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Abstract. Bayesian Optimization (BO) frameworks typically assume
the function to be optimized is stationary (homogeneous) over the
domain. However, in many real-world applications, we often deal with
functions that present a rate of variation across the input space. In this
paper, we optimize functions where a finite set of homogeneous func-
tions defined over partitions of the input space can represent the het-
erogeneity. The disconnected partitions that can be characterized by
the same function are said to be in the same class, and evaluating the
function at input returns the minimum distance to a boundary of the
contiguous class (partition). The ClassGP modeling framework, previ-
ously developed to model for such heterogenous functions along with a
novel ClassUCB acquisition function and partition sampling strategy, is
used to introduce a novel tree-based optimization framework dubbed as
ClassBO (Class Bayesian Optimization). We demonstrate the superior
performance of ClassBO against other methods via empirical evaluations.

Keywords: Bayesian Optimization · Gaussian process · Black-box
Optimization · Heterogeneous function · Non-stationary function

1 Introduction

Bayesian optimization (BO) has emerged as a powerful sequential optimization
approach for non-convex expensive to evaluate black-box functions [1,3]. The
standard BO typically assumes the function to be optimized is stationary (homo-
geneous) over the domain, which allows using a single covariance kernel function
with constant hyperparameters over the entire domain to model the function
accurately. However, in many emerging applications such as machine learning,
neural networks, and cyber-physical systems, the function to be optimized is
heterogeneous, and the standard BO framework cannot accurately model these
functions, leading to inadequate optimization performance. Often, heterogeneous
functions can be characterized by locally stationary and globally non-stationary
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functions, calling for more sophisticated optimization techniques that utilize the
underlying structure to model and optimize these functions.

Many approaches have been proposed to extend BO for heterogeneous func-
tion optimization. Bayesian treed Gaussian Process (GP) in [5] and TuRBO
in [2] use a collection of locally stationary GP’s to model and optimize hetero-
geneous functions. Various methods that use non-stationary kernels have been
proposed [4,8]. Methods in [7,9] warp the input space to a new space where the
function is stationary and the standard BO framework can be applied. Com-
pared to these methods, our approach utilizes the underlying structure, which
allows the sharing of information across non-contiguous partitions if they share
the same function, i.e., they are in the same class [6]. Specifically, we adopt the
modeling architecture presented in [6] to develop a novel tree-based optimization
algorithm.

Our contributions include: (i) A novel ClassBO framework to optimize het-
erogeneous functions; (ii) A set of novel ClassBO acquisition functions; (iii)
Empirical analysis of ClassBO with different acquisition functions and compare
it against other optimization techniques.

2 Notations and Problem Setup

We want to find the optimum of a heterogeneous function f : X ⊆ Rd → R where
the heterogeneity can be represented by a finite set of homogeneous functions
gj ’s defined over the axis-aligned partitions of the input space. Further, multiple
partitions associated with the same function belong to the same class. For many
engineering systems, the structure of the non-stationarity is known or can be
evaluated. Hence, the observation model is such that evaluating the function at
any point x reveals function evaluation (y), the class label (z), and the minimum
distance to a boundary of partition (w). The optimization problem is formally
given as follows:

argmax
x∈X

f(x) = argmax
x∈X




p∑

j=1

1{x ∈ Xj}gj(x)



 (1)

3 The ClassBO Algorithm

The ClassBO algorithm has three key components - (i) Bayesian statistical
model: the statistical modeling framework, ClassGP, introduced in [6] is used
to model heterogeneous functions by formulating a distribution over the space
of objectives and computing the posterior conditioned on the observed samples;
(ii) Acquisition functions: A set of novel ClassBO acquisition functions described
in Section 3 are used to navigate the input space efficiently; (iii) Partition sam-
pling strategy: A novel sampling strategy to learn the partitions of the input
space accurately.
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ClassUCB Acquisition Functions: BO algorithms use the acquisition func-
tion to decide where to sample in the next iteration, as the acquisition function
can quantify the potential of finding an objective maximum at any given point
in the input space. In this work, we formulate a set of novel acquisition func-
tions for the ClassBO algorithm that uses mean and uncertainty estimates of the
posterior distribution of the functions in each partition. One of the ClassUCB
acquisition functions is given as follows:

(CBO − UCB) xt = argmax
x∈Xj ,j∈[p]

(
µj,tj (x) + β1/2

tj σj,tj (x)
)

Here, for the jth partition learned using tailored CART algorithm of ClassGP,
µj,tj , σj,tj represent the posterior mean and variance respectively of the function
being modeled in the given partition after tj iterations, βtj is a parameter that
controls the trade-off between exploration and exploitation, and t is the current
iteration of the algorithm. The ClassUCB acquisition function forms a set of
points that maximize the UCB in each partition j ∈ [p] and selects the point
with maximum UCB from the set as the next sampling point.

Partition Sampling Strategy: ClassBO performs poorly when the partitions
of the input space learned by the tailored CART algorithm are inaccurate or not
complete. To resolve this, we run a proposed novel partition sampling strategy
before using ClassUCB acquisition functions for sampling. The partition sam-
pling strategy is a bottom-up approach applied to each partition learned by the
tailored CART algorithm applied to initial samples. This approach constructs
an axis-aligned hyper-rectangle for every sampled point of the length twice the
minimum distance from the boundary (w) with the sampled point at the center
and uniformly samples from the region not covered by the hyper-rectangles. This
approach guarantees all the partitions of input space are learned accurately. The
pseudo-code for the algorithm is given as follows:

Step 1: For each sampled point construct an axis-aligned hyper-rectangle
of length twice the minimum distance from the boundary with the sampled
point at the center.
Step 2: Merge hyper-rectangles that overlap or are sufficiently close within
a given partition to form a larger hyper-rectangle.
Step 3: Uniformly sample from the regions that is not covered by the hyper-
rectangles.
Step 4: Stop - If the final merged hyper-rectangle covers the entire partition
else repeat.
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Fig. 1. Maximum observed reward vs iterations to compare of performance of ClassBO
with ClassUCB acquisition functions and other baselines for fixed parameters. {number
of classes (k = 2), initial samples (n = 5), iterations (T = 100)}

4 Simulation Results

Simulations were performed over the function constructed using standard opti-
mization test functions. We plot the maximum observed reward (averaged over
multiple runs) vs iterations to compare the performance. Following parameters
are initialized for each simulation: dimension (d = 2), initial samples (n = 5),
number of partitions (p = 4, 16), number of classes (k = 2), number of iterations
(T = 100), and for a fixed set of initialized parameters 5 independent simulation
runs for each framework are performed for comparison. The results in Fig. 1(a)
shows that ClassBO outperforms BO and TuRBO algorithms. However, as the
number of partitions increase, the partitions sampling strategy ends up sam-
pling regions of lower interest to learn the partitions accurately, in turn leading
to slower convergence to the optima as observed in Fig. 1(b).

5 Conclusions and Future Work

In this paper, we propose a new tree-based ClassBO framework that uses
ClassGP modeling technique for heterogeneous functions with access to class
information. We also introduce a set of novel ClassUCB acquisition functions
and compare the performance of ClassBO against other baselines. Addition-
ally, we establish that the performance of ClassBO is heavily dependent on the
accuracy of learning the partition that contains the maximum of the objective
function. For future work, improving the sampling strategy by incorporating
uncertainties pertaining to learned partitions instead of deterministic partition
sampling strategy, scaling to higher dimensions, and theoretical analysis of the
algorithm are promising avenues to explore.
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