, the main challenge due to mismatched scores is to analyze the expected tilting factor
(Liang et al., 2024) under a mean-perturbed Gaussian, providing an upper bound of the asymptotic
orders of all Gaussian non-centralized moments. Our detailed contributions are as follows.

Convergence of General Score-Mismatched DDPM: We provide the first non-asymptotic con-
vergence bound on the KL divergence between the target and generated distributions when there is
mismatch between the sampling and target scores in DDPM samplers, for general target distributions
having finite second moments. We show that the score mismatch at each diffusion step introduces an
asymptotic distributional bias that is proportional to the accumulated mismatch. We also provide the
first explicit dimensional dependency when the sixth moment of the target distribution exists. Our
result is applicable to general forms of mismatch between the target and training scores, which greatly
extend the focus of the existing theoretical research on conditional score-mismatch diffusion models.

We then apply our results to zero-shot conditional DDPM samplers, as long as the conditioning
involves certain deterministic or random transformations of the data. This provides the first theoretical
guarantees for several existing zero-shot samplers, such as CCDF (Chung et al., 2022b) and DDNM
(Wang et al., 2023). Notably, the theory in Xu & Chi (2024) does not apply to these samplers, as their
analysis relies on the properties of the Markov transition kernel specific to their plug-and-play model.
In contrast, our approach is based on the tilting-factor analysis from Liang et al. (2024), which is
applicable to general score-mismatched DDPM models. Moreover, the theory in Xu & Chi (2024) is
limited to cases where the measurement log-likelihood function is differentiable and bounded and
does not provide explicit dependencies on the data dimension. In contrast, our results do not require

1Note, however, that some zero-shot methods, such as DPS (Chung et al., 2023) and ΠGDM (Song et al.,
2023a), might induce additional computational costs during sampling.
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the measurement log-likelihood function to be differentiable or bounded and explicitly characterize
the dependencies on the data dimension.

Novel Design of Bias-Optimal Zero-shot Sampler BO-DDNM: Inspired by our convergence
analysis of score-mismatched DDPM, we design a novel zero-shot conditional sampler, called the
BO-DDNM sampler, which minimizes the asymptotic bias for linear conditional models. Such a
sampler coincides with the regular DDNM sampler (Wang et al., 2023) when there is no presence of
measurement noise, and achieves faster convergence than both the DDNM and DDNM+ samplers
under measurement noise, as shown by our theory and numerical simulations.

Theory for BO-DDNM with Explicit Parameter Dependencies: We provide the convergence
bound for the proposed BO-DDNM sampler with explicit dependencies on the dimension d as well
as the conditional information y, for various interesting classes of target distributions including
those having bounded support and Gaussian mixture. For the case of Gaussian mixture, we further
show that three factors positively affect the asymptotic bias: (1) the variance of the measurement
noise, (2) the averaged distance between y and the mean of each Gaussian component, and (3) the
corresponding correlation coefficient for each component.

1.2 RELATED WORK

We provide a summary of works addressing unconditional and score-matched diffusion models in
Appendix B. Below we discuss related works on conditional diffusion models which are closely
related to our study here.

Extra-Guided Training: In order to achieve conditional sampling using DDPM models in practice,
one method is to introduce conditional guided training, where one either uses an existing classifier
(a.k.a., classifier guidance) (Dhariwal & Nichol, 2021) or jointly trains the unconditional and condi-
tional scores (a.k.a., classifier-free guidance (CFG)) (Ho & Salimans, 2022). Here a guidance term
is obtained to “guide” the diffusion sampling process at each step such that the sampling scores
correspond to the true conditional scores. On the theory side, Wu et al. (2024) investigates the effect
of the guidance strength in CFG on Gaussian mixtures, Bradley & Nakkiran (2024) shows that CFG
is an instance of predictor-corrector methods, and Chidambaram et al. (2024) finds that CFG might
fail to sample correctly on certain mixture targets. There are other theoretical works that investigate
sample complexity bounds for conditional score matching for a variety of target distribution models,
including the conditional Ising models (Mei & Wu, 2023), those supported on a low-dimensional
linear subspace (Yuan et al., 2023), and Hölder smooth and sub-Gaussian conditional models (Fu
et al., 2024). Other than stochastic samplers, a conditional ODE sampler is proposed and studied in
Chang et al. (2024), which also requires extra training of the conditional score function.

Zero-shot Samplers: To achieve conditional DDPM sampling, a popular method is to use zero-shot
conditional samplers, with which one generates a conditional sample using approximated scores.
These scores are calculated from the unconditional score estimates and the conditional information
using simple (usually linear) functions without extra-training (Choi et al., 2021; Chung et al., 2022a;b;
2023; Wang et al., 2023; Song et al., 2023a; Fei et al., 2023). The only theoretical works on the
performance of zero-shot DDPM conditional samplers are Xu & Chi (2024); Gupta et al. (2024). In
Xu & Chi (2024), a diffusion plug-and-play sampler is proposed which alternates between a diffusion
sampling step and a consistency sampling step. The difference of our results from those in Xu &
Chi (2024) has been thoroughly discussed in Section 1.1. From an alternative perspective, Gupta
et al. (2024) shows that the sampling complexity with zero-shot samplers can take super-polynomial
time for some worst-case distribution (among the set of distributions where smooth scores can be
efficiently estimated). Instead, our result shows a consistent fact that there exists a non-vanishing
asymptotic distributional bias within polynomial time.

2 PROBLEM SETUP

In this section, we first provide some background on the score-matched DDPMs. Then, we introduce
the score-mismatched DDPM samplers and, as a special example, the conditional sampling problem
and zero-shot samplers.

2.1 BACKGROUND OF SCORE-MATCHED DDPMS

The goal of the score-matched sampling problem is to generate a sample whose distribution is close
to the data distribution. To this end, the DDPM algorithm (Ho et al., 2020) is widely used, which
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consists of a forward process and a reverse process of latent variables. Let x0 ∈ R
d be the initial

data, and let xt ∈ R
d, ∀1 f t f T be the latent variables. Let Q0 be the data distribution, and let Qt

(resp., Qt,t−1) be the marginal (resp., joint) latent distribution for all 1 f t f T .

Forward Process: In the forward process, white Gaussian noise is gradually added to the data:

xt =
√
1− ´txt−1 +

√
´twt, ∀1 f t f T , where wt

i.i.d.∼ N (0, Id). Equivalently, this can be
expressed as:

Qt|t−1(xt|xt−1) = N (xt;
√

1− ´txt−1, ´tId), (1)

which means that under Q, the Markov chain X0 → X1 → · · · → XT holds. Define ³t := 1− ´t

and ³̄t :=
∏t

i=1 ³i for all 1 f t f T . An immediate result by accumulating the steps is that
Qt|0(xt|x0) = N (xt;

√
³̄tx0, (1−³̄t)Id), or, written equivalently, xt =

√
³̄tx0+

√
1− ³̄tw̄t, ∀1 f

t f T , where w̄t ∼ N (0, Id) denotes the aggregated noise at time t and is independent of x0. Finally,
since each w̄t is Gaussian, each Qt (t g 1) is absolutely continuous w.r.t. the Lebesgue measure. Let
the p.d.f. of each Qt be qt, and qt,t−1, qt|t−1, and qt−1|t for t g 1 are similarly defined.

Reverse Process: In the reverse process, the latent variable at time T is first drawn from a standard
Gaussian distribution: xT ∼ N (0, Id) =: PT . Then, each forward step is approximated by a
reverse sampling step. At each time t = T, T − 1, . . . , 1, define the true reverse process as xt−1 =
µt(xt) + Ãtzt, where z ∼ N (0, Id). Here Ã2

t := 1−³t

³t
. For the typical DDPM sampling process,

µt(xt) = 1√
³t

(xt + (1− ³t)∇ log qt(xt)). Equivalently, Pt−1|t = N (xt−1;µt(xt), Ã
2
t Id). Here

∇ log qt(x) is called the score of qt, and µt(xt) is a function of the score. Let Pt be the marginal
distributions of xt in the true reverse process, and let pt be its corresponding p.d.f. w.r.t. the Lebesgue
measure. Define pt−1|t and pt|t−1 in a way similar to the forward process.

In practice, one does not have access to ∇ log qt(xt) and thus µt(xt). Instead, an estimate of
∇ log qt(xt), denoted as st(xt), is used, which results in an estimated µ̂t(xt) and the estimated

reverse process: xt−1 = µ̂t(xt) + Ãtz. Let P̂t be the marginal distributions of xt in the estimated

reverse process with the corresponding p.d.f. p̂t. Note that P̂t−1|t = N (xt−1; µ̂t(xt), Ã
2
t Id) and

P̂T = PT . Hence, under P and P̂ , XT → XT−1 → · · · → X0 holds.

Performance Metrics: In the case where Q0 is absolutely continuous w.r.t. the Lebesgue measure,
we are interested in measuring the sampling performance through the KL divergence between Q0

and P̂0, defined as

KL(Q∥P ) :=
∫
log dQ

dP dQ = EX∼Q

[
log q(X)

p(X)

]
g 0.

Indeed, from Pinsker’s inequality, the total-variation (TV) distance can be upper bounded as
TV(Q0, P̂0)

2 f 1
2KL(Q0∥P̂0). When q0 does not exist, we use the Wasserstein-2 distance to

measure the one-step perturbed performance, which is defined as

W2(Q,P ) :=
{
minΓ∈Π(Q,P )

∫
Rd×Rd ∥x− y∥2 dΓ(x, y)

}1/2

,

where Π(Q,P ) is the set of all joint probability measures on R
d × R

d with marginal distributions Q
and P , respectively. Both metrics are widely adopted (Chen et al., 2023a; Benton et al., 2024a).

2.2 SCORE-MISMATCHED DDPMS

Differently from the score-matched sampling problem, the goal of the score-mismatched problem is
to sample from a different target distribution from the training distribution with which we estimate
the scores. Thus, there will be a mismatch between the target score and the estimated score at
each diffusion step. Let Qt (t g 0) be the training distributions used for training the score. Let
Q̃0 be the target distribution that one hopes to generate samples from, and let Q̃t (t g 1) be its
Gaussian-perturbed distributions according to the forward process in (1). Define the posterior mean
under the target distributions as mt(x̃t) := EX̃t−1∼Q̃t−1|t

[X̃t−1|x̃t]. Note that by Tweedie’s formula

(Efron, 2011), mt(x̃t) =
1√
³t

(x̃t + (1− ³t)∇ log q̃t(x̃t)). Recall that Pt and P̂t are the sampling

distributions of the true and estimated reverse process, respectively. For general score-mismatched
DDPMs, we leave the generic definition of µt(xt) without providing any particular expression. An
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example of µt(xt) is given later in (6), yet our general analysis does not require any particular form
for µt. With these notations, the score mismatch at each step t g 1 can be defined as

∆t(xt) :=
√
³t

1−³t

(
EXt−1∼Q̃t−1|t

[Xt−1|xt]− EXt−1∼Pt−1|t
[Xt−1|xt]

)
=

√
³t

1−³t
(mt(xt)− µt(xt)).

(2)
The goal, then, is to provide an upper bound on the distributional dissimilarity between the target
distribution Q̃0 and the sampling distribution P̂0. We use the same metrics as those defined in
Section 2.1 to evaluate the performance of the score-mismatched DDPM.

2.3 ZERO-SHOT CONDITIONAL DDPMS

One interesting example of score mismatch is the zero-shot conditional sampling problem. Differently
from the unconditional counterpart, the conditional sampling problem aims to obtain a sample that
aligns in particular with the provided conditioning. Define y ∈ R

p to be the conditioned information
about x0. Specifically, let y = h(x0), where h(·) is some arbitrary (deterministic or random) function
of only x0 (apart from independent noise). Note that general score-mismatched DDPMs can be
specialized to zero-shot conditional samplers with the following notations:

Q̃t = Qt|y, mt = mt,y, µt = µt,y, and ∆t = ∆t,y. (3)

Linear Conditional Models: In practice, one commonly adopted model is the linear conditional
model (Jalal et al., 2021; Wang et al., 2023; Song et al., 2023a), defined as

y := Hx0 + n, (4)

where H ∈ R
p×d (p f d) is a deterministic matrix and n ∼ N (0, Ã2

yIp) is the measurement noise,
which is assumed to be Gaussian and independent of x0. For the case where there is no measurement
noise, let Ã2

y = 0 and thus n = 0 almost surely. In applications like image super-resolution and
inpainting (Wang et al., 2023), H admits a simple form of a 0-1 diagonal matrix, where the 1’s occur
only on the diagonal and at those locations corresponding to the provided pixels. In these scenarios,
both H and y are fixed and given. The linear conditional model is studied in Section 4.

Conditional Forward Process for Linear Models: Write the Moore–Penrose pseudo-inverse of H
as H , and note that H H is an orthogonal projection matrix. With this notation, under (4), we can
re-express the forward process in (1) as

xt =
√
³̄t(Id −H H)x0 +

√
³̄tH

 y −√
³̄tH

 n+
√
1− ³̄tw̄t.

Here, since n is independent of w̄t, for fixed x0 and y, we have that, for all t g 1,

Qt|0,y(xt|x0, y) = N (xt;
√
³̄t(Id −H H)x0 +

√
³̄tH

 y, ³̄tÃ
2
yH

 (H )⊺ + (1− ³̄t)Id). (5)

Also, since the forward process is a Markov chain, we have that Qt|t−1,y = Qt|t−1 for all t g 1.

Zero-shot Conditional Sampler for Linear Models: We employ the zero-shot conditional sampler
for linear conditional models in the following form: xt−1 = µt,y(xt) + Ãtzt, where

µt,y(xt) =
1√
³t

(xt + (1− ³t)gt,y(xt)) , gt,y := (Id −H H)∇ log qt(xt) + ft,y(xt). (6)

Here ft,y(xt) is a simple function of y and xt computable without extra training and such that
(Id −H H)ft,y(x) ≡ 0 for all x ∈ R

d. Intuitively, ft,y characterizes the score rectification in the
range space of H H . Indeed, many zero-shot samplers in the literature have such ft,y(xt)’s that
satisfy (6) (see Appendix D). Now, with the linear model in (4) and the zero-shot conditional sampler
in (6), the score mismatch at each time t g 1 is equal to

∆t,y(xt) = (Id −H H)(∇ log qt|y(xt)−∇ log qt(xt)) + (H H)∇ log qt|y(xt)− ft,y(xt). (7)

3 DDPM UNDER GENERAL SCORE MISMATCH

In this section, we provide convergence guarantees for general score-mismatched DDPM samplers
under a general target distribution Q̃0. Throughout this section we keep the generic definition for
score mismatch ∆t as in (2), without assuming any particular expression for µt.
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3.1 TECHNICAL ASSUMPTIONS

We will analyze general score-mismatched DDPMs under the following technical assumptions.

Assumption 1 (Finite Second Moment). There exists a constant M2 < ∞ (that does not depend on
d and T ) such that EX0∼Q̃0

∥X0∥2 f dM2.

The first Assumption 1 is commonly adopted in the analyses of score-matched DDPM samplers
(Chen et al., 2023a;d; Liang et al., 2024).

Assumption 2 (Posterior Mean Estimation). The estimated posterior mean µ̂t at t = 1, . . . , T satisfy

1
T

∑T
t=1

³t

(1−³t)2
EXt∼Q̃t

∥µ̂t(Xt)− µt(Xt)∥2 f ε2, where ε2 = Õ(T−2).

The above Assumption 2 is made for the score estimation error for the general mismatched setting,
where we leave generic definitions of µt and µ̂t. While the expectation is over Q̃t, Assumption 2
is very likely to hold when Q̃t is close to Qt, i.e., when the score mismatches are moderate. For
zero-shot conditional samplers in linear models, this assumption is weaker than that for the estimation
error for unconditional scores (see (9)). Compared with the score-matched case, the estimation error
needs to be achieved at a higher accuracy because of the extra error term when there is score mismatch
(Lemma 2). Such a higher level of estimation accuracy also occurs in previous theoretical studies for
accelerated DDPM samplers (Li et al., 2024a).

Assumption 3 (Regular Derivatives). For all t g 1 where q̃t−1 exists, ℓ g 1, and a ∈ [d]p where
|a| = p g 1,

EXt∼Q̃t
|∂p

a
log q̃t(Xt)|ℓ = O (1) , EXt∼Q̃t

|∂p
a
log q̃t−1(mt(Xt))|ℓ = O (1) .

The above Assumption 3 is useful for our tilting-factor based analysis, which guarantees that all
(higher-order) Taylor polynomials of log q̃t are well controlled in expectation. It is rather soft, and it
can be verified when Q̃0 has finite variance (under early-stopping) (Liang et al., 2024).

Assumption 4 (Bounded Mismatch). For all t g 1 where q̃t−1 exists, and ℓ g 2,

EXt∼Q̃t
∥∆t(Xt)∥ℓ = O(³̄t).

The above Assumption 4 is used to characterize the amount of mismatch at each time t g 1. The
³̄t :=

∏t
i=1 ³i is necessary for the overall bias to be bounded.

In the paper, Assumptions 3 and 4 have been established in two cases of zero-shot conditional
sampling: (i) where Q0 has bounded support for any H , using a special ³t in (8) (see the proof of
Theorem 4); and (ii) where Q0 is Gaussian mixture and H = (Ip 0) (see Lemma 8). For Case (i),
the assumption that Q0 has bounded support has wide applicability in practice (e.g., images (Ho
et al., 2020; Wang et al., 2023)) and is commonly made in many theoretical investigations of the
score-matched DDPM (Li et al., 2024a;c). Finally, note that when q̃0 does not exist (e.g., for images
(Ho et al., 2020; Wang et al., 2023)), Assumptions 3 and 4 are required only for t g 2.

3.2 CONVERGENCE BOUND

Before presenting the main result, we first define a set of noise schedule as follows.

Definition 1 (Noise Schedule). For all sufficiently large T , set the step size ³t’s to satisfy

1− ³t ≲
log T
T , ∀1 f t f T, and ³̄T :=

∏T
t=1 ³t = o

(
1
T

)
.

An example of ³t that satisfies Definition 1 is 1 − ³t ≡ c log T
T , ∀t g 1 with c > 1. Then,

³̄T =
(
1− c log T

T

)T
= exp

(
T log

(
1− c log T

T

))
= O

(
eT

−c log T
T

)
= o

(
T−1

)
.

The following Theorem 1 provides an upper bound on the KL-divergence between the target distri-
bution Q̃0 and the sampling distribution P̂0, as a function of (general) score-mismatch ∆t at each
time t g 1. Theorem 1 is the first convergence result for score-mismatched DDPM samplers for any
smooth Q̃0 that has finite second moment (along with some mild regularity conditions).
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Theorem 1 (DDPM under Score Mismatch). Suppose that Q̃0 has a p.d.f. q̃0 which is analytic, and
suppose that Assumptions 1 to 4 are satisfied. Then, with the ³t chosen to satisfy Definition 1, the

distribution P̂0 from the score-mismatched DDPM satisfies

KL(Q̃0∥P̂0) ≲ Woracle +Wbias +Wvanish, where

Woracle =
∑T

t=1
(1−³t)

2

2³t
EXt∼Q̃t

[
Tr
(
∇2 log q̃t−1(mt(Xt))∇2 log q̃t(Xt)

)]
+ (log T )ε2

Wbias =
∑T

t=1(1− ³t)EXt∼Q̃t
∥∆t(Xt)∥2

Wvanish =
∑T

t=1
1−³t√

³t
EXt∼Q̃t

[
(∇ log q̃t−1(mt(Xt))−

√
³t∇ log q̃t(Xt))

⊺∆t(Xt)

]

−∑T
t=1

(1−³t)
2

2³t
EXt∼Q̃t

[
∆t(Xt)

⊺∇2 log q̃t−1(mt(Xt))∆t(Xt)
]

+
∑T

t=1
(1−³t)

2

3!³t
3/2 EXt∼Q̃t

[
3
∑d

i=1 ∂
3
iii log q̃t−1(mt(Xt))∆t(Xt)

i

+
∑d

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt(Xt))∆t(Xt)

j

]
+maxtg1

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )ε.

When Q̃0 does not have a p.d.f., a similar upper bound is applied to KL(Q̃1∥P̂1) such that
W2(Q̃1, Q̃0)

2 ≲ (1− ³1)d (see Corollary 1 in Appendix F.5).

To explain the three error terms in Theorem 1, Woracle captures the error assuming that one has access
to (a close estimate of) ∇ log q̃t, ∀t g 1. This error is independent of the score mismatch ∆t, and it
decays as Õ(T−1) under Assumption 3 (Liang et al., 2024, Theorem 1). The remaining two error
terms Wbias and Wvanish arise from the mismatched sampling process. Both terms become zero if
∆t ≡ 0 for all t g 1, which corresponds to the score-matched case. Under Assumptions 3 and 4,
Wvanish decays as Õ(T−1) under an additional mild condition (see Lemma 5 in Appendix G), and
Wbias asymptotically approaches a constant. Combining all three terms, score mismatch causes an
asymptotic distributional bias between Q̃0 and P̂0.

To further understand Wbias, note that 1 − ³t is usually summable under Assumption 4 (cf. Lem-
mas 7 and 10). Thus, the bias can be further upper-bounded by the maximum step-wise mismatch
maxtg1 EXt∼Q̃t

∥∆t(Xt)∥2. In case that µt(xt) =
1√
³t

(xt + (1− ³t)gt(xt)) (as for the zero-shot

sampler in (6)), define a measure P̃t such that gt(xt) = ∇ log p̃t(xt). Then, from (2),

EXt∼Q̃t
∥∆t(Xt)∥2 = EXt∼Q̃t

∥∥∥∇ log q̃t(Xt)
p̃t(Xt)

∥∥∥
2

=: F(Q̃t∥P̃t).

where F(Q∥P ) denotes the Fisher divergence (or called relative Fisher information) between Q and
P . In Section 4, this distributional bias Wbias inspires us to design a novel zero-shot DDPM sampler,
the BO-DDNM sampler, that minimizes the asymptotic bias.

Next we provide an upper bound with explicit dimensional dependency, for any Q0 that has finite
sixth moment such as Gaussian mixture Q0’s and those Q0’s having bounded support. To this end,
we consider a special noise schedule first proposed in Li et al. (2024c):

1− ³1 = ¶, 1− ³t =
c log T

T min

{
¶
(
1 + c log T

T

)t
, 1

}
, ∀2 f t f T (8)

for any constants (c, ¶) such that c > 1 and ¶ec > 1. Note that this noise schedule corresponds to
early-stopping in the literature (Chen et al., 2023a; Benton et al., 2024a). With the ³t in (8), we can
show that the regularity condition Assumption 3 holds for a quite general set of distributions (see
Lemma 5 in Appendix G).

Theorem 2. Suppose that EX0∼Q̃0
∥X0∥6 ≲ d3. Further, suppose that ∆t satisfies that

EXt∼Q̃t
∥∆t(Xt)∥4 ≲

³̄2
t

(1−³̄t)2r
d2µ with some µ, r g 1 for all t g 2. Then, if the estimation

error satisfies Assumption 2 and if ∆t satisfies Assumption 4, with the ³t in (8) such that ¶ j 1 and

7
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c ≍ log(1/¶), we have, for some Q̃1 such that W2(Q̃1, Q̃0)
2 ≲ ¶d,

KL(Q̃1∥P̂1) ≲ dµ¶−r
(
1− 2 log(1/¶) log T

T

)

+max{d(3+µ)/2¶−
r+2
2 , d1+µ¶−(r−1)} (log T )2

T + dµ/2¶−r/2(log T )ε.

Note that Theorem 2 provides the first performance guarantee with explicit dimensional dependence
for general score-mismatched DDPMs. Here the finite sixth moment is a technical condition to
guarantee small expected difference of the first-order Taylor polynomial in case of mismatched scores
(see Lemma 5 in Appendix G). Later, Theorem 2 will be useful to provide guarantees for zero-shot
conditional samplers under linear models (Theorem 4).

4 ZERO-SHOT CONDITIONAL DDPM SAMPLERS

As we discuss before, an important scenario of score-mismatched diffusion models is the zero-shot
conditional problem, where certain information y is given. In this section, we apply our general
results for score-mismatch DDPMs in Section 3 to studying zero-shot conditional DDPM samplers. In
the following, we are particularly interested in the linear conditional model in (4). We take the same
Assumptions 1, 3 and 4 (albeit with changed notations), and further adopt the following common
assumption on the unconditional score estimation (Chen et al., 2023a;d; Liang et al., 2024).

Assumption 5 (Estimation Error of Unconditional Score). Suppose that st satisfies

1
T

∑T
t=1 EXt∼Qt|y

∥st(Xt)−∇ log qt(Xt)∥2 f ε2, where ε2 = Õ(T−2).

Note that, with the zero-shot sampler defined in (6), since
∥∥Id −H H

∥∥ = 1, we have, ∀x ∈ R
d,

∥µ̂t,y − µt,y∥2 =
(1− ³t)

2

³t

∥∥(Id −H H)(st −∇ log qt)
∥∥2 f (1− ³t)

2

³t
∥st −∇ log qt∥2 . (9)

Therefore, Assumption 5 directly implies Assumption 2, and thus Theorem 1 (as well as Corollary 1)
still holds under Assumptions 1 and 3 to 5.

4.1 A NOVEL BIAS-OPTIMAL ZERO-SHOT SAMPLER

Guided by the performance guarantee characterized in Theorem 1, we will propose a novel optimized
zero-shot condition sampler. With the zero-shot sampler defined in (6), the goal is to choose the ft,y
function that minimizes the convergence error for each y ∈ R

p and t g 1.

Specifically, it is observed in Theorem 1 that the convergence error in terms of the KL-divergence
will have an asymptotic distributional bias given by Wbias. As follows, we characterize an optimal
ft,y that minimizes Wbias, which thus yields a corresponding bias-optimal zero-shot sampler.

Theorem 3. Define Σt|0,y := ³̄tÃ
2
yH

 (H )⊺ + (1− ³̄t)Id. For any Q0 and t g 1, we have

∇ log qt|y(xt|y) = Σ−1
t|0,y(

√
³̄tH

 y − xt) +
√
³̄t

1−³̄t
(Id −H H)EQ0|t,y

[X0|xt, y].

Also, recall the sampler in (6) and define f∗
t,y as

f∗
t,y(xt) := Σ−1

t|0,y
(√

³̄tH
 y −H Hxt

)
. (10)

Also recall ∆t,y from (7). Then, f∗
t,y satisfies that, for all t g 1 and fixed y ∈ R

p,

f∗
t,y ∈ argmin

ft,y :(Id−H†H)ft,y≡0

∥∆t,y∥2 , Qt|y–almost surely.

The sampler f∗
t,y(xt) defined in (10) provides a bias-optimal zero-shot conditional DDPM sampler.

In the case with Ãy = 0, such an optimal sampler coincides with the regular DDNM sampler in Wang
et al. (2023) (see Appendix D). Thus, we call this sampler as Bias-Optimal (BO) DDNM sampler.
With (10), we can also calculate the minimum step-wise mismatch as

min
ft,y :(Id−H†H)ft,y≡0

EXt∼Qt|y
∥∆t,y∥2 = EXt∼Qt|y

∥∥∥∇ log
qt|y(Xt)

qt(Xt)

∥∥∥
2

(Id−H†H)
,

8
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Figure 1: Comparison of BO-DDNM, DDNM
and DDNM+ for Gaussian (left) and Gaussian
mixture (right) Q0 under measurement noise.

Figure 2: Distributional bias as a function of the
conditioning y (left) and the correlation coeffi-
cient Ä (right) for Gaussian Q0.

which is the projected Fisher divergence between Qt|y and Qt on range(Id −H H).

In the following lemma, we provide the performance bound for BO-DDNM when Q0 has bounded
support. For comparison, we also derive the theoretical performance of vanilla DDNM, denoted as
fN
t,y .

Theorem 4 (BO-DDNM vs. DDNM). Suppose that ∥X0∥2 f R2d a.s. under Q0. Suppose that
Assumptions 1 and 5 hold. Then, with the conditional sampler f∗

t,y in (10), Theorem 2 holds with

µ = 1 and r = 2. Also, with the conditional sampler fN
t,y := (1− ³̄t)

−1
(√

³̄tH
 y −H Hxt

)
, if

further
∥∥H ∥∥ ≲ 1, then Theorem 2 holds with µ = 1 and r = 4.

Theorem 4 establishes the first result applicable to DDNM-type zero-shot conditional samplers for
any linear conditional models on those target distributions having bounded support.

Advantage of BO-DDNM over DDNM and DDNM+: When there is positive measurement noise,
Theorem 4 indicates that our BO-DDNM sampler that uses ft,y = f∗

t,y enjoys a smaller asymptotic

bias than DDNM that uses fN
t,y with the ³t in (8) (¶−2 vs. ¶−4). Note that the DDNM sampler

corresponds to ft,y = fN
t,y (see Appendix D). Such an advantage is also demonstrated by our

numerical experiment. In Figure 1, we numerically compared modified conditional zero-shot sampler
(as given in (10)) with the DDNM and DDNM+ sampler for both Gaussian and Gaussian mixture
Q0’s at different levels of measurement noise. It is observed that the optimal BO-DDNM sampler
achieves a much lower bias than both the DDNM and the DDNM+ samplers numerically, especially
when Ã2

y becomes large.

4.2 BO-DDNM SAMPLER FOR GAUSSIAN MIXTURE Q0

In this section, we focus on the convergence dependency on other system parameters of the BO-
DDNM sampler, including the chosen y. In particular, we restrict our attention to Gaussian mixture
Q0’s and to a special conditional model, where H = (Ip 0). This choice can be seen in many
applications, such as image super-resolution and inpainting (after reorganizing the pixels), where Ip
corresponds to the locations of the given pixels (Wang et al., 2023; Song et al., 2023a). We assume
positive measurement noise. We introduce the notation [Σ0]ab to denote the variance components
that correspond to the space of a× b where a, b ∈ {y, ȳ}.

The following Proposition 1 gives an upper bound on the asymptotic bias for Gaussian mixture Q0.

Proposition 1. Suppose that Q0 is Gaussian mixture with equal variance, whose p.d.f. is given

by q0(x0) =
∑N

n=1 Ãnq0,n(x0), where q0,n is the p.d.f. of N (µ0,n,Σ0) and Ãn ∈ [0, 1] is the

mixing coefficient with
∑N

n=1 Ãn = 1. Suppose that H = (Ip 0), and adopt f∗
t,y in (10) and ³t

in Definition 1. Write ¼1 g · · · g ¼d > 0 and ¼̃1 g · · · g ¼̃d−p > 0 as the eigenvalues of Σ0 and
[Σ0]ȳȳ , respectively. Then,

EXt∼Qt|y
∥∆t,y(Xt)∥2

≲ ³̄td+ ³̄2
t

∥[Σ0]yȳ∥2

min{¼̃d−p,1}2 min{¼d,1}2
max

{
d(¼1 + Ã2

y) +
∑N

n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2 , d
}

≲ ³̄t

(
d+

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2
)
.

9
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Proposition 1 indicates that three factors affect (an upper bound on) the asymptotic bias. (i) The
measurement noise variance Ã2

y determined by the system nature has an increasing effect on the bias.

(ii) The averaged distance
∑N

n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2 between H y and H Hµ0,n captures the
quadratic dependency in y, as illustrated in the left plot of Figure 2. (iii) The correlation between Hx0

and (Id −H H)x0 of each mixture component contributes positively to the bias, which is contained

in the factor ∥[Σ0]yȳ∥2

min{¼d,1}2 . To see this, consider Ã2
y = 0 and a specific Gaussian example with d = 2,

p = 1, and Σ0 =

(
Ã2
11 ÄÃ11Ã22

ÄÃ11Ã22 Ã2
22

)
. As the correlation coefficient Ä increases, Σ0 becomes

closer to be singular, and thus ¼d decreases to 0. Also, ∥[Σ0]yȳ∥2 = Ä2Ã2
11Ã

2
22 increases quadratically

with Ä. Hence, this factor ∥[Σ0]yȳ∥2

min{¼d,1}2 grows unboundedly as Ä → 1, as does EXt∼Qt|y
∥∆t,y(Xt)∥2.

Such dependency on the correlation is illustrated numerically in the right plot of Figure 2.

The following theorem characterizes the conditional KL divergence when Q0 is mixture Gaussian.
In particular, we can show Assumption 4 holds with any ³t that satisfies Definition 1 when Q0 is
Gaussian mixture (see Lemma 8 in Appendix I.5).

Theorem 5. Suppose the same conditions in Proposition 1 hold and Ã2
y > 0. Suppose that As-

sumption 5 holds. Take f∗
t,y in (10) and ³t that further satisfies

∑T
t=1(1 − ³t)³̄t = 1 + o(1).

Then,

KL(Q0|y∥P̂0|y) ≲
(
d+

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2
)
+

(
d2 +

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥4
)

(log T )2

T +
√

d+
∑N

n=1 Ãn ∥H y −H Hµ0,n∥2(log T )ε.

Although Proposition 1 and Theorem 5 assume H = (Ip 0), extension to general H is straightfor-
ward by modifying the proof of Lemma 8 and using the fact that

∥∥H H
∥∥ =

∥∥Id −H H
∥∥ = 1.

This is the first convergence result for zero-shot samplers where explicit dependency on the condi-
tioning y is derived for Gaussian mixture targets. Note that the extra condition on ³t can be verified
for both constant ³t (Lemma 10) and that in (8) (Lemma 7). Among the three terms in Theorem 5,
the first term is the asymptotic bias analyzed in Proposition 1. Since the last two terms decrease to
zero as T → ∞, the asymptotic KL divergence will also approach some non-zero limit of order d.

The proof of Theorem 5 is non-trivial because from Theorem 1 we need to figure out the dependency
on y in all first three orders of partial derivatives of a Gaussian mixture density, which is generally
hard to express. To this end, we restrict focus to a particular linear model where explicit dependency
can be sought. The result can be extended to the case of Ã2

y = 0 with the ³t in (8) (see Remark 2).

5 CONCLUSION

In this paper, we have provided convergence guarantees for the general score-mismatched diffusion
models, which are specialized to zero-shot conditional samplers. For linear conditional models,
we also designed an optimal BO-DDNM sampler that minimizes the asymptotic bias, for which
we showed the dependencies on the system parameters. One future direction is to explore zero-
shot samplers that use higher-order derivatives of the log-densities, which might achieve better
convergence results.
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A FULL LIST OF NOTATIONS

For any two functions f(d, ¶, T ) and g(d, ¶, T ), we write f(d, ¶, T ) ≲ g(d, ¶, T ) (resp. f(d, ¶, T ) ≳
g(d, ¶, T )) for some universal constant (not depending on ¶, d or T ) L < ∞ (resp. L > 0) if
lim supT→∞ |f(d, ¶, T )/ g(d, ¶, T )| f L (resp. lim infT→∞ |f(d, ¶, T )/g(d, ¶, T )| g L). We write
f(d, ¶, T ) ≍ g(d, ¶, T ) when both f(d, ¶, T ) ≲ g(d, ¶, T ) and f(d, ¶, T ) ≳ g(d, ¶, T ) hold. Note
that the dependence on ¶ and d is retained with ≲,≳,≍. We write f(d, ¶, T ) = O(g(T )) (resp.
f(d, ¶, T ) = Ω(g(T ))) if f(d, ¶, T ) ≲ L(d, ¶)g(T ) (resp. f(d, ¶, T ) ≳ L(d, ¶)g(T )) holds for some
L(d, ¶) (possibly depending on ¶ and d). We write f(d, ¶, T ) = o(g(T )) if lim supT→∞ |f(d, ¶, T )
/g(T )| = 0. We write f(d, ¶, T ) = Õ(g(T )) if f(d, ¶, T ) = O(g(T )(log g(T ))k) for some constant
k. Note that the big-O notation omits the dependence on ¶ and d. In the asymptotic when ε−1 → ∞,
we write f(d, ε−1) = O(g(d, ε−1)) if f(d, ¶, ε−1) ≲ g(d, ¶, ε−1)(log g(ε−1))k for some constant
k. Unless otherwise specified, we write xi(1 f i f d) as the i-th element of a vector x ∈ R

d and
[A]ij as the (i, j)-th element of a matrix A. For a function f(x) : Rd → R, we write ∂if(z) as a

shorthand for ∂
∂xi f(x)

∣∣∣
x=z

, and similarly for higher moments. For a vector (resp. matrix), all norms,

if not explicitly specified, are referred to 2-norm (resp. spectral norm). For a vector x and matrix P ,
define ∥x∥P :=

√
a⊺Pa. For matrices A,B, Tr(A) is the trace of A, and A ¯ B means that B −A

is positive semi-definite. For a positive integer n, [n] := {1, . . . , n}.

B RELATED WORKS ON UNCONDITIONAL DDPM SAMPLERS

Given time-averaged L2 unconditional score estimation error (Hyvärinen, 2005), polynomial-time
convergence guarantees have been established for wide families of target distributions (De Bortoli
et al., 2021; Chen et al., 2023d; Lee et al., 2023; Chen et al., 2023a; Benton et al., 2024a; Pedrotti
et al., 2023; Conforti et al., 2023). For all target distributions with finite second moment, under L2

score estimation error, O(d log(1/¶)2/ε2) number of steps are sufficient to achieve ε2 KL divergence
between the ¶-perturbed target distribution and the generated distribution using the specially designed
exponential-decay-then-constant step-sizes (Benton et al., 2024a; Conforti et al., 2023). The analysis
usually involves applying the Girsanov change-of-measure framework and the Fokker-Plank equation
(Chen et al., 2023d;a) to either the original SDE diffusion process or some transformed process
(Benton et al., 2024a; Conforti et al., 2023), followed by an analysis of the discretization of the
continuous-time process. More recently, similar convergence guarantees have been established
using non-SDE-type techniques, such as with typical sets (Li et al., 2024c) and with tilting factor
representations (Liang et al., 2024). Here the new analysis introduced in Liang et al. (2024) is
applicable to a larger set of step-sizes (equivalently, noise schedules) than the ones commonly used in
previous analyses (Chen et al., 2023a; Benton et al., 2024a; Conforti et al., 2023). In this paper, we
employ the same analytical framework as in Liang et al. (2024).

Some other works analyzed sampling errors using a different measure (the Wasserstein-2 distance)
(Bruno et al., 2023; Gao et al., 2023; Gao & Zhu, 2024). Beyond stochastic samplers, another line
of studies provided theoretical guarantees for the deterministic sampler corresponding to DDPM
(Chen et al., 2023e;c; Huang et al., 2024). Besides, Cheng et al. (2023); Benton et al. (2024b); Jiao
et al. (2024); Gao et al. (2024) provided guarantees for the closely-related flow-matching model,
which learns a deterministic coupling between any two distributions. Also, Lyu et al. (2024); Li et al.
(2024b) provided convergence guarantees for the closely-related consistency models (Song et al.,
2023b). Finally, in order to achieve an end-to-end analysis, several works also developed sample
complexity bounds to achieve the L2 score estimation error for a variety of distributions (Oko et al.,
2023; Shah et al., 2023; Gatmiry et al., 2024; Chen et al., 2024; Cole & Lu, 2024; Zhang et al., 2024;
Mei & Wu, 2023; Chen et al., 2023b).
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C DETAILS OF NUMERICAL SIMULATIONS

In Figure 1, we compared the performances of our optimal BO-DDNM sampler (with the f∗
t,y in (10))

against the DDNM and DDNM+ samplers (Wang et al., 2023) at different levels of Ã2
y . For Gaussian,

we use µ0 = 0, d = 4, p = 2, and y = (0.5 0.5). We first randomly generate a positive definite
matrix Σ0 and uniformly sample Ä ∈ [0.4, 0.7), and then this correlation coefficient is enforced for
any [Σ0]

ij where i ∈ [p] and j ∈ {p+ 1, . . . , d}. We use the noise schedule in (8) with c = 3 and
¶ = 0.0001 for Gaussian Q0. For Gaussian mixture, we use N = 2, d = 2, p = 1, and y = 1. We set
Ãn = (0.4 0.6), diag(Σ0) = (0.1 1), and Ä = 0.6. We further uniformly sample {µ0,n}Nn=1 in
the space [−1, 1)× [−1, 1). We use the noise schedule in (8) with c = 4 and ¶ = 0.02 for Gaussian
mixture Q0. We use 150000 samples to estimate the divergence when Q0 is Gaussian mixture.

In Figure 2, we numerically verify the exact bias in KL divergence as a function of y and Ä for
Gaussian Q0. Here Q0 = N (0,Σ0), d = 4 and p = 2. Suppose that Ã2

y = 0. We assume that each
element of y has equal values. The correlation coefficient Ä is enforced for any pair of xi and xj

where i ∈ [p] and j ∈ {p+ 1, . . . , d}. We first randomly generate a positive definite matrix Σ0 and
then enforce the correlation condition for any xi and xj where i ∈ [p] and j ∈ {p+ 1, . . . , d}. We
use a sufficiently large number of steps T = 20000. The conditional sampler is set as ft,y = f∗

t,y
given in (10). The noise schedule in (8) with c = 3 and ¶ = 0.0001 is used.

D DERIVATION OF SCORE BIAS FOR EXISTING ZERO-SHOT DDPM
SAMPLERS

In this section we show some examples of zero-shot conditional samplers proposed in the literature
and in particular how they are related to the formulation of interest in (6). We recall the notations H ,
y, and Ãt from Section 2.3. Also denote

µt :=
1√
³t

xt +
1− ³t√

³t
∇ log qt(xt) = EXt−1∼Qt−1|t(·|xt)[Xt−1|xt]

which is the mean of the unconditional reverse-step at time t g 1.

D.1 COME-CLOSER-DIFFUSE-FASTER (CCDF)

We first examine the Come-Closer-Diffuse-Faster (CCDF) algorithm (Chung et al., 2022b). The
CCDF algorithm using DDPM samplers gives that

x′t−1 = µt + Ãtzt,1,

xt−1 = (I −H H)x′t−1 +
√
³̄tH

 y +
√
1− ³̄tzt,2

where zt,1, zt,2
i.i.d.∼ N (0, Id) are standard Gaussian random variables. Thus, the conditional mean

of the update is

µt,y = (I −H H)µt +
√
³̄t−1H

 y

=
1√
³t

xt +
1− ³t√

³t
(I −H H)∇ log qt(xt) +

√
³̄tH

 y − 1√
³t

H Hxt

in which

ft,y(xt) =
1

1− ³t

(√
³t

√
³̄tH

 y −H Hxt

)
.

D.2 DDNM AND DDNM+

Next, we examine the DDNM algorithm and its modified version DDNM+ (Wang et al., 2023). We
first note that the unconditional DDPM satisfies that (cf. (Ho et al., 2020, Equations (7) and (11))),

µt :=

√
³̄t−1(1− ³t)

1− ³̄t
x0|t +

√
³t(1− ³̄t−1)

1− ³̄t
xt,

x0|t :=
1√
³̄t

xt +
1− ³̄t√

³̄t
∇ log qt(xt) = EX0∼Q0|t(·|xt)[X0|xt]. (11)
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Combining these two lines, we have µt = 1√
³t
(xt + (1 − ³t)∇ log qt(xt)). In DDNM, x0|t is

projected along the direction of the given y, which yields

x0|t,y := H y + (Id −H H)x0|t,

and the corresponding conditional mean of the update becomes

µt,y =

√
³̄t−1(1− ³t)

1− ³̄t
x0|t,y +

√
³t(1− ³̄t−1)

1− ³̄t
xt.

Thus,

µt,y =

√
³̄t−1(1− ³t)

1− ³̄t

(
H y + (Id −H H)x0|t

)
+

√
³t(1− ³̄t−1)

1− ³̄t
xt

(i)
= (Id −H H)µt +H 

(√
³̄t−1(1− ³t)

1− ³̄t
y +

√
³t(1− ³̄t−1)

1− ³̄t
Hxt

)

=
1√
³t

xt +
1− ³t√

³t
(Id −H H)∇ log qt(xt)

+

(√
³̄t−1(1− ³t)

1− ³̄t
H y +

√
³t(1− ³̄t−1)

1− ³̄t
H Hxt −

1√
³t

H Hxt

)

where (i) follows from (11). Thus, to express this conditional mean in the form of (6),

ft,y(xt) =

√
³̄t

1− ³̄t
H y +

1

1− ³t

(
³t(1− ³̄t−1)

1− ³̄t
− 1

)
H Hxt

=
1

1− ³̄t

(√
³̄tH

 y −H Hxt

)
.

Here note that ft,y(xt) is supported on range(H H). Also note that for DDNM, ft,y = f∗
t,y , which

is the BO-DDNM sampler defined in (10), when there is no measurement noise (i.e., Ã2
y = 0).

Next we investigate its modified version, DDNM+, in particular when H = (Ip 0). To relate the
notations of (Wang et al., 2023, Section 3.3 and Appendix I) with ours, note that Σ = A = H ,

U = Ip, V = Id, s1, . . . , sp = 1, sp+1, . . . , sd = 0, and a =
√
³̄t−1(1−³t)

1−³̄t
. If Ãt g aÃy , we have

Σt = Id, Φt =

(
(Ã2

t − a2Ã2
y)Ip 0

0 Ã2
t Id−p

)
.

Otherwise, if Ãt < aÃy , we have

Σt =

( Ãt

aÃy
Ip 0

0 Id−p

)
, Φt =

(
0 0
0 Ã2

t Id−p

)
.

Observe that the only difference is on the space that supports H H .

From (Wang et al., 2023, Equations (17) and (18)), we can write

x̂0|t,y := (Id −H H)x0|t +ΣtH
 y + (Id − Σt)H

 Hx0|t︸ ︷︷ ︸
supported on range(H†H)

,

Thus, with similar arguments above,

µt,y =

√
³̄t−1(1− ³t)

1− ³̄t
x̂0|t,y +

√
³t(1− ³̄t−1)

1− ³̄t
xt

=
1√
³t

xt +
1− ³t√

³t
(Id −H H)∇ log qt(xt)

+
1− ³t√
³t(1− ³̄t)

(√
³̄t(ΣtH

 y + (Id − Σt)H
 Hx0|t)−H Hxt

)
︸ ︷︷ ︸

supported on range(H†H)

where ft,y is again supported on range(H H).
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D.3 SAMPLERS USING HIGHER-ORDER DERIVATIVES

Before we end this section, we note that the formulation in (6) only uses (estimates of) first-order
derivatives of (unconditional) log-p.d.f.s (a.k.a. unconditional score functions). This might not
correspond to the optimal zero-shot sampler, and in practice there have been methods that use both
first- and second-order derivatives (namely, in ∂x0|t(xt)/∂xt) to achieve better zero-shot sampling
performance (Chung et al., 2023; Song et al., 2023a). Nevertheless, the second-order derivatives
might be hard to obtain, which require extra machine time and memory in the calculation. We leave
investigations to use second-order derivatives in zero-shot conditional samplers as future work.

E PROOF SKETCH OF THEOREM 1

We now provide a proof sketch of Theorem 1 to describe the idea of our analysis approach. The
main technical challenge due to mismatched scores is to analyze the expected tilting factor under
a mean-perturbed Gaussian, providing an upper bound of the asymptotic orders of all Gaussian
non-centralized moments. See the full proof in Appendix F.

To begin, with Lemma 1, we decompose the total error as KL(Q̃0∥P̂0) f EXT∼Q̃T

[
log q̃T (XT )

p̂T (XT )

]
+

∑T
t=1 EXt,Xt−1∼Q̃t,t−1

[
log

pt−1|t(Xt−1|Xt)

p̂t−1|t(Xt−1|Xt)

]
+
∑T

t=1 EXt,Xt−1∼Q̃t,t−1

[
log

pt−1|t(Xt−1|Xt)

p̂t−1|t(Xt−1|Xt)

]
. These

three terms correspond respectively to the initialization error, estimation error, and reverse-step
error. The initialization error can be bounded by ³̄T d in order using (Liang et al., 2024, Lemma 3)
under Assumption 1. Below we focus on the remaining two terms.

Step 1: Bounding estimation error under mismatch (Lemma 2). At each time t = 1, . . . , T ,
log(pt−1|t(xt−1|xt)/p̂t−1|t(xt−1|xt)) has an explicit expression since they are conditional Gaussians
with the same variance. However, differently from the typical matched case, the mean of Pt−1|t
(i.e., µt(xt)) is no longer equal to the posterior mean of Q̃t−1|t (i.e., mt(xt)). Their difference is
contained in ∆t(xt), whose asymptotic order needs to be upper-bounded in light of Assumption 2.

Step 2: Decomposing reverse-step error under mismatch (Equation (15)). First we decompose
the tilting factor as ·̃t,t−1(xt, xt−1) = ·̃mis(xt, xt−1) + ·̃van(xt, xt−1), where

·̃mis :=
√
³t∆t(xt)

⊺(xt−1 −mt(xt))

·̃van := (∇ log q̃t−1(mt(xt))−
√
³t∇ log q̃t(xt))

⊺(xt−1 −mt(xt)) +
∞∑

p=2

Tp(log q̃t−1, xt,mt(xt)).

Here ·̃mis captures the factor that contributes to the total bias within ·̃t,t−1. Define the oracle sampling
process as P̃t−1|t = N (mt,y, Ã

2
t Id). Then, the reverse-step error can be decomposed as

EQ̃t,t−1
[·̃t,t−1]− EQ̃t×Pt−1|t

[·̃t,t−1] =
(
EQ̃t,t−1

[·̃t,t−1]− EQ̃t×Pt−1|t
[·̃t,t−1]

)

︸ ︷︷ ︸
Woracle, rev-step

+
(
EQ̃t×P̃t−1|t

[·̃mis]− EQ̃t×Pt−1|t
[·̃mis]

)

︸ ︷︷ ︸
Wbias, rev-step

+
(
EQ̃t×P̃t−1|t

[·̃van]− EQ̃t×Pt−1|t
[·̃van]

)

︸ ︷︷ ︸
Wvanish, rev-step

.

Step 3: Bounding Woracle, rev-step and Wbias, rev-step (Equations (16) and (17)). Under Assumption 3,
the dominant term of Woracle, rev-step is given by (Liang et al., 2024, Theorem 1). Also, the calculation

of Wbias, rev-step is reduced to the difference in conditional mean, which is proportional to ∥∆t(xt)∥2.

Step 4: Bounding Wvanish, rev-step (Lemmas 3 and 4). To upper-bound Wvanish, rev-step, with results

on the matched case in Liang et al. (2024), we need only to characterize the mean of ·̃van under the
mismatched posterior Pt−1|t. We determine the dominant order in the expected values of all Taylor
polynomials, which includes calculating all non-centralized moments. We first calculate the first three
non-centralized moments (Lemma 3) and then determine the asymptotic order of all higher moments
(Lemma 4). With these, we can finally locate the terms of dominating order in Wvanish, rev-step.
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F PROOF OF THEOREM 1 AND COROLLARY 1

Overall, the structure of the proof of Theorem 1 is similar to that for (Liang et al., 2024, Theorem 1).
To start, we note that with similar arguments in (Liang et al., 2024, Equation 13), an upper bound on
KL(Q̃0∥P̂0) is given by

KL(Q̃0∥P̂0)

= KL(Q̃T ∥P̂T ) +

T∑

t=1

EXt∼Q̃t

[
KL(Q̃t−1|t(·|Xt)∥P̂t−1|t(·|Xt))

]

−
T∑

t=1

EXt−1∼Q̃t−1

[
KL(Q̃t|t−1(·|Xt−1)∥P̂t|t−1(·|Xt−1))

]

f KL(Q̃T ∥P̂T ) +

T∑

t=1

EXt∼Q̃t

[
KL(Q̃t−1|t(·|Xt)∥P̂t−1|t(·|Xt))

]

= EXT∼Q̃T

[
log

q̃T (XT )

p̂T (XT )

]

︸ ︷︷ ︸
Term 1: initialization error

+
T∑

t=1

EXt,Xt−1∼Q̃t,t−1

[
log

pt−1|t(Xt−1|Xt)

p̂t−1|t(Xt−1|Xt)

]

︸ ︷︷ ︸
Term 2: estimation error

+

T∑

t=1

EXt,Xt−1∼Q̃t,t−1

[
log

q̃t−1|t(Xt−1|Xt)

pt−1|t(Xt−1|Xt)

]

︸ ︷︷ ︸
Term 3: reverse-step error

. (12)

The last equality holds because p̂T = pT . Now, we provide an upper bound for the reverse-step error
that is ready for further analysis. In the following lemma, we show that the mismatched q̃t−1|t is an
exponentially tilted form of pt−1|t.

Lemma 1. Fixed t g 1. For any fixed xt ∈ R
d, as long as q̃t−1 exists, we have

q̃t−1|t(xt−1|xt) =
pt−1|t(xt−1|xt)e

·̃t,t−1(xt,xt−1)

EXt−1∼Pt−1|t
[e·̃t,t−1(xt,Xt−1)]

where

·̃t,t−1(xt, xt−1)

:=
√
³t∆t(xt)

⊺(xt−1 −mt(xt)) + (∇ log q̃t−1(mt(xt))−
√
³t∇ log q̃t(xt))

⊺(xt−1 −mt(xt))

+

∞∑

p=2

Tp(log q̃t−1, xt−1,mt(xt)).

Here we define the p-th order term in the Taylor expansion of f(x) around µ as

Tp(f, x, µ) :=
1

p!

∑

µ∈Nd:
∑

i µ
i=p

∂p
a
f(µ)

d∏

i=1

(xi − µi)µ
i

where a ∈ [d]p are the indices of differentiation in which the multiplicity of i ∈ [d] is µi.

Proof. See Appendix H.1.

We abbreviate ·̃t,t−1 = ·̃t,t−1(xt, xt−1). Given the expression of ·̃t,t−1, the conditional reverse-step
error can be upper-bounded for any fixed xt as

EXt−1∼Q̃t−1|t

[
log

q̃t−1|t(Xt−1|xt)

pt−1|t(Xt−1|xt)

]

= EXt−1∼Q̃t−1|t

[
·̃t,t−1 − logEXt−1∼Pt−1|t

[e·̃t,t−1 ]
]
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(i)

f EXt−1∼Q̃t−1|t

[
·̃t,t−1

]
+ EXt−1∼Pt−1|t

[
− log e·̃t,t−1

]

= EXt−1∼Q̃t−1|t
[·̃t,t−1]− EXt−1∼Pt−1|t

[·̃t,t−1] (13)

where in (i) we use Jensen’s inequality and note that − log(·) is convex. Thus, from (12), we have an
upper bound as

KL(Q̃0∥P̂0) f EXT∼Q̃T

[
log

q̃T (XT )

p̂T (XT )

]

︸ ︷︷ ︸
Term 1: initialization error

+

T∑

t=1

EXt,Xt−1∼Q̃t,t−1

[
log

pt−1|t(Xt−1|Xt)

p̂t−1|t(Xt−1|Xt)

]

︸ ︷︷ ︸
Term 2: estimation error

+

T∑

t=1

EXt−1∼Q̃t−1|t
[·̃t,t−1]− EXt−1∼Pt−1|t

[·̃t,t−1]

︸ ︷︷ ︸
Term 3: reverse-step error

.

Here, using (Liang et al., 2024, Lemma 3), the initialization error can be upper-bounded as, when
T → ∞,

EXT∼Q̃T

[
log

q̃T (XT )

p̂T (XT )

]
f 1

2
EX0∼Q̃0

∥X0∥2 ³̄T +O
(
³̄2
T

)
.

This implies that, under Assumption 1 and if c > 1,

EXT∼Q̃T

[
log

q̃T (XT )

pT (XT )

]
= o(T−1).

Also, under Assumption 3, the higher-order Taylor polynomials enjoy exponential rate of decay in
expectation, which is contained in powers of (1− ³t). Thus, we are allowed to exchange the limit
(of Taylor expansion) and the expectation operators (cf. (Liang et al., 2024, Lemma 11)).

Now, we upper-bound the estimation error and reverse-step error under score mismatch separately.

F.1 STEP 1: BOUNDING ESTIMATION ERROR UNDER MISMATCH

The following lemma provides an upper bound for the estimation error under score mismatch.

Lemma 2. Under Assumptions 2 and 4, with the ³t satisfying Definition 1, we have

T∑

t=1

EXt,Xt−1∼Q̃t,t−1

[
log

pt−1|t(Xt−1|Xt)

p̂t−1|t(Xt−1|Xt)

]
≲ max

tg1

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )ε+ (log T )ε2.

Proof. See Appendix H.2.

F.2 STEP 2: DECOMPOSING REVERSE-STEP ERROR UNDER MISMATCH

Now, we decompose ·̃t,t−1(xt, xt−1) = ·̃mis + ·̃van where

·̃mis :=
√
³t∆t(xt)

⊺(xt−1 −mt(xt)),

·̃van := (∇ log q̃t−1(mt(xt))−
√
³t∇ log q̃t(xt))

⊺(xt−1 −mt(xt)) +

∞∑

p=2

Tp(log q̃t−1, xt−1,mt(xt)).

(14)

Here ·̃van is the same tilting factor without score bias (cf. Liang et al. (2024)). Also, define an
auxiliary conditional probability P̃t−1|t such that

P̃t−1|t := N
(
mt(xt),

1− ³t

³t
Id

)
,

which corresponds to the oracle reverse process that knows the true scores of the perturbed target
distributions. Thus, we can decompose the expected value of (13) in the following way:

EXt∼Q̃t

(
EXt−1∼Q̃t−1|t

− EXt−1∼Pt−1|t

)
[·̃t,t−1]
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= EXt∼Q̃t

(
EXt−1∼Q̃t−1|t

− EXt−1∼P̃t−1|t

)
[·̃t,t−1]

︸ ︷︷ ︸
Woracle, rev-step

+ EXt∼Q̃t

(
EXt−1∼P̃t−1|t

− EXt−1∼Pt−1|t

)
[·̃mis]

︸ ︷︷ ︸
Wbias, rev-step

+ EXt∼Q̃t

(
EXt−1∼P̃t−1|t

− EXt−1∼Pt−1|t

)
[·̃van]

︸ ︷︷ ︸
Wvanish, rev-step

. (15)

F.3 STEP 3: BOUNDING WORACLE, REV-STEP AND WBIAS, REV-STEP

Among the terms above, (Liang et al., 2024, Theorem 1) shows that, under Assumption 3 and using
the ³t in Definition 1,

Woracle, rev-step ≲

T∑

t=1

(1− ³t)
2
EXt∼Q̃t

[
Tr
(
∇2 log q̃t−1(mt(Xt))∇2 log q̃t(Xt)

)]
. (16)

Also, for Wbias, rev-step, since direct calculation yields

EXt−1∼P̃t−1|t
[·̃mis(xt, Xt−1)] = EXt−1∼Q̃t−1|t

[·̃mis(xt, Xt−1)] = 0,

EXt−1∼Pt−1|t
[·̃mis(xt, Xt−1)] = −(1− ³t) ∥∆t(xt)∥2 ,

we have

Wbias, rev-step = EXt∼Q̃t

(
EXt−1∼P̃t−1|t

− EXt−1∼Pt−1|t

)
[·̃mis(Xt, Xt−1)]

= (1− ³t)EXt∼Q̃t
∥∆t(Xt)∥2 . (17)

F.4 STEP 4: BOUNDING WVANISH, REV-STEP

Next, for Wvanish, rev-step, we first note that P̃t−1|t is conditional Gaussian. Thus, under Assumption 3,
we are able to exchange the limit (from Taylor series) and the expectation due to Gaussian-like
moments (cf. (Liang et al., 2024, Lemma 11)), which gives us

EXt−1∼P̃t−1|t
[·̃van(xt, Xt−1)]

=
1− ³t

2³t
Tr(∇2 log q̃t−1(mt(xt))) +

∞∑

p=4

EXt−1∼P̃t−1|t
[Tp(log q̃t−1, Xt−1,mt(xt))] .

Here the expected value at p = 3 is zero because all odd-order centralized moments of Gaussian
vanish.

Now it remains to characterize the expectation of ·̃van(xt, xt−1) under Pt−1|t. To this end, we
introduce the following notation.

Definition 2 (Big-O in Lp space). For a random variable ZT , we say that ZT (x) = OLp(Q)(1) if

(EX∼Q |ZT (X)|p)1/p = O(1) for all p g 1 as T → ∞. Define ÕLp(Q) likewise.

One property is that if ZT (x) = OLp(Q)(1) then EX∼Q |ZT (X)| = O(1). Another property is that
if Z1 = OLp(Q)(aT ) and Z2 = OLp(Q)(bT ) for all p g 1, applying Cauchy-Schwartz inequality we
get, for all p g 1,

(EX∼Q |Z1Z2|p)1/p f
(
EX∼QZ

2p
1 EX∼QZ

2p
2

)1/(2p)
= O(aT bT ),

which implies that OLp(Q)(aT )OLp(Q)(bT ) = OLp(Q)(aT bT ). Now, with this notation, the first lines
of Assumption 3 can be equivalently written as

(1− ³t)
m
∣∣∂k

a
log qt(Xt)

∣∣ = OLp(Q̃t)
((1− ³t)

m) , ∀p g 1,

(1− ³t)
m
∣∣∂k

a
log qt−1(mt(Xt))

∣∣ = OLp(Q̃t)
((1− ³t)

m) , ∀p g 1.
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Also, Assumption 4 can be equivalently written as

(1− ³t)
m ∥∆t,y(Xt)∥ = OLp(Q̃t)

(³̄t(1− ³t)
m), ∀p g 1.

With these notations, the following lemma characterizes the expectation of ·̃van(xt, xt−1) under
Pt−1|t, which involves non-centralized Gaussian moments.

Lemma 3. As long as q̃t−1 is defined, with the definition of ·̃van in (14), under Assumptions 3 and 4,
we have ∀ℓ g 1,

EXt−1∼Pt−1|t
[·̃van(xt, Xt−1)]

= −1− ³t√
³t

(∇ log q̃t−1(mt(xt))−
√
³t∇ log q̃t(xt))

⊺∆t(xt)

+
1− ³t

2³t
Tr(∇2 log q̃t−1(mt)) +

(1− ³t)
2

2³t
∆t(xt)

⊺∇2 log q̃t−1(mt)∆t(xt)

− 1

3!

(
(1− ³t)

2

³t
3/2

)

3

d∑

i=1

∂3
iii log q̃t−1(mt)∆

i
t +

d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt)∆

j
t




+

∞∑

p=4

EXt−1∼Pt−1|t
[Tp(log q̃t−1, Xt−1,mt(xt))] +OLℓ(Q̃t)

(
(1− ³t)

3
)
.

Proof. See Appendix H.3.

The following lemma provides the rate of decay of the difference in expectation of all Taylor
polynomials with order p g 4.

Lemma 4. As long as q̃t−1 is defined, under Assumptions 3 and 4, we have, ∀p g 4, ℓ g 1,

(
EXt−1∼P̃t−1|t

− EXt−1∼Pt−1|t

)
[Tp(log q̃t−1, Xt−1,mt(Xt))] = OLℓ(Q̃t)

(
(1− ³t)

3
)
.

Proof. See Appendix H.4.

Thus, with the help of Lemmas 3 and 4, we can identify the dominating terms in Wvanish, rev-step when
1− ³t is small. The dominating term is

Wvanish, rev-step = EXt∼Q̃t

(
EXt−1∼P̃t−1|t

− EXt−1∼Pt−1|t

)
[·̃van(Xt, Xt−1)]

=
1− ³t√

³t
EXt∼Q̃t

[(∇ log q̃t−1(mt(Xt))−
√
³t∇ log q̃t(Xt))

⊺∆t(Xt)]

− (1− ³t)
2

2³t
EXt∼Q̃t

[
∆t(Xt)

⊺∇2 log q̃t−1(mt(Xt))∆t(Xt)
]

+
1

3!

(
(1− ³t)

2

³t
3/2

)
EXt∼Q̃t

[
3

d∑

i=1

∂3
iii log q̃t−1(mt(Xt))∆t(Xt)

i

+

d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt(Xt))∆t(Xt)

j

]

+O((1− ³t)
3). (18)

Therefore, with the decomposition in (15) in mind, an upper bound on the reverse-step error is
achieved by summing up (16), (17) and (18). The proof of Theorem 1 is now complete.
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F.5 COROLLARY 1 AND ITS PROOF

Below we state and prove a corollary of Theorem 1 when q̃0 does not exist. By (Liang et al.,
2024, Lemma 6), q̃1 always exists, which provides us with the following convergence result with
early-stopping.

Corollary 1. Suppose that Assumptions 1 to 4 are satisfied. Then, suppose that the ³t satisfies

Definition 1 at t g 2, the distribution P̂1 from the discrete-time DDPM under score bias satisfies

KL(Q̃1∥P̂1)

≲

T∑

t=2

(1− ³t)EXt∼Q̃t
∥∆t(Xt)∥2

+

T∑

t=2

1− ³t√
³t

EXt∼Q̃t

[
(∇ log q̃t−1(mt(Xt))−

√
³t∇ log q̃t(Xt))

⊺∆t(Xt)

]

+

T∑

t=2

(1− ³t)
2

2³t
EXt∼Q̃t

[
Tr
(
∇2 log q̃t−1(mt(Xt))

(
∇2 log q̃t(Xt)−∆t(Xt)∆t(Xt)

⊺
) )]

+

T∑

t=2

(1− ³t)
2

3!³t
3/2

EXt∼Q̃t


3

d∑

i=1

∂3
iii log q̃t−1(mt(Xt))∆t(Xt)

i +
d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt(Xt))∆t(Xt)

j




+max
tg2

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )ε+ (log T )ε2,

where W2(Q̃1, Q̃0)
2 ≲ (1− ³1)d.

Proof. The result directly follows with the same arguments as in the proof of Theorem 1. The only
difference is the guarantee under the Wasserstein distance, which can be obtained using (Liang et al.,
2024, Lemma 12).

G PROOF OF THEOREM 2

We first recall some of the properties of the noise schedule in (8). By Lemma 6, the noise schedule

in (8) satisfies that 1−³t

(1−³̄t−1)p
≲

log T log(1/¶)
¶p−1T for all p g 1 while ³̄T = o(T−1), and thus such ³t

satisfies Definition 1 when t g 2. Further, with the ³t in (8), (Liang et al., 2024, Lemmas 15 and 17)
show that for any Q0 with finite variance under early-stopping, ∀p, ℓ g 1,

EXt∼Q̃t
|∂p

a
log q̃t(Xt)|ℓ = O

(
1

(1− ³̄t)pℓ/2

)
,

EXt∼Q̃t
|∂p

a
log q̃t−1(mt(Xt))|ℓ = O

(
1

(1− ³̄t−1)pℓ/2

)
.

Thus, using Lemma 6, Assumption 3 is satisfied (since ¶ is constant). In the following, we further
verify the last relationship in Assumption 3 holds.

Therefore, since Assumptions 1, 2 and 4 have been satisfied, we can invoke Corollary 1 and get
KL(Q̃1∥P̂1) ≲ Woracle +Wbias +Wvanish. Now, we investigate the dimensional dependence for each
term of the upper bound in Corollary 1.

To start, from (Liang et al., 2024, Theorem 3), for any Q̃0 having finite variance, with the ³t in (8),
we have

Woracle ≲
d2 log2(1/¶)(log T )2

T
+ (log T )ε2.

Also, since by assumption EXt∼Q̃t
∥∆t(Xt)∥2 ≲ ³̄t

(1−³̄t)r
dµ , with the ³t in (8), we have from

Lemma 7 that when ¶ j 1,

Wbias ≲
dµ

¶r

(
1− 2 log(1/¶) log T

T

)
.
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Now we investigate each term in Wvanish. The following lemma is useful to determine the rate of
difference of the first-order Taylor polynomials.

Lemma 5. When EX0∼Q̃0
∥X0∥6 ≲ d3, with the ³t in (8), we have

(1− ³t)
√
EXt∼Q̃t

∥∇ log q̃t−1(mt(Xt))−
√
³t∇ log q̃t(Xt)∥2 ≲

d3/2(1− ³t)
2

(1− ³̄t−1)3
.

As a result, Assumption 3 holds.

Proof. See Appendix H.5.

In other words, combining Lemma 5 and Lemma 6, we have

(1− ³t)
√

EXt∼Q̃t
∥∇ log q̃t−1(mt(Xt))−

√
³t∇ log q̃t(Xt)∥2 = Õ

(
1

T 2

)
. (19)

Now, by Cauchy-Schwartz inequality and Lemma 5,

T∑

t=2

1− ³t√
³t

EXt∼Q̃t

[
(∇ log q̃t−1(mt(Xt))−

√
³t∇ log q̃t(Xt))

⊺∆t(Xt)

]

f
T∑

t=2

1− ³t√
³t

√
EXt∼Q̃t

∥∆t(Xt)∥2×
√
EXt∼Q̃t

∥∇ log q̃t−1(mt(Xt))−
√
³t∇ log q̃t(Xt)∥2

≲
dµ/2

(1− ³̄t)r/2
× d3/2(1− ³t)

2

(1− ³̄t−1)3

≲

T∑

t=2

d
3+µ
2 log(1/¶)2(log T )2

¶1+r/2T 2

f d
3+µ
2 log(1/¶)2(log T )2

¶1+r/2T
.

To proceed for higher orders of Taylor polynomials, we first note that from (Liang et al., 2024,
Section G.2), the second and third derivatives of log q̃t are

∇2 log q̃t(x) = − 1

1− ³̄t
Id +

1

(1− ³̄t)2

(
EX0∼Q̃0|t(·|x)

[
(x−√

³̄tX0)(x−√
³̄tX0)

⊺
]

−
(
EX0∼Q̃0|t(·|x)

[
x−√

³̄tX0

]) (
EX0∼Q̃0|t(·|x)

[
x−√

³̄tX0

])⊺)

∂3
ijk log q̃t(x) = −

∫
zizjzkdQ̃0|t(x0|x)

+
∑

a1=i,j,k
a2<a3, a2,a3 ̸=a1

∫
za1dQ̃0|t(x0|x)

∫
za2za3dQ̃0|t(x0|x)

− 2

∫
zidQ̃0|t(x0|x)

∫
zjdQ̃0|t(x0|x)

∫
zkdQ̃0|t(x0|x)

where z := x−√
³̄tx0

1−³̄t
. Thus, in order to provide an upper bound on the expected norm of the

second-order derivative of log q̃t−1(mt), we can calculate

EXt∼Q̃t

∥∥∥EX0∼Q̃0|t−1(·|mt)
[(mt −

√
³̄t−1X0)(mt −

√
³̄t−1X0)

⊺]
∥∥∥
2

F

f EXt∼Q̃t,X0∼Q̃0|t−1(·|mt)
∥(mt −

√
³̄t−1X0)(mt −

√
³̄t−1X0)

⊺∥2F
= EXt∼Q̃t,X0∼Q̃0|t−1(·|mt)

∥mt −
√
³̄t−1X0∥4

25



Published as a conference paper at ICLR 2025

(i)

≲ d2(1− ³̄t−1)
2,

and

EXt∼Q̃t

∥∥∥
(
EX0∼Q̃0|t−1

[mt −
√
³̄t−1X0]

)(
EX0∼Q̃0|t−1

[mt −
√
³̄t−1X0]

)⊺∥∥∥
2

F

= EXt∼Q̃t

∥∥∥EX0∼Q̃0|t−1(·|mt)
[mt −

√
³̄t−1X0]

∥∥∥
4

f EXt∼Q̃t,X0∼Q̃0|t−1(·|mt)
∥mt −

√
³̄t−1X0∥4

(ii)

≲ d2(1− ³̄t−1)
2,

where both (i) and (ii) follow from (Liang et al., 2024, Lemma 16). Thus,

EXt∼Q̃t

∥∥∇2 log q̃t−1(mt(Xt))
∥∥2
F
≲

1

(1− ³̄t−1)2
d2.

For third-order derivatives, we can similarly use (Liang et al., 2024, Lemma 16) and get (cf. (Liang
et al., 2024, Section G.2))

EXt∼Q̃t

[
d∑

i=1

(∂3
iii log q̃t−1(mt(Xt)))

2

]
≲

1

(1− ³̄t−1)3

d∑

i=1

E(Zi)6 ≲
d

(1− ³̄t−1)3
,

EXt∼Q̃t




d∑

i,j=1

(∂3
iij log q̃t−1(mt(Xt)))

2


 ≲

1

(1− ³̄t−1)3

d∑

i,j=1

(
E(Zi)6

)2/3 (
E(Zj)6

)1/3

≲
d2

(1− ³̄t−1)3
.

Here we denote Z ∼ N (0, Id), and note that E(Zi)6,E(Zj)6 ≲ 1.

Therefore, by Cauchy-Schwartz inequality,

T∑

t=2

(1− ³t)
2

2³t
EXt∼Q̃t

[
∆t(Xt)

⊺∇2 log q̃t−1(mt(Xt))∆t(Xt)
]

f
T∑

t=2

(1− ³t)
2

2³t

√
EXt∼Q̃t

∥∆t(Xt)∥4
√
EXt∼Q̃t

∥∇2 log q̃t−1(mt(Xt))∥2

≲

T∑

t=2

(1− ³t)
2

2³t

dµ

(1− ³̄t)r

√
EXt∼Q̃t

∥∇2 log q̃t−1(mt(Xt))∥2F

≲

T∑

t=2

(1− ³t)
2

2³t

dµ

(1− ³̄t)r

√
d2

(1− ³̄t−1)2

≲
d1+µ log(1/¶)2(log T )2

¶r−1T
,

and

T∑

t=2

(1− ³t)
2

3!³t
3/2

EXt∼Q̃t

[
3

d∑

i=1

∂3
iii log q̃t−1(mt(Xt))∆t(Xt)

i

]

f
T∑

t=2

3(1− ³t)
2

3!³t
3/2

√
EXt∼Q̃t

∥∆t(Xt)∥2
√√√√

EXt∼Q̃t

d∑

i=1

(∂3
iii log q̃t−1(mt(Xt)))2

≲

T∑

t=2

(1− ³t)
2 dµ/2

(1− ³̄t)r/2

√
d

(1− ³̄t−1)3
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≲
d

1+µ
2 log(1/¶)2(log T )2

¶
r−1
2 T

,

and, with M being a matrix such that M ij(x) := ∂3
iij log q̃t−1(mt(x)),

T∑

t=2

(1− ³t)
2

3!³t
3/2

EXt∼Q̃t




d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt(Xt))∆t(Xt)

j




f
T∑

t=2

(1− ³t)
2

3!³t
3/2

EXt∼Q̃t
∥M(Xt)∆t(Xt)∥1

f
T∑

t=2

(1− ³t)
2

3!³t
3/2

√
d
√
EXt∼Q̃t

∥∆t(Xt)∥2
√

EXt∼Q̃t
∥M(Xt)∥2

f
T∑

t=2

(1− ³t)
2

3!³t
3/2

√
d
√
EXt∼Q̃t

∥∆t(Xt)∥2
√√√√√EXt∼Q̃t




d∑

i,j=1

(∂3
iij log q̃t−1(mt(Xt)))2




≲

T∑

t=2

(1− ³t)
2 d(1+µ)/2

(1− ³̄t)r/2

√
d2

(1− ³̄t−1)3

≲
d

3+µ
2 log(1/¶)2(log T )2

¶
r−1
2 T

,

and

max
tg2

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )ε ≲
dµ/2

¶r/2
(log T )ε.

Therefore, combining all the above, we get

KL(Q̃1∥P̂1) ≲ dµ¶−r

(
1− 2 log(1/¶) log T

T

)

+max{d(3+µ)/2¶−
r+2
2 , d1+µ¶−(r−1)} (log T )

2

T

+ dµ/2¶−r/2(log T )ε.

H AUXILIARY LEMMAS AND PROOFS IN SECTION 3

H.1 PROOF OF LEMMA 1

We remind readers that throughout this proof xt is fixed. For brevity write mt = mt(xt), µt = µt(xt),
and ∆t(xt) = ∆t. Recall that mt = xt/

√
³t +(1−³t)/

√
³t∇ log q̃t(xt). By Bayes’ rule, we have

q̃t−1|t(xt−1|xt)

=
q̃t|t−1(xt|xt−1)q̃t−1(xt−1)

q̃t(xt)

∝ q̃t−1(xt−1)q̃t|t−1(xt|xt−1)

(i)∝ q̃t−1(xt−1) exp

(
−
∥∥xt −

√
³txt−1

∥∥2

2(1− ³t)

)

∝ q̃t−1(xt−1)pt−1|t(xt−1|xt) exp

(
∥xt−1 − µt∥2 −

∥∥xt−1 − xt/
√
³t

∥∥2

2(1− ³t)/³t

)

= q̃t−1(xt−1)pt−1|t(xt−1|xt) exp

(∥∥xt−1 − xt/
√
³t + xt/

√
³t − µt

∥∥2 −
∥∥xt−1 − xt/

√
³t

∥∥2

2(1− ³t)/³t

)

27



Published as a conference paper at ICLR 2025

∝ q̃t−1(xt−1)pt−1|t(xt−1|xt) exp

(
(xt−1 − xt/

√
³t)

⊺(xt/
√
³t − µt)

(1− ³t)/³t

)

where (i) follows because the forward process is Markov and q̃t|t−1 = qt|t−1. Here, the exponent is
equal to

(xt−1 − xt/
√
³t)

⊺(xt/
√
³t − µt)

(1− ³t)/³t

=
(xt−1 − xt/

√
³t)

⊺(mt − µt)

(1− ³t)/³t
− (xt−1 − xt/

√
³t)

⊺((1− ³t)/
√
³t)∇ log q̃t(xt)

(1− ³t)/³t

=
√
³t∆

⊺

t (xt−1 − xt/
√
³t)−

√
³t(xt−1 − xt/

√
³t)

⊺∇ log q̃t(xt).

Thus,

q̃t−1|t(xt−1|xt) ∝ pt−1|t(xt−1|xt) exp
(
·̃t,t−1(xt, xt−1)

)

where

·̃t,t−1(xt, xt−1) =
√
³t∆

⊺

t (xt−1 −mt) + log q̃t−1(xt−1)−
√
³t(xt−1 −mt)

⊺∇ log q̃t(xt).

Finally, since all partial derivatives of q̃t−1 exists for any t g 2 (See (Liang et al., 2024, Lemma 6)),
the Taylor expansion of log q̃t−1 around mt gives the desirable result.

H.2 PROOF OF LEMMA 2

For each t = 1, . . . , T ,

log
pt−1|t(xt−1|xt)

p̂t−1|t(xt−1|xt)
=

³t

2(1− ³t)

(
∥xt−1 − µ̂t(xt)∥2 − ∥xt−1 − µt(xt)∥2

)

=
³t

(1− ³t)
(xt−1 − µt(xt))

⊺(µt(xt)− µ̂t(xt)) +
³t

2(1− ³t)
∥µt(xt)− µ̂t(xt)∥2 .

For the first term above,

EXt,Xt−1∼Q̃t,t−1
[(Xt−1 − µt(Xt))

⊺(µt(Xt)− µ̂t(Xt))]

= EXt∼Q̃t
[(mt(Xt)− µt(Xt))

⊺(µt(Xt)− µ̂t(Xt))]

=
1− ³t√

³t
EXt∼Q̃t

[∆t(Xt)
⊺(µt(Xt)− µ̂t(Xt))]

f 1− ³t√
³t

√
EXt∼Q̃t

∥∆t(Xt)∥2 EXt∼Q̃t
∥µt(Xt)− µ̂t(Xt)∥2.

Here we recall the definition of ∆t from (2) where mt(x)− µt(x) =
1−³t√

³t
∆t(x). Thus,

T∑

t=1

EXt,Xt−1∼Q̃t,t−1

[
log

pt−1|t(Xt−1|Xt)

p̂t−1|t(Xt−1|Xt)

]

≲

T∑

t=1

(√
³t

√
EXt∼Q̃t

∥∆t(Xt)∥2 EXt∼Q̃t
∥µt(Xt)− µ̂t(Xt)∥2 +

³t

1− ³t
EXt∼Qt

∥µt(Xt)− µ̂t(Xt)∥2
)

=

T∑

t=1

(1− ³t)
√

EXt∼Q̃t
∥∆t(Xt)∥2 ×

√
³t

(1− ³t)2
EXt∼Q̃t

∥µt(Xt)− µ̂t(Xt)∥2

+

T∑

t=1

(1− ³t)
³t

(1− ³t)2
EXt∼Qt ∥µt(Xt)− µ̂t(Xt)∥2

(i)

≲
log T

T

T∑

t=1

√
EXt∼Q̃t

∥∆t(Xt)∥2 ×
√

³t

(1− ³t)2
EXt∼Q̃t

∥µt(Xt)− µ̂t(Xt)∥2

+
log T

T

T∑

t=1

³t

(1− ³t)2
EXt∼Qt ∥µt(Xt)− µ̂t(Xt)∥2
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f max
tg1

√
EXt∼Q̃t

∥∆t(Xt)∥2
log T

T

T∑

t=1

√
³t

(1− ³t)2
EXt∼Q̃t

∥µt(Xt)− µ̂t(Xt)∥2

+
log T

T

T∑

t=1

³t

(1− ³t)2
EXt∼Qt

∥µt(Xt)− µ̂t(Xt)∥2

(ii)

≲ max
tg1

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )

√√√√ 1

T

T∑

t=1

³t

(1− ³t)2
EXt∼Q̃t

∥µt(Xt)− µ̂t(Xt)∥2

+
log T

T

T∑

t=1

³t

(1− ³t)2
EXt∼Qt

∥µt(Xt)− µ̂t(Xt)∥2

(iii)

≲ max
tg1

√
EXt∼Q̃t

∥∆t(Xt)∥2(log T )ε+ (log T )ε2

where (i) follows from Definition 1, (ii) follows from the fact that for any non-negative sequence

at,
1
T

∑T
t=1

√
at f

√
1
T

∑T
t=1 at by Jensen’s inequality, and (iii) follows from Assumption 2. The

proof is complete.

H.3 PROOF OF LEMMA 3

Recall that Pt−1|t = N (µt,
1−³t

³t
Id), and thus EXt−1∼Pt−1|t

[Xt−1 − mt(xt)] = − 1−³t√
³t

∆t(xt).

Note that we can change the limit and the expectation under Assumption 3. Now, we can calculate
that

EXt−1∼Pt−1|t
[·̃van(xt, Xt−1)]

= −1− ³t√
³t

(∇ log q̃t−1(mt(xt))−
√
³t∇ log q̃t(xt))

⊺∆t(xt)

+

∞∑

p=2

EXt−1∼Pt−1|t
[Tp(log q̃t−1, Xt−1,mt(xt))] .

Below we write mt = mt(xt). Since T2 is in quadratic form, the expected value under Pt−1|t for
this term is

EXt−1∼Pt−1|t
[T2(log q̃t−1, Xt−1,mt)]

=
1− ³t

2³t
Tr(∇2 log q̃t−1(mt)) +

(1− ³t)
2

2³t
∆t(xt)

⊺∇2 log q̃t−1(mt)∆t(xt).

Recall the formula for Gaussian non-centralized third moment. If Z ∼ N (µ, Ã2), then E[Z2] =
µ2 + Ã2 and E[Z3] = µ3 + 3µÃ2. Thus, the expected value under Pt−1|t for T3 is

EXt−1∼Pt−1|t
[T3(log q̃t−1, Xt−1,mt)]

=
1

3!

d∑

i=1

∂3
iii log q̃t−1(mt)EXt−1∼Pt−1|t

(Xi
t−1 −mi

t)
3

+
1

3!

d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt)EXt−1∼Pt−1|t

(Xi
t−1 −mi

t)
2(Xj

t−1 −mj
t )

+
1

3!

d∑

i,j,k=1
i,j,k all differ

∂3
ijk log q̃t−1(mt)EXt−1∼Pt−1|t

(Xi
t−1 −mi

t)(X
j
t−1 −mj

t )(X
k
t−1 −mk

t )

=
1

3!

d∑

i=1

∂3
iii log q̃t−1(mt)

((
−1− ³t√

³t
∆i

t

)3

+ 3

(
−1− ³t√

³t
∆i

t

)(
1− ³t

³t

))
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+
1

3!

d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt)

((
−1− ³t√

³t
∆i

t

)2

+

(
1− ³t

³t

))(
−1− ³t√

³t
∆j

t

)

+
1

3!

d∑

i,j,k=1
i,j,k all differ

∂3
ijk log q̃t−1(mt)

(
−1− ³t√

³t
∆i

t

)(
−1− ³t√

³t
∆j

t

)(
−1− ³t√

³t
∆k

t

)

=
1

3!

(
− (1− ³t)

2

³t
3/2

)

3

d∑

i=1

∂3
iii log q̃t−1(mt)∆

i
t +

d∑

i,j=1
i ̸=j

∂3
iij log q̃t−1(mt)∆

j
t




+OLℓ(Q̃t)

(
(1− ³t)

3
)
, ∀ℓ g 1.

Here the last line follows because (1 − ³t)
3
∣∣∣∂3

ijk log q̃t−1(mt)
∣∣∣ = OLℓ(Q̃t)

(
(1− ³t)

3
)

under

Assumption 3 and (1 − ³t)
3 ∥∆t∥ = OLℓ(Q̃t)

((1 − ³t)
3) under Assumption 4, both for all ℓ g 1.

The proof is now complete.

H.4 PROOF OF LEMMA 4

Fix xt ∈ R
d. For brevity write mt = mt(xt), µt = µt(xt), and ∆t = ∆t(xt). Recall that

Tp(log q̃t−1, xt−1,mt) =
1

p!

∑

µ∈Nd:
∑

i µ
i=p

∂p
a
log q̃t−1(mt)

d∏

i=1

(xi
t−1 −mi

t)
µi

where a ∈ [d]p are the indices of differentiation in which the multiplicity of i is µi. First, for the
expectation under P̃t−1|t (i.e., Gaussian centralized moments),

EXt−1∼P̃t−1|t

[
d∏

i=1

(Xi
t−1 −mi

t)
µi

]
=

d∏

i=1

EXt−1∼P̃t−1|t

[
(Xi

t−1 −mi
t)

µi
]

=

d∏

i=1

(
1− ³t

³t

)µi/2

(µi − 1)!!1{µi is even}

=

(
1− ³t

³t

)p/2 d∏

i=1

(µi − 1)!!1{µi is even},

where we use the convention that (−1)!! = 1. Next, for the expectation under Pt−1|t (i.e., Gaussian
non-centralized moments),

EXt−1∼Pt−1|t

[
d∏

i=1

(Xi
t−1 −mi

t)
µi

]

=
d∏

i=1

EXt−1∼Pt−1|t

[
(Xi

t−1 − µi
t −

1− ³t√
³t

∆i
t)

µi

]

=

d∏

i=1

µi∑

ℓ=0
ℓ even

(
µi

ℓ

)(
−1− ³t√

³t
∆i

t

)µi−ℓ(
1− ³t

³t

)ℓ/2

(ℓ− 1)!!

To investigate their difference, we divide into the following few cases. Note that under Assumption 4,
(1− ³t)

m ∥∆t(xt)∥ = OLℓ(Q̃t)
((1− ³t)

m) for any m g 1/2 and ℓ g 1.

1. Case 1: p is even and all elements of µi are even. Then,

EXt−1∼Pt−1|t

[
d∏

i=1

(Xi
t−1 −mi

t)
µi

]
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=

d∏

i=1

((
1− ³t

³t

)µi/2

(µi − 1)!! +OLℓ(Q̃t)

(
(1− ³t)

µi/2+1
))

=

(
1− ³t

³t

)p/2 d∏

i=1

(µi − 1)!! +OLℓ(Q̃t)

(
(1− ³t)

p/2+1
)

2. Case 2: p is even and ∃i∗ such that µi∗ is odd. Since
∑

i µ
i = p, there exists j∗ such that

µj∗ is also odd. Then,

EXt−1∼Pt−1|t

[
(Xi∗

t−1 −mi∗

t )µ
i∗
]
= OLℓ(Q̃t)

(
(1− ³t)

(µi∗+1)/2
)
,

EXt−1∼Pt−1|t

[
(Xj∗

t−1 −mj∗

t )µ
j∗
]
= OLℓ(Q̃t)

(
(1− ³t)

(µj∗+1)/2
)
,

which implies that

EXt−1∼Pt−1|t

[
d∏

i=1

(Xi
t−1 −mi

t)
µi

]
= OLℓ(Q̃t)

(
(1− ³t)

p/2+1
)

3. Case 3: p is odd and ∃i∗ such that µi∗ is odd. Then,

EXt−1∼Pt−1|t

[
(Xi∗

t−1 −mi∗

t )µ
i∗
]
= OLℓ(Q̃t)

(
(1− ³t)

(µi∗+1)/2
)
,

which implies that

EXt−1∼Pt−1|t

[
d∏

i=1

(Xi
t−1 −mi

t)
µi

]
= OLℓ(Q̃t)

(
(1− ³t)

(p+1)/2
)

Combining these cases, we get

(
EXt−1∼P̃t−1|t

− EXt−1∼Pt−1|t

)[ d∏

i=1

(Xi
t−1 −mi

t)
µi

]

=

{
OLℓ(Q̃t)

(
(1− ³t)

p
2+1
)
, ∀p g 4 even

OLℓ(Q̃t)

(
(1− ³t)

p+1
2

)
, ∀p g 4 odd

The proof is complete by noting that the rate does not change when we take the expectation over Q̃t

under Assumptions 3 and 4.

H.5 PROOF OF LEMMA 5

Note that q̃t|0(x|x0) = qt|0(x|x0) is the p.d.f. of N (
√
³̄tx0, (1 − ³̄t)Id). Thus, the gradient of

log q̃t(x) equals

∇ log q̃t(x) =

∫
x0∈Rd ∇q̃t|0(x|x0)dQ̃0(x0)

q̃t(x)
= − 1

1− ³̄t

∫

x0∈Rd

(x−√
³̄tx0)dQ̃0|t(x0|x). (20)

Thus,

∇ log q̃t−1(mt)−
√
³t∇ log q̃t(xt)

= − 1

1− ³̄t−1

∫

x0∈Rd

(mt −
√
³̄t−1x0)dQ̃0|t−1(x0|mt) +

√
³t

1− ³̄t

∫

x0∈Rd

(xt −
√
³̄tx0)dQ̃0|t(x0|xt)

= − 1

1− ³̄t

((
1− ³̄t

1− ³̄t−1
− 1

)∫

x0∈Rd

(mt −
√
³̄t−1x0)dQ̃0|t−1(x0|mt)

+

∫

x0∈Rd

(mt −
√
³̄t−1x0)dQ̃0|t−1(x0|mt)−

√
³t

∫

x0∈Rd

(xt −
√
³̄tx0)dQ̃0|t(x0|xt)

)
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(i)
=

1

1− ³̄t

(
(1− ³̄t − (1− ³̄t−1))∇ log q̃t−1(mt)

)

− 1

1− ³̄t

(∫

x0∈Rd

(mt −
√
³̄t−1x0)dQ̃0|t−1(x0|mt)−

√
³t

∫

x0∈Rd

(xt −
√
³̄tx0)dQ̃0|t(x0|xt)

)

=
³̄t−1(1− ³t)

1− ³̄t
∇ log q̃t−1(mt)

︸ ︷︷ ︸
term 1

− 1

1− ³̄t
(mt −

√
³txt)

︸ ︷︷ ︸
term 2

+

√
³̄t−1(1− ³t)

1− ³̄t

∫

x0∈Rd

x0dQ̃0|t(x0|xt)

︸ ︷︷ ︸
term 3

+

√
³̄t−1

1− ³̄t

(∫

x0∈Rd

x0dQ̃0|t−1(x0|mt)−
∫

x0∈Rd

x0dQ̃0|t(x0|xt)

)

︸ ︷︷ ︸
term 4

(21)

where (i) follows from Tweedie’s formula. Among the four terms in (21), the first term satisfies that

EXt∼Q̃t

∥∥∥∥
³̄t−1(1− ³t)

1− ³̄t
∇ log q̃t−1(mt)

∥∥∥∥
2

≲
d(1− ³t)

2

(1− ³̄t)2(1− ³̄t−1)

by (Liang et al., 2024, Lemma 17). In the second term in (21), by Tweedie’s formula,

mt −
√
³txt =

xt√
³t

+
1− ³t√

³t
∇ log q̃t(xt)−

√
³txt

=
1− ³t√

³t
(xt +∇ log q̃t(xt)).

Thus, by (Liang et al., 2024, Lemma 15) and Assumption 1, the second term satisfies that

EXt∼Q̃t

∥∥∥∥
1

1− ³̄t
(mt −

√
³txt)

∥∥∥∥
2

≲
d(1− ³t)

2

(1− ³̄t)3
.

The third term in (21) satisfies that

EXt∼Q̃t

∥∥∥∥
√
³̄t−1(1− ³t)

1− ³̄t

∫

x0∈Rd

x0dQ̃0|t(x0|xt)

∥∥∥∥
2

≲
d(1− ³t)

2

(1− ³̄t)2

by Jensen’s inequality and Assumption 1.

To deal with the last term in (21), note that

dQ̃0|t−1(x0|mt) =
q̃t−1|0(mt|x0)

q̃t−1(mt)
dQ̃0(x0) =

q̃t−1|0(mt|x0)∫
y∈Rd q̃t−1|0(mt|y)dQ̃0(y)

dQ̃0(x0),

dQ̃0|t(x0|xt) =
q̃t|0(xt|x0)

q̃t(xt)
dQ̃0(x0) =

q̃t|0(xt|x0)∫
y∈Rd q̃t|0(xt|y)dQ̃0(y)

dQ̃0(x0).

Thus, the last term in (21) is equal to
√
³̄t−1

1− ³̄t

(∫

x0∈Rd

x0dQ̃0|t−1(x0|mt)−
∫

x0∈Rd

x0dQ̃0|t(x0|xt)

)

=

√
³̄t−1

1− ³̄t
· 1

q̃t−1(mt)q̃t(xt)

(∫

x,y∈Rd

x(q̃t−1|0(mt|x)q̃t|0(xt|y)− q̃t|0(xt|x)q̃t−1|0(mt|y))dQ̃0(x)dQ̃0(y)

)

where

q̃t−1|0(mt|x)q̃t|0(xt|y)− q̃t|0(xt|x)q̃t−1|0(mt|y)

= q̃t|0(xt|x)q̃t−1|0(mt|y)
(
q̃t−1|0(mt|x)q̃t|0(xt|y)
q̃t|0(xt|x)q̃t−1|0(mt|y)

− 1

)

= q̃t|0(xt|x)q̃t−1|0(mt|y)×(
exp

(
−∥mt −

√
³̄t−1x∥2

2(1− ³̄t−1)
− ∥xt −

√
³̄ty∥2

2(1− ³̄t)
+

∥mt −
√
³̄t−1y∥2

2(1− ³̄t−1)
+

∥xt −
√
³̄tx∥2

2(1− ³̄t)

)
− 1

)
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=: q̃t|0(xt|x)q̃t−1|0(mt|y)(e∆ − 1)

in which we have defined the exponent as ∆. Now,

∆ = −∥mt −
√
³̄t−1x∥2

2(1− ³̄t−1)
− ∥xt −

√
³̄ty∥2

2(1− ³̄t)
+

∥mt −
√
³̄t−1y∥2

2(1− ³̄t−1)
+

∥xt −
√
³̄tx∥2

2(1− ³̄t)

=

√
³̄t−1(x− y)⊺mt + ³̄t−1 ∥y∥2 − ³̄t−1 ∥x∥2

2(1− ³̄t−1)
−

√
³̄t(x− y)⊺xt + ³̄t ∥y∥2 − ³̄t ∥x∥2

2(1− ³̄t)

=
1

2

( √
³̄t(1− ³t)

³t(1− ³̄t−1)(1− ³̄t)
xt +

√
³̄t−1(1− ³t)√
³t(1− ³̄t−1)

∇ log q̃t(xt)

)⊺

(x− y)

+
³̄t−1(1− ³t)

(1− ³̄t−1)(1− ³̄t)
(∥y∥2 − ∥x∥2).

Now, with the ³t defined in (8), following from Lemma 6,
√
³̄t(1− ³t)

³t(1− ³̄t−1)(1− ³̄t)
= O

(
1− ³t

(1− ³̄t−1)2

)
= O

(
log T

T

)
,

1− ³t

1− ³̄t−1
= O

(
log T

T

)
,

³̄t−1(1− ³t)

(1− ³̄t−1)(1− ³̄t)
= O

(
1− ³t

(1− ³̄t−1)2

)
= O

(
log T

T

)
.

Thus, for fixed x, y, xt, ∆ → 0 as T → ∞, and thus when T becomes large,

e∆ − 1 = ∆+O(∆2) ≲ |∆| , ∀xt ∈ R
d.

Also, since q̃t|0(xt|x) and q̃t−1|0(mt|y) decay exponentially in terms of x and y (for any fixed xt),
we have ∫

q̃t|0(xt|x)poly(x)dQ̃0(x) < ∞,

∫
q̃t−1|0(mt|y)poly(y)dQ̃0(y) < ∞.

Thus, the limit and the integral can be exchanged due to Dominated Convergence Theorem. Thus,
the fourth term in (21) gives us

√
³̄t−1

1− ³̄t

(∫

x0∈Rd

x0dQ̃0|t−1(x0|mt)−
∫

x0∈Rd

x0dQ̃0|t(x0|xt)

)

≲

√
³̄t−1

1− ³̄t
· 1

q̃t−1(mt)q̃t(xt)

(∫

x,y∈Rd

xq̃t|0(xt|x)q̃t−1|0(mt|y) |∆| dQ̃0(x)dQ̃0(y)

)

=

√
³̄t−1

1− ³̄t

(∫

x,y∈Rd

(x · |∆|)dQ̃0|t(x|xt)dQ̃0|t−1(y|mt)

)

and, from definition of ∆ and using Cauchy-Schwartz and Jensen’s inequality, we have

EXt∼Q̃t

∥∥∥∥
√
³̄t−1

1− ³̄t

∫

x,y∈Rd

(x · |∆|)dQ̃0|t(x|Xt)dQ̃0|t−1(y|mt(Xt))

∥∥∥∥
2

≲
(1− ³t)

2

(1− ³̄t−1)2(1− ³̄t)4
·

E Xt∼Q̃t

X∼Q̃0|t(·|Xt)

Y∼Q̃0|t−1(·|mt(Xt))

[ ∥∥√³̄tX
∥∥2
(
(∥Xt∥2 + (1− ³̄t)

2 ∥∇ log q̃t(Xt)∥2)

(
∥∥√³̄tX

∥∥2 + ∥√³̄t−1Y ∥2) + (
∥∥√³̄tX

∥∥4 + ∥√³̄t−1Y ∥4)
)]

=
(1− ³t)

2

(1− ³̄t−1)2(1− ³̄t)4
·
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E Xt∼Q̃t

X∼Q̃0|t(·|Xt)

Y∼Q̃0|t−1(·|mt(Xt))

[ ∥∥√³̄tX
∥∥4 (∥Xt∥2 + (1− ³̄t)

2 ∥∇ log q̃t(Xt)∥2)

+
∥∥√³̄tX

∥∥2 ∥√³̄t−1Y ∥2 (∥Xt∥2 + (1− ³̄t)
2 ∥∇ log q̃t(Xt)∥2)

+
∥∥√³̄tX

∥∥6 +
∥∥√³̄tX

∥∥2 ∥√³̄t−1Y ∥4
]

f (1− ³t)
2

(1− ³̄t−1)2(1− ³̄t)4
·

(
EX∼Q̃0

∥∥√³̄tX
∥∥6
)2/3 (

EXt∼Q̃t
(∥Xt∥6 + (1− ³̄t)

6 ∥∇ log q̃t(Xt)∥6)
)1/3

+
(
EX∼Q̃0

∥∥√³̄tX
∥∥6
)1/3


E Xt∼Q̃t

Y∼Q̃0|t−1(·|mt(Xt))

∥√³̄t−1Y ∥6



1/3

(
EXt∼Q̃t

(∥Xt∥6 + (1− ³̄t)
6 ∥∇ log q̃t(Xt)∥6)

)1/3

+ EX∼Q̃0

∥∥√³̄tX
∥∥6 +

(
EX∼Q̃0

∥∥√³̄tX
∥∥6
)1/3


E Xt∼Q̃t

Y∼Q̃0|t−1(·|mt(Xt))

∥√³̄t−1Y ∥6



2/3

(ii)

≲
d3(1− ³t)

2

(1− ³̄t−1)2(1− ³̄t)4
,

where (ii) follows because, following (Liang et al., 2024, Lemmas 15–17) and by the lemma
assumption that EX0∼Q̃0

∥X0∥6 ≲ d3, we have

EX∼Q̃0

∥∥√³̄tX
∥∥6 ≲ d3,

EXt∼Q̃t
∥Xt∥6 f EX0∼Q̃0

∥∥√³̄tX0

∥∥6 + (1− ³̄t)
3
EW̄∼N (0,Id)

∥∥W̄
∥∥6 ≲ d3,

EXt∼Q̃t
∥∇ log q̃t(Xt)∥6 ≲

d3

(1− ³̄t)3
,

E Xt∼Q̃t

Y∼Q̃0|t−1(·|mt(Xt))

∥√³̄t−1Y ∥6

f E Xt∼Q̃t

Y∼Q̃0|t−1(·|mt(Xt))

∥mt −
√
³̄t−1Y ∥6 + EXt∼Q̃t

∥mt∥6 ≲ d3.

Hence, combining the rates of all parts, we obtain that

(1− ³t)
√

EXt∼Q̃t
∥∇ log q̃t−1(mt(Xt))−

√
³t∇ log q̃t(Xt)∥2 ≲

d3/2(1− ³t)
2

(1− ³̄t−1)3
.

H.6 LEMMA 6 AND ITS PROOF

Lemma 6. The ³t defined in (8) (with c > 1) satisfy

1− ³t

(1− ³̄t−1)p
≲

log T log(1/¶)

¶p−1T
while ³̄T = o(T−1), ∀2 f t f T, p g 1.

Proof. The proof is similar to that of (Li et al., 2024c, Eq (39)). We first prove the second relationship.
First, note that if T is large,

¶

(
1 +

c log T

T

) T
log T

≍ ¶ec > 1.

Thus, with any fixed r ∈ (0, 1) such that t g rT (g T
log T ), we have

1− ³t =
c log T

T
min

{
¶

(
1 +

c log T

T

)t

, 1

}
=

c log T

T
.
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As a result,

³̄T f
T∏

t=+rT,
³t =

(
1− c log T

T

)+(1−r)T,
≍ exp

(
+(1− r)T ,

(
−c log T

T

))
= O(T−(1−r)c).

(22)
Given any c > 1, we can always find some r such that (1− r)c > 1 (say, r = (c− 1)/2 if c ∈ (1, 2)
and r = 1/4 if c g 2). This shows that ³t satisfies ³̄T = o

(
T−1

)
if c > 1.

Now, for the first relatinoship, define Ä such that

¶

(
1 +

c log T

T

)Ä

f 1 < ¶

(
1 +

c log T

T

)Ä+1

. (23)

Here Ä is unique since 1 − ³t is non-decreasing. In other words, Ä is the last time that 1 − ³t is
exponentially growing. Assume that T is large enough such that Ä g 2. Below, we show that

1− ³̄t−1 g 1

3
¶

(
1 +

c log T

T

)t

, ∀2 f t f Ä. (24)

If t = 2,

1− ³̄t−1 = 1− ³̄1 = 1− ³1 = ¶ g 1

3
¶

(
1 +

c log T

T

)
.

Here the last inequality holds when T is sufficiently large. For t > 2, suppose for purpose of
contradiction that there exists 2 < t0 f Ä such that

1− ³̄t0−1 <
1

3
¶

(
1 +

c log T

T

)t0

while 1− ³̄t−1 g 1

3
¶

(
1 +

c log T

T

)t

, ∀2 f t f t0 − 1.

In words, t0 is defined as the first time that (24) is violated. To arrive at a contradiction, we first write

1− ³̄t0−1 = (1− ³̄t0−2)

(
1 +

³̄t0−2(1− ³t0−1)

1− ³̄t0−2

)

g 1

3
¶

(
1 +

c log T

T

)t0−1(
1 +

³̄t0−2(1− ³t0−1)

1− ³̄t0−2

)
.

Here the inequality holds because t0 is the first time that (24) is violated, and thus (24) stills holds for
t = t0 − 1. Also,

1− ³̄t0−2 f 1− ³̄t0−1

(i)
<

1

3
¶

(
1 +

c log T

T

)t0 (ii)

f 1

2
¶

(
1 +

c log T

T

)t0−1 (iii)

f 1

2

where (i) holds because (24) is violated at t = t0, (ii) holds when T is sufficiently large, and (iii)
holds because t0 − 1 f Ä and by the definition of Ä in (23). Thus,

³̄t0−2(1− ³t0−1)

1− ³̄t0−2
g

1
2
c log T

T ¶
(
1 + c log T

T

)t0−1

1
2¶
(
1 + c log T

T

)t0−1 =
c log T

T
,

and thus

1− ³̄t0−1 g 1

3
¶

(
1 +

c log T

T

)t0−1(
1 +

³̄t0−2(1− ³t0−1)

1− ³̄t0−2

)
g 1

3
¶

(
1 +

c log T

T

)t0

.

We have reached a contradiction. Therefore, we have shown that (24) holds.

Now, (24) implies that

1− ³̄t−1 g 1

3
¶

(
1 +

c log T

T

)t

g 1

3
¶

(
1 +

c log T

T

)t/p

, ∀2 f t f Ä.

There are two cases:
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• If 2 f t f Ä , then

1− ³t

(1− ³̄t−1)p
f

c log T
T ¶

(
1 + c log T

T

)t

1
3p ¶

p
(
1 + c log T

T

)t =
3pc log T

¶p−1T
.

• If t > Ä , then

1− ³t

(1− ³̄t−1)p
f 1− ³t

(1− ³̄Ä−1)p
f

c log T
T

1
3p ¶

p
(
1 + c log T

T

)Ä =

c log T
T

(
1 + c log T

T

)

3−p¶p−1
(
1 + c log T

T

)Ä+1

<
3pc log T

¶p−1T

(
1 +

c log T

T

)
.

In both cases, if T is large enough, noting that c ≳ log(1/¶), we have

1− ³t

(1− ³̄t−1)p
f 4pc log T

¶p−1T
≲

log T log(1/¶)

¶p−1T
, ∀2 f t f T

because p and c are constants (that do not depend on T , d, and ¶). The proof is now complete.

H.7 LEMMA 7 AND ITS PROOF

Lemma 7. With the ³t defined in (8), given any p > 0, if ¶p < 1,

T∑

t=2

(1− ³t)³̄
p
t f

(
1

p
(1− ¶)pe−p¶ log(1/¶) + (1− ¶)p

e−p¶ log(1/¶) − 1

1− ¶p

)(
1 +O

(
log T

T

))
.

Further, when ¶ j 1,

T∑

t=2

(1− ³t)³̄
p
t f 1

p
−
(
1 +

p+ 1

2p

)
c log T

T
+ Õ

(
1

T 2

)
.

Proof. Define the sum as sT . Recall that

1− ³1 = ¶, 1− ³t =
c log T

T
min

{
¶

(
1 +

c log T

T

)t

, 1

}
, ∀2 f t f T.

We first note a relationship that for fixed ¶ ̸= 0 and p > 0. As z → ∞,

(1− ¶z−1)pz = epz log(1−¶z−1) = epz(−¶z−1+¶2z−2/2+O(z−3)) = e−¶p(1 + ¶2pz−1/2) +O(z−2).
(25)

We also use the fact from binomial series that

(1− z−1)p = 1− pz−1 +
p(p− 1)

2
z−2 +O(z−3). (26)

Define t∗ := sup

{
t ∈ [1, T ] : ¶

(
1 + c log T

T

)t
f 1

}
. Thus, ³t ≡ 1 − c log T

T for all t > t∗. Note

that when T becomes large, t∗ = Θ
(

T
log T

)
. To further understand the big-Θ term, note that using

(25),

¶

(
1 +

c log T

T

)T log(1/¶)
c log T −log(1/¶)

=

(
1 +

log(1/¶)c log T

2T
+ Õ

(
1

T 2

))(
1− log(1/¶)c log T

T
+ Õ

(
1

T 2

))

= 1− log(1/¶)c log T

2T
+ Õ

(
1

T 2

)
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< 1 as T → ∞.

This implies that

t∗ g log(1/¶)

(
T

c log T
− 1

)
. (27)

To start, we suppose T > t∗ is large enough and decompose the sum as

sT =

t∗∑

t=2

(1− ³t)³̄
p
t +

T∑

t=t∗+1

(1− ³t)³̄
p
t

=
c log T

T
¶(1− ¶)p

t∗∑

t=2

(
1 +

c log T

T

)t t∏

i=2

(
1− ¶

c log T

T

(
1 +

c log T

T

)i
)p

+ ³̄p
t∗
c log T

T

T∑

t=t∗+1

(
1− c log T

T

)p(t−t∗)

. (28)

Now we first focus on the second term in (28).

c log T

T

T∑

t=t∗+1

(
1− c log T

T

)p(t−t∗)

=

(
1− c log T

T

)p
c log T

T
·
1−

(
1− c log T

T

)p(T−t∗)

1−
(
1− c log T

T

)p

(i)
=

(
1− c log T

T

)p
c log T

T
·

1−
(
1− c log T

T

)p(T−t∗)

1−
(
1− pc log T

T + p(p− 1) c
2(log T )2

2T 2 + Õ
(

1
T 3

))

(ii)
=

1

p

(
1− pc log T

T
+ Õ

(
1

T 2

))(
1 +

(p− 1)c log T

2T
+ Õ

(
1

T 2

)
−O

(
1

T pc/2

))

=
1

p

(
1− (p+ 1)c log T

2T

)
+ Õ

(
1

T 2

)

where (i) follows from (26), and (ii) is because t∗ = Θ(T/ log T ) and thus T − t∗ > T/2 for large
T . Also, for all t = 2, . . . , t∗,

³̄p
t = (1− ¶)p

t∏

i=2

(
1− ¶

c log T

T

(
1 +

c log T

T

)i
)p

f (1− ¶)p
(
1− ¶

c log T

T

)p(t−1)

Thus, we have

³̄p
t∗ f (1− ¶)p

(
1− ¶

c log T

T

)p(t∗−1)

= (1− ¶)p
(
1 + ¶p

c log T

T
+ Õ

(
1

T 2

))(
1− ¶

c log T

T

)pt∗

(iii)

f (1− ¶)p
(
1 + ¶p(1 + log(1/¶))

c log T

T

)
×

e−p¶ log(1/¶)

(
1 + ¶2p log(1/¶)

c log T

2T

)
+ Õ

(
1

T 2

)

= (1− ¶)pe−p¶ log(1/¶)

(
1 + ¶p (1 + log(1/¶) + (¶/2) log(1/¶))

c log T

T

)
+ Õ

(
1

T 2

)
.
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Here (iii) follows because using (27) and (25), we have that

(
1− ¶

c log T

T

)pt∗

f
(
1− ¶

c log T

T

)p log(1/¶)( T
c log T −1)

=

(
1 + ¶p log(1/¶)

c log T

T

)
e−p¶ log(1/¶)

(
1 + ¶2p log(1/¶)

c log T

2T

)
+ Õ

(
1

T 2

)
. (29)

Thus, the second term in (28) satisfies that

T∑

t=t∗+1

(1− ³t)³̄
p
t

f 1

p
(1− ¶)pe−p¶ log(1/¶)

(
1−

(
p+ 1

2
− ¶p (1 + log(1/¶) + (¶/2) log(1/¶))

)
c log T

T

)

+ Õ

(
1

T 2

)
. (30)

Now we turn to the first term in (28), in which the summation can be upper-bounded as

t∗∑

t=2

(
1 +

c log T

T

)t t∏

i=2

(
1− ¶

c log T

T

(
1 +

c log T

T

)i
)p

f
t∗∑

t=2

(
1 +

c log T

T

)t(
1− ¶

c log T

T

)p(t−1)

=:

(
1 +

c log T

T

) t∗−1∑

t=1

qt

where

q :=

(
1 +

c log T

T

)(
1− ¶

c log T

T

)p

=

(
1 +

c log T

T

)(
1− ¶p

c log T

T
+ ¶2p(p− 1)

c2(log T )2

2T 2
+ Õ

(
1

T 3

))

= 1 + (1− ¶p)
c log T

T
+

(
¶2p(p− 1)

2
− ¶p

)
c2(log T )2

T 2
+ Õ

(
1

T 3

)
.

Note that by assumption ¶p < 1. Also, by definition of t∗ and (29),

¶qt
∗ f

(
1− ¶

c log T

T

)pt∗

f e−p¶ log(1/¶)

(
1 + ¶p log(1/¶)(1 + ¶/2)

c log T

T

)
+ Õ

(
1

T 2

)
.

Thus, we have

¶
c log T

T

t∗−1∑

t=1

qt =
c log T

T
× ¶qt

∗ − ¶q

q − 1

f c log T

T
×

e−p¶ log(1/¶)
(
1 + ¶p log(1/¶)(1 + ¶/2) c log T

T

)
+ Õ

(
1
T 2

)
− ¶q

q − 1

(iv)
=

c log T

T
×

e−p¶ log(1/¶)
(
1 + ¶p log(1/¶)(1 + ¶/2) c log T

T

)
+ Õ

(
1
T 2

)
− 1− (1− ¶p) c log T

T + Õ
(

1
T 2

)

(1− ¶p) c log T
T +

(
¶2p(p−1)

2 − ¶p
)

c2(log T )2

T 2 + Õ
(

1
T 3

)

=

(
e−p¶ log(1/¶) − 1

1− ¶p
+

(
¶p log(1/¶)(1 + ¶/2)

1− ¶p
− 1

)
c log T

T

)
×

(
1 +

¶p− ¶2p(p−1)
2

1− ¶p
· c log T

T

)
+ Õ

(
1

T 2

)
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=
e−p¶ log(1/¶) − 1

1− ¶p
+

(
¶p log(1/¶)(1 + ¶/2)

1− ¶p
− 1 +

e−p¶ log(1/¶) − 1

1− ¶p
· ¶p(1− ¶(p− 1)/2)

1− ¶p

)
c log T

T

+ Õ

(
1

T 2

)
.

where (iv) follows from (26). Therefore,

t∗∑

t=2

(1− ³t)³̄
p
t = (1− ¶)p

(
1 +

c log T

T

)(
¶
c log T

T

t∗−1∑

t=1

qt

)

f (1− ¶)p
e−p¶ log(1/¶) − 1

1− ¶p

+ (1− ¶)p
(
¶p log(1/¶)(1 + ¶/2)

1− ¶p
− 1

+
e−p¶ log(1/¶) − 1

1− ¶p

(
1 +

¶p(1− ¶(p− 1)/2)

1− ¶p

))
c log T

T
+ Õ

(
1

T 2

)
. (31)

Combining (30) and (31), we have that

sT f
(
1

p
(1− ¶)pe−p¶ log(1/¶) + (1− ¶)p

e−p¶ log(1/¶) − 1

1− ¶p

)

︸ ︷︷ ︸
=:s∞

(
1 +O

(
log T

T

))
.

Also, for all large T ’s, since s∞ → 1
p and ¶ log(1/¶) → 0 as ¶ → 0, when ¶ j 1,

sT f 1

p
−
(
1 +

p+ 1

2p

)
c log T

T
+ Õ

(
1

T 2

)
.

The proof is now complete.

I PROOFS IN SECTION 4

I.1 PROOF OF THEOREM 3

Fix t g 1. Using the forward model in (5), we have that qt|0,y is the p.d.f. of N (
√
³̄t(Id−H H)x0+√

³̄tH
 y,Σt|0,y). Thus,

∇ log qt|y(x) =
1

qt|y(x)

∫

x0∈Rd

∇qt|0,y(x|x0)dQ0|y(x0)

= − 1

qt|y(x)
Σ−1

t|0,y

∫

x0∈Rd

qt|0,y(x|x0)(x−√
³̄t(Id −H H)x0 −

√
³̄tH

 y)dQ0|y(x0)

= −Σ−1
t|0,y(x−√

³̄tH
 y)

+

√
³̄t

qt|y(x)
Σ−1

t|0,y(Id −H H)

∫

x0∈Rd

qt|0,y(x|x0)x0dQ0|y(x0).

Thus, the equality for ∇ log qt|y is established because by Lemma 9,

(Ã2
yH

 (H )⊺ + (1− ³̄t)Id)
−1(Id −H H) = (1− ³̄t)

−1(Id −H H).

To see the optimality with f∗
t,y, fix t g 1 and x ∈ R

d. First note that (Id − H H)f∗
t,y(x) =

(Id −H H)Σ−1
t|0,y(

√
³̄tH

 y −H Hx) = 0 by Lemma 9. Now, suppose that ft,y = f∗
t,y + v such

that (Id −H H)ft,y = 0 =⇒ (Id −H H)v = 0. From the definition of ∆t,y in (7),

∆t,y(x) = (Id −H H)(∇ log qt|y(x)−∇ log qt(x)) + (H H)∇ log qt|y(x)− ft,y(x)

where

(H H)∇ log qt|y(x)− ft,y(x)
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= (H H)Σ−1
t|0,y(

√
³̄tH

 y − x)− Σ−1
t|0,y(

√
³̄tH

 y −H Hx)− v

= −(H H)Σ−1
t|0,y(Id −H H)x− (Id −H H)Σ−1

t|0,y(
√
³̄tH

 y −H Hx)− v

= −v

where the last line follows from Lemma 9.

Thus, if v = 0, then ft,y = f∗
t,y , and we have

∆t,y = (Id −H H)(∇ log qt|y(x)−∇ log qt(x)). (32)

Also, if v ̸= 0, since v is orthogonal to the space induced by (Id −H H), we have

∥∆t,y(x)∥2 =
∥∥(Id −H H)(∇ log qt|y(x)−∇ log qt(x))

∥∥2 + ∥v∥2 (33)

which is minimized at v = 0. The proof is now complete.

I.2 PROOF OF THEOREM 4

Fix t g 2. Recall that the unconditional score ∇ log qt(x) is

∇ log qt(x) =
1

qt(x)

∫

x0∈Rd

∇qt|0(x|x0)dQ0(x0)

= − 1

(1− ³̄t)qt(x)

∫

x0∈Rd

qt|0(x|x0)(x−√
³̄tx0)dQ0(x0)

= − 1

(1− ³̄t)
x+

√
³̄t

(1− ³̄t)qt(x)

∫

x0∈Rd

qt|0(x|x0)x0dQ0(x0)

since qt|0 is the p.d.f. of N (
√
³̄tx0, (1− ³̄t)Id).

In the first half, we consider the case where Ã2
y is known, and thus ft,y = f∗

t,y in (10). Note that from
Theorem 3,

∇ log qt|y(x) = Σ−1
t|0,y(

√
³̄tH

 y − x)

+

√
³̄t

qt|y(x)
Σ−1

t|0,y(Id −H H)

∫

x0∈Rd

qt|0,y(x|x0)x0dQ0|y(x0).

Here we also recall from Theorem 3 that

Σt|0,y := ³̄tÃ
2
yH

 (H )⊺ + (1− ³̄t)Id.

Since H (H )⊺ is positive semi-definite, all its eigenvalues are non-negative. Write the eigen-
decomposition as H (H )⊺ = Pdiag(D1, . . . , Dd)P

⊺ where D1 g · · · g Dd g 0, ∀i ∈ [d]. Then,
¼min(Σt|0,y) g ³̄tÃ

2
yDd + 1− ³̄t g 1− ³̄t, and we get

∥∥∥Σ−1
t|0,y

∥∥∥ f 1

1− ³̄t
. (34)

Also, from (6), with the f∗
t,y in (10),

gt,y(x) = f∗
t,y(x) + (Id −H H)∇ log qt(x)

= Σ−1
t|0,y

(√
³̄tH

 y −H Hx
)
− 1

(1− ³̄t)
(Id −H H)x

+

√
³̄t

(1− ³̄t)qt(x)
(Id −H H)

∫

x0∈Rd

qt|0(x|x0)x0dQ0(x0)

(i)
= Σ−1

t|0,y
(√

³̄tH
 y −H Hx

)
− Σ−1

t|0,y(Id −H H)x

+

√
³̄t

qt(x)
Σ−1

t|0,y(Id −H H)

∫

x0∈Rd

qt|0(x|x0)x0dQ0(x0)

= Σ−1
t|0,y

(√
³̄tH

 y − x
)
+

√
³̄t

qt(x)
Σ−1

t|0,y(Id −H H)

∫

x0∈Rd

qt|0(x|x0)x0dQ0(x0)
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where (i) follows from Lemma 9. Then, the norm-squared of the score mismatch at time t g 2 is

∥∆t,y∥2 =
∥∥∇ log qt|y − gt,y

∥∥2 =
∥∥(Id −H H)(∇ log qt|y −∇ log qt)

∥∥2

f ³̄t

∥∥∥Σ−1
t|0,y

∥∥∥
2
∥∥∥∥∥

∫
x0∈Rd qt|0,y(x|x0)x0dQ0|y(x0)

qt|y(x)
−
∫
x0∈Rd qt|0(x|x0)x0dQ0(x0)

qt(x)

∥∥∥∥∥

2

(ii)

f ³̄t

∥∥∥Σ−1
t|0,y

∥∥∥
2
∫

xa,xb∈Rd

∥xa − xb∥2 dQ0|t,y(xa)dQ0|t(xb)

f ³̄t

∥∥∥Σ−1
t|0,y

∥∥∥
2

max
xa∈supp(Q0|y)

xb∈supp(Q0)

∥xa − xb∥2

(iii)

≲
³̄t

(1− ³̄t)2
d. (35)

Here (ii) follows from Jensen’s inequality, and (iii) follows by (34) and from the assumption that
Q0 has bounded support (and thus also for both Q0|t and Q0|t,y). Therefore, with the ³t in (8) (cf.
Lemma 6), since 1− ³̄t g 1− ¶ which is a constant, Assumption 4 is satisfied for all Ã2

y g 0. Thus,
Theorem 2 holds with µ = 1 and r = 2.

Now, we consider the case where Ã2
y is unknown, and the conditional sampler of interest is gNt,y(x) =

fN
t,y(x) + (Id − H H)∇ log qt(x) where fN

t,y(x) = (1 − ³̄t)
−1
(√

³̄tH
 y −H Hx

)
. With the

same notation as in the proof of Theorem 3, we can write v = fN
t,y − f∗

t,y = ((1 − ³̄t)
−1Id −

Σ−1
t|0,y)

(√
³̄tH

 y −H Hx
)
. Note that v still satisfies that (Id −H H)v = 0. Using the result in

(33), we have

∥∥∆N
t,y

∥∥2 =
∥∥(Id −H H)(∇ log qt|y(x)−∇ log qt(x))

∥∥2

+
∥∥∥(Σ−1

t|0,y − (1− ³̄t)
−1Id)

(√
³̄tH

 y −H Hx
)∥∥∥

2

where the first term is the same as in (35) which can be upper-bounded in a similar way. To
upper-bound the second term, note that by Woodbury matrix identity,

∥∥∥∥Σ
−1
t|0,y −

1

1− ³̄t
Id

∥∥∥∥ =
³̄tÃ

2
y

(1− ³̄t)2

∥∥∥∥∥∥
H 
(
Ip +

Ã2
y

1− ³̄t
(H )⊺H 

)−1

(H )⊺

∥∥∥∥∥∥

≲
³̄tÃ

2
y

(1− ³̄t)2
(36)

where the inequality follows because
∥∥H ∥∥ ≲ 1 is a constant and the minimum eigenvalue of

(Ip +
Ã2
y

1−³̄t
(H )⊺H ) is at least 1. Thus,

EQt|y

∥∥∥(Σ−1
t|0,y − (1− ³̄t)

−1Id)
(√

³̄tH
 y −H HXt

)∥∥∥
2

(iv)

f ³̄2
tÃ

4
y

(1− ³̄t)4
EQt|y

∥∥√³̄tH
 y −H HXt

∥∥2

=
³̄2
tÃ

4
y

(1− ³̄t)4
EQ0|y

EQt|0,y

∥∥√³̄tH
 y −H HXt

∥∥2

=
³̄2
tÃ

4
y

(1− ³̄t)4
EQ0|y

EQt|0

∥∥√³̄tH
 y −H HXt

∥∥2

f 2³̄2
tÃ

4
y

(1− ³̄t)4
EQ0|y

[
³̄t

∥∥H y −H HX0

∥∥2 + EQt|0

∥∥H H(Xt −
√
³̄tX0)

∥∥2
]

f 2³̄2
tÃ

4
y

(1− ³̄t)4
EQ0|y

[
³̄t

∥∥H y
∥∥2 + ³̄t ∥X0∥2 + d(1− ³̄t)

]
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(v)

≲
³̄2
tÃ

4
y

(1− ³̄t)4
d

where (iv) follows from (36), and (v) follows from the fact that Q0|y has bounded support. Similarly,
for general moments ℓ g 2,

EQt|y

∥∥∥(Σ−1
t|0,y − (1− ³̄t)

−1Id)
(√

³̄tH
 y −H HXt

)∥∥∥
ℓ

≲

(
³̄tÃ

2
y

(1− ³̄t)2
d

)ℓ/2

.

Therefore, with the ³t in (8), since 1− ³̄t g 1−¶ which is a constant, we still have that Assumption 4
is satisfied (see Lemma 6), and Theorem 2 still holds with µ = 1 and r = 4. The proof is now
complete.

I.3 THEOREM 6 AND ITS PROOF

Before we enter the proof of Proposition 1 and Theorem 5, we first state a similar set of results
for Gaussian Q0, which turns out to be useful for analyzing Gaussian mixture Q0’s. To begin,
the following lemma investigates EXt∼Qt|y

∥∆t,y(Xt)∥2 when Q0 is Gaussian. This quantity is
proportional to the asymptotic bias Wbias.

Proposition 2. For Q0 = N (µ0,Σ0), if ft,y = f∗
t,y in (10) and H = (Ip 0), with the ³t’s

according to Definition 1, Assumption 4 is satisfied, and

EXt∼Qt|y
∥∆t,y(Xt)∥2 f ³̄2

t

max{
∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d}

min{¼d, 1}2 min{¼̃d−p, 1}2
∥[Σ0]yȳ[Σ0]ȳy∥

≲ ³̄2
t · (
∥∥H y −H Hµ0

∥∥2 + d)

where ¼1 is the largest eigenvalue of Σ0, and ¼d and ¼̃d−p are the smallest eigenvalues of Σ0 and
[Σ0]ȳȳ , respectively.

Proof. See Appendix J.1.

With this lemma, the following theorem characterizes the conditional KL divergence when Q0 is
Gaussian.

Theorem 6. Suppose that Ã2
y > 0. Suppose that Assumptions 1 and 5 hold. Under the same

conditions as in Proposition 2, if ³t further satisfies
∑T

t=1(1− ³t)³̄t = 1 + o(1), we have

KL(Q0|y∥P̂0|y) ≲ (
∥∥H y −H Hµ0

∥∥2 + d)

+ (
∥∥H y −H Hµ0

∥∥2 + d)
(log T )2

T
+

√
∥H y −H Hµ0∥2 + d · (log T )ε.

Note that a similar result can be obtained for KL(Q1|y∥P̂1|y) (where W2(Q1|y, Q0|y)2 ≲ ¶d) for any
general Ã2

y g 0 using the ³t in (8) (see Remark 1).

I.3.1 PROOF OF THEOREM 6

Throughout the proof we use the same notations as in (55). Since Assumption 4 is satisfied from
Proposition 2, in order to invoke Theorem 1, we still need to check Assumption 3. Since each
Qt|y (∀t g 0) is Gaussian, all partial derivatives of its log-p.d.f. higher than third-order equal
zero. For the first and second-order, note that Σt|y = ³̄t(Id − H H)Σ0(Id − H H) + (1 −
³̄t)Id + ³̄tÃ

2
yH

 H . Thus, when Ã2
y > 0, ¼min(Σt−1|y) g min{1− ³̄t + ³̄tÃ

2
y, 1− ³̄t + ³̄t¼̃d} g

min{1, Ã2
y, ¼̃d} > 0, which yields

∥∥∥Σ−1
t−1|y

∥∥∥ ≲ 1, ∀t g 1. (37)

Thus, we have, ∀ℓ g 1,

EQt|y

∥∥∇ log qt|y(Xt)
∥∥ℓ
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= EQt|y

∥∥∥Σ−1
t|y (Xt − µt|y)

∥∥∥
ℓ

f
∥∥∥Σ− 1

2

t|y

∥∥∥
ℓ

EQt|y

∥∥∥Σ− 1
2

t|y (Xt − µt|y)
∥∥∥
ℓ

≲ dℓ/2 = O(1),

EQt|y

∥∥∇ log qt−1|y(mt,y(Xt))
∥∥ℓ

= EQt|y

∥∥∥Σ−1
t|y (mt,y(Xt)− µt|y)

∥∥∥
ℓ

≲
∥∥∥Σ− 1

2

t|y

∥∥∥
ℓ

EQt|y

∥∥∥Σ− 1
2

t|y (Xt − µt|y)
∥∥∥
ℓ

+
∥∥∥Σ−1

t|y

∥∥∥
ℓ

EQt|y

∥∥∇ log qt|y(Xt)
∥∥ℓ

≲ dℓ/2 = O(1),

EQt|y

∥∥∇2 log qt|y(Xt)
∥∥ℓ =

∥∥∥Σ−1
t|y

∥∥∥
ℓ

= O(1),

EQt|y

∥∥∇2 log qt−1|y(mt,y(Xt))
∥∥ℓ =

∥∥∥Σ−1
t−1|y

∥∥∥
ℓ

= O(1).

Thus, Assumption 3 holds when 1− ³t satisfies Definition 1.

Now, we can invoke Theorem 1 and get KL(Q0|y∥P̂0|y) ≲ Woracle +Wbias +Wvanish, where

Woracle =

T∑

t=1

(1− ³t)
2

2³t
EXt∼Qt|y

[
Tr
(
∇2 log qt−1|y(mt,y(Xt))∇2 log qt|y(Xt)

)]
+ (log T )ε2

Wbias =
T∑

t=1

(1− ³t)EXt∼Qt|y
∥∆t,y(Xt)∥2

Wvanish =

T∑

t=1

1− ³t√
³t

EXt∼Qt|y

[
(∇ log qt−1|y(mt,y(Xt))−

√
³t∇ log qt|y(Xt))

⊺∆t,y(Xt)

]

−
T∑

t=1

(1− ³t)
2

2³t
EXt∼Qt|y

[
∆t,y(Xt)

⊺∇2 log qt−1|y(mt,y(Xt))∆t,y(Xt)
]

+

T∑

t=1

(1− ³t)
2

3!³t
3/2

EXt∼Qt|y

[
3

d∑

i=1

∂3
iii log qt−1|y(mt,y(Xt))∆t,y(Xt)

i

+

d∑

i,j=1
i ̸=j

∂3
iij log qt−1|y(mt,y(Xt))∆t,y(Xt)

j

]

+max
tg1

√
EXt∼Qt|y

∥∆t,y(Xt)∥2(log T )ε.

We first consider the estimation error (in both Woracle and Wvanish), which can be upper-bounded as

max
tg1

√
EXt∼Qt|y

∥∆t,y(Xt)∥2(log T )ε+ (log T )ε2 ≲
(∥∥H y −H Hµ0

∥∥2 + d
) 1

2

(log T )ε

from Proposition 2. Also, when Qt|y is Gaussian, we can calculate, for any xt ∈ R
d,

Tr
(
∇2 log qt−1|y(mt,y(xt))∇2 log qt|y(xt)

)
= Tr(Σ−1

t−1|yΣ
−1
t|y )

= Tr(Σ−1
t−1|y(³tΣt−1|y + (1− ³t)Id)

−1)

(i)
= Tr(Σ−1

t−1|y(³
−1
t Σ−1

t−1|y −
1− ³t

³2
t

Σ−2
t−1|y +O((1− ³t)

2)))

≲
1

³t
Tr(Σ−2

t−1|y)

where (i) follows from Taylor expansion when 1− ³t is small. Using (37), this implies that

Woracle ≲
d(log T )2

T
+ (log T )ε2.
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Also, from the condition on ³t,

T∑

t=1

(1− ³t)EXt∼Qt|y
∥∆t,y(Xt)∥2 ≲ (

∥∥H y −H Hµ0

∥∥2 + d).

Now we focus on Wvanish (except the estimation error). Since Qt|y is Gaussian, all third-order partial
derivatives are zero, and only the first two terms in Wvanish remain. In the following we fix t g 1.
Also recall from (56) that when H = (Ip 0),

∆t,y = −³̄t(Id −H H)Σ−1
t,sig(Id −H H)Σ0(H

 H)Σ−1
t (xt −

√
³̄tµ0)

= −³̄t(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1[Σ0]ȳy[Σ

−1
t ]y:(xt −

√
³̄tµ0).

For the first term of Wvanish, we first calculate for each xt that

∇ log qt−1|y(mt,y)−
√
³t∇ log qt|y(xt)

=
√
³tΣ

−1
t|y (xt −

√
³̄tµ0|y)− Σ−1

t−1|y(mt,y −
√
³̄t−1µ0|y)

Recall that

mt,y =
1√
³t

xt +
1− ³t√

³t
∇ log qt|y(xt) =

1√
³t

xt −
1− ³t√

³t
Σ−1

t|y (xt −
√
³̄tµ0|y),

Σ−1
t|y = (³tΣt−1|y + (1− ³t)Id)

−1 =
1

³t
Σ−1

t−1|y −
1− ³t

³2
t

Σ−2
t−1|y +O((1− ³t)

2).

Thus,

∇ log qt−1|y(mt,y)−
√
³t∇ log qt|y(xt)

=
√
³t

(
1

³t
Σ−1

t−1|y −
1− ³t

³2
t

Σ−2
t−1|y

)
(xt −

√
³̄tµ0|y)

− Σ−1
t−1|y

(
1√
³t

xt +
1− ³t√

³t
∇ log qt|y(xt)−

√
³̄t−1µ0|y

)
+O((1− ³t)

2)

= −1− ³t

³
3/2
t

Σ−2
t−1|y(xt −

√
³̄tµ0|y) +

1− ³t√
³t

Σ−1
t−1|yΣ

−1
t|y (xt −

√
³̄tµ0|y) +O((1− ³t)

2).

Combining with the definition for ∆t,y in (56) and using Lemma 9, we have

EXt∼Qt|y

[
∆t,y(Xt)

⊺(∇ log qt−1|y(mt,y(Xt))−
√
³t∇ log qt|y(Xt))

]

= ³̄tEXt∼Qt|y

[
(Xt −

√
³̄tµ0)

⊺Σ−1
t (H H)Σ0(Id −H H)Σ−1

t,sig(Id −H H)

(
1− ³t

³
3/2
t

Σ−2
t−1|y −

1− ³t√
³t

Σ−1
t−1|yΣ

−1
t|y

)
(Xt −

√
³̄tµ0|y)

]
+O((1− ³t)

2)

(ii)
= ³̄tEXt∼Qt|y

[
(Xt −

√
³̄tµ0)

⊺Σ−1
t (H H)Σ0(Id −H H)Σ−1

t,sig(Id −H H)

(
1− ³t

³
3/2
t

Σ−1
t−1|y(Id −H H)Σ−1

t−1|y −
1− ³t√

³t
Σ−1

t−1|y(Id −H H)Σ−1
t|y

)

(Id −H H)(Xt −
√
³̄tµ0)

]
+O((1− ³t)

2)

= ³̄tEXt∼Qt|y

[
(Xt −

√
³̄tµ0)

⊺[Σ−1
t ]:y[Σ0]yȳ(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1

(
1− ³t

³
3/2
t

[Σ−1
t−1|y]

2
ȳȳ −

1− ³t√
³t

[Σ−1
t−1|y]ȳȳ[Σ

−1
t|y ]ȳȳ

)
(0 Id−p) (Xt −

√
³̄tµ0)

]

+O((1− ³t)
2)
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= ³̄tTr

(
[Σ−1

t ]:y[Σ0]yȳ(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1

(
1− ³t

³
3/2
t

[Σ−1
t−1|y]

2
ȳȳ −

1− ³t√
³t

[Σ−1
t−1|y]ȳȳ[Σ

−1
t|y ]ȳȳ

)

(0 Id−p)EXt∼Qt|y

[
(Xt −

√
³̄tµ0)(Xt −

√
³̄tµ0)

⊺
])

+O((1− ³t)
2)

(iii)

f
∥∥[Σ−1

t ]:y
∥∥ ∥[Σ0]yȳ∥

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥×

(
1− ³t

³
3/2
t

∥∥∥[Σ−1
t−1|y]ȳȳ

∥∥∥
2

+
1− ³t√

³t

∥∥∥[Σ−1
t−1|y]ȳȳ

∥∥∥
∥∥∥[Σ−1

t|y ]ȳȳ
∥∥∥
)
×

Tr
(
EXt∼Qt|y

[
(Xt −

√
³̄tµ0)(Xt −

√
³̄tµ0)

⊺
])

(iv)

≲

(
1− ³t

³
3/2
t

+
1− ³t√

³t

)
max

{∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d

}

≲ (1− ³t)
(∥∥H y −H Hµ0

∥∥2 + d
)

where (ii) follows by Lemma 9 and from definition that (Id − H H)µ0|y = (Id − H H)µ0,
(iii) follows because |Tr(UV )| f ∥U∥Tr(V ) if V is positive semi-definite, and (iv) follows
from (58) and the same reasons for (57). In particular, we note that [Σ−1

t|y ]ȳȳ = [Σ−1
t,sig]ȳȳ =

(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1 and

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥ f 1

min{¼̃d−p,1}
< ∞.

For the second term of Wvanish, we use the fact that [Σ−1
t−1|y]ȳȳ = (³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−1

and have

− EXt∼Qt|y
∆t,y(Xt)

⊺∇2 log qt−1|y(mt,y(Xt))∆t,y(Xt)

= ³̄2
tEXt∼Qt|y

[
(Xt −

√
³̄tµ0)

⊺Σ−1
t (H H)Σ0(Id −H H)Σ−1

t,sig(Id −H H)Σ−1
t−1|y

(Id −H H)Σ−1
t,sig(Id −H H)Σ0(H

 H)Σ−1
t (Xt −

√
³̄tµ0)

]

= ³̄2
tTr

(
[Σ−1

t ]:y[Σ0]yȳ(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−1

(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1[Σ0]ȳy[Σ

−1
t ]y:EXt∼Qt|y

(Xt −
√
³̄tµ0)(Xt −

√
³̄tµ0)

⊺

)

(v)

f max
{∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d

}∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥2

∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)
−1
∥∥ ∥∥Σ−1

t

∥∥2 ∥[Σ0]yȳ[Σ0]ȳy∥
≲ max

{∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d

}

≲
∥∥H y −H Hµ0

∥∥2 + d.

Here (v) follows from the fact that |Tr(UV )| f ∥U∥Tr(V ) if V is positive semi-definite and (58).
The proof is complete by plugging all the results above into Theorem 1.

Remark 1. Before we end the proof, we leave a note for the case of Ã2
y = 0 (indeed, for any general

Ã2
y g 0). The only difference is how to upper-bound Woracle. In particular, if Ã2

y = 0, (37) no longer

holds (i.e., we can no longer upper-bound
∥∥∥Σ−1

t−1|y

∥∥∥ as a constant). Instead, we can obtain an upper

bound as
∥∥∥Σ−1

t−1|y

∥∥∥ ≲ (1− ³̄t−1)
−1. Then, with the ³t in (8), we have

Woracle ≲
d(log T )2 log(1/¶)2

T
+ (log T )ε2.

45



Published as a conference paper at ICLR 2025

The rest of the proof still follows because the ³t satisfies Definition 1 when t g 2. Combining with
Lemma 7, we would finally obtain

KL(Q1|y∥P̂1|y) ≲ (
∥∥H y −H Hµ0

∥∥2 + d)

(
1− 3 log(1/¶) log T

T

)

+ (
∥∥H y −H Hµ0

∥∥2 + d)
(log T )2 log(1/¶)2

T
+

√
∥H y −H Hµ0∥2 + d · (log T )ε.

Here W2(Q1|y, Q0|y)2 ≲ ¶d.

I.4 PROOF OF PROPOSITION 1

We first introduce some useful notations for this subsection. Recall that Q0 has mixture p.d.f. in
which the mixture prior Ãn is independent of y (= Hx0 + n). Thus, using the fact that x0 =
(Id −H H)x0 +H y −H n, we can define Q0,n|y as (cf. Flåm (2013))

Q0|y =

N∑

n=1

ÃnQ0,n|y

:=

N∑

n=1

ÃnN ((Id −H H)µ0,n +H y, (Id −H H)Σ0(Id −H H) + Ã2
yH

 (H )⊺).

Note that when H = (Ip 0) and Ã2
y > 0, q0|y exists. From the conditional forward model in (5),

we further define

Qt =
N∑

n=1

ÃnQt,n, Qt|y =
N∑

n=1

ÃnQt,n|y, Qt,n := N (µt,n,Σt), Qt,n|y := N (µt,n|y,Σt|y)

µt,n :=
√
³̄tµ0,n, Σt := ³̄tΣ0 + (1− ³̄t)Id, µt,n|y :=

√
³̄t(Id −H H)µ0,n +

√
³̄tH

 y

Σt|y := Σt,sig + ³̄tÃ
2
yH

 (H )⊺, Σt,sig := ³̄t(Id −H H)Σ0(Id −H H) + (1− ³̄t)Id. (38)

Similar to (37), we still have ∥∥∥Σ−1
t−1|y

∥∥∥ ≲ 1, ∀t g 1.

We can also calculate the scores of Qt and Qt|y in as follows.

∇ log qt(xt) = − 1

qt(xt)

N∑

n=1

Ãnqt,n(xt)Σ
−1
t (xt − µt,n),

∇ log qt|y(xt) = − 1

qt|y(xt)

N∑

n=1

Ãnqt,n|y(xt)Σ
−1
t|y (xt − µt,n|y). (39)

Now, with ft,y = f∗
t,y (in (10)), from the expression of ∆t,y in (32), under the assumption H =

(Ip 0), the score mismatch at each diffusion step is equal to

∆t,y = (Id −H H)(∇ log qt|y −∇ log qt)

=
1

qt(xt)

N∑

n=1

Ãnqt,n(xt)(Id −H H)Σ−1
t (xt −

√
³̄tµ0,n)

− 1

qt|y(xt)

N∑

n=1

Ãnqt,n|y(xt)(Id −H H)Σ−1
t|y (xt −

√
³̄tµ0,n|y)

=

N∑

n=1

Ãn

(
qt,n(xt)

qt(xt)
− qt,n|y(xt)

qt|y(xt)

)
(Id −H H)Σ−1

t (xt −
√
³̄tµ0,n)

+

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)
(Id −H H)

(
Σ−1

t (xt −
√
³̄tµ0,n)− Σ−1

t|y (xt −
√
³̄tµ0,n|y)

)
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= −√
³̄t

N∑

n=1

Ãn

(
qt,n(xt)

qt(xt)
− qt,n|y(xt)

qt|y(xt)

)
(Id −H H)Σ−1

t µ0,n

+

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)
(Id −H H)

(
Σ−1

t (xt −
√
³̄tµ0,n)− Σ−1

t|y (xt −
√
³̄tµ0,n|y)

)

(i)
= −√

³̄t

N∑

n=1

Ãn

(
qt,n(xt)

qt(xt)
− qt,n|y(xt)

qt|y(xt)

)
(Id −H H)Σ−1

t µ0,n

− ³̄t

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)
AtΣ0(H

 H)Σ−1
t (xt −

√
³̄tµ0,n) (40)

where At := (Id −H H)Σ−1
t,sig(Id −H H). Here (i) follows from similar arguments as in (56).

Note that since H = (Ip 0), we have equivalently At = (Id − H H)Σ−1
t|y (Id − H H). Since

H H =

(
Ip 0
0 0

)
, we can also re-express the second term in ∆t,y such that [∆t,y]y = 0 and

[∆t,y]ȳ = −√
³̄t

N∑

n=1

Ãn

(
qt,n(xt)

qt(xt)
− qt,n|y(xt)

qt|y(xt)

)
[Σ−1

t ]ȳ:µ0,n

− ³̄t

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)
(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:(xt −

√
³̄tµ0,n)

(41)

since when H H =

(
Ip 0
0 0

)
, At =

(
0 0
0 (³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1

)
.

Now, for the second moment, we follow similar analyses in (57) and get

EXt∼Qt|y
∥∆t,y∥2

f 4³̄tEXt∼Qt|y
max
n∈[N ]

∥∥Σ−1
t µ0,n

∥∥2

+ 2³̄2
t

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥2 ∥∥[Σ−1

t ]y:
∥∥2 ∥[Σ0]yȳ∥2 ×

EXt∼Qt|y

[
N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)

∥∥Xt −
√
³̄tµ0,n

∥∥2
]

where

EXt∼Qt|y

[
N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)

∥∥Xt −
√
³̄tµ0,n

∥∥2
]

= EXt∼Qt|y
EN∼Π·|t,y

∥∥Xt −
√
³̄tµ0,N

∥∥2

= EN∼Π·|y
EXt∼Qt,N|y

∥∥Xt −
√
³̄tµ0,N

∥∥2

(ii)
= EN∼Π·|y

[
Tr(Σt|y) + ³̄t

∥∥H y −H Hµ0,N

∥∥2
]

= Tr(Σt|y) + ³̄t

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2

where (ii) follows from (58) and note that Qt,N |y is Gaussian for each N = n. Denote ¼1 g · · · g
¼d > 0 and ¼̃1 g · · · g ¼̃d−p > 0 to be the eigenvalues of Σ0 and [Σ0]ȳȳ, respectively. Similarly
as the proof of Proposition 2, we have ∥[Σ0]ȳy∥ f ∥Σ0∥ = ¼1,

∥∥[Σ−1
t ]y:

∥∥ f
∥∥Σ−1

t

∥∥ f (³̄t¼d +

(1 − ³̄t))
−1 f 1

min{¼d,1} ,
∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1
∥∥ f 1

³̄t¼̃d−p+(1−³̄t)
f 1

min{¼̃d−p,1}
, and

∥∥Σt|y
∥∥ f ³̄t(¼1 + Ã2

y) + (1− ³̄t). Therefore,

EXt∼Qt|y
∥∆t,y∥2
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≲ ³̄td+ ³̄2
t

∥[Σ0]yȳ∥2

min{¼̃d−p, 1}2 min{¼d, 1}2
×

(
d(1− ³̄t) + ³̄td(¼1 + Ã2

y) + ³̄t

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2
)

≲ ³̄td+ ³̄2
t

∥[Σ0]yȳ∥2

min{¼̃d−p, 1}2 min{¼d, 1}2
max

{
d(¼1 + Ã2

y) +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 , d
}
.

The proof is complete.

I.5 PROOF OF THEOREM 5

We first recall all the notations in (38) under Gaussian mixture. We also recall the scores from (39):

∇ log qt(xt) = − 1

qt(xt)

N∑

n=1

Ãnqt,n(xt)Σ
−1
t (xt − µt,n)

= −Σ−1
t xt +

1

qt(xt)

N∑

n=1

Ãnqt,n(xt)Σ
−1
t µt,n

∇ log qt|y(xt) = − 1

qt|y(xt)

N∑

n=1

Ãnqt,n|y(xt)Σ
−1
t|y (xt − µt,n|y)

= −Σ−1
t|yxt +

1

qt|y(xt)

N∑

n=1

Ãnqt,n|y(xt)Σ
−1
t|yµt,n|y

Also, we recall the explicit expression of ∆t,y from (41), such that [∆t,y]y = 0 and

[∆t,y]ȳ = −√
³̄t

N∑

n=1

Ãn

(
qt,n(xt)

qt(xt)
− qt,n|y(xt)

qt|y(xt)

)
[Σ−1

t ]ȳ:µ0,n

− ³̄t

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)
(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:(xt −

√
³̄tµ0,n).

In order to invoke Theorem 1, we need to check Assumptions 3 and 4. From (Liang et al., 2024,

Lemmas 13 and 14), since
∥∥∥Σ−1

t|y

∥∥∥ ≲ 1 for all t g 0, the absolute values of any-order partial derivative

are bounded by O(1) in expectation, and thus Assumption 3 is satisfied. The following lemma verifies
Assumption 4 using the ³t in Definition 1.

Lemma 8. Under the same condition of Theorem 5, Assumption 4 holds if the ³t satisfies Definition 1.

Proof. See Appendix J.2.

Now we start to upper-bound the conditional KL-divergence of interest. Recall that from Theorem 1,
KL(Q0|y∥P̂0|y) ≲ Woracle +Wbias +Wvanish, where

Woracle =

T∑

t=1

(1− ³t)
2

2³t
EXt∼Qt|y

[
Tr
(
∇2 log qt−1|y(mt,y(Xt))∇2 log qt|y(Xt)

)]
+ (log T )ε2

Wbias =

T∑

t=1

(1− ³t)EXt∼Qt|y
∥∆t,y(Xt)∥2

Wvanish =

T∑

t=1

1− ³t√
³t

EXt∼Qt|y

[
(∇ log qt−1|y(mt,y(Xt))−

√
³t∇ log qt|y(Xt))

⊺∆t,y(Xt)

]

−
T∑

t=1

(1− ³t)
2

2³t
EXt∼Qt|y

[
∆t,y(Xt)

⊺∇2 log qt−1|y(mt,y(Xt))∆t,y(Xt)
]
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+

T∑

t=1

(1− ³t)
2

3!³t
3/2

EXt∼Qt|y

[
3

d∑

i=1

∂3
iii log qt−1|y(mt,y(Xt))∆t,y(Xt)

i

+

d∑

i,j=1
i ̸=j

∂3
iij log qt−1|y(mt,y(Xt))∆t,y(Xt)

j

]

+max
tg1

√
EXt∼Qt|y

∥∆t,y(Xt)∥2(log T )ε.

From (Liang et al., 2024, Theorem 2) (and by assumption N f d), if the ³t satisfies Definition 1,

Woracle ≲
d2(log T )2

T
+ (log T )ε2.

Also, from Proposition 1, under the assumption on ³t, Wbias can be upper-bounded as

Wbias ≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 .

Among the terms in Wvanish, the last estimation error term can be upper-bounded using Proposition 1
as

max
tg1

√
EXt∼Qt|y

∥∆t,y(Xt)∥2(log T )ε ≲

√√√√d+

N∑

n=1

Ãn ∥H y −H Hµ0,n∥2(log T )ε.

It remains to analyze the rest of the terms in Wvanish. In the following we fix t g 1. We remind
readers of the notations in (38). For the first term in Wvanish, we first provide the following useful
calculations. Note that by exchanging the order of expectation, for any function fn we have

EXt∼Qt|y

[
N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)
fn(Xt, n)

]
=

N∑

n=1

ÃnEXt∼Qt,n|y
fn(Xt, n).

Thus,

EXt∼Qt|y

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)

∣∣(Xt −
√
³̄tµ0,n)

⊺Xt

∣∣

=

N∑

n=1

ÃnEXt∼Qt,n|y

∣∣(Xt −
√
³̄tµ0,n)

⊺Xt

∣∣

f
N∑

n=1

ÃnEXt∼Qt,n|y

∥∥Xt −
√
³̄tµ0,n

∥∥2 +
√
³̄t

N∑

n=1

Ãn ∥µ0,n∥
√
EXt∼Qt,n|y

∥∥Xt −
√
³̄tµ0,n

∥∥2

(i)
= Tr(Σt|y) + ³̄t

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2

+
√
³̄t

N∑

n=1

Ãn ∥µ0,n∥

√√√√Tr(Σt|y) + ³̄t

N∑

n=1

Ãn ∥H y −H Hµ0,n∥2

≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 (42)

where (i) follows from (58).

Also, note that (Id − H H)Σ−r
t−1|y(H

 H) = 0 using the following simple induction argument.

For the base case, we have (Id − H H)Σ−1
t−1|y(H

 H) = 0 from Lemma 9. Then, suppose
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(Id−H H)Σ
−(r−1)
t−1|y (H H) = 0, we have (Id−H H)Σ−r

t−1|y(H
 H) = (Id−H H)Σ

−(r−1)
t−1|y (Id−

H H + H H)Σ−1
t−1|y(H

 H) = (Id − H H)Σ
−(r−1)
t−1|y (Id − H H)Σ−1

t−1|y(H
 H) + (Id −

H H)Σ
−(r−1)
t−1|y (H H)Σ−1

t−1|y(H
 H) = 0. Thus, for all r g 1 and any fixed vector v, with the

definition of ∆t,y in (40) and (41),

EXt∼Qt|y

∣∣∣(Σ−r
t−1|yv)

⊺∆t,y

∣∣∣

f ∥v∥EXt∼Qt|y

∥∥∥Σ−r
t−1|y∆t,y

∥∥∥ = ∥v∥EXt∼Qt|y

∥∥Ar
t−1∆t,y

∥∥

f 4 ∥v∥
∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−r
∥∥ max

n∈[N ]

∥∥[Σ−1
t ]ȳ:µ0,n

∥∥

+ 2 ∥v∥
∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−r
∥∥ ∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:

∥∥×
√√√√

EXt∼Qt|y

N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)

∥∥Xt −
√
³̄tµ0,n

∥∥2

≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 (43)

where the last line follows from (58). Similarly,

EXt∼Qt|y

∣∣∣(Σ−r
t|yv)

⊺∆t,y

∣∣∣ ≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 .

Also, for all r g 1,

EXt∼Qt|y

∣∣∣(Σ−r
t−1|yXt)

⊺∆t,y

∣∣∣ = EXt∼Qt|y

∣∣∣X⊺

t Σ
−r
t−1|y(Id −H H)∆t,y

∣∣∣
= EXt∼Qt|y

∣∣X⊺

t A
r
t−1∆t,y

∣∣

f 4
∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−r
∥∥ max

n∈[N ]

∥∥[Σ−1
t ]ȳ:µ0,n

∥∥EXt∼Qt|y
∥Xt∥

+ 2
∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−r
∥∥ ∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:

∥∥×

EXt∼Qt|y

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)

∣∣(Xt −
√
³̄tµ0,n)

⊺Xt

∣∣

≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 (44)

where the last line follows from (42) and the fact that, from (58),

√
d · EXt∼Qt|y

∥Xt∥ f
√
d

N∑

n=1

Ãn

√
2EXt∼Qt,n|y

∥Xt − µt,n∥2 + 2 ∥µt,n∥2

≲
√
d

N∑

n=1

Ãn

√
Tr(Σt|y) + ³̄t ∥H y −H Hµ0,n∥2 + d

≲ d+
√
d

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥

≲ d+
N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 .

Similarly, we also have EXt∼Qt|y

∣∣∣(Σ−r
t|yXt)

⊺∆t,y

∣∣∣ ≲ d+
∑N

n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2.

Also, for all r g 1, using the expression of ∇ log qt|y in (39), and noting that by definition (Id −
H H)(xt − µt,n|y) = (Id −H H)(xt − µt,n), we have

EXt∼Qt|y

∣∣∣(Σ−r
t−1|y∇ log qt|y(Xt))

⊺∆t,y

∣∣∣
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= EXt∼Qt|y

∣∣∣∣∣

(
Ar

t−1

N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)
At(Id −H H)(Xt − µt,n|y)

)⊺

∆t,y

∣∣∣∣∣

f 4
∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−r
∥∥ ∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1
∥∥×

EXt∼Qt|y

∥∥∥∥∥

N∑

ℓ=1

Ãℓ

qt,ℓ|y(Xt)

qt|y(Xt)
[Xt −

√
³̄tµ0,ℓ]ȳ

∥∥∥∥∥× max
n∈[N ]

∥∥[Σ−1
t ]ȳ:µ0,n

∥∥

+ 2
∥∥(³̄t−1[Σ0]ȳȳ + (1− ³̄t−1)Id−p)

−r
∥∥ ∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1
∥∥2 ×

E Xt∼Qt|y

N,L∼Π·|t,y(·|Xt)

[
[Xt −

√
³̄tµ0,L]

⊺

ȳ [Σ0]ȳy[Σ
−1
t ]y:(Xt −

√
³̄tµ0,N )

]

≲

√√√√
N∑

n=1

ÃnEXt∼Qt,n|y

∥∥Xt −
√
³̄tµ0,n

∥∥2 ×
√
d

+ E Xt∼Qt|y

N,L∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,L

∥∥ ∥∥Xt −
√
³̄tµ0,N

∥∥

≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 (45)

where the last line follows because, from (58),

E Xt∼Qt|y

N,L∼Π·|t,y(·|Xt)

[∥∥Xt −
√
³̄tµ0,L

∥∥ ∥∥Xt −
√
³̄tµ0,N

∥∥]

f
√

E Xt∼Qt|y

L∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,L

∥∥2 ×
√
E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,N

∥∥2

= E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,N

∥∥2

≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 .

Now, we start to analyze the first term of Wvanish. Recall that mt,y(xt) = EXt−1∼Qt−1|t,y
[Xt−1] =

1√
³t
xt +

1−³t√
³t

∇ log qt|y(xt). Using the score expressions in (39), we can calculate that given xt

(and thus mt,y = mt,y(xt)),

∇ log qt−1|y(mt,y)−
√
³t∇ log qt|y(xt)

=
√
³tΣ

−1
t|yxt − Σ−1

t−1|ymt,y

−√
³tΣ

−1
t|y

N∑

n=1

Ãn

qt,n|y(xt)

qt|y(xt)
µt,n|y +Σ−1

t−1|y

N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)
µt−1,n|y

=
(
Σ−1

t|y − Σ−1
t−1|y

)√
³txt −

1− ³t√
³t

Σ−1
t−1|y(xt +∇ log qt|y(xt))

+ (1− ³t)Σ
−1
t−1|y

N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)
µt−1,n|y

+ ³t

∑N
n,ℓ=1 ÃnÃℓ

(
qt−1,n|y(mt,y)qt,ℓ|y(xt)Σ

−1
t−1|y − qt−1,ℓ|y(mt,y)qt,n|y(xt)Σ

−1
t|y

)
µt−1,n|y

qt−1|y(mt,y)qt|y(xt)
.

Here, using similar analyses as in the proof of Lemma 5, we get

(mt,y − µt−1,n|y)− (xt − µt,n|y) =
1−√

³t√
³t

xt +
1− ³t√

³t
∇ log qt|y(xt)− (1−√

³t)µt−1,n|y

Σ−1
t|y − Σ−1

t−1|y =
1− ³t

³t
Σ−1

t−1,n +
1− ³t

³2
t

Σ−2
t−1,n +O((1− ³t)

2)
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qt−1,n|y(mt,y)qt,ℓ|y(xt)Σ
−1
t−1|y − qt−1,ℓ|y(mt,y)qt,n|y(xt)Σ

−1
t|y

= qt−1,n|y(mt,y)qt,ℓ|y(xt)(Σ
−1
t−1|y − Σ−1

t|y )

+ (qt−1,n|y(mt,y)qt,ℓ|y(xt)− qt−1,ℓ|y(mt,y)qt,n|y(xt))Σ
−1
t|y

= qt−1,n|y(mt,y)qt,ℓ|y(xt)(Σ
−1
t−1|y − Σ−1

t|y )

+

(
1

2
((mt,y − µt−1,ℓ|y)− (xt − µt,ℓ|y))

⊺Σ−1
t−1|y(mt,y − µt−1,ℓ|y)

+
1

2
(xt − µt,ℓ|y)

⊺(Σ−1
t−1|y − Σ−1

t|y )(mt,y − µt−1,ℓ|y)

+
1

2
(xt − µt,ℓ|y)

⊺Σ−1
t|y ((mt,y − µt−1,ℓ|y)− (xt − µt,ℓ|y))

− 1

2
((mt,y − µt−1,n|y)− (xt − µt,n|y))

⊺Σ−1
t−1|y(mt,y − µt−1,n|y)

− 1

2
(xt − µt,n|y)

⊺(Σ−1
t−1|y − Σ−1

t|y )(mt,y − µt−1,n|y)

− 1

2
(xt − µt,n|y)

⊺Σ−1
t|y ((mt,y − µt−1,n|y)− (xt − µt,n|y))

)
Σ−1

t|y

+O((1− ³t)
2)

Thus,∣∣∣∣EXt∼Qt|y

[
(∇ log qt−1|y(mt,y)−

√
³t∇ log qt|y)

⊺∆t,y

]∣∣∣∣

f EXt∼Qt|y

[ ∣∣∣X⊺

t (Σ
−1
t|y − Σ−1

t−1|y)∆t,y

∣∣∣
]

+
1− ³t√

³t
EXt∼Qt|y

[ ∣∣∣(Xt +∇ log qt|y)
⊺(Σ−1

t−1|y)∆t,y

∣∣∣
]

+ (1− ³t)EXt∼Qt|y

[ ∣∣∣∣∣

(
N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)
µt−1,n|y

)⊺

Σ−1
t−1|y∆t,y

∣∣∣∣∣

]

+ EXt∼Qt|y

∣∣∣∣∣∣
∆⊺

t,y

N∑

n,ℓ=1

ÃnÃℓ

(
qt−1,n|y(mt,y)qt,ℓ|y(Xt)

qt−1|y(mt,y)qt|y(Xt)
Σ−1

t−1|y −
qt−1,ℓ|y(mt,y)qt,n|y(Xt)

qt−1|y(mt,y)qt|y(Xt)
Σ−1

t|y

)
µt−1,n|y

∣∣∣∣∣∣
.

Among the four terms above, the first term ≲ d+
∑N

n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2 from (44) (along

with the similar result for Σ−1
t|y ), the second term ≲ d +

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2 from (44)

and (45), and both the third and the fourth term ≲ d +
∑N

n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2 from (43)

(along with the similar result for Σ−1
t|y ). Thus,

∣∣∣∣EXt∼Qt|y

[
(∇ log qt−1|y(mt,y)−

√
³t∇ log qt|y(Xt))

⊺∆t,y

]∣∣∣∣ ≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 ,

and the first term in Wvanish satisfies that

T∑

t=1

1− ³t√
³t

EXt∼Qt|y

[
(∇ log qt−1|y(mt,y(Xt))−

√
³t∇ log qt|y(Xt))

⊺∆t,y(Xt)

]

≲

(
d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2
)

log(1/¶)2(log T )2

T
.

For the second term in Wvanish, we first provide the following useful calculation. Similar to (43), for
all r g 1 and any fixed vector v,

EXt∼Qt|y

∣∣∣(Σ−r
t|yv)

⊺∆t,y

∣∣∣
2
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f ∥v∥2 EXt∼Qt|y

∥∥∥Σ−r
t|y∆t,y

∥∥∥
2

= ∥v∥2 EXt∼Qt|y
∥Ar

t∆t,y∥2

≲ ∥v∥2
∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−r
∥∥2 max

n∈[N ]

∥∥[Σ−1
t ]ȳ:µ0,n

∥∥2

+ ∥v∥2
∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−r
∥∥2 ∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:

∥∥2 ×

EXt∼Qt|y

N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)

∥∥Xt −
√
³̄tµ0,n

∥∥2

≲ d2 + d

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 (46)

where the last line follows from (58).

Also, similar to (44), for all r g 1,

EXt∼Qt|y

∣∣∣(Σ−r
t|ymt,y)

⊺∆t,y

∣∣∣
2

≲ EXt∼Qt|y

∣∣∣X⊺

t Σ
−r
t|y∆t,y

∣∣∣
2

+ (1− ³t)EXt∼Qt|y

∣∣∣(∇ log qt|y(Xt))
⊺Σ−r

t|y∆t,y

∣∣∣
2

(ii)

≲ EXt∼Qt|y

∣∣∣X⊺

t Σ
−r
t|y (Id −H H)∆t,y

∣∣∣
2

= EXt∼Qt|y
|X⊺

t A
r
t∆t,y|2

≲
∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−r
∥∥2 max

n∈[N ]

∥∥[Σ−1
t ]ȳ:µ0,n

∥∥2 EXt∼Qt|y
∥Xt∥2

+
∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−r
∥∥2 ∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:

∥∥2 ×

EXt∼Qt|y

N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)

∣∣(Xt −
√
³̄tµ0,n)

⊺Xt

∣∣2

≲ d2 +
N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4 (47)

where (ii) follows from the fact that EXt∼Qt|y

∣∣∣(∇ log qt|y(Xt))
⊺Σ−r

t|y∆t,y

∣∣∣
2

≲ d2 (using a similar

argument for deriving (45)), and the last line follows because

d · EXt∼Qt|y
∥Xt∥2 f d

N∑

n=1

Ãn

(
2EXt∼Qt,n|y

∥Xt − µt,n∥2 + 2 ∥µt,n∥2
)

(iii)

≲ d
N∑

n=1

Ãn

(
Tr(Σt|y) + ³̄t

∥∥H y −H Hµ0,n

∥∥2 + d
)

≲ d2 + d
N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2

where (iii) follows from (58), and also

EXt∼Qt|y

N∑

n=1

Ãn

qt,n|y(Xt)

qt|y(Xt)

∣∣(Xt −
√
³̄tµ0,n)

⊺Xt

∣∣2

= E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

(
(Xt −

√
³̄tµ0,N )⊺Xt

)2

f 2E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,N

∥∥4 + 2

√
E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,N

∥∥4
√
EN∼Π ∥µ0,N∥4

≲ d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
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where the last line above follows because for all r g 1 and each n ∈ [N ],

EXt∼Qt,n|y

∥∥Xt −
√
³̄tµ0,n

∥∥r

≲ EXt∼Qt,n|y

∥∥Xt −
√
³̄tµ0,n|y

∥∥r +
∥∥√³̄tµ0,n|y −

√
³̄tµ0,n

∥∥r

f
∥∥∥Σ

1
2

t|y

∥∥∥
r

EXt∼Qt,n|y

∥∥∥Σ− 1
2

t|y (Xt −
√
³̄tµ0,n|y)

∥∥∥
r

+ (³̄t)
r/2
∥∥H y −H Hµ0,n

∥∥r

≲ dr/2 +
∥∥H y −H Hµ0,n

∥∥r . (48)

Now we are ready to analyze the second term of Wvanish. Note that

∇2 log qt−1|y(mt,y)

=
N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)

(
Σ−1

t|y (mt,y − µt,n|y)(mt,y − µt,n|y)
⊺Σ−1

t|y

)
− Σ−1

t|y

−
(

N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)
Σ−1

t|y (mt,y − µt,n|y)

)(
N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)
Σ−1

t|y (mt,y − µt,n|y)

)⊺

.

Thus,

EXt∼Qt|y

∣∣∆⊺

t,y∇2 log qt−1|y(mt,y)∆t,y

∣∣

f 3EXt∼Qt|y

[
N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)

(
∆⊺

t,yΣ
−1
t|y (mt,y − µt,n|y)

)2
]

+ 3EXt∼Qt|y

∣∣∣∆⊺

t,yΣ
−1
t|y∆t,y

∣∣∣

+ 3EXt∼Qt|y

(
N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)
∆⊺

t,yΣ
−1
t|y (mt,y − µt,n|y)

)2

f 3EXt∼Qt|y

∣∣∣∆⊺

t,yΣ
−1
t|y∆t,y

∣∣∣

+ 6EXt∼Qt|y

[
N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)

(
∆⊺

t,yΣ
−1
t|y (mt,y − µt,n|y)

)2
]
.

To determine the rate of these two terms, we get

EXt∼Qt|y

∣∣∣∆⊺

t,yΣ
−1
t|y∆t,y

∣∣∣ = EXt∼Qt|y

∣∣∆⊺

t,yAt∆t,y

∣∣ ≲ d+
N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 ,

and

EXt∼Qt|y

N∑

n=1

Ãn

qt−1,n|y(mt,y)

qt−1|y(mt,y)

∣∣∣(mt,y − µt,n|y)
⊺Σ−1

t|y∆t,y

∣∣∣
2

f EXt∼Qt|y
max
n∈[N ]

∣∣∣(mt,y − µt,n|y)
⊺Σ−1

t|y∆t,y

∣∣∣
2

≲ EXt∼Qt|y

∣∣∣m⊺

t,yΣ
−1
t|y∆t,y

∣∣∣
2

+ EXt∼Qt|y
max
n∈[N ]

∣∣∣µ⊺

t,n|yΣ
−1
t|y∆t,y

∣∣∣
2

≲ N

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)

where the last line follows from (46) and (47). Thus, the second term of Wvanish satisfies that

T∑

t=1

(1− ³t)
2

2³t
EXt∼Qt|y

∣∣∆t,y(Xt)
⊺∇2 log qt−1|y(mt,y(Xt))∆t,y(Xt)

∣∣
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≲ N

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)

c2(log T )2

T
.

For the third term of Wvanish, we provide the following useful calculations. Denote v◦3 as the
element-wise (Hadamard) third power of a vector v. For each n ∈ [N ], we have

EXt∼Qt|y

∣∣(mt,y − µt,n|y)
◦3(Id −H H)∆t,y

∣∣ = EXt∼Qt|y

∣∣[∆t,y]
⊺

ȳ [mt,y − µt,n]
◦3
ȳ

∣∣

≲ EXt∼Qt|y

∣∣[∆t,y]
⊺

ȳ [Xt − µt,n]
◦3
ȳ

∣∣+ (1− ³t)
√
EXt∼Qt|y

∥∆t,y∥2
√
EXt∼Qt|y

∥∥∇ log qt|y(Xt)
∥∥6
6

(iv)

≲ EXt∼Qt|y

∣∣[∆t,y]
⊺

ȳ [Xt − µt,n]
◦3
ȳ

∣∣

≲ max
ℓ

∥∥[Σ−1
t ]ȳ:µ0,ℓ

∥∥
√

EXt∼Qt|y
∥Xt − µt,n∥66 + E Xt∼Qt|y

L∼Π·|t,y(·|Xt)

∥Xt − µt,L∥44

≲

√
E Xt∼Qt|y

L∼Π·|t,y(·|Xt)

∥Xt − µt,L∥6 +
√

EL∼Π ∥µt,n − µt,L∥6 + E Xt∼Qt|y

L∼Π·|t,y(·|Xt)

∥Xt − µt,L∥4

≲ d2 +
N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4 (49)

where (iv) follows from Lemma 6 (using the ³t in (8)) and (Liang et al., 2024, Lemma 15), and the
last line follows from (48). With a similar argument,

EXt∼Qt|y

∣∣(mt,y − µt,n|y)(Id −H H)∆t,y

∣∣ ≲ E Xt∼Qt|y

L∼Π·|t,y(·|Xt)

∥Xt − µt,L∥2

≲ d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2 . (50)

Now, employing the notations from (Liang et al., 2024, Section G.1), we define

zt,n(x) := Σ−1
t|y (x− µt,n|y), Àt(x, i) := max

n

∣∣zit,n(x)
∣∣ , Σ̄ij

t := max
n

∣∣∣[Σ−1
t|y ]

ij
∣∣∣ .

When H = (Ip 0), we note that

Σ−1
t|y =

(
(1− ³̄t + ³̄tÃ

2
y)

−1Ip 0
0 (³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1

)
.

Thus, we have Σ̄ij
t ≡ 0 whenever (i, j) ∈ [1, p] × [p + 1, d] or (i, j) ∈ [p + 1, d] × [1, p] and

maxi,j∈[p+1,d] Σ̄
ij
t = O(1). Since Ã2

y > 0, we also have
∥∥∥Σ−1

t|y

∥∥∥ ≲ 1.

From (Liang et al., 2024, Section G.1.2), an upper bound for third-order partial derivatives is
∣∣∂3

ijk log qt|y(x)
∣∣ f 6Àt(x, i)Àt(x, j)Àt(x, k) + 2Σ̄ij

t Àt(x, k) + 2Σ̄ik
t Àt(x, j) + 2Σ̄jk

t Àt(x, i).

We also remind readers that ∆t,y is supported on range(Id −H H), namely that [∆t,y]y ≡ 0.

Now, the third term of Wvanish can be upper-bounded as

EXt∼Qt|y

∣∣∣∣∣

d∑

i=1

∂3
iii log qt−1|y(mt,y(Xt))∆t,y(Xt)

i

∣∣∣∣∣

= EXt∼Qt|y

∣∣∣∣∣∣

d∑

i=p+1

∂3
iii log qt−1|y(mt,y(Xt))∆t,y(Xt)

i

∣∣∣∣∣∣

≲ EXt∼Qt|y

∣∣∣∣∣∣

d∑

i=p+1

Àt(mt,y(Xt), i)
3∆t,y(Xt)

i

∣∣∣∣∣∣
+ EXt∼Qt|y

∣∣∣∣∣∣

d∑

i=p+1

Σ̄ii
t Àt(mt,y(Xt), i)∆t,y(Xt)

i

∣∣∣∣∣∣
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≲

N∑

n=1

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥3 EXt∼Qt|y

∣∣∣∣∣∣

d∑

i=p+1

(mt,y(Xt)
i − µi

t,n|y)
3∆t,y(Xt)

i

∣∣∣∣∣∣

+
N∑

n=1

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥EXt∼Qt|y

∣∣∣∣∣∣

d∑

i=p+1

(mt,y(Xt)
i − µi

t,n|y)∆t,y(Xt)
i

∣∣∣∣∣∣

≲ N

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)
.

Here the last line follows from (49) and (50).

We provide the following useful calculations to upper-bound the fourth term of Wvanish. First, for all
r g 1 and any fixed vector v,

EXt∼Qt|y
∥mt,y − v∥r = EXt∼Qt|y

∥∥∥∥
1√
³t

Xt +
1− ³t√

³t
∇ log qt|y(Xt)− v

∥∥∥∥
r

≲ EXt∼Qt|y
∥Xt − v∥r + (1− ³t)EXt∼Qt|y

∥∥∇ log qt|y(Xt)
∥∥r

(v)

≲ E Xt∼Qt|y

L∼Π·|t,y(·|Xt)

∥Xt − µt,L∥r + EL∼Π ∥µt,L − v∥r

≲ dr/2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥r (51)

where (v) follows from Lemma 6 (using the ³t in (8)) and (Liang et al., 2024, Lemma 15), and the
last line follows from (48). Now,

EXt∼Qt|y

d∑

i=1

Àt(mt,y, i)
2

∣∣∣∣∣∣

d∑

j=p+1

Àt(mt,y, j)∆t,y(Xt)
j

∣∣∣∣∣∣

≲

N∑

n,ℓ=1

EXt∼Qt|y

∥∥mt,y − µt,n|y
∥∥2 ∣∣(mt,y − µt,ℓ|y)

⊺∆t,y(Xt)
∣∣

f
N∑

n,ℓ=1

√
EXt∼Qt|y

∥∥mt,y − µt,n|y
∥∥4
(
EXt∼Qt|y

∥∥mt,y − µt,ℓ|y
∥∥4 EXt∼Qt|y

∥∆t,y(Xt)∥4
)1/4

≲ N2

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)

(52)

where the first inequality follows from
∥∥∥Σ−1

t|y

∥∥∥ ≲ 1 and the last line follows from (51) and (59). Also,

EXt∼Qt|y

∣∣∣∣∣∣

d∑

i,j=p+1

Σ̄ii
t Àt(mt,y, j)∆t,y(Xt)

j

∣∣∣∣∣∣

=

∣∣∣∣∣∣

d∑

i=p+1

Σ̄ii
t

∣∣∣∣∣∣
· EXt∼Qt|y

∣∣∣∣∣∣

d∑

j=p+1

Àt(mt,y, j)∆t,y(Xt)
j

∣∣∣∣∣∣

≲

∣∣∣∣∣∣

d∑

i=p+1

Σ̄ii
t

∣∣∣∣∣∣
·

N∑

n=1

EXt∼Qt|y
|(mt,y − µt,n)

⊺∆t,y(Xt)|

≲

∣∣∣∣∣∣

d∑

i=p+1

Σ̄ii
t

∣∣∣∣∣∣
·

N∑

n=1

√
EXt∼Qt|y

∥mt,y − µt,n∥2
√

EXt∼Qt|y
∥∆t,y(Xt)∥2
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≲ Nd

(
d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2
)

(53)

where the last line follows from Proposition 1 and (51). Also,

EXt∼Qt|y

∣∣∣∣∣∣

d∑

i,j=p+1

Σ̄ij
t Àt(mt,y, i)∆t,y(Xt)

j

∣∣∣∣∣∣

≲ EXt∼Qt|y




d∑

i=p+1

Àt(mt,y, i)



∣∣∣∣∣∣

d∑

j=p+1

∆t,y(Xt)
j

∣∣∣∣∣∣

f

√√√√√d · EXt∼Qt|y




d∑

i=p+1

Àt(mt,y, i)2



√

d · EXt∼Qt|y
∥∆t,y(Xt)∥2

≲

√√√√d ·
N∑

n=1

EXt∼Qt|y
∥mt,y − µt,n∥2

√
d · EXt∼Qt|y

∥∆t,y(Xt)∥2

≲
√
Nd

(
d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2
)

(54)

where the last line follows from Proposition 1 and (51).

Now, the fourth term of Wvanish can be upper-bounded as

EXt∼Qt|y

∣∣∣∣∣∣

d∑

i,j=1

∂3
iij log qt−1|y(mt,y(Xt))∆t,y(Xt)

j

∣∣∣∣∣∣

= EXt∼Qt|y

∣∣∣∣∣∣

d∑

i=1

d∑

j=p+1

∂3
iij log qt−1|y(mt,y(Xt))∆t,y(Xt)

j

∣∣∣∣∣∣

≲ EXt∼Qt|y

d∑

i=1

Àt(mt,y(Xt), i)
2

∣∣∣∣∣∣

d∑

j=p+1

Àt(mt,y(Xt), j)∆t,y(Xt)
j

∣∣∣∣∣∣

+ EXt∼Qt|y

∣∣∣∣∣∣

d∑

i,j=p+1

Σ̄ii
t Àt(mt,y(Xt), j)∆t,y(Xt)

j

∣∣∣∣∣∣

+ EXt∼Qt|y

∣∣∣∣∣∣

d∑

i,j=p+1

Σ̄ij
t Àt(mt,y(Xt), i)∆t,y(Xt)

j

∣∣∣∣∣∣
.

For the three terms above, the first term ≲ N2
(
d2 +

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥4
)

from

(52), the second term ≲ Nd
(
d+

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2
)

from (53), and the last term

≲
√
Nd

(
d+

∑N
n=1 Ãn

∥∥H y −H Hµ0,n

∥∥2
)

from (54).

Thus, overall, with the ³t in (8) (cf. Lemma 6), the third and fourth terms give us

T∑

t=1

(1− ³t)
2

3!³t
3/2

EXt∼Qt|y

[
3

d∑

i=1

∂3
iii log qt−1|y(mt,y(Xt))∆t,y(Xt)

i

+

d∑

i,j=1
i ̸=j

∂3
iij log qt−1|y(mt,y(Xt))∆t,y(Xt)

j

]
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≲ N2

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)

(log T )2

T
.

Therefore, combining all the above, since N is constant,

KL(Q0|y∥P̂0|y) ≲

(
d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2
)

+

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)

(log T )2

T

+

√√√√d+

N∑

n=1

Ãn ∥H y −H Hµ0,n∥2(log T )ε.

Remark 2. In case of general Ãy g 0, the same upper bound can be applied to
∥∥∥Σ−1

t−1|y

∥∥∥ as detailed

in Remark 1. Thus, with the ³t in (8), we similarly have

Woracle ≲
d2(log T )2 log(1/¶)2

T
+ (log T )ε2.

The rest of the proof is similar. Combining with Lemma 7, we would finally obtain

KL(Q1|y∥P̂1|y) ≲

(
d+

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥2
)(

1− 2 log(1/¶) log T

T

)

+

(
d2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥4
)

(log T )2 log(1/¶)2

T
+

√√√√d+

N∑

n=1

Ãn ∥H y −H Hµ0,n∥2(log T )ε.

Here W2(Q1|y, Q0|y)2 ≲ ¶d.

J AUXILIARY LEMMAS AND PROOFS IN SECTION 4

J.1 PROOF OF PROPOSITION 2

Given Q0 = N (µ0,Σ0), from the conditional forward model in (5), we can calculate

Qt = N (
√
³̄tµ0, ³̄tΣ0 + (1− ³̄t)Id) =: N (µt,Σt)

Qt|y = N (
√
³̄t(Id −H H)µ0 +

√
³̄tH

 y,

³̄t(Id −H H)Σ0(Id −H H) + ³̄tÃ
2
yH

 (H )⊺ + (1− ³̄t)Id).

Note that when H = (Ip 0) and Ã2
y > 0, q0|y exists. Define

µt|y :=
√
³̄t(Id −H H)µ0 +

√
³̄tH

 y

Σt,sig := ³̄t(Id −H H)Σ0(Id −H H) + (1− ³̄t)Id

Σt|y := Σt,sig + ³̄tÃ
2
yH

 (H )⊺. (55)

Here Σt,sig is the signal variance at time t, and Σt|y is the total variance of the signal and the

measurement noise. Note that when H = (Ip 0), [Σ−1
t|y ]ȳȳ = [Σ−1

t,sig]ȳȳ. We also calculate the
respective scores of Qt and Qt|y:

∇ log qt(xt) = −Σ−1
t (xt − µt), ∇ log qt|y(xt) = −Σ−1

t|y (xt − µt|y).

Since ft,y = f∗
t,y (defined in (10)), from (32), the bias at each time is equal to

∆t,y = (Id −H H)(∇ log qt|y(xt)−∇ log qt(xt))

= (Id −H H)
(
Σ−1

t (xt −
√
³̄tµ0)− Σ−1

t|y (xt −
√
³̄tµ0|y)

)
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= (Id −H H)Σ−1
t (xt −

√
³̄tµ0)

− (Id −H H)Σ−1
t|y (xt −

√
³̄t(Id −H H)µ0 −

√
³̄tH

 y).

Now, define

Vt := (H H)Σ0(Id −H H) + (Id −H H)Σ0(H
 H) + (H H)Σ0(H

 H)

At := (Id −H H)Σ−1
t,sig(Id −H H)

Thus, we have Σt = Σt,sig+³̄tVt and Σt|y = Σt,sig+³̄tÃ
2
yH

 (H )⊺. By Woodbury matrix identity,
for any two matrices A and B, their sum can be inversed as (A+B)−1 = A−1 −A−1B(A+B)−1.
Thus, we get

Σ−1
t = (Σt,sig + ³̄tVt)

−1 = Σ−1
t,sig − ³̄tΣ

−1
t,sigVtΣ

−1
t

Σ−1
t|y = (Σt,sig + ³̄tÃ

2
yH

 (H )⊺)−1 = Σ−1
t,sig − ³̄tÃ

2
yΣ

−1
t,sigH

 (H )⊺Σ−1
t|y

(i)
= Σ−1

t,sig − ³̄tÃ
2
yΣ

−1
t,sig(H

 H)Σ−1
t|y

where (i) holds under assumption H = (Ip 0). Thus,

∆t,y = (Id −H H)
(
Σ−1

t (xt −
√
³̄tµ0)− Σ−1

t|y (xt −
√
³̄tµ0|y)

)

= (Id −H H)
(
Σ−1

t,sig − ³̄tΣ
−1
t,sigVtΣ

−1
t

)
(xt −

√
³̄tµ0)

− (Id −H H)
(
Σ−1

t,sig − ³̄tÃ
2
yΣ

−1
t,sig(H

 H)Σ−1
t|y

)
(xt −

√
³̄t(Id −H H)µ0 −

√
³̄tH

 y)

(ii)
= (Id −H H)

(
Σ−1

t,sig − ³̄tΣ
−1
t,sigVtΣ

−1
t

)
(xt −

√
³̄tµ0)

− (Id −H H)Σ−1
t,sig(xt −

√
³̄t(Id −H H)µ0 −

√
³̄tH

 y)

= −³̄t(Id −H H)Σ−1
t,sigVtΣ

−1
t (xt −

√
³̄tµ0)

+ (Id −H H)Σ−1
t,sig

(
(Id −H H)(xt −

√
³̄tµ0) +H H(xt −

√
³̄tµ0)

)

− (Id −H H)Σ−1
t,sig

(
(Id −H H)(xt −

√
³̄tµ0) + ((H H)xt −

√
³̄tH

 y)
)

(iii)
= −³̄t(Id −H H)Σ−1

t,sigVtΣ
−1
t (xt −

√
³̄tµ0)

(iv)
= −³̄t(Id −H H)Σ−1

t,sig(Id −H H)Σ0(H
 H)Σ−1

t (xt −
√
³̄tµ0)

= −³̄tAtΣ0(H
 H)Σ−1

t (xt −
√
³̄tµ0) (56)

where (ii)–(iv) hold because (Id −H H)Σ−1
t,sig(H

 H) = 0 by Lemma 9.

Now, since H H =

(
Ip 0
0 0

)
, we can re-express At and ∆t,y as follows.

At = (Id −H H)Σ−1
t,sig(Id −H H)

=

(
0 0
0 Id−p

)(
(1− ³̄t)Ip 0

0 ³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p

)−1(
0 0
0 Id−p

)

=

(
0 0
0 (³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1

)

∆t,y =

(
0

−³̄t(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1[Σ0]ȳy[Σ

−1
t ]y:(xt −

√
³̄tµ0)

)
,

and we have

EXt∼Qt|y
∥∆t,y∥2 = ³̄2

tEXt∼Qt|y

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1[Σ0]ȳy[Σ

−1
t ]y:(Xt −

√
³̄tµ0)

∥∥2

= ³̄2
tEXt∼Qt|y

Tr

(
(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:(Xt −

√
³̄tµ0)(Xt −

√
³̄tµ0)

⊺
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[Σ−1
t ]:y[Σ0]yȳ(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1

)

(v)

f ³̄2
t

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥2 ∥∥[Σ−1

t ]y:
∥∥2 ∥[Σ0]yȳ[Σ0]ȳy∥EXt∼Qt|y

∥∥Xt −
√
³̄tµ0

∥∥2

(57)

where (v) follows from the fact that |Tr(UV )| f ∥U∥Tr(V ) if V is positive semi-definite. To
analyze each norm above, denote ¼1 g · · · g ¼d > 0 to be the eigenvalues of Σ0, and note that
∥[Σ0]ȳy∥ f ∥Σ0∥ = ¼1. The largest eigenvalue of Σ−1

t is (³̄t¼d + (1 − ³̄t))
−1, and note that∥∥[Σ−1

t ]y:
∥∥ f

∥∥Σ−1
t

∥∥. Also, since [Σ0]ȳȳ is positive semi-definite, denote ¼̃1 g · · · g ¼̃d−p > 0 to
be its eigenvalues, and thus

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥ f 1

³̄t¼̃d−p + (1− ³̄t)
f 1

min{¼̃d−p, 1}
< ∞.

Also, since

EXt∼Qt|y
(Xt −

√
³̄tµ0)(Xt −

√
³̄tµ0)

⊺

= EXt∼Qt|y
(Xt − µt|y +

√
³̄t(H

 y −H Hµ0))(Xt − µt|y +
√
³̄t(H

 y −H Hµ0))
⊺

= Σt|y + ³̄t(H
 y −H Hµ0)(H

 y −H Hµ0)
⊺,

we have

EXt∼Qt|y

∥∥Xt −
√
³̄tµ0

∥∥2 = Tr(Σt|y) + ³̄t

∥∥H y −H Hµ0

∥∥2

(vi)

f ³̄t(¼1 + Ã2
y) + (1− ³̄t) + ³̄t

∥∥H y −H Hµ0

∥∥2

f max
{∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d

}
(58)

where (vi) is because Σt|y is positive definite with

∥∥Σt|y
∥∥ =

∥∥³̄t(Id −H H)Σ0(Id −H H) + ³̄tÃ
2
yH

 (H )⊺ + (1− ³̄t)Id
∥∥

f ³̄t ∥Σ0∥+ ³̄tÃ
2
y + (1− ³̄t)

= ³̄t(¼1 + Ã2
y) + (1− ³̄t).

Therefore, for the second moment,

EXt∼Qt|y
∥∆t,y∥2 f ³̄2

t

max
{∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d

}

min{¼d, 1}2 min{¼̃d−p, 1}2
∥[Σ0]yȳ[Σ0]ȳy∥

≲ ³̄2
t ·max

{∥∥H y −H Hµ0

∥∥2 + d(¼1 + Ã2
y), d

}

since ∥[Σ0]yȳ[Σ0]ȳy∥ f ∥Σ0∥2 = ¼2
1. Also, for general moments with m g 2,

∥∆t,y∥m f ³̄m
t

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1[Σ0]ȳy[Σ

−1
t ]y:(xt −

√
³̄tµ0)

∥∥m

f ³̄m
t

∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)
−1
∥∥m ∥Σ0∥m

∥∥Σ−1
t

∥∥m ∥∥xt −
√
³̄tµ0

∥∥m

≲ ³̄m
t

∥∥xt −
√
³̄tµ0

∥∥m

and thus

EXt∼Qt|y
∥∆t,y∥m ≲ ³̄m

t

(
EXt∼Qt|y

∥∥∥Σ− 1
2

t|y (Xt − µt|y)
∥∥∥
m

+
∥∥√³̄t(H

 y −H Hµ0)
∥∥m
)

f ³̄m
t

(
(m− 1)!! · dm/2−1 +

∥∥√³̄t(H
 y −H Hµ0)

∥∥m
)
= O(³̄t).

Therefore, Assumption 4 is satisfied if the ³t satisfies Definition 1. The proof is now complete.
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J.2 PROOF OF LEMMA 8

We continue from the expression of ∆t,y in (40) when Q0 is Gaussian mixture. For m g 2, we have

EXt∼Qt|y
∥∆t,y∥m

f 2m−1(³̄t)
m/2 max

n∈[N ]

∥∥Σ−1
t µ0,n

∥∥m

+ 2m−1(³̄t)
m
E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

∥∥(Id −H H)Σ−1
t,sig(Id −H H)Σ0(H

 H)Σ−1
t (Xt −

√
³̄tµ0,N )

∥∥m

(ii)

≲ (³̄t)
m/2dm/2 + (³̄t)

m
E Xt∼Qt|y

N∼Π·|t,y(·|Xt)

∥∥Xt −
√
³̄tµ0,N

∥∥m

= (³̄t)
m/2dm/2 + (³̄t)

m
E N∼Π
Xt∼Qt,N|y

∥∥Xt −
√
³̄tµ0,N

∥∥m

(iii)

≲ (³̄t)
m/2dm/2 + (³̄t)

m

(
dm/2 +

N∑

n=1

Ãn

∥∥H y −H Hµ0,n

∥∥m
)

(59)

= O(³̄t).

Here (ii) follows because
∥∥(Id −H H)Σ−1

t,sig(Id −H H)Σ0(H
 H)Σ−1

t

∥∥ =
∥∥(³̄t[Σ0]ȳȳ + (1− ³̄t)Id−p)

−1[Σ0]ȳy[Σ
−1
t ]y:

∥∥

f ¼1

min{¼̃d−p, 1}min{¼d, 1}
= O(1),

and (iii) follows from (48). Therefore, this verifies Assumption 4 when the ³t satisfies Definition 1.
The proof is now complete.

J.3 LEMMA 9 AND ITS PROOF

Lemma 9. Given a positive semi-definite matrix Σ, Ã g 0, and ³ ∈ (0, 1),

(³ÃH (H )⊺ + (1− ³)Id)
−1(Id −H H) =

1

1− ³
(Id −H H)

(Id −H H)(³(Id −H H)Σ(Id −H H) + ³ÃH H + (1− ³)Id)
−1(H H) = 0.

Proof. The key of the proof is the Woodbury matrix identity, which states that for any matrices
U ∈ R

d×p, V ∈ R
p×d,

(Id + UV )−1 = Id − U(Ip + V U)−1V.

For the first equality, we apply Woodbury with U =
√

³Ã
1−³H

 and V =
√

³Ã
1−³ (H

 )⊺ and we get

(³ÃH (H )⊺ + (1− ³)Id)
−1 =

1

1− ³

(
Id −

³Ã

1− ³
H 
(
Ip +

³Ã

1− ³
(H )⊺H 

)−1

(H )⊺
)
.

Since p f d, the pseudo-inverse equals H = H⊺(HH⊺)−1, and by the orthogonal property we have

(H )⊺(Id −H H) = (HH⊺)−1H(Id −H H) = 0.

We have thus shown the first equality.

For the second equality, we first consider the case where Ã = 0. Write S = (1 − ³)Id + ³(Id −
H H)Σ(Id −H H). Since Σ is positive semi-definite, there exists matrix L such that Σ = LL⊺.
Thus,

S−1 =

(
(1− ³)Id + ³(Id −H H)Σ(Id −H H)

)−1

=

(
(1− ³)Id + ³

(
(Id −H H)L

)(
(Id −H H)⊺L

)⊺)−1
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=
1

1− ³
Id −

³

1− ³
((Id −H H)L)

(
Id +

³

1− ³
L⊺(Id −H H)L

)−1

L⊺(Id −H H),

where in the last line we have applied Woodbury with U = V ⊺ =
√

³
1−³ (Id−H H)L. The equality

is achieved because

(Id −H H)S−1(H H)

=
1

1− ³
(Id −H H)(H H)︸ ︷︷ ︸

=0

− ³

1− ³
(Id −H H)L

(
Id +

³

1− ³
L⊺(Id −H H)L

)−1

L⊺ (Id −H H)(H H)︸ ︷︷ ︸
=0

= 0.

When Ã > 0, we can apply Woodbury identity to sum of matrices A and B and get (A+ B)−1 =
A−1 −A−1B(A+B)−1. Thus,

(S + ³ÃH H)−1 = S−1 − ³ÃS−1(H H)(S + ³ÃH H)−1

and

(Id −H H)(S + ³ÃH H)−1(H H)

= (Id −H H)S−1(H H)︸ ︷︷ ︸
=0

− ³Ã (Id −H H)S−1(H H)︸ ︷︷ ︸
=0

(S + ³ÃH H)−1(H H)

= 0.

The proof is now complete.

J.4 LEMMA 10 AND ITS PROOF

Lemma 10. With 1− ³t ≡ log T
T , ∀t g 0 (which satisfies Definition 1), given any p > 0,

T∑

t=2

(1− ³t)³̄
p
t =

1

p

(
1− 2pc log T

T

)
+ Õ

(
1

T 2

)
.

Proof. Define the sum as sT . Then,

sT =

T∑

t=2

c log T

T

(
1− c log T

T

)pt

=
c log T

T

(
1− c log T

T

)2p 1−
(
1− c log T

T

)p(T−1)

1−
(
1− c log T

T

)p

=
c log T

T

(
1− c log T

T

)2p
1

1−
(
1− c log T

T

)p (1 +O(T−cp))

=
1

p

(
1− 2pc log T

T

)
+ Õ(T−2).
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