
KV Cache is 1 Bit Per Channel: Efficient Large

Language Model Inference with Coupled Quantization

Tianyi Zhang
Dept. of Computer Science, Rice University

xMAD.ai
Houston, TX

tz21@rice.edu

Jonah Yi
Dept. of Computer Science, Rice University

xMAD.ai
Houston, TX

jwy4@rice.edu

Zhaozhuo Xu
Dept. of Computer Science,

Stevens Institute of Technology
xMAD.ai

Hoboken, NJ
zxu79@stevens.edu

Anshumali Shrivastava
Dept. of Computer Science, Rice University

Ken Kennedy Institute
ThirdAI Corp.

xMAD.ai
Houston, TX

anshumali@rice.edu

Abstract

Efficient deployment of Large Language Models (LLMs) requires batching mul-
tiple requests together to improve throughput. As batch size, context length, or
model size increases, the size of key and value (KV) cache quickly becomes the
main contributor to GPU memory usage and the bottleneck of inference latency
and throughput. Quantization has emerged as an effective technique for KV cache
compression, but existing methods still fail at very low bit widths. Currently, KV
cache quantization is performed per-channel or per-token independently. Our anal-
ysis shows that distinct channels of a key/value activation embedding are highly
interdependent, and the joint entropy of multiple channels grows at a slower rate
than the sum of their marginal entropy, which implies that per-channel independent
quantization is sub-optimal. To mitigate this sub-optimality, we propose Cou-
pled Quantization (CQ), which couples multiple key/value channels together for
quantization to exploit their interdependence and encode the activations in a more
information-efficient manner. Extensive experiments reveal that CQ compares
favorably with existing baselines in preserving model quality, and improves infer-
ence throughput by 1.4–3.5× relative to the uncompressed baseline. Furthermore,
we demonstrate that CQ can preserve model quality reasonably with KV cache
quantized down to 1 bit.

1 Introduction

Large Language Models (LLMs) have showcased remarkable generalization abilities across various
tasks without needing specific fine-tuning [30]. These impressive capabilities have empowered
LLMs to find applications in numerous domains [19]. However, the high computational demands
and prohibitive deployment costs of LLMs create significant barriers, hindering their widespread
adoption [19, 4]. Particularly, as LLMs move towards larger model size [14] and longer context
length [40], they require faster hardware accelerators such as graphics processing units (GPUs) with
higher memory capacity for efficient inference. Hence it is crucial to develop approaches for reducing
the computational costs and memory requirement of LLMs.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Key and value (KV) caching [47] has proven to be an effective technique for accelerating LLM
inference without affecting model quality. In autoregressive LLMs, KV caching works through
trading off memory to save computations: the key and value activations of all previous tokens in the
current sequence are cached in memory to avoid their recomputation for generating the next token.
However, KV cache can quickly overwhelm the memory capacity of GPUs as context length or batch
size increases, since its storage scales linearly with these two factors. Consider the OPT-175b model
[43], storing its KV cache for 128 sequences of 2048 tokens requires 1.2 terabytes of memory, which
is around 3.5× the storage of its weights. Because inference throughput scales with batch size, the
substantial memory demands of KV caching can become a significant bottleneck to throughput. In
addition, as KV cache is not shared across sequences within a batch, it has a low compute-to-memory
ratio, making reading the KV cache from GPU memory the primary source of latency as opposed to
the attention computation [15]. KV cache compression can bring the following benefits: 1. speeding
up LLM inference by improving the compute-to-memory ratio, 2. improving the serving throughput
by fitting more sequences into memory and hence enabling larger batch sizes, 3. lowering the GPU
requirements for inference for a given batch size, context length, and model size. Existing approaches
typically achieve compression of KV cache through token eviction [47, 24] or activation quantization
[25, 15]. While these methods can preserve model quality at moderate compression rates (4×
compression or 4 bits per activation), model quality quickly deteriorates at high compression rates
(16× compression or 1 bit per activation). In this work, we leverage the interdependency between
key/value channels, an insight overlooked by existing approaches, to achieve higher compression
rates of KV cache while maintaining model quality.

1 2 4 8
Num. of Coupled
K/V Channels

10
1

10
2

P
er
p
le
xi
ty

on
W
ik
iT
ex
t-
2

5.68

620.08

28.39

10.47
8.09
6.01

LLaMA-7b w/
1-bit KV Cache

1-bit KV cache

1-bit KV cache w/ a sliding window of 128 recent tokens in FP16

FP16 KV cache

1 2 4 8
Num. of Coupled
K/V Channels

10
1

10
2

10
3

4.57

2064.46

20.64
8.73 6.56

4.87

LLaMA-2-13b w/
1-bit KV Cache

Figure 1: Perplexity of LLMs with 1-bit quantized KV
cache approaches the uncompressed FP16 performance
as the number of coupled K/V channels increases.

Our approach is motivated by the obser-
vation that distinct channels within the
same key/value activation embedding are
highly interdependent and correlated (see
our analysis in Section 3.1). It is hence
more information-efficient to encode mul-
tiple channels of KV cache at once, which
we call channel coupling. Existing solu-
tions, in contrast, only employ per-channel
or per-token quantization strategies [25, 15]
for compressing KV cache, which is not
optimal for exploiting the dependency be-
tween channels. As a result, we observe
significant model quality degradation at the
extreme compression rate of 1 bit per ac-
tivation. By leveraging channel coupling,
we enable compression at the level of 1-bit
quantization of KV cache while preserving
model quality. In Figure 1, we show the
perplexity of two models from the LLaMA
family [36, 37] on WikiText-2 [27] under
1-bit quantization with varying numbers of
coupled channels. The full experimental setup is presented in Section 4. Coupling more channels
significantly enhances model quality, as the perplexity quickly approaches the performance using
uncompressed FP16 KV cache. By further combining KV cache quantization with a sliding window
of 128 recent tokens cached in full precision, we achieve a negligible 0.3–0.33 increase in perplexity
with 1-bit KV cache.

We summarize our contributions as follows.

1. We observe the phenomenon that distinct channels within the same key/value activation
embedding share a high amount of dependency or mutual information, which has not been
leveraged by existing approaches.

2. We propose Coupled Quantization (CQ), a novel KV cache quantization method that jointly
encodes multiple key/value channels to exploit the dependency across channels.

3. Through extensive experiments, we demonstrate the effectiveness of CQ at preserving model
quality and speeding up LLM inference against competitive baselines. Furthermore, we
demonstrate CQ reasonably preserves model quality at an extreme level of 1-bit quantization.

2

2 Background

This section introduces the relevant background information including the KV caching technique and
per-channel quantization.

2.1 LLM Attention and KV Cache

Decoder-only transformer-based LLMs employ masked self-attention [38], in which activations of
the current token only depend on the previous tokens and are unaffected by future ones. This property
enables training parallelism for the next-token prediction objective, and gives rise to the KV caching
technique for efficient decoding during inference. Consider the decoding step for the t-th token in
a single head of attention in an LLM. The input embedding of the t-th token (a column vector), et,
goes through three distinct transformations to become key, query, and value activation embeddings
fK(et), fQ(et), fV (et), where the transformations fK , fQ, fV are composed of linear projection and
positional encoding methods such as RoPE [35]. The output embedding of attention for the t-th token
is computed as

attention(et) =

[

fV (e1) . . . fV (et)

]

softmax

(

[

fK(e1) . . . fK(et)

]

¦

fQ(et)

/

√

d

)

(1)

where d is the dimensionality of fK(et). Computing the output embedding of the current token
requires the key and value activation embeddings of all previous tokens, fK(ei) and fV (ei) where
i ∈ {1, . . . , t− 1}. These embeddings are cached in memory from previous decoding steps to
eliminate redundant computations, a process known as KV caching. The size of KV cache can
be calculated as b × n × l × 2 × h × d floating-point numbers, where b is the batch size, n is
the number of tokens in each sequence, l is the number of layers in the model, 2 is for key and
value, h is the number of key/value attention heads, and d is the dimensionality of a single head of
key/value activation embedding. As batch size, context length, or model size increases, the size of
the KV cache can quickly overwhelm the limited GPU memory. KV cache bottlenecks inference
throughput since it limits the maximum batch size, and it is a major contributor to latency due to the
low compute-to-memory ratio [15].

2.2 Per-Channel Quantization

Existing KV cache quantization methods [15, 25] employ per-channel quantization for keys and
per-token quantization for values. Per-channel and per-token quantization are similar, except the
direction along which the quantization centroids are learned (or the direction along which the scaling
factor and zero-point are determined for uniform quantization). Keys are quantized per-channel
based on the observation that certain key channels have significantly higher magnitudes than others,
while values are quantized per-token because value channels have no such outliers. In non-uniform
per-channel quantization, a set of centroids is learned for each channel. Suppose A is a key or value
activation matrix, and let Ai,: denote the i-th channel of A. Then, non-uniform b-bit per-channel
quantization aims to learn a set of centroids C⋆

i ¢ R for each channel i of A through the objective

C⋆
i = argmin

C¢R

|C|=2b

∥
∥
∥Ai,: − q(Ai,:)

∥
∥
∥

2

2
(2)

where q quantizes each value in Ai,: to the nearest centroid in C.

3 Methodology

In this section, we motivate our proposal using information theory and introduce the Coupled
Quantization (CQ) approach for KV cache compression.

3.1 Motivations

Our proposed approach is inspired by concepts in information theory [33]. We consider channels in
a key/value activation embedding as random variables X1, X2, The amount of information (or
uncertainty) in channel X can be measured by entropy, defined as H(X) = −

∫

X
p(x) log2 p(x) dx,

3

1 2 3 4

5

10

15

E
n
tr
o
p
y
o
f
K
e
y
s
(b
it
s)

Layer 1

1 2 3 4

5

10

Layer 2

1 2 3 4

5

10

Layer 3

1 2 3 4

5

10

Layer 4

1 2 3 4

5

10

E
n
tr
o
p
y
o
f
V
a
lu
e
s
(b
it
s)

1 2 3 4

5

10

1 2 3 4

5

10

1 2 3 4

5

10

Num. of Joint Channels

Sum of Marginal Entropies Joint Entropy

(a)

1

16

32

L
ay
er

1
C
h
a
n
n
el

LLaMA-7b Keys LLaMA-7b Values

1

16

32

L
ay
er

2
C
h
a
n
n
el

1

16

32

L
ay
er

1
4

C
h
a
n
n
el

1

16

32

L
ay
er

2
8

C
h
a
n
n
el

1 16 32

1

16

32

L
ay
er

3
2

C
h
a
n
n
el

1 16 32

−1.0

−0.5

0.0

0.5

1.0

Channel

(b)

Figure 2: (a) Growth rate of joint entropy versus sum of marginal entropies of the key/value activation
embeddings of LLaMA-7b on 262k tokens of WikiText-2. Entropy is estimated using Equation
4. The slower growth rate of joint entropy implies that quantizing more channels together is more
information-efficient than quantizing fewer channels. (b) Correlation matrices of the first 32 channels
of 5 layers of LLaMA-7b key and value activation embeddings on WikiText-2. Channel pairs exhibit
high levels of linear dependency, shown by high magnitudes of the correlation coefficients.

where p(·) is the probability density function and X is the support of X . H(X) measures the
theoretical number of bits needed for losslessly encoding the channel X , hence it can be used to
gauge how “quantizable” a channel is: if H(X1) < H(X2), then channel X1 may be quantized to
fewer bits than channel X2 with the same quantization error.

Our insight is that different channels from the same key/value activation embedding may be in-
terdependent, which would reduce the number of bits required for jointly encoding multiple chan-
nels together compared to encoding them independently. The total amount of information (or
uncertainty) in two channels X1, X2 is measured by joint entropy, defined as H(X1, X2) =
−
∫

X1

∫

X2

p(x1, x2) log2 p(x1, x2) dx2 dx1, where p(·, ·) is the joint probability density function.

Equivalently, the joint entropy of two channels is the difference between the sum of their marginal
entropies and their mutual information, i.e., H(X1, X2) = H(X1) +H(X2)− I(X1, X2), where
I(·, ·) is a non-negative quantity for measuring the mutual dependency of two random variables.
Thus, we have

H(X1, X2) f H(X1) +H(X2) (3)

which implies the number of bits needed for jointly encoding two channels is no more than the total
number of bits needed for encoding them independently. Previous works have demonstrated that
deep neural networks [16] and attention-based networks [9] tend to produce low-rank embeddings,
which suggests that channels of key/value embedding in LLM may exhibit high amount of mutual
dependency.

It is hence beneficial to measure the difference between the sum of marginal entropies of multiple
key/value channels and their joint entropy. A significant difference would suggest that encoding
these channels together is more information-efficient than encoding them independently. However,
it is difficult to derive the exact entropy or joint entropy of channels, since their probability density
functions are not known. Therefore, we employ the “binning” trick [21] to estimate entropy. We first
observe an empirical distribution of key and value channels by saving the KV cache on a dataset,
and partition the support of each channel into equally sized bins. Then, values of each channel are
discretized to the index of the bin they fall into. Finally, the joint entropy of n channels X1, . . . , Xn

is estimated with the Riemann sum,

H(X1, . . . , Xn) ≈
∑

x1∈B1

· · ·
∑

xn∈Bn

p̂(x1, . . . , xn) log2 p̂(x1, . . . , xn) (4)

4

Per-Channel Quantization Coupled Quantization (ours)

q0

q1

channel 0 -0.57

0
0.21

1

-0.38

0
-0.13

1

key or value
activation

embedding

channel 1

per-channel
centroids

q -0.62

0
0.11

1

-0.38 -0.10

0.30

2
-0.38

3

-0.13 -0.24

coupled
channels

0 & 1

key or value
activation

embedding
channel-coupled

centroids

Figure 3: Per-channel quantization (left) and our proposed Coupled Quantization (right). The 1-bit
quantization results on the first two channels of the first-layer key activation embeddings of LLaMA-
7b on the WikiText-2 dataset are shown. CQ leverages the dependency between channels to achieve
lower quantization errors than per-channel quantization.

where Bi is the support of the binned or discretized Xi and p̂(·) is the empirical probability mass
function. Specifically, we divide the channels of key and value embeddings of LLaMA-7b [36] into
non-overlapping groups each containing c contiguous channels, where c ∈ {1, 2, 3, 4}, and estimate
the joint entropy and the sum of marginal entropies of each group. The support of each channel
is partitioned into 16 equally sized bins. Figure 2a shows the mean and standard deviation of the
estimated joint entropy and sum of marginal entropies of four layers of LLaMA-7b on 262k tokens of
the WikiText-2 dataset [27], averaged over groups. We only show a maximum group size of 4, since
increasing the group size requires saving exponentially more key and value embeddings to avoid
empty bins and maintain estimation quality. As shown in Figure 2a, the sum of marginal entropies
grows at a linear rate while the joint entropy increases slower at a sub-linear rate. This implies that
as the number of jointly quantized channels increases, the total amount of information needed for
encoding them decreases. This phenomenon is the foundation that motivates our proposed approach.

In addition to studying the marginal and joint entropy, we also analyze the linear relationships
between channels of a key/value activation embedding using Pearson correlation coefficient. Figure
2b presents the correlation matrices for the first 32 channels of 5 layers of LLaMA-7b keys and
values on WikiText-2. The key and value channels exhibit high levels of linear dependency, and are
clearly not independently distributed, as shown by high magnitudes of the correlation coefficients.
In Section M of the appendix, we include the correlation matrices of all layers of LLaMA-7b, and
present scatter plots to visualize the patterns in key and value activations.

3.2 Coupled Quantization

Motivated by the finding that distinct key/value channels exhibit high amounts of dependency, we
propose Coupled Quantization (CQ), an information-efficient KV cache quantization approach that
couples multiple key/value channels for quantization. More concretely, channels of a key or value
activation embedding are divided into equally sized, non-overlapping groups of contiguous channels.
The channels in each group are coupled, as they are jointly quantized and share a single quantization
code. For each group of coupled channels, a distinct set of multi-channel centroids are learned, where
each centroid has dimensionality equal to the number of channels in that group. When quantizing
a key or value activation embedding, each channel group is quantized to the nearest centroid in
terms of L2 distance. We use the CQ-<c>cb notation to denote the configuration of channel
coupling and quantization bit width, where <c> is the number of channels in each group and

indicates the number of bits in a quantized code for a group. For example, CQ-4c8b means that every
4 contiguous channels are coupled together and each coupled group shares an 8-bit code, which is
equivalent to 2-bit per-channel quantization in terms of storage overhead of quantized codes. An
illustrative comparison of per-channel quantization and CQ is shown in Figure 3. Although previous
works [15, 25] opt to quantize keys per-channel and values per-token, we adopt channel-coupled
quantization for both keys and values, which we empirically show is effective for both in Section 4.3.
CQ quantizes keys before the positional encoding such as RoPE [35] is applied, which increases the
quantization difficulty by introducing more outliers in key activations [15, 25].

5

3.2.1 Centroid Learning

In CQ, the multi-channel centroids for each channel group are learned offline on a calibration dataset
by leveraging uniform clustering or second-order-information-informed clustering. Specifically, for
uniform centroid learning of the CQ- c c b b configuration, a set of centroids C⋆

i ¢ R
c is learned

independently for each channel group i through the objective

C⋆
i = argmin

C¢R
c

|C|=2b

∥
∥
∥A(ic−c+1):ic, : − cq

(
A(ic−c+1):ic, :

)
∥
∥
∥

2

F
(5)

where A(ic−c+1):ic, : is the sub-matrix of A containing all coupled channels from the i-th group, and
cq quantizes each column vector to the nearest centroid in C in terms of L2 distance. We use the
k-means algorithm [26] with k-means++ initialization [1] to optimize the objective.

LLMs are more sensitive to the quantized precision of certain weights than others [20], hence centroids
of CQ should be learned to bias towards preserving the precision of more important activations. To
this end, we leverage an approximation to the Hessian to perform second-order-information-informed
centroid learning. More concretely, we use the diagonals of the Fisher information matrix F to
identify the more influential key/value activations and guide the centroid learning process. Using
the diagonal Fisher information matrix for quantization was proposed in [22], and we extend it to
the multi-channel case. For performing Fisher-guided centroid learning, we first save a key/value

activation matrix A and its gradient g(A) = ∂
∂A

L(A) on a calibration dataset, where L is the training
loss function. We approximate the Hessian matrix using the diagonals of the Fisher information
matrix, diag(F) = g(A)» g(A), which is the element-wise square of the gradient matrix. We use
the sum of diagonal entries of the Fisher information matrix as a measure of importance for each
group of activations, and obtain the centroid set C⋆

i for the i-th channel group using the objective

C⋆
i = argmin

C¢R
c

|C|=2b

∑

j

g
(
A(ic−c+1):ic, j

)¦
g
(
A(ic−c+1):ic, j

)

︸ ︷︷ ︸

partial sum of diag(F)

∥
∥
∥A(ic−c+1):ic, j − cq(A(ic−c+1):ic, j)

∥
∥
∥

2

2

(6)
which we leverage weighted k-means to optimize. We discuss the overhead of centroid learning and
centroid storage in Section E in the appendix.

3.3 Efficient Inference Through Kernel Fusion

We design fused GPU kernels to enable efficient inference of CQ. During inference, dequantiz-
ing couple-quantized KV cache requires many random accesses for lookups of multi-dimensional
centroids. If the centroids reside in GPU global memory, these random accesses would greatly
hinder the inference efficiency. We circumvent this issue by caching centroids in the shared memory,
which has significantly lower latency and higher bandwidth than global memory. Due to limited
size of the shared memory for each thread block, we assign the work of a single channel group to
each thread block, which only requires loading a single group of centroids into a block of shared
memory. We perform kernel fusion to merge dequantization of key cache, positional encoding and
KQ multiplication, as well as to merge dequantization of value cache and its multiplication with
attention scores. We validate the inference efficiency of CQ empirically in Section 4.4.

4 Experiments

In this section, we perform extensive experiments to validate the effectiveness of our proposed CQ
approach for KV cache compression. We first introduce the experimental setups including hardware,
software, datasets, metrics, and baselines used. Then, we present the detailed empirical results and
provide discussions. Finally, we perform an ablation study to validate the effectiveness of each
component of our proposal.

Hardware and Software Experiments are performed on a Linux server equipped with 4 NVIDIA
A100 40GB GPUs. Our software implementation of CQ is based on PyTorch [29] and the Hugging-
Face Transformers library [39].

Evaluation Metrics and Datasets We compare different KV cache quantization by evaluating the
quality of 5 LLMs on various benchmarks. The 5 LLMs considered are 1. LLaMA-7b, 2. LLaMA-13b

6

Table 1: Perplexity of LLMs on WikiText-2 under different KV cache quantization methods at varying
bit widths. The results of INT, NF, and KVQuant (except -1b and -1b+1% sparse) are from [15].
“NaN” means Not a Number, which is caused by quantization numerical instability. Our proposed
method CQ outperforms baselines under the same bit width.

Bits Per Activation LLaMA-7b LLaMA-13b LLaMA-2-7b LLaMA-2-13b Mistral-7b

FP16 16 5.68 5.09 5.12 4.57 4.76

INT4 4.00 5.98 5.32 5.66 5.01 4.97
INT4-g128 4.16 5.77 5.16 5.32 4.71 4.82
NF4 4.00 5.87 5.23 5.47 4.90 4.91
NF4-g128 4.25 5.77 5.17 5.30 4.71 4.83
KVQuant-4b 4.00 5.73 5.15 5.18 4.63 4.81
KVQuant-4b+1% sparse 4.32 5.70 5.11 5.14 4.59 4.78
CQ-2c8b 4.00 5.70 5.11 5.14 4.59 4.79

INT2 2.00 11779 69965 4708 3942 573
INT2-g128 2.14 37.37 41.77 117.88 93.09 51.96
NF2 2.00 3210.5 5785.6 13601 4035.6 902.51
NF2-g128 2.25 351.23 141.19 634.59 642.44 252.85
KVQuant-2b 2.00 8.17 7.29 9.75 29.25 7.33
KVQuant-2b+1% sparse 2.32 6.06 5.40 5.50 4.92 5.16
CQ-4c8b 2.00 5.97 5.32 5.42 4.81 5.11
CQ-4c9b 2.26 5.88 5.26 5.32 4.74 4.98

KVQuant-1b 1.00 321.58 1617.40 NaN 4709.83 203.73
KVQuant-1b+1% sparse 1.32 9.93 7.97 9.50 13.76 10.07
CQ-8c8b 1.00 8.09 7.02 7.75 6.55 7.25
CQ-8c10b 1.27 6.78 6.00 6.25 5.47 5.90

[36], 3. LLaMA-2-7b, 4. LLaMA-2-13b [37], 5. Mistral-7b [18]. We evaluate the quality of LLMs
using the metric perplexity on 2 datasets: WikiText-2 [27] and C4 [31], and zero-shot accuracy on
3 benchmarks: WinoGrande [32], PIQA [3], and ARC Challenge (Arc-C) [5]. Furthermore, we
evaluate on long-context benchmarks GSM8K [6] with chain-of-thought (CoT), and few-shot MMLU
[13] with CoT. For perplexity and accuracy evaluations, the KV cache of all tokens in all layers
is quantized, during both the prefill and decoding stages. The experimental details, including the
procedures for perplexity and benchmark evaluations, are presented in Section A in the Appendix.
More experimental results, including a comparison between CQ and KIVI [25] on LongBench [2],
and results on more models and passkey retrieval [28], can be found in the Appendix.

Baselines We compare our proposed approach with uncompressed FP16 KV cache and competitive
KV cache quantization methods, including 1. uniform integer (INT) quantization (without grouping
and with a group size of 128), 2. NormalFloat (NF) quantization [8] (without grouping and with
a group size of 128), 3. KVQuant [15] (dense-only and with 1% outliers stored in sparse format).
KVQuant-b+1% sparse is a dense-and-sparse method that stores outlier activations in a sparse
matrix and requires an additional sparse matrix multiplication during inference, which introduces
extra computational overhead. For calibration, we use the same set of 16 sequences of WikiText-2,
each with 2048 tokens, for KVQuant and CQ. Other methods do not require calibration. Calibration
is performed only once and the learned centroids are used for all downstream evaluations. Calibration
is done on the training set of WikiText-2, while perplexity and accuracy are evaluated on the test sets
of different datasets and benchmarks. For 1-bit and 2-bit KVQuant, we employ Q-Norm to mitigate
distribution shift, as recommended by [15]. We report Bits Per Activation (BPA) to measure the
compression rate of each method, where each activation in the uncompressed KV cache is a 16-bit
float. Detailed calculations of bits per activation for CQ are presented in Section F in the appendix.

4.1 Results

Table 1 presents the perplexity of LLMs on WikiText-2 under different KV quantization methods.
CQ consistently outperforms baselines under the same quantization bit width. In low bit width
regions of 1-bit and 2-bit quantization, dense-only quantization baselines quickly deteriorates in
quality while CQ preserves quality well. We highlight that CQ-8c8b (1 bit per activation) outperforms
KVQuant-2b (2 bits per activation) with only half the memory. CQ also compares favorably against

7

Table 2: Accuracy of LLMs on 3 benchmarks under different KV cache quantization methods at
varying bit widths.

Bits Per Activation Benchmark LLaMA-7b LLaMA-13b LLaMA-2-7b LLaMA-2-13b Mistral-7b Average

FP16 16
WinoGrande 69.93 72.69 68.90 71.98 73.88

65.55PIQA 78.67 79.16 78.07 79.16 80.58
ARC-C 41.72 46.42 43.43 48.29 50.34

KVQuant-4b 4.00
WinoGrande 69.53 72.61 67.96 71.59 73.88

65.17PIQA 78.62 79.22 77.86 78.94 80.58
ARC-C 42.32 45.99 42.75 46.67 49.06

KVQuant-4b+1% sparse 4.32
WinoGrande 70.72 73.40 68.67 72.30 73.72

65.57PIQA 78.40 79.16 78.07 79.27 80.74
ARC-C 41.38 46.76 43.17 47.87 49.91

4.00
WinoGrande 70.40 72.45 68.27 72.53 73.48

65.31CQ-2c8b PIQA 78.61 79.11 77.91 78.62 80.52
ARC-C 41.55 45.99 43.34 47.78 49.15

KVQuant-2b+1% sparse 2.32
WinoGrande 68.03 71.43 67.64 70.17 70.80

63.79PIQA 77.69 78.51 76.60 78.51 79.65
ARC-C 38.74 45.14 41.47 44.97 47.53

2.26
WinoGrande 68.51 69.93 67.40 71.67 70.71

63.75CQ-4c9b PIQA 76.82 78.51 77.09 77.31 79.48
ARC-C 39.16 45.14 41.64 44.97 47.95

KVQuant-2b 2.00
WinoGrande 53.59 59.35 51.70 51.30 63.46

52.20PIQA 72.47 74.81 63.38 65.40 75.46
ARC-C 32.00 34.47 22.44 24.66 38.57

2.00
WinoGrande 67.48 70.72 66.45 69.06 69.38

62.85CQ-4c8b PIQA 76.11 78.29 76.12 77.42 79.49
ARC-C 38.48 44.03 39.93 44.11 45.65

KVQuant-1b+1% sparse 1.32
WinoGrande 56.67 61.01 57.77 57.30 58.17

54.31PIQA 71.38 75.46 69.91 70.89 73.83
ARC-C 29.69 35.32 31.48 32.59 33.19

1.27
WinoGrande 60.46 65.27 59.19 62.98 63.93

57.95CQ-8c10b PIQA 73.45 75.90 73.07 74.37 77.31
ARC-C 33.28 37.12 34.64 38.74 39.59

KVQuant-1b 1.00
WinoGrande 50.51 48.46 50.91 49.41 49.80

41.35PIQA 53.26 53.54 53.37 50.92 54.73
ARC-C 21.76 21.33 20.65 21.67 19.88

1.00
WinoGrande 56.51 61.56 55.01 57.14 58.25

54.36CQ-8c8b PIQA 71.16 73.99 71.22 73.01 75.24
ARC-C 30.20 33.79 30.20 34.30 33.79

Table 3: Accuracy of LLaMA-2-7b on 5 long-context benchmarks under different KV cache quanti-
zation methods at varying bit widths.

Bits Per Activation GSM8K, CoT
MMLU, CoT Fewshot

STEM Humanities Social Other

FP16 16 13.57 33.43 41.12 50.74 56.60

KVQuant-4b+1% sparse 4.32 14.33 31.04 41.12 48.37 55.43

CQ-2c8b 4.00 14.71 33.73 43.44 47.77 56.01

KVQuant-2b+1% sparse 2.32 10.31 28.06 35.64 42.43 46.39

CQ-4c9b 2.26 10.31 27.76 35.91 44.51 45.75

KVQuant-2b 2.00 2.27 9.85 12.55 20.18 19.94

CQ-4c8b 2.00 8.04 25.67 30.89 45.40 41.94

KVQuant-1b+1% sparse 1.32 2.27 10.75 14.09 20.77 19.94

CQ-8c10b 1.27 2.35 13.13 21.81 28.19 26.98

KVQuant-1b 1.00 0.68 0.00 0.00 0.00 0.00

CQ-8c8b 1.00 1.74 5.37 11.39 20.77 16.72

dense-and-sparse baselines by outperforming KVQuant+1% sparse in most cases despite using less
bits. We present the perplexity results on C4 in Table 7 in the appendix. Table 2 presents the accuracy
results of KVQuant and CQ on different benchmarks. CQ consistently outperforms dense-only
KVQuant at 1-bit and 2-bit, and performs better or on par with the dense-and-sparse KVQuant under
the same bit width. Table 3 presents the accuracy comparison of KVQuant and CQ on long-context
benchmarks, with CoT or few-shot CoT. CQ mostly outperforms KVQuant under similar bit widths.

8

Table 4: Accuracy of LLaMA-2 models with couple-quantized KV cache and a sliding window of 32
recent tokens cached in FP16. CQ achieves minimal accuracy degradation compared to the FP16
baseline.

Quant. BPA WinoGrande PIQA Arc-C Arc-E Hellaswag Average

LLaMA-2-7b

FP16 16 68.90 78.07 43.43 76.30 57.14 64.768
CQ-2c8b 4.00 69.14 78.18 43.34 76.52 57.12 64.860 (+0.092)
CQ-4c8b 2.00 69.06 77.86 42.83 76.01 56.79 64.510 (-0.258)
CQ-8c8b 1.00 69.14 77.91 42.92 75.67 55.11 64.150 (-0.618)

LLaMA-2-13b

FP16 16 71.98 79.16 48.29 79.42 60.04 67.778
CQ-2c8b 4.00 72.30 78.94 47.95 79.55 60.18 67.784 (+0.006)
CQ-4c8b 2.00 72.30 78.89 47.61 79.21 59.84 67.570 (-0.208)
CQ-8c8b 1.00 72.22 78.84 47.78 79.12 58.55 67.302 (-0.476)

4.2 Near-native Performance with Sliding Window Full-precision Cache

CQ mostly outperforms competitive baselines under the same bit width for fully quantized KV cache,
and we further investigate the performance of CQ when combined with a sliding window of recent
tokens cached in FP16 precision. This sliding window of full-precision cache only introduces a small
constant memory overhead for each sequence. In Table 4, we present the accuracy of LLaMA-2
models on 5 benchmarks (WinoGrande, PIQA, Arc-C, Arc Easy (Arc-E) [5], and Hellaswag [42])
with a sliding window of 32 recent tokens in FP16 and the rest of the tokens coupled-quantized. CQ
preserves the accuracy well, achieving a mere 0.476–0.618% loss in average accuracy over 5 tasks
with 1-bit quantization. CQ also preserves perplexity well at 1-bit with a sliding window of 128
tokens in FP16, as shown in Figure 1.

Table 5: Ablative study on the effects of channel cou-
pling for quantizing keys only, values only, and both
keys and values, using 1-bit CQ. Perplexity of LLaMA-
7b on WikiText-2 is reported.

BPA
Perplexity ³

Keys Only Values Only Keys & Values

CQ-1c1b 1.00 17.17 177.13 620.08

CQ-2c2b 1.00 8.29 9.49 28.39

CQ-4c4b 1.00 7.10 7.11 10.47

CQ-8c8b 1.00 6.53 6.54 8.09

FP16 16 5.68

Table 6: Ablative study on the effects of
Fisher-guided centroid learning for CQ.
Perplexity of LLaMA-7b on WikiText-2
is reported.

Centroids Perplexity ³

CQ-2c8b
Uniform 5.77

Fisher-guided 5.70

CQ-4c8b
Uniform 6.86

Fisher-guided 5.97

CQ-8c8b
Uniform 32.12

Fisher-guided 8.09

4.3 Ablation Study

We perform a set of ablation experiments to answer the following questions. The experimental results
are presented in Tables 5 & 6.

Q1: Under the same quantization bit width, does coupling more channels lead to better model
quality? Yes, the model performance approaches the FP16 baseline level as the number of coupled
channels increases, as shown in Table 5. This also holds true for different models and bit widths, as
shown in Figure 1 and Table 8 in the appendix.

Q2: Is channel coupling effective for quantizing both keys and values? Yes, channel coupling
is highly effective for both keys and values. As shown in Table 5, perplexity improves significantly
under the same bit width as the number of coupled channels increases, and holds true for both
key-only and value-only quantization.

Q3: Does Fisher-guided learning of centroids produce better model quality than uniform
clustering? Yes, Fisher-guided centroid learning improves the model perplexity over uniform
clustering, as shown in Table 6. Table 8 in the appendix further shows it is effective for different
models.

4.4 Efficiency of CQ

9

0 100 200 300

Batch Size

250

500

750

T
h
ro
u
g
h
p
u
t
(t
o
ke
n
s/
se
c)

CQ-8c8b (1-bit)

CQ-4c8b (2-bit)

CQ-2c8b (4-bit)

FP16

Figure 4: Inference throughput of CQ
versus FP16 KV cache for LLaMA-2-
7b.

We study the efficiency of CQ by comparing its decoding
throughput with uncompressed FP16 KV cache using the
HuggingFace Transformers implementation [39]. We mea-
sure the decoding throughput by running LLaMA-2-7b
on an A100-40GB GPU with CQ and FP16 KV cache
to process a 100-token prompt and generate 1000 tokens.
We increase the inference batch size until the GPU runs
out of memory. Results are presented in Figure 4. CQ
achieves 3.75×, 7.5×, and 15× larger batch size than the
FP16 baseline at 4-bit, 2-bit, 1-bit quantization, respec-
tively. Moreover, CQ improves the decoding throughput
by 1.4–3.5× relative to the FP16 baseline. Additional la-
tency measurements for CQ are presented in Section K in
the Appendix.

5 Related Works

Existing works mitigate the high memory overhead of KV cache through token eviction, quantization,
or tensor offloading. Scissorhands [24] and H2O [47] achieve KV cache compression while preserving
model quality by storing only the pivotal tokens and evicting the unimportant ones. KIVI [25]
proposes to quantize keys per-channel and values per-token using group-wise integer quantization.
KVQuant [15] proposes sensitivity-based and dense-and-sparse quantization for KV cache to reduce
quantization errors. Flexgen [34] proposes to offload KV cache instead of weights to enable high-
throughput inference on a single GPU. Weight quantization [11, 23, 44] is an orthogonal line of work
that reduce GPU memory requirements and improve effciency of LLM inference and fine-tuning
[45]. FlashAttention [7] and NoMAD-Attention [46] are system optimizations for speeding up
LLM inference on GPUs and CPUs, respectively. Product quantization [17] is a method for nearest
neighbor search that compresses vectors by decomposing the vector space into a Cartesian product of
low-dimensional subspaces, and quantizing each subspace independently.

6 Conclusion

We propose Coupled Quantization (CQ) for mitigating the latency and throughput bottleneck of LLM
inference by quantizing KV cache. We discover that channels of KV cache are highly interdependent,
which implies the existing approach of per-channel quantization approach is sub-optimal. We propose
channel coupling to exploit the interdependency across channels to achieve more information-efficient
encoding of key/value activations. Extensive experiments demonstrate that our method outperforms
competitive baselines in model quality in most cases, and can reasonably preserve model quality with
KV cache quantized down to 1 bit.

Acknowledgements

This work was supported by National Science Foundation SHF-2211815, Ken Kennedy Institute, and
grants from Adobe and VMware.

Limitations & Broader Impacts

KV cache quantization is a form of lossy compression which inevitably affects model quality.
Although we study its effects on perplexity and accuracy, it remains unclear how it affects other
aspects of the model such as hallucination and adversarial robustness. Making LLM inference more
efficient contributes to the democratization of artificial intelligence and the reduction of carbon
footprints. We expect no additional negative societal impacts other than the ones already posed by
LLMs.

10

References

[1] David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful seeding. In
Soda, volume 7, pages 1027–1035, 2007.

[2] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

[3] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[4] Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models
while reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

[5] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[7] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[8] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[9] Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth. In International Conference on Machine
Learning, pages 2793–2803. PMLR, 2021.

[10] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[12] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023.

[13] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In International
Conference on Learning Representations, 2021.

[14] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[15] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

[16] Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip
Isola. The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.

11

[17] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

[18] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[19] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

[20] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

[21] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical review E, 69(6):066138, 2004.

[22] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang,
and Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction.
arXiv preprint arXiv:2102.05426, 2021.

[23] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

[24] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of impor-
tance hypothesis for llm kv cache compression at test time. Advances in Neural Information
Processing Systems, 36, 2024.

[25] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv
preprint arXiv:2402.02750, 2024.

[26] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

[27] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[28] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers. In Workshop on Efficient Systems for Foundation Models@ ICML2023.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[30] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[32] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[33] Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

12

[34] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu. In International Conference on Machine
Learning, pages 31094–31116. PMLR, 2023.

[35] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[37] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[39] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-
of-the-art natural language processing. In Proceedings of the 2020 conference on empirical
methods in natural language processing: system demonstrations, pages 38–45, 2020.

[40] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context
scaling of foundation models. arXiv preprint arXiv:2309.16039, 2023.

[41] Zhichao Xu, Ashim Gupta, Tao Li, Oliver Bentham, and Vivek Srikumar. Beyond perplexity:
Multi-dimensional safety evaluation of llm compression. arXiv preprint arXiv:2407.04965,
2024.

[42] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[43] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[44] Tianyi Zhang and Anshumali Shrivastava. Leanquant: Accurate and scalable large language
model quantization with loss-error-aware grid. arXiv preprint arXiv:2407.10032, 2024.

[45] Tianyi Zhang, Junda Su, Oscar Wu, Zhaozhuo Xu, and Anshumali Shrivastava. Spallm:
Unified compressive adaptation of large language models with sketching. arXiv preprint
arXiv:2410.06364, 2024.

[46] Tianyi Zhang, Jonah Wonkyu Yi, Bowen Yao, Zhaozhuo Xu, and Anshumali Shrivastava.
Nomad-attention: Efficient llm inference on cpus through multiply-add-free attention. arXiv
preprint arXiv:2403.01273, 2024.

[47] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

13

Appendix / Supplemental Material

A Experimental Details

Perplexity Evaluations Perplexity is evaluated on the test set of the datasets, WikiText-2 and C4,
at the maximum context length of the LLMs (2048 for LLaMA, 4096 for LLaMA-2, and 8192 for
Mistral), following the setup in [15].

Benchmark Evaluations We use lm-evaluation-harness [12] (package version 0.4.2)
for performing benchmark evaluations. We use the following task names: winogrande,

piqa, arc_challenge, gsm8k_cot, mmlu_flan_cot_fewshot_humanities,

mmlu_flan_cot_fewshot_stem, mmlu_flan_cot_fewshot_social_sciences,

mmlu_flan_cot_fewshot_other.

B Perplexity Results on C4

Table 7 presents the perplexity results of different quantization algorithms on the test set of C4 dataset.
Our proposed method CQ performs better than or on par with baselines under the same bit width.

Table 7: Perplexity of LLMs on C4 under different KV cache quantization methods at varying bit
widths. The results of INT, NF, and KVQuant (except -1b and -1b+1% sparse) are from [15].

Bits Per Activation LLaMA-7b LLaMA-13b LLama-2-7b LLaMA-2-13b Mistral-7b

FP16 16 7.08 6.61 6.63 6.05 5.71

INT4 4.00 7.40 6.82 7.31 6.59 5.91
INT4-g128 4.16 7.16 6.67 6.87 6.20 5.76
NF4 4.00 7.27 6.74 7.09 6.45 5.85
NF4-g128 4.25 7.16 6.66 6.86 6.20 5.77
KVQuant-4b 4.00 7.13 6.65 6.70 6.11 5.75
KVQuant-4b+1% sparse 4.32 7.09 6.62 6.65 6.06 5.72
CQ-2c8b 4.00 7.11 6.64 6.67 6.09 5.74

INT2 2.00 10892 100870 4708 4220 477
INT2-g128 2.14 43.49 56.25 113.49 97.04 50.73
NF2 2.00 2850.1 4680.3 13081.2 4175.6 1102.3
NF2-g128 2.25 248.32 118.18 420.05 499.82 191.73
KVQuant-2b 2.00 10.28 9.05 15.16 43.77 8.40
KVQuant-2b+1% sparse 2.32 7.38 6.83 7.06 6.38 6.08
CQ-4c8b 2.00 7.52 6.96 7.23 6.52 6.17
CQ-4c9b 2.26 7.37 6.84 7.02 6.36 5.99

KVQuant-1b 1.00 168.90 1316.41 362.94 4223.37 127.07
KVQuant-1b+1% sparse 1.32 11.18 9.56 16.04 22.87 10.53
CQ-8c8b 1.00 12.13 10.53 12.49 10.53 9.89
CQ-8c10b 1.27 9.12 8.23 9.03 8.01 7.46

C Effects of Channel-coupling and Fisher-guided Centroid Learning

We validate the effectiveness of our proposed channel-coupling and Fisher-guided centroid learning
by compressing LLaMA-7b KV cache to 1-bit and 2-bit, and present the perplexity results and quanti-
zation errors (∥A− cq(A)∥2F averaged over layers) on WikiText-2 under different CQ configurations
in Figure 5. As the number of coupled channels increases, perplexity improves significantly and
approaches the FP16 performance. The quantization errors of keys and values also decrease as
the number of coupled channels increase. Although Fisher-guided centroid learning increases the
quantization error, it better preserves the salient activations and achieves lower perplexity.

14

1c1b 2c2b 4c4b 8c8b

CQ Config.

10
1

10
2

10
3

P
er
p
le
x
it
y
o
n
W
ik
iT
ex
t-
2

2642.72
1614.02

883.60

32.12

620.08

28.39

10.47
8.09

5.68

LLaMA-7b 1-bit CQ

Uniform CQ

Fisher-guided CQ

FP16 Baseline

1c2b 2c4b 4c8b

CQ Config.

10
1

10
2

P
er
p
le
x
it
y
o
n
W
ik
iT
ex
t-
2

204.56

24.46

6.866.37 6.08
5.97

LLaMA-7b 2-bit CQ

1c1b 2c2b 4c4b 8c8b

CQ Config.

750

1000

1250

1500

1750

2000

Q
u
a
n
t.

E
rr
o
r
o
n
W
ik
iT
ex
t-
2

LLaMA-7b 1-bit CQ

Uniform CQ Key

Uniform CQ Value

Fisher-guided CQ Key

Fisher-guided CQ Value

1c2b 2c4b 4c8b

CQ Config.

600

800

1000

Q
u
a
n
t.

E
rr
o
r
o
n
W
ik
iT
ex
t-
2

LLaMA-7b 2-bit CQ

Figure 5: Perplexity and key/value quantization errors (averaged over all layers) of LLaMA-7b on
WikiText-2. Channels coupling and Fisher-guided centroid learning are effective for improving
perplexity.

D Ablation Study on More Models

We study the effectiveness of each component of our proposed approach in Table 8. We evaluate the
perplexity of 2 models Mistral-7b and LLaMA-2-13b on WikiText-2 using CQ at 2 bits per activation,
with varying number of channels coupled and comparing uniform centroid learning and Fisher-guided
centroid learning. Fisher-guided centroids significantly improve model quality as demonstrated by
lower perplexity. With either uniform centroids or Fisher-guided centroids, perplexity improves as
the number of coupled channels increases. Hence, our proposed techniques of channel coupling and
Fisher-guided centroid learning are both effective for maintaining model quality.

Table 8: Perplexity of different models on WikiText-2 using CQ with varying number of coupled
channels and fisher-guided centroids. Perplexity consistently improves as the number of coupled
channels increases.

Mistral-7b LLaMA-2-13b

Bits Per Activation 2 2 2 2 2 2 2 2 2 2 2 2

Num. of Channels Coupled 1 2 4 1 2 4 1 2 4 1 2 4

Fisher-guided Centroids : : : 6 6 6 : : : 6 6 6

Perplexity ³ 97.76 16.29 5.42 5.34 5.20 5.11 890.42 171.96 6.62 6.06 4.91 4.81

E Overhead of Centroid Learning and Storage

We present the computational overhead of centroid learning and the memory overhead of centroid
storage for CQ in Table 9. The centroid learning process of CQ consists of many independent
k-means runs, which can be time-consuming on CPUs. Hence, we leverage a GPU implementation to
accelerate the learning process. In all our experiments, we use k-means++ initialization and run 100
iterations of k-means on a single GPU to obtain the centroids. The memory overhead of storing the
centroids can be calculated as l× 2× h× d× 2b FP16 numbers, where l is the number of layers, 2 is
for keys and values, h is the number of key/value attention heads, d is the number of channels in a
single-head key/value activation embedding, and b is the bit width of quantized codes. As shown in
Table 9, CQ can easily scale to large model sizes with low learning and memory overheads.

F Bits Per Activation Calculations for CQ

To calculate bits per activation, we assume the batch size is 16 and the sequence length is 65,536. For
CQ- c c b b, the storage of quantized codes requires the following number of bits

16× 65536× l × 2× h× d× b/c

where l is the number of layers, 2 is for key and value, h is the number of key/value attention heads,
d is the number of channels for a single head of attention, and b/c is the average number of bits per
token per channel.

15

Table 9: Learning and memory overhead of different CQ configurations and models. The number
of centroid parameters are shown in millions, and the percentage to the model weights is shown in
brackets.

Centroid Learning Time Parameter Count in Centroids

CQ Config. 2c8b 4c8b 4c9b 8c8b 8c10b 2c8b 4c8b 4c9b 8c8b 8c10b

LLaMA-7b 53 mins 28 mins 62 mins 14 mins 104 mins 67.11M (0.996%) 67.11M (0.996%) 134.22M (1.992%) 67.11M (0.996%) 268.44M (3.984%)

LLaMA-13b 94 mins 44 mins 96 mins 22 mins 160 mins 104.86M (0.806%) 104.86M (0.806%) 209.72M (1.612%) 104.86M (0.806%) 419.43M (3.224%)

LLaMA-2-7b 54 mins 28 mins 62 mins 14 mins 104 mins 67.11M (0.996%) 67.11M (0.996%) 134.22M (1.992%) 67.11M (0.996%) 268.44M (3.984%)

LLaMA-2-13b 83 mins 44 mins 96 mins 23 mins 162 mins 104.86M (0.806%) 104.86M (0.806%) 209.72M (1.612%) 104.86M (0.806%) 419.43M (3.224%)

Mistral-7b 13 mins 7 mins 15 mins 4 mins 27 mins 16.78M (0.232%) 16.78M (0.232%) 33.56M (0.464%) 16.78M (0.232%) 67.11M (0.928%)

The learned centroids of CQ are stored in FP16 format. Hence the storage of CQ centroids requires
the following number of bits

l × 2× h× d× 2b × 16

CQ has no other storage overhead besides quantized codes and centroids. Therefore, the average bits
per activation for CQ- c c b b is calculated as

16× 65536× l × 2× h× d× b/c+ l × 2× h× d× 2b × 16

16× 65536× l × 2× h× d× 16
× 16

=
65536× b/c+ 2b

65536

G Generalizability of Learned Centroids

Centroids for CQ are learned once on a calibration dataset and can be used for different downstream
tasks. We perform an ablation study to examine the effects of calibration data on the quality of learned
CQ centroids. We use 16 sequences of 2048 tokens from different datasets as the calibration set for
CQ and evaluate on 4 downstream tasks, and the results are presented in Table 10. Despite using
different calibration datasets, CQ performs similarly in various downstream tasks. The results suggest
that calibration on language modeling datasets, such as WikiText-2 and C4, provides transferable
performance on downstream tasks.

Table 10: Zero-shot accuracy of LLaMA-2-7b with couple-quantized KV cache, calibrated using two
different datasets WikiText-2 and C4. CQ displays similar accuracy in various downstream tasks,
despite using different calibration datasets.

Downstream Task
Calibration Dataset WinoGrande PIQA Arc-C GSM8K CoT

CQ-2c8b
WikiText-2 68.27 77.91 43.34 14.71

C4 68.35 77.86 43.16 14.71

CQ-4c8b
WikiText-2 66.45 76.12 39.93 8.04

C4 66.22 76.61 39.93 8.34

CQ-8c8b
WikiText-2 55.01 71.22 30.20 1.74

C4 56.27 71.55 30.52 1.90

Table 11: Accuracy comparison of CQ and KIVI on LongBench for LLaMA-2-7b. The results of
KIVI are from [25].

Sliding Window Size Qasper QMSum MultiNews TREC TriviaQA SAMSum LCC RepoBench-P

FP16 - 9.52 21.28 3.51 66.00 87.72 41.69 66.66 59.82
KIVI-2b 32 9.26 20.53 0.97 66.00 87.42 42.61 66.22 59.67
CQ-4c8b 32 9.58 20.87 1.93 66.00 87.72 41.13 66.57 59.75

16

H Comparison with KIVI

We perform an empirical comparison of CQ with KIVI [25] using LLaMA-2-7b on LongBench [2].
For both methods, we use 2-bit quantization and a sliding-window full-precision cache of 32 tokens.
We compare CQ-4c8b against KIVI with a group size of 32. The accuracy results are presented in
Table 11. CQ mostly outperforms KIVI in preserving model accuracy.

I Passkey Retrieval

We compare the quantization quality of CQ and KVQuant by evaluating them on the passkey retrieval
task [28]. We follow the setup in [15], and measure the success rate of passkey retrieval for LLaMA-
2-7b at its maximum context length of 4096. Table 12 presents the passkey retrieval results, where
CQ outperforms or performs the same as KVQuant at various bit widths.

Table 12: The passkey retrieval success rate of CQ and KVQuant at different quantization bit widths,
for LLaMA-2-7b at its maximum context length of 4096.

Bit Width Success Rate

KVQuant-4b+1% sparse 4.32 100%
KVQuant-4b 4.00 100%
CQ-2c8b 4.00 100%

KVQuant-2b+1% sparse 2.32 94%
CQ-4c9b 2.26 98%

KVQuant-2b 2.00 0%
CQ-4c8b 2.00 96%

KVQuant-1b+1% sparse 1.32 2%
CQ-8c10b 1.27 78%

KVQuant-1b 1.00 0%
CQ-8c8b 1.00 12%

J Results on LLaMA 3

We evaluate the effectiveness of CQ and KVQuant for quantizing the KV cache of the LLaMA 3
model [10]. For both methods, we quantize the KV cache of all tokens of the LLaMA-3-8b model, and
perform the calibration on 16 sequences from the training set of WikiText-2 and evaluate perplexity
on the test set, and benchmark on 3 downstream tasks: WinoGrande, PIQA and Arc Challenge. The
results are presented in Table [10]. CQ mostly outperforms KVQuant, especially in lower bit widths.

Table 13: The effectiveness of CQ and KVQuant on LLaMA-3-8b.

Bits Per Activation WikiText-2 PPL ↓ WinoGrande ↑ PIQA ↑ Arc-C ↑

FP16 16 5.54 72.69 79.71 50.51

KVQuant-4b 4.00 5.66 72.77 79.98 47.44
CQ-2c8b 4.00 5.58 73.16 78.84 49.83

KVQuant-2b 2.00 18.96 56.27 63.49 24.40
CQ-4c8b 2.00 6.09 69.22 78.62 44.03

KVQuant-1b 1.00 22238.91 50.04 53.05 22.35
CQ-8c8b 1.00 9.56 56.04 72.58 32.51

K Latency Measurements

We measure the prefill and decoding latency of CQ, with and without a sliding window of full-
precision cache, and compare against KIVI [25] and full-precision FP16 cache. The latency mea-

17

surements are conducted on a single A100-40GB GPU for LLaMA-2-7b with a batch size of 1 and a
prompt length of 2000 tokens The results are presented in Table 14. CQ achieves prefill and decoding
latency on par with KIVI.

Table 14: Latency measurements of decoding LLaMA-2-7b with a batch size of 1 and a prompt of
2000 tokens, averaged over 100 tokens, using FP16 KV cache, and CQ and KIVI quantized KV
cache.

Full-precision Sliding-window Length Prefill Time (s) Decoding Time (s)

FP16 - 0.853 0.0559 ± 0.0044
KIVI-4b 32 1.483 0.0693 ± 0.0212
KIVI-2b 32 1.291 0.0684 ± 0.0213
CQ-2c8b 0 1.820 0.0695 ± 0.0056
CQ-2c8b 32 1.926 0.0701 ± 0.0057
CQ-4c8b 0 1.684 0.0704 ± 0.0056
CQ-4c8b 32 1.790 0.0706 ± 0.0058
CQ-8c8b 0 1.726 0.0670 ± 0.0070
CQ-8c8b 32 1.857 0.0799 ± 0.0066

L Extreme Sub-1-bit Quantization

We demonstrate the effectiveness of CQ by performing extreme sub-1-bit quantization with LLaMA-
7b. We evaluate the perplexity of CQ-16c12b, which use a 12-bit code for every group of 16
coupled channels, averaging 0.81 bits per activation. Table 15 presents the results with comparison
to FP16 cache and KVQuant-1b. CQ preserves model quality reasonably under extreme KV cache
compression.

Table 15: Perplexity of LLaMA-7b under extreme KV cache compression with CQ-16c12b (12 bits
per 16 coupled channels, averaging 0.81 bits per activation).

BPA WikiText-2 ↓ C4 ↓

FP16 16 5.68 7.08
KVQuant-1b 1.00 321.58 168.90
CQ-16c12b 0.81 8.71 14.40

M Correlation Matrices and Scatter Plots

Figure 6 and 7 show the correlation matrices for key and value channels of each layer of the LLaMA-
7b model on 262k tokens of WikiText-2. Figure 8 and 9 present the 2D scatter plots of key and value
channel pairs of 4 layers of the LLaMA-7b model on 262k tokens of WikiText-2.

N Variations in Channel Correlation

As shown in Figure 6 and 7, the amount of correlation between channels varies depending on the
layer. In Table 16, we study this variation by presenting the mean absolute correlation (MAC),
excluding the diagonals, for different layers of LLaMA-7b on 262K tokens of WikiText-2. Although
the key correlation of the first few layers are significantly higher than the later layers, the key/value
correlation of any layer is never very close to zero, meaning channel coupling can be effective for
any layer. Furthermore, the ablation study presented in Table 5 also demonstrates the effectivenss of
channel coupling for capturing the channel correlation.

O Limitations

Low-bit quantization is a type of lossy model compression, which affects the model quality including
metrics such as perplexity and accuracy, and also impacts model safety including toxicity and bias
[41]. This work does not study the effects of extreme low-bit quantization of KV cache on the safety
aspects of the model.

18

0

15

31

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

0

15

31

Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16

0

15

31

Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23 Layer 24

0 15 31

0

15

31

Layer 25

0 15 31

Layer 26

0 15 31

Layer 27

0 15 31

Layer 28

0 15 31

Layer 29

0 15 31

Layer 30

0 15 31

Layer 31

0 15 31

Layer 32

1.0

0.5

0.0

0.5

1.0
Ch

an
ne

l

Channel

Figure 6: Correlation matrix for the first 32 channels of pre-RoPE key activation embeddings of all
LLaMA-7b layers on WikiText-2.

0

15

31

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

0

15

31

Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16

0

15

31

Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23 Layer 24

0 15 31

0

15

31

Layer 25

0 15 31

Layer 26

0 15 31

Layer 27

0 15 31

Layer 28

0 15 31

Layer 29

0 15 31

Layer 30

0 15 31

Layer 31

0 15 31

Layer 32

1.0

0.5

0.0

0.5

1.0

Ch
an

ne
l

Channel

Figure 7: Correlation matrix for the first 32 channels of value activation embeddings of all LLaMA-7b
layers on WikiText-2.

19

Figure 8: Scatter plots of pairs of channels in pre-RoPE key activation embeddings of 4 LLaMA-7b
layers on WikiText-2.

Figure 9: Scatter plots of pairs of channels in value activation embeddings of 4 LLaMA-7b layers on
WikiText-2.

20

Table 16: The mean absolute correlation (MAC), excluding the diagonals, of key/value channels in
different layers of LLaMA-7b, computed on 262K tokens of WikiText-2.

Layer 1 2 3 4 5 6 7 8

Key 0.407 0.212 0.193 0.178 0.114 0.113 0.115 0.122
Value 0.071 0.084 0.061 0.073 0.055 0.056 0.056 0.057

Layer 9 10 11 12 13 14 15 16

Key 0.131 0.138 0.090 0.098 0.094 0.141 0.109 0.114
Value 0.061 0.067 0.047 0.042 0.065 0.065 0.062 0.035

Layer 17 18 19 20 21 22 23 24

Key 0.136 0.111 0.091 0.101 0.102 0.156 0.071 0.094
Value 0.039 0.038 0.052 0.070 0.031 0.038 0.061 0.074

Layer 25 26 27 28 29 30 31 32

Key 0.107 0.069 0.057 0.103 0.095 0.097 0.100 0.090
Value 0.027 0.044 0.038 0.072 0.070 0.035 0.105 0.090

21

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All of our claims made in the abstract and the introduction are supported
by the results presented in “Experiments” section, and they accurately reflect the paper’s
contributions and scope as shown in the “Background” and “Methodology” sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have made clear the limitations of our proposal, and included a separate
“Limitations & Broader Impacts” section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

22

Answer: [NA]

Justification: We present no new theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all information for reproducing the experimental
results, including algorithmic details, parameters, experimental setup, and baselines in the
“Methodology” and “Experiments” sections.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code is proprietary to xMAD.ai. However, anyone is able to reproduce
our results using the algorithm and procedure we describe in the paper. We will provide a
mechanism to reproduce our numbers in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all relevant experimental details in the paper for understanding the
results in the “Experiments” section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars where applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information on the resources needed for reproducing the
experiments in the “Experiments” section.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and can confirm that our paper
conforms with it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include an “Limitations & Broader Impacts” section to discuss our potential
societal impacts.

Guidelines:

25

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We release no new models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit and respect the licenses and terms of the assets we use in
our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

26

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets are documented where applicable.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Background
	LLM Attention and KV Cache
	Per-Channel Quantization

	Methodology
	Motivations
	Coupled Quantization
	Centroid Learning

	Efficient Inference Through Kernel Fusion

	Experiments
	Results
	Near-native Performance with Sliding Window Full-precision Cache
	Ablation Study
	Efficiency of CQ

	Related Works
	Conclusion
	Experimental Details
	Perplexity Results on C4
	Effects of Channel-coupling and Fisher-guided Centroid Learning
	Ablation Study on More Models
	Overhead of Centroid Learning and Storage
	Bits Per Activation Calculations for CQ
	Generalizability of Learned Centroids
	Comparison with KIVI
	Passkey Retrieval
	Results on LLaMA 3
	Latency Measurements
	Extreme Sub-1-bit Quantization
	Correlation Matrices and Scatter Plots
	Variations in Channel Correlation
	Limitations

