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Abstract

Model compression is one of the most popular

approaches to improve the accessibility of Large

Language Models (LLMs) by reducing their mem-

ory footprint. However, the gaining of such ef-

ficiency benefits often simultaneously demands

extensive engineering efforts and intricate designs

to mitigate the performance decline. In this

work, we leverage (Soft) Prompt Tuning in its

most vanilla form and discover such convention-

ally learned soft prompts can recover the perfor-

mance of compressed LLMs. More surprisingly,

we observe such recovery effect to be transferable

among different tasks and models (albeit natural

tokenizer and dimensionality limitations), result-

ing in further overhead reduction and yet, subvert-

ing the common belief that learned soft prompts

are task-specific. Our work is fully orthogonal

and compatible with model compression frame-

works such as pruning and quantization, where

we enable up to 8× compressed LLM (with a

joint 4-bit quantization and 50% weight pruning

compression) to match its uncompressed counter-

parts on popular benchmarks. We note that we are

the first to reveal vanilla Parameter-Efficient Fine-

Tuning (PEFT) techniques have the potential to

be utilized under a compression recovery context,

opening a new line of opportunities for model ac-

cessibility advancement while freeing our fellow

researchers from the previously present engineer-

ing burdens and constraints. The code is available

at https://github.com/zirui-ray-liu/compress-then-

prompt.

*Equal contribution 1Department of Computer Science, Stevens
Institute of Technology 2Department of Computer Science, Rice
University 3Department of Electrical and Computer Engineering,
Carnegie Mellon University 4Together AI 5Department of Electri-
cal and Computer Engineering, North Carolina State University
6ThirdAI Corp.. Correspondence to: Xia Hu <xia.hu@rice.edu>,
Anshumali Shrivastava <anshumali@rice.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction

Large Language Models (LLMs) (Radford et al., 2018;

2019; Brown et al., 2020; Zhang et al., 2022; Touvron et al.,

2023a) has revolutionized the field of Natural Language

Processing (NLP). Notably, LLMs are known for their gen-

eralization to unseen tasks without additional fine-tuning

(Brown et al., 2020). Despite their remarkable adaptabil-

ity, LLMs are very expensive to deploy (Chen et al., 2023;

Wu et al., 2023). The inference process of LLMs, such as

LLaMA 2 (Touvron et al., 2023b), may require multiple

powerful GPUs, which is prohibitively expensive for the

general community. Consequently, it is crucial to facili-

tate LLM inference on more accessible hardware, such as a

single gaming GPU, which inherently has limited computa-

tional and memory resources.

To address this problem, model compression methods are

widely employed to reduce the model size and inference

latency, such as quantization (Nagel et al., 2020; Dettmers

et al., 2022; Xiao et al., 2022; Frantar et al., 2022) and prun-

ing (Frantar & Alistarh, 2023). These methods essentially

trade off model quality in return for reduced latency and

model size. Thus, there is an inevitable trade-off between

accuracy and efficiency, resulting in a noticeable reduction

in the model’s accuracy and, consequently, the overall per-

formance benefits of LLMs. To get a sense, as shown in

Figure 1, the full model (LLaMA-7B) can provide accurate

answers to all three simple questions. However, the pruned

model generates unrelated and off-topic answers to these

simple questions.

LLMs, regardless of whether compressed or not, are con-

trolled through user-provided natural language specifica-

tions of the task, or prompts, which illustrate how to com-

plete a task. Prompts can influence the generation quality of

LLMs. Thus intuitively, we can also utilize the prompt to

help the compressed model generate more relevant answers.

To the best of our knowledge, this perspective is not fully

explored for LLMs. Thus one natural question is, for a

compressed model, can we design a prompt that helps it

correct its predictions accordingly?

In this paper, we offer an intriguing exploration of the above

question. As shown in Figure 1, we manually attach the

prompt “Please carefully examine the weight matrix within
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Q: Please give answers to this
question: Where is Long
Beach?

I am a student and I am
looking for a job.

Long Beach is a city in
Los Angeles County,
California, United
States.

The answer is: Long
Beach is located in the
United States.

Long Beach is a city in
the Los Angeles County,
California.

LLAMA-7B
(Full)

LLAMA-7B
(62.5% sparsity)

LLAMA-7B
(62.5% sparsity)
w./ Hard Prompt

LLAMA-7B
(62.5% sparsity)

w./ Learned Prompt

Q: Please give answers to this
question:Where is Tulsa,
Oklahoma?

I am a student of the
University of Tulsa. 

Tulsa is in the state of
Oklahoma. It is located
in the northeastern part
of the state.

The weight matrix is a
set of weights that are
used to calculate the
weight of the model...

Tulsa is a city in
Oklahoma.

Q: Please give answers to this
question:What is Asparagus?

I am not sure what
asparagus is.

Asparagus is a
vegetable that is grown
in the spring. It is a
member of the lily
family.

The Asparagus is a plant
that is used for cooking.

Asparagus is a plant that
grows in the garden

Figure 1: Hard prompts can improve a baseline model that suffers from compression degradation. The designed hard prompt

is “Please carefully examine the weight matrix within the model, as it may contain errors. It is crucial to verify its accuracy

and make any necessary adjustments to ensure optimal performance” (the fourth column from left). We highlight the

improved answers with green color.

the model, as it may contain errors. It is crucial to verify its

accuracy and make any necessary adjustments to ensure op-

timal performance” to the original question. The prompted

pruned model, i.e., “LLaMA-7B (62.5% sparsity) w./ Hard

Prompt” in Figure 1, shows a significant improvement in its

responses, although not all of them are accurate or complete.

This manually-crafted prompt only conveys that the model

weight might be inaccurate, without considering the dataset,

compression methods, or tasks. This finding highlights the

considerable potential for the transferability of this “hard

prompt” across datasets, compression levels, and tasks. De-

spite the potential, this manually designed prompt is not

consistently effective.

In this paper, we propose to learn a soft prompt that re-

sembles the hard prompt in Figure 1 and restores the per-

formance of compressed LLMs. After a comprehensive

investigation, we argue our work is rich in empirical novelty

in at least two aspects:

• Transformation of prompt tuning from task-specific

to transferable: Prior to our study, only a few works

studied the transferability of learned prompts between

different tasks (Su et al., 2022; Vu et al., 2022; Lester

et al., 2022). Specifically, Su et al. (2022) finds it

is possible to transfer learnable prompts with addi-

tional fine-tuning on downstream task. However, as

mentioned in the experiment section, all our reported

results are zero-shot, i.e., no fine-tuning is needed to

obtain transferability. Furthermore, Vu et al. (2022)

finds that the learned prompt can only be transferred

among similar tasks. However, as verified by our exper-

iments, our learned prompts are transferable between

datasets, tasks, and compressed models.

• New avenue to enhance compressed LLMs accu-

racy: We show that prompt tuning can effectively

recover the accuracy drop of compressed LLMs. Tradi-

tional LLM compression methods often demand exten-

sive engineering efforts and intricate designs, as seen

in popular model compression papers like GPTQ (Fran-

tar et al., 2022) and SparseGPT (Frantar & Alistarh,

2023). However, our method simplifies this process sig-

nificantly. We learn soft prompts to effectively recover

the accuracy drop in compressed LLMs, opening a new

avenue to optimize the trade-off between accuracy and

efficiency.

We emphasize that we intentionally kept our method as sim-

ple as possible. This simplicity underscores the unknown

properties of soft prompts and uncovers new pathways for

performance recovery of compressed LLMs. With extensive

experiments, we showcase that our learnable soft prompt

can restore the performance of LLMs with up to 8× com-

pression (with a joint 4-bit quantization and 50% weight

pruning compression), allowing them to match their un-

compressed counterparts on several standard benchmarks.

Moreover, these findings are not only valid but also gener-

alizable across various model families, datasets, and tasks,

underscoring the broad applicability and impact of our work.

Furthermore, we show that compared to other parameter-

efficient fine-tuning methods like LoRA (Hu et al., 2021),

our approach has less cost in recovering the performance of

compressed LLMs.
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2. Problem Statement and Related Work

In this section, we will begin by introducing the efficiency

bottleneck of LLM inference. Then we will introduce cur-

rent approximation approaches that are designed to reduce

the computation and memory overhead and improve LLM

inference latency. Finally, we will provide a review of recent

progress that has been made in prompting LLMs.

2.1. Efficiency Bottleneck of LLM Inference

LLMs adopt a decoder-only, autoregressive approach where

token generation is carried out step by step, with each to-

ken’s generation dependent on the previously generated

results. For instance, models such as GPT (Radford et al.,

2018; 2019; Brown et al., 2020) follow this paradigm. A re-

cent study by (Liu et al., 2023) investigates the inference pro-

cess of OPT-175B models and finds that (1) token generation

is the dominant factor contributing to the inference latency,

and (2) Multilayer Perceptron (MLP) incurs higher I/O and

computation latency compared to attention blocks during

token generation. While system-level optimizations (Sheng

et al., 2023; GitHub, 2023a;b) can enhance the inference

time of LLMs, they do not directly mitigate the computation

and memory I/Os involved in the LLM inference process.

2.2. Approximation in LLM Inference

In addition to optimizing at the system level, there are

two primary approaches for reducing both computation and

memory I/O to minimize the latency inference. (1) Sparse

modeling: the general idea is to choose a particular set of

weights in certain layers to minimize both computation and

memory I/O (Frantar & Alistarh, 2023; Liu et al., 2023).

These techniques are also closely related to pruning (He

et al., 2018; Hubara et al., 2021b; Kwon et al., 2022; Hubara

et al., 2021a) in the literature. Given the enormous number

of parameters in LLMs, sparsification is typically performed

layer by layer. However, the resulting sparsified LLM may

exhibit a significant deviation in the final prediction at in-

ference time, leading to an inevitable decline in accuracy

when compared to the original LLM. (2) Quantization: it

refers to the process of compressing trained weight values

in LLMs into lower bits (Nagel et al., 2020; Dettmers et al.,

2022; Xiao et al., 2022; Frantar et al., 2022). Empirical

evaluations have shown that int8 quantization can provide

a great approximation of the predictive performance of the

original LLMs (Dettmers et al., 2022). However, there is a

significant decline in accuracy when attempting to reduce

the number of bits even further.

2.3. Prompt for LLMs

LLMs are known for their in-context learning ability, allow-

ing them to generalize to unseen tasks without additional

fine-tuning (Brown et al., 2020). Specifically, LLMs are

controlled through user-provided natural language speci-

fications of the task, or prompts, which illustrate how to

complete a task. In this paradigm, we do not enforce mod-

ifications on the LLMs themselves. Instead, we focus on

adapting the inputs to the LLMs for better predictive per-

formance in downstream tasks. A typical strategy is to

insert tokens before the input sequence to affect the atten-

tion mechanism. It has been shown in (Brown et al., 2020)

that prompt engineering enables LLMs to match the perfor-

mance of fine-tuned language models on a variety of lan-

guage understanding tasks. Moreover, (Lester et al., 2021)

empirically indicate that there is an equivalence between

modifying the input and fine-tuning the model. Further-

more, (Su et al., 2022) studies the transferability of prompts

across similar datasets or even tasks. Since then, we have

witnessed the growth of prompt tuning infrastructure (Ding

et al., 2022). However, we would like to emphasize that

most of the current demonstrations of prompt tuning are

task-specific (Li & Liang, 2021; Lester et al., 2021). When

considering efficiency, it is desirable for a prompt to exhibit

transferability across various settings.

3. Motivation

The compression methods reduce the computational com-

plexity at the cost of giving less accurate outputs. Thus,

there naturally exists an accuracy-efficiency trade-off. In

this section, we first empirically evaluate the trade-off of

compressed LLMs. Then we found that for a compressed

model, we can manually design a hard prompt that informs

the model of its compressed state and helps it correct its

predictions accordingly.

3.1. Performance Decline of LLMs After Compression

Experimental Setup. We assess the trade-off using LLaMA

(Touvron et al., 2023a) on C4 dataset (Raffel et al., 2020).

Here we adopt two representative post-training compression

methods, i.e., GPTQ (Frantar et al., 2022) and SparseGPT

(Frantar & Alistarh, 2023), to analyze the trade-off across

various compression levels. We note that we choose post-

training compression methods primarily for their ease of

deployment. For the quantization method, we apply GPTQ

to compress the model weights into 2, 3, and 4 bits integer

numbers. As for the pruning method, we employ SparseGPT

to eliminate 50%, 62.5%, and 75% of the model parameters.

We would like to note that the post-training compression is

conducted using the training set of C4, and subsequently,

we evaluate the performance of the compression with the

validation set of C4.

Quantitative Results. As shown in Figure 2, we visualize

the evaluation perplexity (PPL) (Jelinek et al., 1977) versus

the compression level. When we prune 50% of the parame-
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4-bit 3-bit 2-bit
Bit Width

0

5

10

15

20

PP
L

7.59

LLaMA-7B (C4)

2-bit680

700

(a) Quantization

50% 62.5% 75%
Sparsity

0

20

40

PP
L

7.59

LLaMA-7B (C4)

(b) Pruning

Figure 2: The validation perplexity of LLaMA-7B on C4

dataset at different compression level. The green line is the

PPL of the original model.

ters or quantize the parameters to 4 bits, the PPL remains

closer to that of the full LLaMA model. The PPL consis-

tently increases as we decrease the allocated resource (e.g.,

bit-width/sparsity). Notably, the PPL will explode when the

resource is below a certain threshold. For instance, the PPL

shifts from 14 to 53 as sparsity increases from 62.5% to

75%. Moreover, the PPL grows significantly from around

11 to around 691 when we lower the quantization bits from

3-bit to 2-bit.

Qualitative Results. As shown in the left part of Figure 1,

besides PPL, we also do a case study to understand how com-

pression affects model generation results. In this example,

the full model provides accurate answers to all three simple

questions. Specifically, it correctly identifies Long Beach as

a city in Los Angeles County, California, pinpoints Tulsa in

northeastern Oklahoma, and describes asparagus as a spring

vegetable belonging to the lily family. However, the pruned

model with 62.5% weight sparsity struggles to generate

meaningful responses. Instead of providing the requested

information, its answers seem unrelated and tangential. For

example, the pruned model responds with a statement about

seeking a job when asked about Long Beach, mentions be-

ing a student at the University of Tulsa when asked about

Tulsa’s location, and admits uncertainty about Asparagus.

This case study demonstrates that aggressive model com-

pression, such as the 62.5% weight sparsity applied to

the pruned model, can lead to a significant degradation

in the quality of generated responses.

3.2. Prompt May Restores Compressed LLMs

In-context learning refers to the ability to adapt to the con-

text provided within the input data through user-provided

natural language specifications (Xie et al., 2022; Min et al.,

2022), often referred to as prompts. Prompts serve to guide

LLMs toward generating desired predictions by offering

useful contextual information. As shown in Figure 1, the

compressed model generates answers that are unrelated and

off-topic when responding to these simple questions. Thus

one natural question is, for a compressed model, can we

design a specific prompt that helps it correct its predictions

accordingly? Following the question, we manually design

the hard prompt as “Please carefully examine the weight

matrix within the model, as it may contain errors. It is

crucial to verify its accuracy and make any necessary ad-

justments to ensure optimal performance”. The results are

shown in the fourth column of Figure 1. The observations

are summarized as follows:

The prompted pruned model, i.e., “LLaMA-7B (62.5%

sparsity) w./ Hard Prompt” in Figure 1, shows a signif-

icant improvement in its responses, although not all of

them are accurate or complete. Specifically, (1) when ex-

plicitly told about its compressed state, the prompted pruned

model correctly identifies that Long Beach is located in the

United States. However, it does not provide further infor-

mation about the city, such as its presence in Los Angeles

County, California. (2) Regarding the second question about

Tulsa, Oklahoma, the prompted pruned model fails to pro-

vide a relevant answer, instead repeating our prompt about

the compression state, which is unrelated to the question. (3)

When asked about asparagus, the prompted pruned model

correctly identifies it as a plant used for cooking.

Insights. By explicitly informing the model of its com-

pressed state, LLMs can generate more relevant responses

for certain questions. The success of the designed prompt

implies great potential: With the correct input format,

compressed LLMs can perform the same as their un-

compressed counterparts. However, despite the potential,

as we analyzed at the beginning of this section, the manu-

ally designed prompt is not consistently effective. In other

words, it only works for some problems, and not all answers

generated are accurate or complete. We hypothesize that

by involving the compressed weight in the prompt learning

process, a learnable prompt could potentially surpass the

performance of the hard prompt while still retaining the

transferability aspects of the hard prompt.

4. Learning Prompt for Efficient LLM

Inference

In this section, we will begin by introducing the formulation

of the prompt learning paradigm. Then, we will shift our

focus to the maximum likelihood objective of learning the

prompt. Finally, we will delve into the transferability of the

learned prompts.

4.1. Formulation

Section 3.2 has shown that incorporating prompts can en-

hance the predictive performance of compressed LLMs.

However, discovering effective language-based prompts

through trial and error is a cumbersome and inefficient pro-

cess that requires exploring a vast vocabulary space. There-

fore, this paper aims to develop a data-driven approach to
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learning a soft prompt.

Typically an LLM would have a tokenizer that maps each

input sentence into a sequence of integers [x0, x1, · · · , xn].
Afterwards, each token xi ∈ [v] represents a d-dimensional

row vector in the embedding matrix W ∈ R
v×d. In the

inference phase of LLM, we are given an input sequence

[x0, x1, · · · , xm] with m tokens. We would like to generate

tokens after xm step by step using an LLM. We denote

prompt as a sequence of integers [e1, e2, · · · , ek] with length

k. Every token ej ∈ [k] represents a d-dimensional row

vector in the prompt embedding matrix E ∈ R
k×d.

4.2. Learning Objectives

In this study, we present a prompt learning strategy that

can be utilized as a post-training process for compressed

LLMs. Given an LLM model with parameters denoted as

θ, we start with either sparsification (Frantar & Alistarh,

2023; Liu et al., 2023) or quantization (Frantar et al., 2022)

approach that compresses the model parameters. We denote

the parameters after the compression as θ̃. We note that

prompt learning is reliant on the data, and as such, we need

to employ a text dataset X for this procedure. Next, for

every sequence [x0, x1, · · · , xn] ∈ X , we insert k prompt

tokens [e1, e2, · · · , ek] before it. Next, we optimize the

following objective.

min
E

L
θ̃
= min

E

n∑

t=1

− log Pr
θ̃
[xt|e1, · · · , ek, x0, · · ·xt−1].

(1)

We note that the model parameter θ̃ is fixed and not up-

dated. And the trainable parameters are the embedding of

the prompt tokens [e1, e2, · · · , ek], which are denoted by

the matrix E ∈ R
k×d. Following (Lester et al., 2021), we

initialize E such that each row in E corresponds to a vector

randomly selected from the token embedding matrix W of

the LLM. The prompt token sequence remains the same for

all sequences in X . This means that we use the representa-

tion of prompt tokens to influence LLM’s attention mecha-

nisms between the tokens in the sequence [x0, x1, · · · , xn].
Specifically, the Eq (1) aims to maximize the likelihood of

correctly predicting the next token in the sequence, given the

preceding tokens. In this way, the learned prompt is aware

of the compressed weights, as the gradient flows through

these compressed weights during the optimization process.

This allows the model to adapt its behavior to account for the

compression effects while generating responses, potentially

leading to improved performance.

4.3. Transferability of Learned Soft Prompt

The findings derived from Section 3.2 have provided us with

a compelling impetus to delve into the exploration of the

transferability of prompt tokens acquired through Eq (1).

These prompt tokens, as well as their acquisition through

one dataset, could have a significant impact on other NLP

applications. In particular, we assess the transferability of

prompt tokens across diverse datasets, various compression

techniques and levels, as well as different tasks.

5. Experiment

In this section, we assess the effectiveness of our prompt

strategy in enhancing the trade-off between accuracy and

efficiency during LLM inference. We commence by out-

lining the experimental setup, followed by presenting the

results of token generation. Furthermore, we investigate

the transferability of prompts across different datasets and

compression levels. For additional experiments related to

transferability and efficiency, please refer to Appendix A,

where we have included further details.

5.1. Experiment Setting

We use Nvidia RTX 8000 (48G) GPUs to conduct inference

and prompt learning in LLMs. We use Common Crawl’s

web corpus (C4) (Raffel et al., 2020), Wikitext-2 (Merity

et al., 2017), and the Penn Treebank (PTB) (Marcus et al.,

1994) databases as language generation datasets. We set

the sequence length for these datasets to 1024. For the

token generation task, we use perplexity (PPL) (Jelinek

et al., 1977) as the evaluation metric. We also introduce

some downstream tasks to evaluate the cross-task transfer-

ability of the learned soft prompt. We will introduce the

task information in the specific section. For LLMs, we

adopted the Open Pre-trained Transformer (OPT) Language

Models (Zhang et al., 2022), Large Language Model Archi-

tecture (LLaMA) (Touvron et al., 2023a), LLaMA-2 (Tou-

vron et al., 2023b) and bllom (Workshop et al., 2022). To

compress the LLMs, we employed techniques from both

SparseGPT (Frantar & Alistarh, 2023) and GPTQ (Fran-

tar et al., 2022) methodologies. We refer the readers to

Appendix A.1 for more experimental details.

5.2. Token Generation Results

On the C4 training set, we compress the OPT-1.3B, OPT-

2.7B, OPT-6.7B, and LLaMA-7B using SparseGPT (Fran-

tar & Alistarh, 2023). We utilize sparsity levels of 50%,

62.5%, and 75% for compression. Additionally, we em-

ploy GPTQ (Frantar et al., 2022) for 2-bit, 3-bit, and 4-bit

quantization. Furthermore, prompt learning is applied to

each compressed model using the methodology introduced

in Eq (1). We set k in Eq. 1 to 100, i.e., incorporating 100

learnable prompt tokens. We also conduct the ablation on

the impact of the number of soft tokens in Appendix A.6.

Figure 3 shows the impact of our approach on the validation
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Figure 3: OPT-1.3B, OPT-2.7B, OPT-6.7B, and LLaMA-7B on C4 , Wikitext-2 and PTB test set at different bit-width and

sparsity. We note that we learn prompts only through C4 and then transfer the prompts to Wikitext-2 and PTB. Here

the “Baseline” (green line) represents the uncompressed model.
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Table 1: The validation PPL of LLaMA-2-13B and Bloom-7B models on C4 dataset.

Dataset Model Precision Recover method Trainable Params (M) PPL

C4 LLaMA-2-13B fp16 NA NA 6.96

C4 LLaMA-2-13B 3bit NA NA 9.24

C4 LLaMA-2-13B 3bit Soft Prompt 0.5 6.75

C4 LLaMA-2-13B 3bit LoRA 26 8.15

C4 BLOOM-7B fp16 NA NA 15.87

C4 BLOOM-7B 3bit NA NA 18.40

C4 BLOOM-7B 3bit Soft Prompt 0.4 13.54

C4 BLOOM-7B 3bit LoRA 15.7 17.26

set of C4. We observe a significant improvement in PPL

across all compression levels. Firstly, by employing soft

prompt tokens, the compressed LLMs using SparseGPT

with 50% sparsity even outperform the full model coun-

terparts, exhibiting lower PPL. This trend is also observed

in the 4-bit quantization of LLMs using GPTQ. Secondly,

even with further enhanced compression, the compressed

LLMs with soft prompt tokens learned from Eq (1) main-

tain comparable PPL to their original counterparts. Notably,

prompts learned from each of the four 3-bit quantized mod-

els aid in surpassing the performance of their respective full

model counterparts. We also observe a similar effect in mod-

els with 62.5% sparsity for OPT-1.3B and OPT-2.7B. Con-

versely, prompts learned from both OPT-6.7B and LLaMA-

7B assist in achieving the same PPL as their full model

counterparts. Lastly, our approach significantly enhances

the predictive performance of extreme scale compression.

In both SparseGPT with 75% sparsity and GPTQ with 2-

bit quantization, we find that the prompt learning strategy

substantially improves the PPL across all four models. For

example, prompts learned over the 2-bit GPTQ compression

of OPT-1.3B reduce the PPL from 2337.8 to 59.

5.3. Soft Prompt Does Transfer

Intuitively, a model compressed using one dataset should

achieve decent predictive performance when transferred

to other datasets (Frantar et al., 2022; Frantar & Alistarh,

2023). Here we assess whether the prompt tokens learned

from one dataset exhibit similar transferability across dif-

ferent datasets. Specifically, we first compress a model

with SparseGPT or GPTQ using C4 training set. We then

learn the prompt with the compressed model on C4 train-

ing set. Finally, we evaluate the performance of this com-

pressed model with and without the learned prompts on

other datasets, e.g., Wikitext-2 and PTB dataset. We empha-

size the entire process does not involve any task-specific

data, and our results thus remain “zero-shot”.

Figure 3 presents the performance of OPT-1.3B, OPT-2.7B,

OPT-6.7B, and LLaMA-7B on the test set of Wikitext-2 and

the PTB dataset. For each LLM model, we also include the

performance of its compressed versions with 50%, 62.5%,

Table 2: Perplexity comparison between full LLaMA-7B

model its quantized versions with different prompts, where

we report test perplexity on PTB and Wikitext-2 dataset.

“w./o. prompt” refers to the quantized model without soft

prompts.“w./ direct prompt” means the soft prompts are di-

rectly trained on the target dataset.“w./ transferred prompt”

means the prompt is trained on C4 dataset and then trans-

ferred to the target dataset.

Model PTB Wikitext2

LLaMA-7B 11.02 6.33

LLaMA-7B w./ direct prompt 6.86 5.57

4-bit

w./o.

prompt
11.65 6.92

w./ direct

prompt
7.04 5.88

w./ transferred

prompt
9.25 6.26

3-bit

w./o.

prompt
15.74 9.45

w./

direct prompt
7.76 6.33

w./ transferred

prompt
10.81 6.90

2-bit

w./o.

prompt
5883.13 2692.81

w./ direct

prompt
14.98 16.67

w./ transferred

prompt
29.82 20.56

and 75% sparsity using SparseGPT. Additionally, we in-

clude the performance of each model’s compressed version

with 2-bit, 3-bit, and 4-bit quantization using GPTQ. The

figures demonstrate the consistent advantages of prompt

tokens across the two datasets. For every model with 50%

sparsity or 4-bit quantization, learning prompts from the C4

dataset result in a lower PPL compared to the full model

counterpart. Moreover, we observe a substantial improve-

ment in PPL when using learned prompt tokens as the model

becomes more compressed. This phenomenon validates that

the prompts learned on top of compressed models can be

7
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Table 3: The zero-shot test PPL of transferred soft prompt and LoRA on Wikitext2 dataset.

Dataset Model Precision Method Transferred Params (M) PPL

Wikitext2 LLaMA-2-13B fp16 NA NA 5.58

Wikitext2 LLaMA-2-13B 3bit NA NA 7.88

Wikitext2 LLaMA-2-13B 3bit Soft Prompt 0.5 5.89

Wikitext2 LLaMA-2-13B 3bit LoRA 26 7.07

Wikitext2 BLOOM-7B fp16 NA NA 13.26

Wikitext2 BLOOM-7B 3bit NA NA 16.06

Wikitext2 BLOOM-7B 3bit Soft Prompt 0.4 12.42

Wikitext2 BLOOM-7B 3bit LoRA 15.7 15.65

effectively transferred across datasets.

We also compare the transferred soft prompts against the

soft prompts that are directly trained on the downstream

dataset. Given direct prompt receives a domain-specific loss,

our transferred prompt is, as expected, not as competitive

as the direct one. However, such transferred prompt may

significantly bridge the gap between a compressed and full

model — e.g., our 3-bit & 4-bit quantized LLaMA-7B with

transferred prompt can deliver on-par or better PPL than

the full model on PTB and Wikitext2. We’d say this is

an especially worthy contribution in practice, as one may

possibly download the open-sourced transferable prompt to

help on a compressed model with little effort.

Here we emphasize that the prompt trained with a domain-

specific loss can no longer be transferred between different

datasets. Below we present the results of transferring the

soft prompts learned on Wikitext2 ( featured articles on

Wikipedia) to PTB (Wall Street Journal material) and C4

(collection of common web text corpus). The results, as

shown in the table below, highlight a significant disparity

in performance when using domain-specific prompts across

different domains. The prompt trained on Wikitext-2, when

applied to PTB and C4, leads to a drastic increase in perplex-

ity, indicating a severe degradation in model performance.

In contrast, if the prompt is learned on general text datasets

like C4, then it can be transferred to different domains e.g.,

PTB and Wikitext2, and tasks, e.g., QA and language under-

standing (Appendix A.4).

5.4. Combination of Sparsification and Quantization

In this section, we explore the effectiveness of the prompt

strategy in the combination of sparsification and quantiza-

tion for compressing LLM. Since sparsification and quanti-

zation target different aspects of compression, it is natural to

combine them to achieve better efficiency. Table 4 presents

the PPL before and with, and without the learned prompt on

the validation set of C4, as well as the test sets of Wikitext-2

and PTB. We choose the LLaMA-7B model compressed

using 50% sparsity and 4-bit quantization from the training

set of C4. We should note that the prompt learning process

Table 4: The PPL of joint 50% sparsity + 4-bit quantization

with learned prompts on the validation set of C4 and a test

set of Wikitext-2 and PTB. The prompt is learned on C4

training set.

Models C4 Wikitext-2 PTB

Full 7.59 6.34 11.02

50% + 4-bit
(w./o. prompt)

10.94 9.67 17.39

50% + 4-bit
(w./ prompt)

7.38 7.31 10.64

also takes place on the training set of C4. Our results demon-

strate that the prompt learning strategy remains effective

when combining sparsification and quantization. Addition-

ally, with the prompt, the 50% sparse and 4-bit compressed

model still performs comparably to the original LLaMA-7B.

5.5. Soft Prompt Outperforms LoRA

We perform our methods and LoRA (Hu et al., 2021;

Dettmers et al., 2024) on LLaMA-2-13B and BLOOM-7B

models. The results are summarized on Table 1. Follow-

ing LoRA experimental setting (Hu et al., 2021), we in-

sert LoRA layers to all query and value layers with a rank

r = 32, α = 32, and a 0.1 dropout rate. We train the Lora

using the Adam optimizer with a 2e − 4 learning rate. It

suggests that our approach outperforms LoRA with lower

PPL. Moreover, we can recover the performance of GPTQ 3-

bit LLaMA-2-13B and GPTQ 3-bit BLOOM-7B with even

better performance than their fp16 counterparts.

We also test the transferability of ours and LoRA on wiki-

text2 dataset. We summarize the results in Table 3 and

Table 7 in the appendix. It suggests that our soft prompt can

be transferred to other datasets while still outperforming

LoRA for the performance recovery of compressed LLMs.

6. Conclusion

In this paper, we optimize the trade-off between computa-

tional efficiency and accuracy in LLMs via prompting com-

pressed models. We propose a soft prompt learning method
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where we expose the compressed model to the prompt learn-

ing process. Our experimental analysis suggests our soft

prompt strategy greatly improves the performance of the

compressed models, allowing them to match their uncom-

pressed counterparts. The research also highlights the trans-

ferability of these learned prompts across different datasets,

tasks, and compression levels.
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Appendix

A. More Experiments

A.1. Experiment Details

In the experiment, we employed the AdamW (Loshchilov & Hutter, 2019) optimizer as our chosen optimizer. We conducted

iterative prompt updates using a batch size of 4, a weight decay of 10−5, and a learning rate of 10−3. We set the total

optimization steps as 30,000 and use the model corresponding to the best validation perplexity as the final model. To

facilitate mix-precision training and system-level optimization, we leveraged the accelerate library (Gugger et al., 2022).

All experiments are conducted on a server with eight Nvidia RTX 8000 (48G) GPUs, 1.5T main memory, and two AMD

EPYC 7742 64-Core Processors. We note that the whole prompt tuning process can be done in five hours with four RTX

8000 (48G) GPUs. The software and package versions are specified in Table 5. In the future, we would like to further

accelerate the our prompt learning for larger LLMs with efficient distributed learning strategy (Wang et al., 2023a;b)

Table 5: Package configurations of our experiments.

Package Version

CUDA 11.6

pytorch 2.0.1

transformers 4.30.0.dev0

accelerate 0.18.0

A.2. Followup on Cross-Dataset Transferability

In this section, we provide more experiments on transferring the learned prompts across different datasets.

Table 6: Perplexity comparison of transferring prompts learned on Wikitext2 to PTB and C4.

Model PTB C4

Full Model 11.02 7.59

3-bit w./o. prompt 15.74 10.74

3-bit w./ prompt learned on Wikitext2 294.16 160.64

3-bit w./ prompt learned on C4 10.81 7.48

A.3. Ablation on the Cross-Compression Transferability

Here we assess the transferability of learned prompts across various compression levels. Specifically, we aim to address the

following questions: Can the prompt learned from a compressed model be applied to the same model but compressed at

different levels or types?

In Figure 4, we display the Perplexity (PPL) outcomes on the C4 validation set, along with the results on the Wikitext-2 and

PTB test sets. These results are obtained by applying prompts learned from a source compressed model to a different target

compressed model. Here, “target” denotes the specific compression type and degree used in the model receiving the prompts.

Table 7: The zero-shot test PPL of transferred soft prompt and LoRA on PTB dataset.

Dataset Model Precision Method PPL

PTB LLaMA-2-13B fp16 NA 50.33

PTB LLaMA-2-13B 3bit NA 82.31

PTB LLaMA-2-13B 3bit Soft Prompt 39.66

PTB BLOOM-7B fp16 NA 22.77

PTB BLOOM-7B 3bit NA 28.32

PTB BLOOM-7B 3bit Soft Prompt 21.03
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While “source” refers to the compression type and degree of the model from which the prompts are originally learned.

For example, “source 4-bit” indicates that the prompt is learned from a compressed model with 4-bit quantization. Based

on the figures, we observe that (1) For sparse LLMs, prompts learned from higher sparsity can be effectively transferred

to models with lower sparsity, while achieving comparable performance.. (2) For quantized LLMs, prompts learned

from lower bit quantization levels can be successfully applied to models with higher bit quantization, while achieving

comparable performance. (3) There is a certain degree of transferability of prompts learned between different compression

types, especially when the compression level is less. For instance, a prompt learned from a LLaMA-7B model with 4-bit

quantization can be transferred to a LLaMA-7B model with 50% sparsity.
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7.7 11.5 36.2 6.4 8.4 1049682

7.8 11.8 39.0 6.6 7.5 231979

8.1 12.8 46.1 8.7 127.3 18.0

C4

50%62.5%75% 4-bit 3-bit 2-bit
Target

50%

62.5%

75%

4-bit

3-bit

2-bit

So
ur
ce

6.9 9.5 37.5 5.9 7.6 1213923

6.6 8.2 33.7 5.9 7.7 601128

6.9 10.2 13.2 5.9 8.4 193775

6.9 10.9 44.9 6.3 7.6 1002761

6.8 11.2 48.5 5.7 6.9 220239

6.9 12.3 62.2 6.9 169.0 20.6

Wikitext-2

50%62.5%75% 4-bit 3-bit 2-bit
Target

50%

62.5%

75%

4-bit

3-bit

2-bit

So
ur
ce

10.1 14.7 52.7 9.3 12.4 1234997

10.4 12.1 48.1 9.4 12.5 645633

10.8 16.1 18.7 9.4 13.9 191635
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11.3 21.1 79.7 15.0 194.4 29.8
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Figure 4: LLaMA-7B transfer between different sparsity and bit-width. The “target” refers to the compression type and

level for the compressed model, while the“source” represents the type and level of the compressed model from which the

prompt is learned. For example, “4-bit” in source indicates that the prompt is learned from a compressed model with 4-bit

quantization.

A.4. Cross-Task Transferability

In this section, we explore the transferability of learned prompts across different tasks. Specifically, we aim to assess the

effectiveness of prompts learned from token generation tasks, as indicated by Eq (1), in downstream tasks of LLM. As an

illustrative example, we consider the zero-shot generalization tasks of LLaMA-7B (Touvron et al., 2023a). For evaluation

purposes, we have chosen OpenbookQA (Mihaylov et al., 2018), Hellaswag (Zellers et al., 2019), PIQA (Bisk et al., 2020),

and the high school European history task from (Hendrycks et al., 2020). The European history task is particularly interesting

due to its inclusion of a lengthy context sentence for each question. We employ the lm-evaluation-hardness framework (Gao

et al., 2021), incorporating adapters from (Yuan et al., 2022), for the purpose of conducting the experiment.

Table 8 presents the results in terms of normalized accuracy, and we also include the standard deviation, as indicated by (Gao

et al., 2021). The table clearly demonstrates that the learned prompt significantly enhances the accuracy of these tasks.

These findings imply that prompts acquired through token generation tasks can effectively enhance the accuracy-efficiency

trade-off of compressed LLMs.

A.5. Efficiency Profiling

In this section, we analyze how the inclusion of prompt tokens impacts the latency of LLM inference. Figure 5 illustrates

the latency of three OPT models and the LLaMA-7B model utilized in this paper, considering the insertion of additional

prompt tokens with varying lengths. For token generation, we set the sequence length to 1024. The figure demonstrates that

the addition of prompt tokens does not significantly increase the latency of LLM inference, particularly when the inserted

tokens account for less than 10% of the original sequence length. Furthermore, our observations indicate that the latency

does not exhibit a linear correlation with the length of the inserted tokens, highlighting the effectiveness of the prompt in

facilitating efficient LLM inference.

A.6. Ablation on the Number of Soft Tokens

In Table 9, we conduct the ablation study on the impact of the number of soft tokens using 3-bit quantized LLama-7B

on PTB dataset. We observe that there is still a significant improvement with 25 prompt tokens, and we can improve the
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Figure 5: Latency benchmark of inference speed with prompt tokens

Table 8: The zero-shot results on transforming the learned prompt to OpenBookQA, Hellaswag, PIQA, and High School

European History dataset.

Models OpenbookQA Hellaswag PIQA
High School

European History

Full 0.410±0.022 0.497±0.005 0.702±0.011 0.364±0.038

50%
w./o. Prompt 0.412±0.022 0.449±0.005 0.682±0.011 0.364±0.038

+ Learned Prompt 0.400±0.022 0.469±0.005 0.689±0.011 0.358±0.037

62.5%
w./o. Prompt 0.396±0.022 0.380±0.005 0.638±0.011 0.345±0.037

+ Learned Prompt 0.402±0.022 0.433±0.005 0.668±0.011 0.345±0.037

75%
w./o. Prompt 0.366±0.022 0.280±0.004 0.549±0.012 0.315±0.036

+ Learned Prompt 0.358±0.021 0.344±0.005 0.614±0.011 0.358±0.037

4-bit
w./o. Prompt 0.410±0.022 0.487±0.005 0.690±0.011 0.358±0.037

+ Learned Prompt 0.418±0.022 0.487±0.005 0.692±0.011 0.352±0.037

3-bit
w./o. Prompt 0.378±0.022 0.446±0.005 0.674±0.011 0.358±0.037

+ Learned Prompt 0.404±0.022 0.459±0.005 0.688±0.011 0.358±0.037

2-bit
w./o. Prompt 0.354±0.021 0.240±0.004 0.491±0.012 0.315±0.036

+ Learned Prompt 0.350±0.021 0.294±0.005 0.563±0.012 0.333±0.037
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performance by increasing the prompt size.

Table 9: Ablation study on the impact of the number of soft tokens using 3-bit quantized LLama-7B on PTB dataset.

# tokens Perplexity

Baseline (0 tokens) 15.74

25 tokens 9.26

50 tokens 8.61

75 tokens 8.17

100 tokens 7.76

B. Discussion

Limitations. One limitation of our study is its reliance on GPUs for executing computational tasks. It is crucial to

acknowledge that GPUs can be expensive to procure and maintain, thus imposing financial constraints on researchers

or organizations with limited resources. In order to address this issue, future endeavors should investigate alternative

computational architectures or optimizations that can alleviate the dependence on costly GPUs. By doing so, the accessibility

and applicability of our proposed methodology can be expanded, making it more widely accessible to a broader range of

researchers and organizations.

Potential Negative Societal Impacts. While our research primarily centers on diminishing the energy consumption of

LLM during inference, it is crucial to acknowledge that the carbon emissions stemming from LLM inference may still

contribute to environmental concerns. As part of our future endeavors, we aspire to enhance the efficiency of LLM inference

on low-energy devices.

C. More Visualization

In this section, we present further visualizations of compression-aware prompts, as demonstrated in Figure 1 in Section 1.

The results unveil a significant improvement achieved by utilizing a hard, task-independent prompt on compressed LLMs.

Additionally, we showcase the visualization of responses generated using our prompt derived from the C4 training set. It is

worth noting that, in certain instances, the task-independent and learned prompt outperforms the hard prompt.
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Q: Please give the
answers to this

question: Where is
Boston?

Question

Boston is a city in
the state of

Massachusetts. It is
located on the east
coast of the United

States.

Full Model

I am a student and I
am doing my research

on Boston.

LLaMa-7B (62.5% sparisty)

The answer is Boston.

LLaMa-7B (62.5% sparisty)
w./ Hard prompt

Boston is a city in
the United States of
America. It is the

capital of
Massachusetts. Boston

is the largest city in
the state.

LLaMa-7B (62.5% sparisty)
w./ Learned Prompt

Q: Please give the
answers to this

question: Where is
Memphis?

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

I am a student and I
am doing a project. I
am looking for the

answers to this
question: Where is

Memphis?

The answer is Memphis.

Memphis is a city in
the U.S. state of

Tennessee. It is the
capital city of the

Memphis Metropolitan
Area.

Q: Please give answers
to this question:

Where is Colorado
Springs?

Colorado Springs is
located in the south
central part of the

state of Colorado. It
is located at the base

of the Rocky
Mountains.

I am a student and I
am doing my research
on Colorado Springs. I

am looking for the
answers to this

question: Where is
Colorado Springs?

The answer is Colorado
Springs.

Colorado Springs is a
city in Colorado. It
is the second largest
city in the state. It
is located in the
southwest of the

state. It is the home
of the Space Shuttle.

Q: Please give the
answers to this

question: Where is
Houston?

Houston is in Texas.
Houston is the largest
city in Texas. Houston

is the fourth largest
city in the United

States.

I am a student and I
am doing my research

on Houston. I am
looking for the
answers to this

question: Where is
Houston?

The Houston is the
largest city in Texas.
It is the largest city
in the United States.
It is the largest city
in the United States.

Houston is a city in
the United States. It
is the largest city in
the state of Texas.

Houston is the fourth
largest city in the

United States.

Q: Please give answers
to this question:Where

is Omaha?

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

I am a student and I
am doing my research

on Omaha. I am looking
for the answers to

this question: Where
is Omaha?

The answer is: Omaha
is located in the USA.

Omaha is a city in
Nebraska. It is the

largest city in
Nebraska.

Figure 6: Case study for the effect of prompts on a pruned LLaMA-7B with a 62.5% weight sparsity.
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Q: Please give the
answers to this

question: Where is
Boston?

Question

Boston is a city in
the state of

Massachusetts. It is
located on the east
coast of the United

States.

Full Model

Boston is a city in
the United States. It

is the capital of
Massachusetts.

LLaMa-7B (4 Bit)

I'm sorry, but I don't
understand your

question.

LLaMa-7B (4 Bit)
w./ Hard prompt

Boston is a city in
the United States. It
is the capital of the

state of
Massachusetts.

LLaMa-7B (4 Bit)
w./ Learned Prompt

Q: Please give the
answers to this

question: Where is
Memphis?

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

The answer is: Memphis
is in Tennessee.

Memphis is a city in
the state of

Tennessee. It is
located on the

Mississippi River.

Q: Please give answers
to this question:

Where is Colorado
Springs?

Colorado Springs is
located in the south
central part of the

state of Colorado. It
is located at the base

of the Rocky
Mountains.

I'm not sure if this
is the right place to

ask this question, but
I'm going to try. I'm

a 16 year old girl who
is going to Colorado
Springs for a week in

June...

The answer is Colorado
Springs, Colorado.

The city of Colorado
Springs is located in

the central part of
the state of Colorado.

It is located in the
southwestern part of

the state.

Q: Please give the
answers to this

question: Where is
Houston?

Houston is in Texas.
Houston is the largest
city in Texas. Houston

is the fourth largest
city in the United

States.

Houston is a city in
Texas. Houston is the
fourth largest city in

the United States.

I'm sorry, but I don't
understand your

question.

Houston is a city in
Texas. Houston is the
fourth largest city in

the United States.
Houston is the largest

city in Texas.

Q: Please give answers
to this question:Where

is Omaha?

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

The answer is: Omaha
is located in
Nebraska.

Omaha is located in
Nebraska. It is the

largest city in
Nebraska.

Figure 7: Case study for the effect of prompts on a pruned LLaMA-7B with a 4-bit quantization.
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D. Understanding The Learned Prompts From Natural Language Aspect
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Figure 8: The distribution of the cosine similarity be-

tween the learned embedding and the top-100 nearest

embeddings to it.

With the learned prompt outperforming the hard counterpart, we

raise an intriguing question: How do the learned prompt tokens

look when viewed from the perspective of natural language? In

this section, we present the ablation study to answer the above

question. Specifically, for each of the learned prompt token

embeddings, we identify the words whose embedding is closest

to the learned prompt token embedding via the nearest neighbor

search technique, where the similarity measure is cosine simi-

larity. In Figure 8, we plot the histogram of the cosine similarity

between each learned prompt token and the top-100 nearest

embeddings to it, where the prompt is learned with a pruned

LLaMA-7B with a 50% weight sparsity. We observe that there

is no word whose embedding closely matches the learned

one within the embedding space. The cosine similarity for

nearly all comparisons falls below 0.16, suggesting a consider-

able disparity between the learned prompt embeddings and their

nearest equivalents. Below we also report the nearest word for

each of the learned prompt token embedding. We observe that

(1) almost all of them are meaningless. (2) several learned prompt tokens may be mapped to the same word.

Nearest word for each of the learned prompt tokeni: "heits", "<s>", "</s>", "<0x00>",

"<0x01>", "<0x02>", "<0x03>", "<0x04>", "<0x05>", "<0x06>", "<0x07>", "<0x08>",

"<0x09>", "<0x0A>", "<0x0B>", "<0x0C>", "<0x1A>", "<0x0E>", "<0x0F>", "<0x10>",

"<0x11>", "<0x12>", "<0x13>", "<0x14>", "<0x15>", "<0x16>", "<0x17>", "<0x18>",

"<0x19>", "<0x1A>", "<0x1B>", "<0x1C>", "<0x1D>", "<0x1E>", "<0x1F>", "sep",

";;;;", "état", "<0xB1>", " Ej", "moz", " diverse", " "", "argument", "|",

"han", "ura", "/", "-", "<0xE7>", " Lisa", " case", "ura", "O"," Chal",

" Chan", "O", "asc", "Client", " Det", "O", " Hel", " L", " Pel", " k",

" It", "O", "<0x8B>", "<0x00>", "ILL", "O", "E", "ren", "ety", "cy", "</s>",

"<0x8B>", "<0x9F>", "<s>", "<s>", "IM", "<s>", "."

Our ablation study highlights the hardness of understanding the mechanisms underlying learned prompts. This area remains

largely uncharted, inviting future research to uncover its intricacies. Our hope is that this study will ignite curiosity and

foster continued scholarly pursuit in this field.

ihere we did not display the word that is not in UTF-8 format.
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