
Published as a conference paper at ICLR 2025

LEANQUANT: ACCURATE AND SCALABLE LARGE

LANGUAGE MODEL QUANTIZATION WITH LOSS-

ERROR-AWARE GRID

Tianyi Zhang
Dept. of Computer Science, Rice University
xMAD.ai
Houston, TX
tz21@rice.edu

Anshumali Shrivastava
Dept. of Computer Science, Rice University
xMAD.ai
ThirdAI Corp.
Ken Kennedy Institute
Houston, TX
anshumali@rice.edu

ABSTRACT

Large language models (LLMs) have shown immense potential across various
domains, but their high memory requirements and inference costs remain crit-
ical challenges for deployment. Post-training quantization (PTQ) has emerged
as a promising technique to reduce memory requirements and decoding latency.
However, recent accurate quantization methods often depend on specialized com-
putations or custom data formats to achieve better model quality, which limits
their compatibility with popular frameworks, as they require dedicated inference
kernels tailored to specific hardware and software platforms, hindering wider
adoption. Furthermore, many competitive methods have high resource require-
ments and computational overhead for quantizing models, making it challenging
to scale them to hundreds of billions of parameters. In response to these chal-
lenges, we propose LeanQuant (Loss-error-aware network Quantization), a novel
quantization method that is accurate, versatile, and scalable. In the existing pop-
ular iterative loss-error-based quantization framework, we identify a critical lim-
itation in prior methods: the min-max affine quantization grid fails to preserve
model quality due to outliers in inverse Hessian diagonals. To overcome this
fundamental issue, we propose learning loss-error-aware grids, instead of using
non-adaptive min-max affine grids. Our approach not only produces quantized
models that are more accurate but also generalizes to a wider range of quanti-
zation types, including affine and non-uniform quantization, enhancing compati-
bility with more frameworks. Extensive experiments with recent LLMs demon-
strate that LeanQuant is highly accurate, comparing favorably against compet-
itive baselines in model quality, and scalable, achieving very accurate quanti-
zation of Llama-3.1 405B, one of the largest open-source LLMs to date, us-
ing two Quadro RTX 8000-48GB GPUs in 21 hours. Our code is available at
https://github.com/LeanModels/LeanQuant.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive reasoning (Wei et al., 2022) and
problem solving abilities (Kojima et al., 2022), and have shown the potential to bring transforma-
tive changes to various fields such as law (Kaddour et al., 2023), education (Kasneci et al., 2023),
and medicine (Thirunavukarasu et al., 2023). However, deploying LLMs in a cost-effective manner
presents significant challenges due to their substantial memory and computational demands (Chen
et al., 2023), which hinders the accessibility and democratization of artificial intelligence (AI) (Kad-
dour et al., 2023).

Post-training quantization (PTQ) (Krishnamoorthi, 2018) is a promising technique for reducing the
memory footprint of model inference by lowering the precision of a pre-trained model’s parameters
and storing them in a compact, low-bit-width format. PTQ offers the additional benefit of reducing

1

Published as a conference paper at ICLR 2025

the decoding latency of LLMs by reducing memory reads, since LLM inference is often bottle-
necked by memory bandwidth (Kim et al., 2023). Although quantization causes a certain amount
of precision loss in the parameters, the model quality can be reasonably preserved even in lower
bit widths (Frantar et al., 2022; Chee et al., 2024). For many tasks, a quantized model is preferred
over a full model due to its better size-accuracy trade-off (Dettmers & Zettlemoyer, 2023). As open-
source foundational models continue to scale up in size (Dubey et al., 2024), accurate and efficient
quantization becomes essential for making AI accessible to a wider audience. For instance, serving
Llama-3.1 405B (Dubey et al., 2024) with its original 16-bit weights requires a cluster of two nodes,
each equipped with 8×80GB GPUs. In contrast, a 4-bit quantized version can be deployed on a
single node with 8×48GB GPUs, eliminating inter-node communication overhead.

Challenges of Deploying Quantized Models One of the biggest challenges of successful deploy-
ment of quantized models is implementing optimized kernels for quantized GEMM (general matrix
multiply) that are tailored to various hardware platforms and software frameworks. In order to accel-
erate inference of quantized models, fused kernels, which fuse dequantization and matrix multiplica-
tion in the same subroutine, have to be implemented and tuned for the specific hardware accelerator.
These kernels require specialized designs and tunings for different hardware accelerators to be fully
optimized (Park et al., 2022). Recent quantization algorithms have chosen to employ specialized
computations or custom data formats to reduce the impact of quantization on model quality, but they
require more sophisticated kernel designs for efficient inference. For example, AQLM (Egiazar-
ian et al., 2024) and QUIP# (Tseng et al., 2024) perform dequantization through look-ups from
multi-dimensional or multi-bit codebooks, and Dotzel et al. (2024) proposed new data types such
as Student Float to reduce quantization errors. While these approaches demonstrate promising re-
sults, their reliance on specialized operations and data formats can hinder their widespread adoption
due to the need for optimized inference kernels for each hardware platform and software framework.
For example, llama.cpp (Gerganov, 2023), a popular LLM inference engine that supports mobile de-
vices, only supports affine and non-uniform quantization formats. Consequently, instead of focusing
on developing better quantization methods with specialized operations, it may be more worthwhile
to investigate improving the accuracy of existing widely adopted quantization formats, such as affine
integer quantization and non-uniform quantization, which are supported by popular deep learning
libraries (Paszke et al., 2019) and deployment frameworks (Kwon et al., 2023).

Scalability Challenges of Accurate Quantization To improve the quality of quantized models, ex-
isting approaches often incur higher computational overhead and require more hardware resources.
As foundational models scale up in size (Hoffmann et al., 2022), these quantization approaches may
struggle to scale to very large models, such as Llama-3.1 405B (405 billion parameters) (Dubey
et al., 2024). For instance, LLM-QAT (Liu et al., 2023) uses 100K samples of training data and
hundreds of GPU-hours to recover the performance of a quantized LLaMA-13B model (Touvron
et al., 2023a). For AQLM (Egiazarian et al., 2024), the time needed for quantizing a 7B to 70B
LLM ranges from 1 to 14 days of an A100-80GB GPU. For SqueezeLLM (Kim et al., 2023), due
to its use of the gradients of model parameters, quantizing a 70B LLM requires at least 240GB
of total GPU memory. Given the significant hardware resources and lengthy optimization times
of these quantization approaches, developing accurate yet efficient methods is crucial for ensuring
accessibility of larger foundational models.

Our Proposal In this work, we propose LeanQuant, an accurate, versatile, and scalable quantization
approach. We build upon the iterative loss-error-based quantization framework (Frantar & Alistarh,
2022; Frantar et al., 2022) and identify one of the biggest limitations of such methods: the min-max
affine quantization grid introduces high loss errors due to the existence of outliers in the inverse
Hessian diagonals. We introduce techniques for learning loss-error-aware quantization grids, which
mitigate this issue and greatly improve the quality of quantized models. We empirically demonstrate
that LeanQuant compares favorably against competitive baselines in the 4/3/2-bit regions. Our ap-
proach is versatile, able to generalize to multiple commonly used quantization formats, such as
affine and non-uniform quantization, allowing our quantized models to be directly compatible with
existing highly optimized inference kernels (Frantar et al., 2024; Park et al., 2022) for maximum
accessibility. Furthermore, our method is scalable and efficient. By designing and implementing a
fused GPU kernel for LeanQuant grid learning, we achieve the accurate quantization of LLMs up to
123B in size using a single L40s-48GB GPU in 4 hours, and Llama-3.1 405B using 2 Quadro RTX
8000-48GB GPUs in 21 hours.

2

Published as a conference paper at ICLR 2025

2 BACKGROUND

In this section, we introduce the relevant background for our proposal including quantization grids
and iterative loss-error-based quantization.

2.1 QUANTIZATION GRID

Quantization enables model compression by representing full-precision floating-point parameters
with a limited set of grid points on a quantization grid. The number of available grid points is de-
termined by the bit width: a b-bit code allows for 2b distinct values, meaning 2-bit quantization
results in four grid points. A visual explanation of quantization grid can be found in Appendix A.
The placement of these points is crucial, as inaccurate placements can degrade model quality. To
mitigate this, various quantization grids—such as affine, non-uniform, and normal—have been pro-
posed. We provide an overview of these approaches below.

Affine Grid In an affine quantization grid (Krishnamoorthi, 2018), the grid points are evenly spaced
between the minimum and maximum of a set of weights. To achieve finer quantization precision,
the network’s weights are divided into groups (e.g., every 128 contiguous parameters). In min-max
asymmetric affine quantization, each weight group is associated with a scaling factor S and a zero-
point Z (with Z omitted in the symmetric case). The i-th weight wi in a group w is quantized to a
b-bit integer wint

i as follows:

wint

i = clip(+
wi

S
,+ Z, 0, 2b − 1),where S =

max(w)−min(w)

2b − 1
and Z = −+

min(w)

S
,

quantaff(wi, S, Z) = (wint

i − Z)S

where +·, denotes rounding, clip(·) ensures the value remains within the b-bit integer range, and
quantaff(wi, S, Z) is the quantized value of wi.

Non-uniform Grid The grid points on a non-uniform grid are placed in a non-equidistant manner
(Li et al., 2019). The motivation behind non-uniform quantization is to allow for finer precision in
regions where model parameters are more concentrated or sensitive. Each row in a weight matrix
has a distinct set of non-uniform grid points G, where |G| = 2b for b-bit quantization. The weight
wi is quantized to the nearest grid point in G as follows,

quantnu(wi,G) = argmin
g∈G

|g − wi|

Other Grid Types Previous works have observed that the distribution of LLM parameters often
resembles Normal or Student T’s Distribution. Consequently, grid types such as NormalFloat
(Dettmers et al., 2024) and Student Float (Dotzel et al., 2024) have been proposed, which align
grid points with quantiles of these distributions. Our proposed method can be extended to support
them.

2.2 ITERATIVE LOSS-ERROR-BASED QUANTIZATION

Iterative loss-error-based quantization (Frantar & Alistarh, 2022) is a promising framework for quan-
tizing deep neural networks to low bit widths while preserving model quality. In particular, Optimal
Brain Quantization (OBQ) (Frantar & Alistarh, 2022), which is based on the seminal works by Le-
Cun et al. (1989) and Hassibi et al. (1993), aims to minimize the impact of weight perturbations
introduced by parameter quantization on the network’s task loss. Let L(wN) be the task loss of
a network N evaluated at its weights wN (flattened to a vector). Then, the OBQ objective is to
minimize the loss error ϵ, which is defined as

ϵ = L(wN + ¶N)− L(wN)

where ¶N is the weight perturbation introduced by quantization. The loss error ϵ can be approxi-
mated with a Taylor series (LeCun et al., 1989) as

ϵ =
(∂L

∂wN

)¦
¶N

︸ ︷︷ ︸

negligible

+
1

2
¶
¦
N

∂2L

∂w2
N

¶N +O
(
∥¶N ∥

3
)

︸ ︷︷ ︸

negligible

3

Published as a conference paper at ICLR 2025

where the first term is omitted due to ∂L
∂wN

≈ 0 in a converged network, and the third and higher

terms can be ignored due to small norms. Computing the exact Hessian H = ∂2L
∂w2

N
in a deep network

is difficult, hence OBQ leverages an approximation of loss error proposed by Nagel et al. (2020),

E(ϵ) ≈
∑

W∈N

∥
∥WX− ŴX

∥
∥
2

F

where W,Ŵ,X are the weight matrix, quantized weight matrix, and the input matrix to a linear
layer in the networkN . As a result, the OBQ objective can be decomposed into layer-wise indepen-
dent convex problems,

argmin
Ŵ

∥WX− ŴX∥2F (1)

which can be further decomposed into row-wise independent problems, since Equation 1 can be
written as a sum of squares over the rows of W.

OBQ employs an iterative quantization approach, in which a single weight in a row w is quantized
in each step, and then the remaining not-yet-quantized weights in the same row are updated to
compensate for the introduced error. Given the constraint that the parameter wi, indexed by i in row
w, is being quantized, the optimal weight perturbation ¶ to the remaining weights can be solved
with the following Lagrangian,

L(¶, ¼) =
1

2
¶
¦
H¶ + ¼

(

e
¦
i ¶ −

(
quant(wi)− wi

))

(2)

where ei is the i-th standard basis vector and H = 2XX
¦ is the Hessian from Equation 1 (computed

on a small sample of input data). Solving Equation 2 yields the optimal weight perturbation ¶i and
loss error ϵi after quantizing wi,

¶i =
quant(wi)− wi

H
−1
i,i

H
−1
:,i , ϵi =

1

2

(
quant(wi)− wi

)2

H
−1
i,i

(3)

where H
−1
i,i and H

−1
:,i denotes the i-th diagonal entry and the i-th column of the inverse Hessian,

respectively.

The loss error ϵi quantifies the degradation in model quality caused by quantizing parameter wi and
is always non-negative. OBQ leverages ϵi as a heuristic for greedy optimization. In each iteration,
OBQ computes ϵ for all weights in a row and greedily selects the parameter wi with the smallest
ϵi for quantization. The selected parameter is then rounded to the nearest value on the quantization
grid, and the remaining weights are updated as w ← w − ¶i. This iterative process continues until
all weights are quantized.

Scaling to Billion-Parameter LLMs Using Cholesky and Dampening OBQ produces accu-
rate post-training quantized models for million-parameter networks, but fails to scale to billion-
parameter LLMs due to two primary reasons: the inefficient time complexity and the accumulation
of numerical inaccuracies during updates. To improve its computational efficiency, Frantar et al.
(2022) propose to quantize the weights in a fixed non-greedy order for all rows, and keep the weight
updates within a block of B columns at a time. To prevent model quality collapse from the accumu-
lation of numerical inaccuracies by repeated weight updates, Frantar et al. (2022) propose to apply
a mild dampening (1% of the average diagonals) to the diagonal Hessian and leverage a Cholesky
decomposition to compute the inverse Hessian H

−1. The resulting algorithm is GPTQ, which can
efficiently quantize billion-parameter LLMs.

3 METHODOLOGY

In this section, we introduce our proposed approach Loss-error-aware network Quantization (Lean-
Quant), for accurately and efficiently quantizing LLMs.

3.1 REVISITING THE LOSS ERROR

To motivate our proposed approach, we first revisit the loss error ϵi in Equation 3, which approx-
imates the (detrimental) increase in the network’s task loss, introduced by quantizing weight wi.

4

Published as a conference paper at ICLR 2025

Outliers, which may
introduce high loss errors

during iterative quantization

Min-max Affine
Quantization Grid

Loss-error-aware
Non-uniform Grid

(ours)

Loss-error-aware
Affine Grid

(ours)

Learned using
Equation (5)

Learned using
Equation (7) &

fused GPU kernel

Outliers, which are preserved
by loss-error-aware grid

Figure 1: (Left) The empirical distributions of inverse Hessian diagonals, computed on 262K tokens
from the C4 dataset for the Llama-3-8B model, contain outliers that can cause high loss errors.
(Right) Our proposed loss-error-aware non-uniform and affine grids better preserve the quantized
precision of outliers, leading to more accurate quantized models.

This error ϵi has been used as a heuristic in multiple previous works (LeCun et al., 1989; Hassibi
et al., 1993; Singh & Alistarh, 2020; Frantar & Alistarh, 2022) for choosing the next best weight i
to prune or quantize. It has been shown to be a highly informative metric for measuring the impact
of quantization.

By examining Equation 3, one finds that the loss error ϵi is proportional to the square of weight
quantization error and inversely proportional to the diagonal entry of the inverse Hessian, i.e.,

ϵi ∝
(
quant(wi)− wi

)2
and ϵi ∝

1

H
−1
i,i

(4)

Hence, we further examine the empirical distribution of 1
diag(H−1) , which is proportional to ϵ, the

loss error of an entire row. We obtain the empirical distributions on layers of Llama-3-8B (Dubey
et al., 2024) with 128 sequences of length 2048 tokens from the C4 dataset (Raffel et al., 2020), and
compute the inverse Hessian as H−1 = (2XX

¦)−1 where X is the layer input matrix. As shown
in Figure 1, The majority of the inverse diagonals are concentrated in low-magnitude regions, with
a few outliers having high magnitudes. Quantizing the weights corresponding to these outliers
can lead to high loss errors if these weights are not well-aligned with the quantization grid points.
Preserving the quantized precision of the weights corresponding to these inverse-diagonal outliers
is especially important because the loss error increases quadratically with their quantization error
(Equation 4). Iterative loss-error-based quantization approaches (OBQ, GPTQ, etc.) employ min-
max affine quantization grid, which is suboptimal for preserving the quantized precision of the
inverse-diagonal outliers, leading to high loss errors and model quality degradation. Our idea is to
learn quantization grids that minimize the loss error ϵ.

3.2 LOSS-ERROR-AWARE NETWORK QUANTIZATION

Existing iterative loss-error-based quantization methods rely on min-max affine grids, which fail to
account for outliers in the inverse Hessian diagonals. These outliers can cause significant degrada-
tion in model quality. To address this limitation, we propose loss-error-aware quantization grids that
preserve the precision of weights corresponding to these outliers, thereby improving model quality.
Our approach introduces techniques for learning loss-error-aware grids across various quantization
formats, including non-uniform and affine. Additionally, to accelerate grid learning for large models,
we developed fused GPU kernels that enable efficient and scalable quantization.

3.2.1 NON-UNIFORM LOSS-ERROR-AWARE GRID

For non-uniform quantization, we perform clustering on the model parameters, weighted by their
corresponding exponentiated inverse Hessian diagonals, to derive a set of loss-error-aware grid

5

Published as a conference paper at ICLR 2025

points. The proposed objective aims to shape the learned grid to minimize quantization error for
weights corresponding to inverse-diagonal outliers, as these outliers can disproportionately affect
model quality. Concretely, we determine the set of grid points G for b-bit quantization by optimizing
the following objective:

argmin
G:|G|=2b

∑

i

(H−1i,i)
−p |quantnu(wi,G)− wi|

2
(5)

Here, p is a hyperparameter that balances the strength of precision preservation between inverse-
diagonal outliers and non-outliers. Higher values of p prioritize the precision preservation of outliers,
while p = 0 treats all weights equally. In our experiments, we set p = 4 for all models. A
sensitivity analysis for p is provided in Section 4.3. To optimize this objective, we employ the
k-means algorithm (Lloyd, 1982), incorporating careful centroid initialization as described below.
Once the quantization grid G is established, the weights are iteratively quantized to the nearest grid
points within G.

Grid Initialization The quality of clustering relies heavily on initialization (Arthur et al., 2007),
as Lloyd’s Algorithm (Lloyd, 1982) converges to a locally optimal solution. This sensitivity is
especially critical in low-bit-width settings (3-bit or 2-bit), where standard methods like random or
k-means++ (Arthur et al., 2007) often undersample extreme values due to the distribution of weights,
which are densely concentrated near the center and sparse at the extremes.

To address this, we propose uniformly spaced grid initialization, which evenly spaces initial grid
points between the minimum and maximum weights to ensure both central regions and extremes are
well represented. The initial grid points for clustering, Ginit, are defined as:

Ginit =
{

min(w) +
max(w)−min(w)

2b − 1
t
∣
∣
∣ t ∈ {0, . . . , 2b − 1}

}

(6)

This lightweight and robust initialization improves representation across the entire range of weights.
We present an ablation study to confirm its effectiveness in Table 15 in the Appendix.

3.2.2 LOSS-ERROR-AWARE AFFINE GRID

The goal of learning an affine grid is to determine an optimal scaling factor S and zero-point Z that
minimize the loss error. Unlike non-uniform grids, where clustering strategies can be applied, affine
grids require the grid points to be uniformly spaced over an interval, making clustering-based ap-
proaches inapplicable. While gradient descent could be used to learn S and Z, it is computationally
intensive, memory-demanding, and susceptible to local minima.

To address this challenge, we adopt an enumerative search approach to learn the affine grid. Specif-
ically, we enumerate candidate pairs of S and Z from a constrained search space S and select the
pair that minimizes the following objective, which is similar to Equation 5:

argmin
(S,Z)∈S

∑

i

(H−1i,i)
−p

∣
∣
∣quantaff(wi, S, Z)− wi

∣
∣
∣

2

,where

S =

{((
max(w)− tmax

R
T

)
−

(
min(w) + tmin

R
T

)

2b − 1
︸ ︷︷ ︸

scaling factor S

,−
⌊min(w) + tmin

R
T

S

⌉

︸ ︷︷ ︸

zero-point Z

)∣
∣
∣
∣
tmin, tmax ∈ {0, . . . , t}

}

(7)

Here, R = max(w)−min(w) is the range of the weights, T is the number of partitions within R, and

t ∈ {1, . . . , T
2 } is the number of partitions to enumerate over. By iteratively enumerating candidates

of S and Z and evaluating their corresponding losses, we identify the optimal pair that minimizes
the loss error. The parameter T determines the granularity of the search; in our experiments, we set
T = 2048. To prevent overfitting, t controls the amount of shrinkage of the range, which we explain
in Appendix B.

Efficient Fused GPU Kernel for Grid Learning The enumerative search for S and Z involves
evaluating t2 candidate pairs, which can be computationally expensive if performed sequentially.
To accelerate this process, we design and implement a fused GPU kernel that leverages parallel

6

Published as a conference paper at ICLR 2025

Algorithm 1 LeanQuant for LLM quantization

Input: weight matrix W ∈ R
r×c, input matrix X, bit width b, block size B, dampening factor df , outlier preservation strength p

Output: Quantized matrix Ŵ

1: Ŵ ← 0r×c

2: E← 0r×B

3: H← 2XX
¦

4: H
−1 ← Cholesky

(

[

H + df · avg
(

diag(H)
)

· I
]−1

)

▷ apply dampening, inversion, and Cholesky decomposition

5: if using non-uniform grid then

6: Gk ← argmin
G:|G|=2b

(

diag(H−1)−p
)¦∣

∣quantnu(Wk,:,G)−Wk,:

∣

∣

2
forall k ∈ {0, . . . , r − 1} ▷ E.5

7: else if using affine grid then

8: Sk, Zk ← argmin
(S,Z)∈S

(

diag(H−1)−p
)¦∣

∣quantaff(Wk,:,S, Z)−Wk,:

∣

∣

2
forall k ∈ {0, . . . , r − 1} ▷ E.7

9: end if

10: for i← 0, B, 2B, . . . do ▷ apply block-wise quantization

11: for j ← i, . . . , i + B − 1 do

12: if using non-uniform grid then

13: Ŵk,j ← quantnu(Wk,j ,Gk) forall k ∈ {0, . . . , r − 1} ▷ quantize to non-uniform grid

14: else if using affine grid then

15: Ŵk,j ← quantaff(Wk,j , Sk, Zk) forall k ∈ {0, . . . , r − 1} ▷ quantize to affine grid

16: end if

17: E:,j−i ←
W:,j−Ŵ:,j

H
−1
j,j

18: W:,j:(i+B) ←W:,j:(i+B) − E:,j−i ·H
−1
j,j:(i+B)

19: end for

20: W:,(i+B): ←W:,(i+B): − E ·H−1
i:(i+B),(i+B):

21: end for

22: return Ŵ

processing. Each thread block is assigned a group of weights, and individual threads within the
block evaluate all combinations of a specific tmin and all possible tmax. The threads compute the
loss for their assigned combinations, and the results are aggregated at the block level to determine the
optimal S and Z for the weight group. This parallelized approach enables simultaneous computation
of S and Z across all weight groups, achieving a speedup of over 50× for the end-to-end quantization
process. An analysis of the kernel’s efficiency is presented in Section 4.3.

3.2.3 LEANQUANT

Our proposed loss-error-aware quantization grid can be seamlessly integrated with any iterative loss-
error-based quantization method to enhance the quality of quantized models. Figure 1 illustrates
a comparison between the min-max affine quantization grid and loss-error-aware grids (both non-
uniform and affine) applied to a layer of Llama-3-8B (Dubey et al., 2024). We introduce LeanQuant,
which combines loss-error-aware grids with GPTQ (Frantar et al., 2022), and detail the method in
Algorithm 1. Additionally, for quantizing million-parameter models more accurately, we propose
LeanQuant-Exact, which integrates loss-error-aware grids with OBQ (Frantar & Alistarh, 2022),
with details presented in Algorithm 2 in the Appendix. To specify the grid type used within Lean-
Quant, we use subscripts such as LeanQuantaff for affine and LeanQuantnu for non-uniform grids.

4 EXPERIMENTS

We conduct extensive experiments to validate LeanQuant’s effectiveness and scalability in LLM
quantization against competitive baselines. We first introduce the baselines, models, evaluation
metrics, datasets, and hardware. Then, we present results, analyze efficiency and scalability, and
conduct ablation studies to further validate our approach.

Baselines We compare LeanQuantaff against competitive affine quantization approaches AWQ (Lin
et al., 2024), GPTQ (Frantar et al., 2022), and OmniQuant (Shao et al., 2024), and LeanQuantnu

against the existing state-of-the-art non-uniform method SqueezeLLM (Kim et al., 2023). For the
baselines, we use the quantized models provided by their official repository where possible, and
quantize the unavailable models using their official codebase and recommended hyperparameters.
More details on baseline reproduction and evaluation methods can be found in Section E of the
Appendix. For LeanQuant models, we use a small calibration set of 128 sequences of 2048 tokens
from the C4 dataset (Raffel et al., 2020) for computing the Hessian H, and set p = 4.

7

Published as a conference paper at ICLR 2025

Table 1: Zero-shot accuracy of quantized LLMs on benchmarks. The results of more models can
be found in Table 10 of the Appendix. †2-bit quantization is unsupported by the SqueezeLLM
codebase.

Method Bits
ARC LAMBADA MMLU

HellaS PIQA WinoG Avg.
Easy Chg Std OpenAI STEM Human. Social Other

Llama-3-8B

BF16 16 80.30 50.17 68.85 75.82 53.82 54.88 73.29 70.42 60.11 79.71 73.56 67.36

GPTQ 4.00 74.83 44.11 63.42 70.75 47.29 52.28 66.04 64.89 57.98 77.26 71.82 61.58

A
ffi

n
e

OmniQuant 4.00 76.89 47.35 61.05 69.16 49.38 49.05 66.62 64.40 58.25 78.84 71.98 63.00
LeanQuantaff 4.00 76.60 46.93 66.89 74.07 51.89 52.96 70.04 68.43 58.47 77.91 72.77 65.18

GPTQ 3.00 50.84 24.32 24.16 38.89 26.23 29.16 34.38 30.00 45.07 64.64 60.69 37.75
OmniQuant 3.00 60.90 30.12 21.08 27.63 26.32 27.80 29.51 29.90 46.98 68.17 59.98 38.95
LeanQuantaff 3.00 69.44 35.75 46.81 65.42 42.59 44.78 58.17 56.97 52.72 74.86 69.93 56.13

GPTQ 2.00 25.46 22.53 0.00 0.00 21.06 23.95 21.16 23.78 25.66 52.77 51.54 24.25
OmniQuant 2.00 26.81 21.67 0.00 0.00 21.34 24.21 21.71 23.98 25.90 53.75 47.43 24.26
LeanQuantaff 2.00 35.06 18.26 11.33 14.71 21.31 24.17 21.71 24.01 31.43 59.30 51.85 28.47

N
o
n
-u

n
if

o
rm

SqueezeLLM 4.05 79.59 49.32 66.18 73.24 51.13 53.32 70.78 68.59 59.10 79.33 73.80 65.85
LeanQuantnu 4.05 79.50 49.15 67.36 74.95 52.17 53.16 71.40 68.75 59.19 78.89 74.11 66.24

SqueezeLLM 3.02 73.19 43.52 58.22 66.58 43.61 46.57 61.91 60.03 56.17 77.64 69.22 59.70
LeanQuantnu 3.02 77.74 47.01 63.32 72.17 48.84 49.05 65.45 62.79 56.42 78.24 71.67 62.97

SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 58.21 26.62 31.22 39.16 25.98 25.48 27.01 26.65 40.78 68.01 60.38 39.05

Llama-2-7B

FP16 16 76.26 43.43 68.33 73.88 34.38 39.79 47.32 47.12 57.10 78.07 68.98 57.70

GPTQ 4.00 74.16 40.78 65.38 71.94 32.67 36.92 42.61 42.61 55.99 77.48 68.32 53.47

A
ffi

n
e

OmniQuant 4.00 74.12 40.70 64.10 70.62 28.80 32.18 34.71 35.79 55.37 76.93 68.67 52.91
LeanQuantaff 4.00 75.00 41.21 65.03 72.02 34.82 36.94 46.77 44.54 55.32 77.15 68.75 56.14

GPTQ 3.00 66.29 34.22 46.46 58.18 28.20 26.99 32.11 29.90 49.05 73.23 62.83 44.12
OmniQuant 3.00 70.12 37.29 53.27 66.66 29.05 31.05 30.61 30.38 52.58 74.05 66.46 49.23
LeanQuantaff 3.00 69.28 37.12 59.77 67.73 30.32 30.22 35.26 33.34 50.59 74.81 66.14 50.42

GPTQ 2.00 25.97 21.67 0.00 0.00 21.31 23.25 21.11 23.01 25.76 51.74 48.78 23.66
OmniQuant 2.00 37.42 21.76 1.28 3.24 21.47 24.14 21.74 23.91 29.59 57.18 51.93 26.70
LeanQuantaff 2.00 41.08 20.99 16.98 21.93 21.25 24.06 21.77 23.88 31.94 61.64 56.51 31.09

N
o
n
-u

n
if

o
rm

SqueezeLLM 4.05 75.59 41.98 67.81 72.79 34.32 38.94 45.40 44.96 56.80 77.48 68.43 56.77
LeanQuantnu 4.05 75.97 42.66 68.14 74.25 34.35 39.06 46.05 46.51 56.03 77.86 69.38 57.30

SqueezeLLM 3.02 73.06 40.27 61.96 70.11 33.75 35.22 43.35 43.16 54.15 76.50 67.88 54.49
LeanQuantnu 3.02 73.74 40.19 66.12 73.16 32.25 35.54 43.40 43.39 53.24 76.44 68.35 55.07

SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 51.81 23.98 28.68 38.21 22.26 23.89 22.49 24.01 35.88 66.38 58.17 35.98

Mistral-7B

BF16 16 80.77 50.09 69.38 75.63 50.46 53.48 69.35 68.01 61.26 80.58 73.88 66.62

GPTQ 4.00 79.00 46.25 66.99 73.67 46.24 50.82 66.20 64.66 59.36 79.65 72.93 62.68

A
ffi

n
e

OmniQuant 4.00 78.49 46.25 63.28 71.20 45.96 51.35 65.68 64.76 60.19 79.87 71.90 63.54
LeanQuantaff 4.00 79.71 48.04 68.33 75.70 47.42 51.84 68.05 66.43 59.65 80.41 73.48 65.37

GPTQ 3.00 70.54 38.65 52.63 62.10 36.31 38.89 49.20 47.86 54.76 77.58 67.96 52.60
OmniQuant 3.00 70.54 35.07 35.49 46.54 33.71 32.88 40.23 37.85 52.35 75.19 63.93 47.62
LeanQuantaff 3.00 77.65 44.71 60.51 71.94 43.99 46.14 60.97 59.35 55.61 78.51 71.59 61.00

GPTQ 2.00 26.73 22.27 0.00 0.00 23.31 24.46 23.86 23.42 25.35 51.52 49.72 24.39
OmniQuant 2.00 27.06 21.67 0.00 0.00 21.25 24.29 21.71 23.98 25.89 51.25 51.54 24.42
LeanQuantaff 2.00 56.02 28.33 19.23 23.17 23.72 24.48 24.21 25.36 34.45 62.57 57.14 34.43

N
o
n
-u

n
if

o
rm

SqueezeLLM 4.05 79.73 49.06 68.28 74.93 48.81 52.73 68.87 66.98 59.80 80.25 73.56 65.73
LeanQuantnu 4.05 79.80 48.89 69.03 76.03 48.84 52.86 68.87 66.69 60.19 80.14 74.59 65.99

SqueezeLLM 3.02 77.54 45.93 64.06 71.43 43.96 47.93 62.69 59.16 58.76 79.43 71.98 62.08
LeanQuantnu 3.02 77.74 45.99 67.59 76.07 44.24 47.97 62.14 62.47 57.28 79.27 72.22 63.00

SqueezeLLM† 2.01 - N/A -
LeanQuantnu 2.01 63.47 30.55 41.01 54.61 31.34 29.97 32.14 33.96 42.29 71.38 64.01 44.97

Models We consider the following recent, popular LLMs for quantization: Llama 1/2/3 series mod-
els (Touvron et al., 2023a;b; Dubey et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2023), Mistral-Large-
Instruct-2407 (123B) (Mistral AI Team, 2024), and Llama-3.1-405B-Instruct (Dubey et al., 2024).

Evaluation Metrics and Datasets We evaluate quantized LLMs using the perplexity metric on the
datasets WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020), and zero-shot accuracy on the
benchmarks ARC (Clark et al., 2018), LAMBADA (Paperno et al., 2016), MMLU (Hendrycks et al.,
2020), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande (Sakaguchi et al.,
2021). We also quantize and evaluate the instruction-following Llama-3-8B-Instruct using OpenAI
GPT-4o (2024-05-13) as a judge on the MT-Bench (Zheng et al., 2023), and the results are presented
in Section G in the Appendix.

Testbed Hardware LeanQuant models are quantized using a machine quipped with an L40s-48GB
GPU, an AMD EPYC 7R13 48-Core CPU, and 370GB of RAM. To fit Llama-3.1-405B-Instruct in
RAM, which is around 800GB in size, we use a machine equipped with 2 Quadro RTX 8000 GPUs,
an AMD EPYC 7742 64-Core CPU, and 1.48TB of RAM.

8

Published as a conference paper at ICLR 2025

Table 2: Zero-shot accuracy of the quantized 123B Mistral-Large-Instruct-2407 model.

Model Method Bits
Arc LAMBADA MMLU

Avg.
Easy Chg. Std. OpenAI STEM Human. Social Other

GPTQ 4.00 84.60 63.99 74.38 80.52 76.31 77.23 89.31 85.23 78.95

Mistral-Large-Instruct-2407 LeanQuantaff 4.00 85.14 63.99 74.99 81.14 76.56 77.32 89.21 85.87 79.28

LeanQuantnu 4.05 87.67 64.59 76.63 81.51 76.50 78.00 89.35 85.68 79.99

Table 3: Zero-shot accuracy of the quantized Llama-3.1-405B-Instruct model.

Model Method Group Size Bits
Arc LAMBADA MMLU

Avg.
Easy Chg. Std. OpenAI STEM Human. Social Other

GPTQ 128 4.25 88.21 65.10 73.41 76.96 82.34 82.64 90.45 87.51 80.83

Llama-3.1-405B-Instruct LeanQuantaff 128 4.25 88.26 64.76 73.32 77.08 82.68 83.21 90.58 87.71 80.95

LeanQuantnu - 4.05 88.22 63.65 74.56 78.52 82.52 83.40 90.51 87.64 81.13

4.1 MAIN RESULTS

Accuracy and Perplexity The zero-shot accuracy of quantized models on benchmarks are presented
in Table 1, as well as in Table 10 in the Appendix, and the perplexity results are shown in Table 7
in the Appendix. At the same bit width, LeanQuant achieves significantly better (lower) perplexity
than GPTQ and AWQ, and performs on par with OmniQuant and SqueezeLLM. However, perplexity
may not be a representative metric for evaluating the accuracy of quantized models. In terms of zero-
shot accuracy on various benchmarks, LeanQuantaff mostly outperforms GPTQ and OmniQuant,
and LeanQuantnu similarly performs better than SqueezeLLM in most cases. We highlight that
LeanQuantaff improves the average zero-shot accuracy on 11 tasks over OmniQuant by 17.18% for
3-bit Llama-3-8B, and by 13.38% for 3-bit Mistral-7B. Compared to GPTQ, LeanQuantaff improves
the average zero-shot accuracy by 18.38% for 3-bit Llama-3-8B, and by 8.40% for 3-bit Mistral-7B.

Effectiveness on Very Large LLMs We quantize the 123B Mistral-Large-Instruct-2407 and the
405B Llama-3.1 model using LeanQuantaff , LeanQuantnu, and GPTQ, and present their zero-shot
accuracy in Table 2 and 3, respectively. OmniQuant and SqueezeLLM fail to quantize to these
models due to GPU out-of-memory errors. LeanQuant models mostly outperform GPTQ in zero-
shot accuracy. For affine quantization, we employ row-wise quantization for Mistral-Large and
group-wise quantization (with size 128) for Llama-3.1 405B. This showcases that our method is
effective for both row-wise and group-wise quantization.

4.2 MEMORY AND TIME EFFICIENCY

We report the maximum GPU memory consumption of LeanQuant and the baselines during quanti-
zation on models of different sizes in Table 4. LeanQuant is significantly more memory efficient than
OmniQuant and SqueezeLLM: it successfully scales to 123B Mistral-Large using a single 48GB
GPU, and to 405B Llama-3.1 models using two 48GB GPUs, while OmniQuant fails to quantize
Llama-3-70B and SqueezeLLM fails to quantize Llama-3-8B on a single 48GB GPU. The time cost
of LeanQuant for different sized models are reported in Table 13 in the Appendix. LeanQuant can
quantize 7B/8B models in less than an hour, the 123B model in 4.2 hours, and the 405B model in
20.7 hours.

4.3 ABLATION STUDY

Q1: Does LeanQuant effectively reduce the loss error ϵ compared to other iterative loss-error-
based methods? Yes, LeanQuant effectively reduces loss errors ϵ compared to GPTQ, as shown in
Figure 2, as well as in Figure 5 in the Appendix. The sum of loss errors are computed as Equation
3. Moreover, non-uniform LeanQuant generally achieves lower loss errors than affine LeanQuant,
due to more degrees of freedom in the grid point placements, which also explains why LeanQuantnu

achieves higher accuracy than LeanQuantaff on benchmarks in Table 1.

Q2: Is LeanQuant sensitive to the hyperparameter p? No, we found LeanQuant to be not very
sensitive to p. A sensitivity analysis on the hyperparameter p is given in Table 14 in the Appendix.
LeanQuant works well with p values of 3 or 4.

9

Published as a conference paper at ICLR 2025

0

25000

50000

75000

Llama­3­8B (4­bit)

0

100000

200000

300000

Llama­3­8B (3­bit)

GPTQ LeanQuantaff LeanQuantnu

0

1000000

2000000

Llama­3­8B (2­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

100000

200000

Mistral­7B (4­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

500000

1000000

Mistral­7B (3­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

2000000

4000000

Mistral­7B (2­bit)

S
um

 o
f L

os
s

E
rr

or

Figure 2: Comparison of loss errors ϵ, summed over each layer, for GPTQ and LeanQuant (affine
and non-uniform) during iterative quantization.

Q3: Is uniformly spaced grid initialization beneficial for model quality? Yes, uniformly spaced
grid initialization consistently outperforms k-means++ (Arthur et al., 2007) initialization on different
models in 3-bit and 2-bit regions, as shown in Table 15 in the Appendix.

Q4: Does the fused GPU kernel for LeanQuantaff accelerate quantization? Yes, our fused kernel
for learning affine grids accelerate the end-to-end quantization process by more than 50×, as shown
in Table 5, which enables LeanQuant to be scaled to very large models.

Table 4: Peak GPU memory consumption of differ-
ent algorithms during 4-bit quantization. “OOM”
indicates out of memory on a single 48GB GPU,
except for Llama-3.1-405B where we use 2 48GB
GPUs.

Model OmniQuant SqueezeLLM GPTQ LeanQuant

Llama-3-8B 25.3 GB OOM 7.9 GB 7.9 GB

Llama-3-70B OOM OOM 17.1 GB 17.2 GB

Mistral-Large (123B) OOM OOM 32.8 GB 33.0 GB

Llama-3.1-405B OOM OOM OOM 65.4 GB

Table 5: Comparison of total time needed for
quantizing Llama-3-8B with and without our
fused kernel for loss-error-aware affine grid
learning.

Fused Kernel Group Size Bits Quant. Time

: - 4.00 15.1 hrs

6 - 4.00 0.27 hrs

: 128 4.25 >100 hrs

6 128 4.25 0.40 hrs

5 RELATED WORKS

Iterative Loss-error-based Compression Optimal Brain Damage (LeCun et al., 1989) introduced
a saliency-score-based iterative pruning algorithm for neural networks, and Optimal Brain Surgeon
(Hassibi & Stork, 1992; Hassibi et al., 1993) extended it to apply a weight update to compensate for
the error introduced in each iteration. These methods inspired a number of works on model pruning
(Guo et al., 2016; Singh & Alistarh, 2020; Yu et al., 2022) and weight quantization (Li et al., 2021;
Frantar & Alistarh, 2022; Frantar et al., 2022).

Efficient LLM Inference LLM inference is computationally and memory demanding, and existing
works explore improving inference efficiency through quantization (Dettmers et al., 2022b; Lin
et al., 2024; Frantar et al., 2022; Chee et al., 2024; Kim et al., 2023; Shao et al., 2024; Egiazarian
et al., 2024; Tseng et al., 2024), pruning (Frantar & Alistarh, 2023; Ashkboos et al., 2024), weight-
activation quantization (Xiao et al., 2023), offloading Sheng et al. (2023), etc. A survey of more
relevant literature can be found in Appendix M.

6 CONCLUSION

In this work, we propose LeanQuant, an accurate, versatile, and scalable quantization method for
LLMs. Motivated by the finding that the min-max affine grid causes large errors in the network’s
task loss in iterative loss-error-based methods, we propose to learn loss-error-aware grids to enable
more accurate quantized models, and design fused kernels for efficient and scalable quantization.
Our method generalizes to multiple quantization formats to enable greater accessibility. Exten-
sive empirical evaluations reveal that our quantized models compares favorably against competitive
baselines in accuracy, and can scale to Llama-3.1 405B, one of the largest open-source LLM to date.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation SHF-2211815 and Ken Kennedy Institute
Cluster Grants.

REFERENCES

David Arthur, Sergei Vassilvitskii, et al. k-means++: The advantages of careful seeding. In Soda,
volume 7, pp. 1027–1035, 2007.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36, 2024.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pp. 7750–7774. PMLR, 2023.

Tim Dettmers, Ruslan A Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized
representation for near-lossless llm weight compression. In The Twelfth International Conference
on Learning Representations.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022a.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022b.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jordan Dotzel, Yuzong Chen, Bahaa Kotb, Sushma Prasad, Gang Wu, Sheng Li, Mohamed S Ab-
delfattah, and Zhiru Zhang. Learning from students: Applying t-distributions to explore accurate
and efficient formats for llms. arXiv preprint arXiv:2405.03103, 2024.

11

Published as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin:
Mixed-precision auto-regressive parallel inference on large language models. arXiv preprint
arXiv:2408.11743, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/

10256836.

Georgi Gerganov. llama.cpp. https://github.com/ggerganov/llama.cpp, 2023. Ac-
cessed: 2024-10-01.

Shinya Gongyo, Jinrong Liang, Mitsuru Ambai, Rei Kawakami, and Ikuro Sato. Learning non-
uniform step sizes for neural network quantization. In Proceedings of the Asian Conference on
Computer Vision, pp. 4385–4402, 2024.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Advances in neural information processing systems, 5, 1992.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr. biq: Post-training non-uniform
quantization based on minimizing the reconstruction error. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12329–12338, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and
Robert McHardy. Challenges and applications of large language models. arXiv preprint
arXiv:2307.10169, 2023.

12

Published as a conference paper at ICLR 2025

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
individual differences, 103:102274, 2023.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. In International Conference on Learning Representa-
tions.

Yuhang Li, Xin Dong, and Wei Wang. Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks. arXiv preprint arXiv:1909.13144, 2019.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric P Xing, and Zhiqiang Shen. Nonuniform-to-
uniform quantization: Towards accurate quantization via generalized straight-through estimation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
4942–4952, 2022.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. In Forty-first
International Conference on Machine Learning.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 1, 2024.

13

Published as a conference paper at ICLR 2025

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Mistral AI Team. Mistral large 2, July 26 2024. URL https://mistral.ai/news/

mistral-large-2407/.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Sangyun Oh, Hyeonuk Sim, Jounghyun Kim, and Jongeun Lee. Non-uniform step size quantization
for accurate post-training quantization. In European Conference on Computer Vision, pp. 658–
673. Springer, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Gunho Park, Baeseong Park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung
Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. Lut-gemm: Quantized matrix mul-
tiplication based on luts for efficient inference in large-scale generative language models. arXiv
preprint arXiv:2206.09557, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=8Wuvhh0LYW.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

14

Published as a conference paper at ICLR 2025

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Turboderp-org. Exllamav2: A fast inference library for running llms locally on modern consumer-
class gpus. https://github.com/turboderp-org/exllamav2, 2024. Accessed:
2025-02-28.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. Advances in Neural
Information Processing Systems, 37:66357–66382, 2025.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
pruning weights that cancel one another in neural networks. In International Conference on
Machine Learning, pp. 25668–25683. PMLR, 2022.

Edouard Yvinec, Arnaud Dapogny, and Kevin Bailly. Nupes: Non-uniform post-training quantiza-
tion via power exponent search. arXiv preprint arXiv:2308.05600, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Haochen Zhang, Junze Yin, Guanchu Wang, Zirui Liu, Tianyi Zhang, Anshumali Shrivastava, Lin
Yang, and Vladimir Braverman. I3s: Importance sampling subspace selection for low-rank opti-
mization in llm pretraining. arXiv preprint arXiv:2502.05790, 2025a.

Tianyi Zhang, Junda Su, Aditya Desai, Oscar Wu, Zhaozhuo Xu, and Anshumali Shrivastava. Sketch
to adapt: Fine-tunable sketches for efficient llm adaptation, 2025b. URL https://arxiv.

org/abs/2410.06364.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per chan-
nel: Efficient large language model inference with coupled quantization. Advances in Neural
Information Processing Systems, 37:3304–3331, 2025c.

Tianyi Zhang, Jonah Yi, Bowen Yao, Zhaozhuo Xu, and Anshumali Shrivastava. Nomad-attention:
Efficient llm inference on cpus through multiply-add-free attention. Advances in Neural Informa-
tion Processing Systems, 37:112706–112730, 2025d.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In International
Conference on Machine Learning, pp. 61121–61143. PMLR, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

15

Published as a conference paper at ICLR 2025

APPENDIX

A EXPLANATIONS ON QUANTIZATION GRID

0 31 2 0 31 2

Figure 3: Comparison of affine (left) and non-uniform (right) 2-bit quantization grids applied to the
weights in the first MLP-down layer of Llama-3-8B. The affine grid uses evenly spaced quantization
grid points between the minimum and maximum weights. In contrast, the non-uniform grid allows
grid points to be placed flexibly, as their positions are stored in a look-up table. This enables finer
quantization in dense regions and coarser quantization in sparse regions, better aligning with the
weight distribution and reducing quantization error.

In the context of quantization, a grid is a predefined set of values representing the possible quantized
outputs for full-precision parameters. During quantization, each full-precision parameter is mapped
to its nearest grid point on the quantization grid. For example, in a 2-bit quantization scheme with
grid points {−1.0,−0.33, 0.33, 1.0}, a floating-point weight of 0.25 would be assigned to 0.33, the
closest grid point.

Affine Quantization Grid An affine quantization grid distributes points uniformly across the
range of the weights being quantized. The dynamic range of the weights, defined as [Wmin,Wmax],
determines the spacing of the grid points. For example, if [Wmin,Wmax] = [−1.0, 1.0] in a 2-bit
quantization setting, the grid points would be evenly spaced at−1.0,−0.33, 0.33, 1.0. This uniform
distribution is computationally simple and widely used in practice, but it may lead to suboptimal
precision when the weight distribution is non-uniform, as many grid points may be underutilized.

Non-uniform Quantization Grid Non-uniform grids allocate grid points more flexibly, allowing
denser spacing in high-probability regions of the weight distribution and sparser spacing in low-
probability regions. This approach minimizes quantization error by adapting the grid to the data
distribution. Non-uniform grids typically store the grid points in a look-up table, enabling flexible
placement that better represents the original data. Figure 3 illustrates an example of affine grid and
non-uniform grid applied to the weights of Llama-3-8B.

Grouped Quantization The quantization grid for a set of weights is determined by the range
[Wmin,Wmax] within the group. Smaller group sizes allow for a narrower dynamic range, leading
to finer granularity in the quantization grid and higher precision. Grouping contiguous weights into
blocks is a common practice in quantization literature (Lin et al., 2024; Frantar et al., 2022) and
ensures a balance between memory efficiency and precision.

B CONTROLLING RANGE SHRINKAGE

In Equation 7, we enumerate candidate pairs (S,Z)—scaling factors and zero-points—to determine
the optimal loss-error-aware affine quantization grid. This process involves iteratively refining S and
Z by reducing the maximum value max(w) and increasing the minimum value min(w). However,
excessive shrinking of the range may result in poor representation of extreme values, leading to
model quality degradation.

16

Published as a conference paper at ICLR 2025

Algorithm 2 LeanQuant-Exact for Millon-parameter Networks

Input: a row w ∈ R
c in the weight matrix, sample input matrix X, bit width b, hyperparameter p

Output: Quantized row ŵ

1: ŵ← 0c

2: H
−1
← (2XX

¦)−1

3: if using non-uniform grid then

4: G ← argmin
G:|G|=2b

(

diag(H−1)−p
)¦∣

∣quantnu(w,G)−w
∣

∣

2
▷ E. 5

5: else if using affine grid then

6: S,Z ← argmin
(S,Z)∈S

(

diag(H−1)−p
)¦∣

∣quantaff(w,S, Z)−w
∣

∣

2
▷ E. 7

7: end if
8: for j ← 1, . . . , c do
9: if using non-uniform grid then

10: i← argmini

(quantnu(wi,G)−wi)
2

2H−1

i,i

11: ŵi ← quantnu(wi,G)
12: else if using affine grid then

13: i← argmini

(quantaff(wi,S,Z)−wi)
2

2H−1

i,i

14: ŵi ← quantaff(wi, S, Z)
15: end if

16: w← w −
H

−1

:,i

H
−1

i,i

(

wi − ŵi

)

17: H
−1
← H

−1
−

H
−1

:,i
H

−1

i,:

H
−1

i,i

18: end for
19: return ŵ

To control the extent of range reduction, we introduce the parameter t, which determines the degree
of shrinkage. Lower bit widths require more aggressive shrinking due to the limited number of grid
points. We set t for b-bit quantization as follows:

t =







0.2T if b = 4,

0.3T if b = 3,

0.4T if b = 2.

(8)

C LEANQUANT-EXACT

The pseudocode of LeanQuant-Exact for accurately quantizing million-parameter networks is pre-
sented in Algorithm 2.

C.1 BERT EXPERIMENTS WITH LEANQUANT-EXACT

Method Bits BERT-3 BERT

FP32 32 84.66 88.53

OBQ 4.03 84.40 87.96
LeanQuantnu-Exact 4.13 84.58 88.49

OBQ 3.03 83.47 84.72
LeanQuantnu-Exact 3.06 84.20 86.21

Table 6: F1 scores on SQuAD of BERT models quantized using OBQ and LeanQuantnu-Exact.
LeanQuantnu-Exact outperforms OBQ in maintaining model quality.

We compare the performance of BERT models (Devlin et al., 2018), quantized with OBQ (Frantar
& Alistarh, 2022) and LeanQuantnu-Exact, on the SQuAD dataset (Rajpurkar et al., 2016). We
quantize the 12-layer BERT-base (Devlin et al., 2018) and the 3-layer BERT-3 variant from Kurtic

17

Published as a conference paper at ICLR 2025

Table 7: Perplexity evaluations of Llama models under different quantization methods and bit
widths. The results of GPTQ, AWQ, OmniQuant are from Shao et al. (2024), and the results of
SqueezeLLM are from Kim et al. (2023). † The official SqueezeLLM code does not support 2-bit
quantization, and we report the available results from Kim et al. (2023).

WikiText-2 C4

Grid Method Bits 1-7B 1-13B 2-7B 2-13B 2-70B 1-7B 1-13B 2-7B 2-13B 2-70B Avg.

FP16 16 5.58 5.09 5.47 4.88 3.31 7.08 6.61 6.97 6.46 5.52 5.697

Affine

GPTQ 4.00 6.13 5.40 5.83 5.13 3.58 7.43 6.84 7.37 6.70 5.67 6.008

AWQ 4.00 6.08 5.34 6.15 5.12 - 7.52 6.86 7.68 6.74 - -

OmniQuant 4.00 5.86 5.21 5.74 5.02 3.47 7.34 6.76 7.35 6.65 5.65 5.905

LeanQuantaff 4.00 5.92 5.25 5.73 5.08 3.49 7.30 6.76 7.25 6.63 5.63 5.904

Non-uniform
SqueezeLLM 4.04-4.05 5.79 5.18 5.62 4.99 3.41 7.21 6.71 7.12 6.57 5.58 5.818

LeanQuantnu 4.04-4.05 5.81 5.19 5.64 4.99 3.42 7.21 6.70 7.13 6.57 5.58 5.824

Affine

GPTQ 3.00 8.06 6.76 8.37 6.44 4.82 9.49 8.16 9.81 8.02 6.57 7.650

AWQ 3.00 11.88 7.45 24.00 10.45 - 13.26 9.13 23.85 13.07 - -

OmniQuant 3.00 6.49 5.68 6.58 5.58 3.92 8.19 7.32 8.65 7.44 6.06 6.591

LeanQuantaff 3.00 6.62 5.76 6.61 5.66 3.91 7.98 7.19 8.27 7.23 5.90 6.513

Non-uniform
SqueezeLLM 3.02 6.32 5.60 6.18 5.36 3.77 7.75 7.08 7.72 6.97 5.83 6.258

LeanQuantnu 3.02 6.34 5.60 6.19 5.40 3.80 7.74 7.05 7.73 6.98 5.83 6.266

Affine

GPTQ 2.00 1.1E5 6.8E4 3.8E4 5.6E4 2.0E4 689.13 2.5E3 NaN 323.12 48.82 NaN

OmniQuant 2.00 15.47 13.21 37.37 17.21 7.81 24.89 18.31 90.64 26.76 12.28 26.395

LeanQuantaff 2.00 18.53 14.42 25.69 24.43 7.92 19.99 16.53 27.11 20.92 10.84 18.638

Non-uniform
SqueezeLLM† 2.01 - N/A - 61.25 10.86 - N/A - N/A

LeanQuantnu 2.01 15.65 9.64 15.51 10.06 6.35 17.62 10.93 17.07 11.83 7.96 12.262

et al. (2022) to 3 and 4 bits. OBQ and LeanQuant-Exact are calibrated using 1024 samples from the
training set, and the F1 score is reported on the test set.

D ROBUSTNESS OF LEANQUANT GRIDS DURING QUANTIZATION

LeanQuant prevents drastic increase to the task loss by learning the quantization grid for better
preservation of the precision of outlier inverse diagonals. However, since the not-yet-quantized
weights will shift during the iterative quantization process and the quantization grid is fixed be-
forehand, one potential problem arises: the quantization grid may no longer be well-aligned with
the outliers after certain iterations. Fortunately, this is not a problem in practice. The loss-error-
awareness property of LeanQuant grids prevents high-norm weight perturbations δi (Equation 3)
from ocurring, hence the weights do not shift by much during the iterations. Furthermore, no new
inverse-diagonal outliers will arise during the iterative quantization process. In OBQ, the inverse
Hessian is updated after each iteration as follows,

H
−1

−i,−i =
(

H
−1 −

H
−1

:,i H
−1

i,:

H
−1

i,i

)

−i,−i
(9)

where H
−1

−i,−i is the inverse Hessian with its i-th row and column removed. The remaining inverse
diagonals only decrease in magnitude towards zero after each column and row removal.

E EXPERIMENT DETAILS

Baseline Reproduction We use the quantized models provided by the official repository where
possible. We obtained quantized LLaMA-7B, LLaMA-13B, Llama-2-7B, Llama-2-13B from the
OmniQuant repository, and LLaMA-7B, LLaMA-13B, Llama-2-7B, Llama-2-13B, Mistral-7B from
the SqueezeLLM repository. We obtained the community-driven GPTQ-quantized version of
Llama-3.1-405B-Instruct from HuggingFace 1. The other quantized models are reproduced using
the official codebases and recommended hyperparameters. For OmniQuant, we set the training

1https://huggingface.co/hugging-quants/Meta-Llama-3.

1-405B-Instruct-GPTQ-INT4

18

Published as a conference paper at ICLR 2025

0 80 160

LeanQuantaff vs. OmniQuant
(3 bit, group size 128)

LeanQuantaff vs. OmniQuant
(4 bit, group size 128)

LeanQuantnu vs. SqueezeLLM
(4 bit)

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

43

36

33

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

81

90

98

Win Rate=54.43%

Win Rate=51.43%

Win Rate=53.23%

36

34

29

Llama­3­8B­Instruct on MT­Bench

Former Win Tie Former Lose

Figure 4: Evaluation of quantized Llama-3-8B-Instruct on MT-Bench using OpenAI GPT-4o as a
judge. The win rates reported exclude ties.

Table 8: Zero-shot accuracy comparison between LeanQuantaff and rotation-based quantization
method QuaRot.

Method Bits
ARC LAMBADA MMLU

Avg.
Easy Chg Std OpenAI STEM Human. Social Other

QuaRot-RTN 4.00 65.92 46.93 65.75 71.92 49.67 51.24 65.75 64.24 60.18

Llama-3-8B QuaRot-GPTQ 4.00 76.81 50.43 67.53 74.19 51.60 53.28 70.26 68.23 64.04

LeanQuantaff 4.00 76.30 50.51 68.27 75.90 51.51 53.43 70.69 68.43 64.38

QuaRot-RTN 4.00 74.54 47.44 66.19 74.17 39.74 41.74 53.04 51.95 56.10

Llama-2-13B QuaRot-GPTQ 4.00 76.35 49.23 69.82 76.48 41.29 47.01 58.99 57.84 59.63

LeanQuantaff 4.00 76.43 49.06 69.90 76.48 42.53 47.86 60.03 58.93 60.15

epochs to 20, enable Learnable Weight Clipping (LWC), set an LWC learning rate of 1e-2. For
SqueezeLLM, there is no tunable parameters. For GPTQ, we turn on activation ordering (quantizing
columns in order of decreasing activation size) for more accurate model.

Perplexity Evaluations We follow the perplexity evaluation procedure described by (Frantar
et al., 2022): sequences from the test set of the WikiText2 and C4 datasets (Merity et al., 2016;
Raffel et al., 2020) are concatenated into 128 sequences of length 2048 tokens for perplexity testing.

Accuracy Evaluations We use lm-evaluation-harness (Gao et al., 2023) for evaluating zero-shot
accuracy on tasks. The task names we evaluate are lambada, ai2 arc, winogrande,

piqa, hellaswag, mmlu.

F PERPLEXITY EVALUATIONS

The perplexity evaluation results on WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020) for
quantized models are presented in Table 7.

G LLM-AS-A-JUDGE

LLM as a Judge The evaluation results on MT-Bench using GPT-4o (2024-05-13) as a judge are
presented in Figure 4. We pitch 3-bit and 4-bit, with group size of 128, LeanQuantaff against Om-
niQuant, and 4-bit LeanQuantnu against SqueezeLLM. LeanQuant achieves higher win rate than the
baselines.

H MORE ACCURACY RESULTS

The zero-shot accuracy results on benchmarks for quantized LLaMA-7B, LLaMA-13B, Llama-2-
7B (Touvron et al., 2023a;b) are presented in Table 10. We also compare affine LeanQuant with
the rotation-based quantization algorithm QuaRot (Ashkboos et al., 2025), with results presented in
Table 8. Furthermore, we compare affine, group-wise quantization using LeanQuantaff , OmniQuant,
and AWQ in Table 9.

19

Published as a conference paper at ICLR 2025

Table 9: Zero-shot accuracy of affine, group-wise quantized models using LeanQuantaff , Omni-
Quant, and AWQ.

Method Group Size Bits
ARC LAMBADA MMLU

Avg.
Easy Chg Std OpenAI STEM Human. Social Other

Llama-2-7B

OmniQuant 128 4.25 75.21 43.69 66.95 72.91 35.11 37.79 46.77 46.86 53.16

AWQ 128 4.25 75.17 43.26 67.40 72.70 34.89 37.79 46.34 45.93 52.94

LeanQuantaff 128 4.25 76.26 43.00 67.75 74.44 35.65 39.02 47.94 49.79 54.23

Llama-2-13B

OmniQuant 128 4.25 78.24 47.61 69.75 75.99 42.06 47.74 59.83 58.61 59.98

AWQ 128 4.25 78.91 46.50 70.17 76.19 41.39 46.70 59.38 55.94 59.40

LeanQuantaff 128 4.25 79.00 47.18 70.75 77.95 41.96 47.86 59.54 58.97 60.40

Llama-3.1-70B-Instruct

AWQ 128 4.25 86.62 62.12 72.09 75.70 74.88 80.60 87.07 83.71 77.85

LeanQuantaff 128 4.25 86.49 61.69 72.70 76.07 75.61 80.79 87.55 83.71 78.08

I QUANTIZATION COST AND OVERHEAD

The time cost of LeanQuant for different models and configurations are presented in Table 13. A
comparison of GPU memory consumption for different quantization algorithms on different-sized
LLMs is presented in Table 11.

J INFERENCE EFFICIENCY OF QUANTIZED MODELS

Table 12 presents the inference efficiency of 4-bit quantized Llama-3-8B during the decoding and
prefill phases. For non-uniform LeanQuant models, we have developed a dedicated CUDA kernel
for efficient inference, and we compare its efficiency against the SqueezeLLM kernel in Table 12.
For affine LeanQuant models, we leverage the exllamav2 kernels (Turboderp-org, 2024).

The inference efficiency in Table 12 is evaluated on an NVIDIA A100-40GB GPU. For decoding, we
report tokens per second per batch while generating 4096 tokens. For the prefill phase, we measure
time to first token using a 4096-token prompt.

K ABLATION STUDY

Sensitivity to Hyperparameter p Ablative experiments on the effects of the hyperparameter p on
the quality of LeanQuant models are presented in Table 14. In the case of p = 0, the inverse Hessian
diagonals are ignored as the weights for clustering, and the centroids are learned based on the density
of weights. It is worth noting that p = 0 results in sub-optimal model quality compared to higher
values of p, which means that the loss-error-awareness property of the quantization grid is critical
for maintaining model quality.

Grid Point Initialization Ablative experiments comparing k-means++ initialization with our pro-
posed uniformly spaced grid initialization are presented in Table 15.

L LOSS ERROR COMPARISON

A comparison of the sum of loss errors ϵ between GPTQ and LeanQuant (affine and non-uniform)
is presented in Figure 5.

M MORE RELATED WORKS

Quantization for Large Language Models Quantization reduces the precision of LLM parame-
ters to achieve model compression and enable more memory-efficient inference. Calibration-free

20

Published as a conference paper at ICLR 2025

Table 10: Zero-shot accuracy of more quantized LLMs on benchmarks.

Method Bits
ARC LAMBADA MMLU

HellaS PIQA WinoG Avg.
Easy Chg Std OpenAI STEM Human. Social Other

LLaMA-7B

FP16 16 75.29 41.81 67.77 73.49 28.20 32.03 31.65 36.53 56.92 78.67 70.09 53.86

GPTQ 4.00 73.61 39.51 65.61 71.98 24.29 28.12 25.80 31.16 55.61 77.80 70.40 49.03

A
ffi

n
e

OmniQuant 4.00 74.49 39.68 65.38 71.96 30.32 30.92 33.38 35.79 55.82 78.45 68.67 53.17

LeanQuantaff 4.00 74.03 41.64 63.75 70.56 31.27 33.13 32.66 37.79 56.31 78.40 69.30 53.53

GPTQ 3.00 66.67 35.84 49.89 58.37 25.94 27.46 23.46 24.98 51.76 75.35 64.72 43.78

OmniQuant 3.00 72.22 38.48 59.67 69.20 27.18 27.65 25.64 29.61 52.99 76.55 67.17 49.67

LeanQuantaff 3.00 73.70 40.78 65.28 72.66 27.85 31.37 30.61 35.31 56.23 78.45 70.09 52.94

GPTQ 2.00 26.35 22.01 0.00 0.00 23.69 25.08 24.28 24.01 25.69 53.70 50.99 24.95

OmniQuant 2.00 51.05 22.70 11.80 23.13 26.51 26.04 24.37 23.69 34.71 64.36 54.30 32.97

LeanQuantaff 2.00 55.98 27.22 38.56 47.45 24.45 25.31 22.85 25.46 37.19 68.12 60.77 39.40

N
o
n
-u

n
if

o
rm

SqueezeLLM 4.05 74.92 40.61 66.87 71.99 29.12 29.86 29.38 34.86 56.55 78.29 69.38 52.89

LeanQuant 4.05 75.17 41.55 69.01 74.33 27.37 30.50 29.41 35.44 56.09 77.91 70.17 53.36

SqueezeLLM 3.02 71.46 37.88 61.71 71.05 23.66 26.99 26.16 30.54 54.89 77.86 68.59 50.07

LeanQuant 3.02 71.76 36.35 63.77 71.71 26.64 29.05 29.80 32.70 53.80 77.09 69.53 51.11

SqueezeLLM 2.01 - N/A -

LeanQuantnu 2.01 50.38 24.40 31.67 41.30 21.79 24.19 21.74 24.36 37.49 65.67 58.33 36.48

LLaMA-13B

FP16 16 77.40 46.42 71.12 76.19 36.41 41.55 48.49 48.54 59.92 79.16 72.69 59.81

GPTQ 4.00 77.06 45.56 69.12 75.28 34.44 39.15 45.95 46.73 58.99 78.56 72.53 56.63

A
ffi

n
e

OmniQuant 4.00 75.97 45.22 68.25 75.59 35.30 40.21 48.20 47.25 59.11 78.94 72.61 58.79

LeanQuantaff 4.00 76.39 46.42 70.48 76.27 35.52 39.45 46.18 47.22 58.82 78.94 72.30 58.91

GPTQ 3.00 70.92 39.93 57.29 64.82 29.37 31.94 33.18 35.34 54.05 76.99 68.43 49.13

OmniQuant 3.00 75.42 42.83 60.80 71.34 29.56 34.24 36.24 41.17 57.27 77.97 69.61 54.22

LeanQuantaff 3.00 75.84 43.34 67.49 74.85 33.37 36.56 41.92 44.74 56.75 77.97 70.48 56.66

GPTQ 2.00 27.10 21.93 0.02 0.00 23.37 25.50 23.56 24.49 25.76 53.16 49.72 24.75

OmniQuant 2.00 59.51 29.52 17.85 23.35 22.52 24.12 22.81 24.46 42.01 67.25 56.12 35.41

LeanQuantaff 2.00 61.45 29.27 44.63 50.82 28.73 26.01 27.20 27.26 39.08 71.27 65.82 42.87

N
o
n
-u

n
if

o
rm

SqueezeLLM 4.04 76.56 46.25 69.53 75.22 32.98 37.19 42.18 44.00 59.29 78.62 71.82 57.60

LeanQuantnu 4.04 76.39 45.05 71.55 76.48 34.76 38.77 46.12 47.18 59.29 78.78 73.24 58.87

SqueezeLLM 3.02 75.46 43.77 65.07 72.75 30.45 34.24 37.18 40.46 57.32 78.29 71.35 55.12

LeanQuantnu 3.02 75.17 43.00 70.41 77.29 33.81 38.32 43.16 45.06 57.35 78.29 71.35 57.56

SqueezeLLM 2.01 - N/A -

LeanQuantnu 2.01 65.66 32.42 54.49 66.93 23.44 25.50 23.98 28.42 45.66 72.80 66.14 45.95

Llama-2-13B

FP16 16 79.50 48.46 70.35 76.73 42.28 47.89 61.16 59.38 60.06 79.05 72.22 63.37

GPTQ 4.00 78.32 45.48 68.33 75.35 40.28 46.08 56.48 54.65 58.92 78.45 71.82 59.59

A
ffi

n
e

OmniQuant 4.00 77.69 47.10 68.74 75.57 41.39 46.10 57.39 55.87 59.48 79.00 70.32 61.70

LeanQuantaff 4.00 79.42 47.27 69.16 75.90 42.21 47.31 59.90 57.93 59.07 78.24 71.82 62.57

GPTQ 3.00 72.85 39.85 59.77 67.20 34.86 38.85 47.97 46.48 54.61 76.28 70.32 53.62

OmniQuant 3.00 76.60 43.34 60.70 70.54 38.60 42.59 53.23 51.82 57.42 77.97 69.14 58.36

LeanQuantaff 3.00 77.31 44.54 68.15 75.88 37.93 43.80 53.07 52.62 56.36 76.99 70.72 59.76

GPTQ 2.00 25.84 20.22 0.00 0.00 22.84 25.59 23.53 23.98 25.97 52.07 47.75 24.19

OmniQuant 2.00 48.19 24.66 10.21 20.14 21.34 24.21 21.77 23.85 40.16 63.00 52.33 31.81

LeanQuantaff 2.00 50.88 24.32 32.70 39.57 21.50 24.38 21.90 24.40 38.01 67.19 56.91 36.52

N
o
n
-u

n
if

o
rm

SqueezeLLM 4.04 78.91 47.70 70.00 76.23 42.72 47.89 60.19 58.32 59.74 78.73 72.77 63.02

LeanQuantnu 4.04 78.91 47.56 71.12 77.43 43.51 47.44 59.54 58.83 59.58 78.62 72.06 63.15

SqueezeLLM 3.02 77.27 43.17 66.37 73.80 38.22 44.63 55.18 53.11 58.74 77.86 69.46 59.80

LeanQuantnu 3.02 77.19 44.20 71.14 78.59 40.72 45.46 56.87 55.10 56.38 77.75 70.09 61.23

SqueezeLLM 2.01 - N/A -

LeanQuantnu 2.01 62.46 30.20 47.00 61.09 25.28 27.74 27.56 28.87 42.20 69.91 62.04 44.03

quantization approaches, such as LLM.int8 (Dettmers et al., 2022a), NormalFloat (Dettmers et al.,
2024), and Student Float (Dotzel et al., 2024), perform zero-shot quantization without requiring
calibration data. In contrast, methods like GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2024), Om-
niQuant (Shao et al., 2024), SpQR (Dettmers et al.), SqueezeLLM (Kim et al., 2023), QUIP (Chee
et al., 2024), AQLM (Egiazarian et al., 2024), and QUIP# (Tseng et al., 2024) leverage calibration
to improve quantization quality by adapting to input data distributions. Some methods (Xiao et al.,
2023) extend quantization to both model weights and intermediate activations. Some approaches
combine quantization-aware training to push the limits of quantization; for example, LLM-QAT
(Liu et al., 2023) fine-tunes quantized models to recover model quality, BitNet (Ma et al., 2024)
explores ternary-valued LLMs, while OneBit (Xu et al., 2025) demonstrates the feasibility of 1-bit
quantization for LLMs.

21

Published as a conference paper at ICLR 2025

Table 11: GPU memory consumption of quantization algorithms on different-sized LLMs. “OOM”
means out of memory.

Llama-3-8B Llama-3-70B Mistral-Large (123B) Llama-3.1-405B

OmniQuant 25.3 GB OOM OOM OOM
SqueezeLLM OOM OOM OOM OOM
GPTQ 7.9 GB 17.1 GB 32.8 GB OOM
LeanQuant 7.9 GB 17.2 GB 33.0 GB 65.4 GB

Table 12: Inference efficiency of 4-bit quantized Llama-3-8B in the decoding and prefill phases.
Decoding efficiency is measured in tokens per second per batch for generating 4096 tokens, while
prefill efficiency is evaluated by time to first token for a 4096-token prompt. All results are obtained
on an NVIDIA A100-40GB GPU.

Decoding (tokens/s per batch) Prefill (time to first token)
Batch Size 1 Batch Size 4 Batch Size 16 Batch Size 1 Batch Size 4 Batch Size 16

SqueezeLLM 26.09 19.68 7.22 153.26s 333.36s OOM
LeanQuantnu 23.73 18.28 9.02 0.36s 1.34s 5.24s

LeanQuantaff 38.30 28.78 10.20 0.33s 1.23s 4.98s

Efficient LLMs Beyond quantization, various techniques have been proposed to enhance LLM effi-
ciency. KV cache compression methods such as KIVI (Liu et al.) and CQ (Zhang et al., 2025c)
reduce memory overhead by compressing key-value cache during LLM decoding. Pruning ap-
proaches, such as SparseGPT (Frantar & Alistarh, 2023), remove model parameters in a structured
or un-structured manner to create sparse, efficient models. Model sketching (Zhang et al., 2025b)
enables efficient fine-tuning by compressing LLMs and make them directly fine-tunable. Hardware-
aware optimizations, including FlashAttention (Dao et al., 2022) and NoMAD-Attention (Zhang
et al., 2025d), improve memory and compute efficiency for modern accelerators. Optimizer-state
compression techniques (Zhao et al., 2024; Zhang et al., 2025a) reduce memory usage during pre-
training and fine-tuning.

Uniform and Non-uniform Quantization Quantization techniques can be broadly categorized into
uniform (affine) and non-uniform methods. Uniform quantization (Krishnamoorthi, 2018; Frantar
et al., 2022) divides the range of values into equal-sized intervals, which is hardware-efficient but
often fails to accommodate the non-uniform distribution of the weights of deep neural networks.
Non-uniform quantization improves model compression by allocating precision dynamically based
on data distribution. Additive Powers-of-Two Quantization (Li et al.) introduces an efficient non-
uniform discretization scheme that leverages power-of-two representations. Nonuniform-to-uniform
quantization (Liu et al., 2022) bridges the gap between non-uniform and uniform quantization using
a generalized straight-through estimator for training. NUPES (Yvinec et al., 2023) formulates non-
uniform post-training quantization as a power exponent search problem. Mr.BiQ (Jeon et al., 2022)
focuses on reducing reconstruction error through post-training non-uniform quantization, improving
model performance. Methods such as non-uniform step size quantization (Oh et al., 2022) refine
quantization granularity to enhance accuracy, while learning-based approaches (Gongyo et al., 2024)
adaptively determine step sizes to optimize neural network quantization.

22

Published as a conference paper at ICLR 2025

Table 13: Total time taken by LeanQuant for quantizing different-sized LLMs, using a single L40s-
48GB GPU, an AMD EPYC 7R13 48-Core CPU, and 370GB of RAM. Llama-3.1-405B is quantized
using 2 Quadro RTX 8000 GPUs, an AMD EPYC 7742 64-Core CPU, and 1.48TB of RAM.

Model Grid Group Size Bits Time

Llama-2-7B
Affine - 4.00 14 mins
Affine 128 4.25 15 mins
Non-uniform - 4.05 35 mins

Llama-3-8B
Affine - 4.00 16 mins
Affine 128 4.25 20 mins
Non-uniform - 4.05 37 mins

Llama-2-70B
Affine - 4.00 178 mins
Non-uniform - 4.04 335 mins

Mistral-Large-Instruct-2407 (123B) Affine - 4.00 252 mins

Llama-3.1-405B Affine 128 4.25 1241 mins

Table 14: The perplexity of LeanQuant models on WikiText2 and C4, using different values of p.

WikiText2 C4

Grid Hyperparameter 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

p = 0 12.13 29.92 5,991.18 16.73 22.71 5,998.96

p = 2 5.39 5.98 25.09 7.89 8.50 20.27

p = 3 5.37 5.92 22.32 7.88 8.48 19.81
Non-uniform

p = 4 5.38 5.96 25.61 7.88 8.47 21.65

p = 0 14.52 80.54 230.66 16.94 69.04 243.65

p = 2 5.52 8.58 55.50 8.03 16.84 41.99

p = 3 5.51 6.36 18.33 8.03 8.80 20.20

Mistral-7B

Affine

p = 4 5.51 6.31 18.00 8.02 8.86 20.47

p = 0 5.69 6.76 NaN 7.15 8.23 62.00

p = 2 5.65 6.30 17.16 7.13 7.83 19.14

p = 3 5.64 6.25 17.84 7.13 7.80 19.55
Non-uniform

p = 4 5.64 6.28 15.82 7.14 7.83 18.89

p = 0 5.84 8.19 93.01 7.30 9.54 85.62

p = 2 5.77 7.33 27.82 7.27 8.83 28.86

p = 3 5.75 6.80 25.97 7.26 8.32 27.57

Llama-2-7B

Affine

p = 4 5.75 6.69 26.82 7.25 8.29 28.14

Table 15: Ablative experiments on grid point initialization.

Llama-2-7B Llama-3-8B Mistral-7B
Grid Init. 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

WikiText2
K-means++ 5.64 6.25 17.84 6.59 8.31 46.31 5.37 5.92 22.32
Uniformly Spaced (ours) 5.66 6.20 17.53 6.59 7.88 41.78 5.40 5.88 19.06

C4
K-means++ 7.13 7.80 19.55 10.17 12.53 39.86 7.88 8.48 19.81
Uniformly Spaced (ours) 7.14 7.72 18.75 10.20 12.16 36.00 7.91 8.42 17.85

23

Published as a conference paper at ICLR 2025

0

25000

50000

75000

100000

Llama­2­7B (4­bit)

0

200000

400000

600000

Llama­2­7B (3­bit)

GPTQ LeanQuantaff LeanQuantnu

0

1000000

2000000

3000000

Llama­2­7B (2­bit)

0

50000

100000

Llama­2­13B (4­bit)

0

200000

400000

600000
Llama­2­13B (3­bit)

0

1000000

2000000

Llama­2­13B (2­bit)

0

50000

100000

150000

200000

LLaMA­7B (4­bit)

0

200000

400000

600000

800000

LLaMA­7B (3­bit)

0

1000000

2000000

3000000

LLaMA­7B (2­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

50000

100000

150000

200000

LLaMA­13B (4­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

250000

500000

750000

1000000

LLaMA­13B (3­bit)

Attention­Key

Attention­Value

Attention­Query

Attention­Out

MLP­Up

MLP­Gate

MLP­Down

0

1000000

2000000

3000000

4000000

LLaMA­13B (2­bit)

S
um

 o
f L

os
s

E
rr

or

Figure 5: Comparison of loss errors ϵ of each layer for GPTQ and LeanQuant (affine and non-
uniform) during iterative quantization.

24

	Introduction
	Background
	Quantization Grid
	Iterative Loss-error-based Quantization

	Methodology
	Revisiting the Loss Error
	Loss-Error-Aware Network Quantization
	Non-Uniform Loss-Error-Aware Grid
	Loss-Error-Aware Affine Grid
	LeanQuant

	Experiments
	Main Results
	Memory and Time Efficiency
	Ablation Study

	Related Works
	Conclusion
	Explanations on Quantization Grid
	Controlling Range Shrinkage
	LeanQuant-Exact
	BERT Experiments with LeanQuant-Exact

	Robustness of LeanQuant Grids During Quantization
	Experiment Details
	Perplexity Evaluations
	LLM-as-a-Judge
	More Accuracy Results
	Quantization Cost and Overhead
	Inference Efficiency of Quantized Models
	Ablation Study
	Loss Error Comparison
	More Related Works

