High-Performance Computing for Graph Al:
A Top-Down Perspective

Yuede Ji
Department of Computer Science and Engineering
University of Texas at Arlington

Abstract—A graph, made up of vertices and edges, is a natural
representation for many real-world applications. Graph artificial
intelligence (AI) techniques, especially graph neural networks
(GNNs), are becoming increasingly important in modern machine
learning and data analysis, as they can accurately represent high-
dimensional features of vertices, edges, and structure information
into low-dimensional embeddings. They have become a valuable
area of study for students in fields like computer science, data
science, and Al. However, the students are facing two challenges
to grasp the knowledge of GNNs, including (i) learning GNNs
often requires multidiscipline knowledge, and (ii) resources for
learning GNNs are often fragmented.

Motivated by that, we designed a self-contained course module
on high-performance computing for graph Al: from a top-down
perspective based on our study in this area for the past years.
In particular, we divide them into four levels from the top to
the bottom, including (i) level 1: graph theory basics, (ii) level
2: fundamental theories of GNNs, (iii) level 3: efficient graph
Al computation framework, and (iv) level 4: GPU architecture
and programming. In addition, we have disseminated part of this
module into different educational activities, such as courses and
tutorials.

This paper is submitted for the Research to Education track of
EduPar-25.

I. INTRODUCTION

A graph, made up of vertices (or nodes) and edges, is a
natural representation for many real-world applications, such
as social network [1], [2], [3], road map [4], and computer
network [5]. In recent years, there has been a great surge of
research interest on graph artificial intelligence (Al), especially
graph neural networks (GNNs), which mainly use message-
passing mechanisms to aggregate information from a vertex’s
neighbors and update its representation iteratively.

GNNss can accurately represent high-dimensional features of
vertices, edges, and structure information into low-dimensional
embeddings [6], that can be further utilized for various down-
stream tasks, such as vertex classification [7], [8], graph clas-
sification [9], and link prediction [10], [11]. Because of that,
GNNs have been applied in various real-world applications,
such as estimated time of arrival (ETA) predication in Google
Maps [12], protein structure prediction in Alphafold [13],
friend recommendation in LinkedIn [14], and code vulnera-
bility detection in cybersecurity [15].

As GNNs are becoming increasingly important in modern
machine learning and data analysis, they have become a
valuable area of study for students in fields like computer
science, data science, and AI. However, the students are
facing two challenges to grasp the knowledge of GNNs. (i)

v e teg s i
e ¥ |
Application t A i
Social network Vulnerability !
____________ analysis ______....detection |
Level 1 Graph theory basics
Level 2 Fundamental theories of GNNs
Level 3 [Efficient graph Al computation framework]
Level 4 GPU architecture and programming

Fig. 1: Overview of the proposed module of HPC for graph
Al from a top-down perspective.

Learning GNNs often requires multidiscipline knowledge, in-
cluding graph theory, Al, parallel and distributed computation,
and GPU. In addition, the students need to learn domain-
specific knowledge if they want to deploy GNNs to specific
applications, e.g., protein analysis. (ii) Resources for learning
GNNs are often fragmented across research papers, online
tutorials, and technical blogs, making it hard to follow a
cohesive learning path.

Motivated by that, we designed a self-contained course
module on high-performance computing for graph Al: from
a top-down perspective based on our study in this area for the
past ten years, including graph theory [16], [17], [18], [19],
high-performance computation (HPC) for GNN [20], [21], and
deploying graph and GNNss in real applications [22], [23], [24],
[25], [15], [26], [271, [28].

Figure | presents an overview of the proposed module. In
particular, we divide them into four levels from the top to the
bottom, including (i) level 1: graph theory basics, (ii) level
2: fundamental theories of GNNss, (iii) level 3: efficient graph
Al computation framework, and (iv) level 4: GPU architecture
and programming. We refer the top to the graph theory basics
because we believe they are the essentials of graph Al and
should be the entry-level knowledge for learning GNNs. Then,
we discuss the fundamental theories of GNNs. Next, we
introduce two efficient GNN computation frameworks. Lastly,
we refer the bottom to the low-level computation on the GPU
architecture, which could help the students understand what
actually happened during runtime.

Educational activities. We have integrated part of this mod-
ule into several educational activities. In particular, we cre-
ated a new course Advanced Topics in CSE concentrating
on graph theory and GNN. I have taught this course for
Spring 2023 and Spring 2024. In addition, I have taught
Analysis of Computer Algorithms for three semesters, where
I deeply discussed graph theory-related topics. I also dissemi-
nate part of this module into a tutorial on “Graph Algorithms”
at Digital Divas 2023 to female high school students in the
state of Texas [29].
In summary, this study makes two major contributions.

« A new perspective of teaching graph AI. We designed a
self-contained course module on high-performance com-
puting for graph Al: from a top-down perspective.

« Disseminating into courses and tutorials. We dis-
seminated part of this module into several educational
activities, including both courses and tutorials.

II. METHODOLOGY

This section briefly discusses the contents of the designed
module on HPC for GNN from the top-down perspective.

A. Level 1: Graph Theory Basics

At the first level, we discuss the basics of graph theory, which
are the fundamentals for understanding the more advanced
concepts in GNNs. We will cover two major topics, including
(i) graph basics, and (ii) fundamental graph algorithms.

Graph basics. A graph can be represented as G = (V, E),
where V is the set of vertices and E is the set of edges,
and |V| and |E| denote the number of vertices and edges in
the graph, respectively. Following that, we discuss different
types of graphs, including undirected/directed graphs, and
unweighted/weighted graphs. Next, we discuss the basic graph
properties, including degrees, (simple) paths, and subgraphs.

Fundamental graph algorithms. In this part, we discuss
two major types of graph algorithms, i.e., graph traversal,
and graph connectivity. (i) Graph traversal is a fundamental
method in graph theory. It visits all the vertices and edges
of a graph systematically, whose goal is to explore a graph.
Because of that, it often serves as a fundamental method for
other graph algorithms like searching for a specific vertex,
finding the shortest path, or analyzing connectivity. We cover
both depth-first search (DFS) and breadth-first search (BFS). In
short, DFS explores a graph by starting at a source vertex and
diving as deep as possible into one branch before backtracking.
It uses a stack to track vertices, prioritizing unvisited neighbors
of the current vertex. Differently, BFS explores a graph layer
by layer, visiting all neighbors of a vertex before moving
forward. It uses a queue to track vertices, ensuring vertices
closer to the source are visited first.

(ii) Graph connectivity algorithms answer whether two
nodes in a graph are connected under certain conditions. In an
undirected graph, the graph is considered connected if there
is a path between every pair of vertices. In a directed graph,
the graph can be strongly connected (if there is a directed
path between every pair of vertices) or weakly connected (if

- O
S 4

GNN layers
Fig. 2: Basic architecture of GNNs.

&

Layer Layer

~———

Input Output

replacing all directed edges with undirected ones results in a
connected graph). Connectivity is crucial in applications like
network design and reliability analysis.

B. Level 2: Fundamental Theories of GNNs

After understanding the basics of graph and graph theory, we
move to the discussion of GNNs. At this level, we discuss the
GNN basics and their unique computation patterns.

GNN basics. Figure 2 shows the basic architecture of
GNNs. A GNN usually takes an attributed graph as input,
which is the combination of the graph structure and vertex
features. The goal of GNN is to learn a representation for
each vertex, which can further be optimized for graph or
edge representations. Typically, existing GNNs follow a neigh-
borhood aggregation strategy, where it iteratively updates a
vertex’s representation by aggregating the representations of
its neighbors and itself. We denote a vertex v’s representation
in the k-th layer as hq(,k), with hS,O) = x,, and its neighbor
set as A/ (v). Then, GNN learns v’s representation at the k-th
layer as:

1" = Aggregate({h™ 1 u e N(v)}) M

hq()k) = Update(h(kfl), l

F0R) 0

Different GNNs define different aggregate and update func-
tions. With that, we discuss two representative GNNs, i.e.,
Graph Convolutional Network (GCN) [30] and Graph Atten-
tion Network (GAT) [31]. For example, in GCN [30], the

aggregate and update functions are defined as:

h{") = ReLU(W®) . MEAN{A{" V) :u € N(v) [Jh{1})

3)

:ReLU(3 W<’“>hg’€*1>+w<’“>h£,’“*1>) @)
ueN (v)

GNN computation patterns. After understanding the theo-
ries of GNNs, we dive deeper from the computation perspec-
tive. In particular, we look deep into the computation of one
GNN layer, which mainly follows a three-phase pattern. (i)
The features are processed by some regular neural operations,
e.g., Dropout, and Matmul. (ii) Next, all the features are fed
into a phase called Graph Convolution, in which each vertex

aggregates the features of all its neighbors and the associated
edges, applies neural operations, combines the results with its
own features, and uses a reduce operation (e.g. max, mean)
to produce a new feature vector. (iii) Then, the features are
usually applied by operations such as activation function, batch
normalization, and softmax, similar to traditional DNNs. Then,
the newly generated features will be passed to the next layer.

C. Level 3: Efficient Graph AI Computation Framework

After understanding the fundamentals of GNNs, we would
like the students to get hands-on experiences of running
GNNs with existing efficient GNN computation frameworks.
At this level, we introduce two well-maintained frameworks,
i.e., PyTorch Geometric (PyG) [32], and Deep Graph Library
(DGL) [33].

PyG is a Python library built on PyTorch that provides tools
and modules for implementing GNNs [32]. It is designed to
facilitate deep learning on graph-structured data by offering
efficient operations, predefined models, and utilities for han-
dling graphs.

Similarly, DGL is a Python-based, open-source framework
for building and training GNNs [33]. It is designed to be
scalable, flexible, and efficient, enabling researchers and de-
velopers to process and analyze graph-structured data using
neural network techniques.

With either PyG or DGL, a GNN could be simply imple-
mented in just a few lines of code. In addition, they have
integrated multiple publicly available graph datasets, which
can be easily tested.

D. Level 4: GPU Architecture and Programming

At the bottom level, we would like to discuss the GPU
architecture and programming, which served as the backend
for GNN computation frameworks. In this part, we use Nvidia
GPUs as representatives. We will discuss GPU architecture,
GPU programming, and GPU profiling.

GPU architecture. Figure 3 shows a brief overview of
the mapping between the CUDA (Compute Unified Device
Architecture) programming model and the underlying GPU
hardware. A grid maps to the whole GPU device. Then, inside
a grid, there are many blocks. From the hardware view, the
computation of one or multiple blocks are handled by one
streaming multiprocessor (SM). Inside each block, it can run
many threads. The threads are running in the CUDA cores
of an SM. Also, there is warp inside a block. It usually has
32 threads. There are also registers, and all the threads in
one block share the same L1 cache and configurable shared
memory. Further, the whole device shares the same L2 cache
and global memory.

GPU programming. CUDA-based GPU programming al-
lows users to leverage the parallel processing power of
NVIDIA GPUs for high-performance computing tasks [34].
CUDA is a parallel computing platform and API that provides
direct access to the GPU’s virtual instruction set and memory.
It enables programmers to write code in C, C++, or Python (via
libraries like PyCUDA and Numba) to execute highly parallel

Grid 0 =~ " GPU Device
Block i
Blocko = 5 [— = — —|»| Streaming Multi-
[[Registers | [[Registers] [[Registers | .- [Registers]
e T - —— = == — processor (SM)
|_y Wap_ 1™y Warp |_% Wap y Wamp
(thread 0] ! (Threadj J i Thread 0) 'y (Threadj H |-~ ~ - - pflcom] [eom
L T Y [s 1
t H
L1 Cache/ L1 Cache/
Shared memory Shared memory
¥
v v Streaming Multi-
[L2 Cache | processor (SM)
Y
x Core Core
l Global Memory |

Hardware View

Fig. 3: An overview of the GPU architecture and CUDA
programming model.

CUDA Programming View

tasks efficiently. CUDA programming involves dividing tasks
into smaller threads, organized into blocks and grids, which
run simultaneously on the GPU. In this part, we provide a
hands-on tutorial on CUDA programming with use cases of
GNNGs.

GPU profiling. GPU profiling is the process of analyzing
and optimizing the performance of applications running on a
GPU. Profiling tools, such as NVIDIA’s Nsight Systems and
Nsight Compute [35], provide insights into various metrics like
kernel execution time, memory utilization, and data transfer
between the CPU and GPU. These tools help understand
the behaviors and identify bottlenecks in parallel execution,
inefficient memory access patterns, and underutilized hardware
resources. By examining these metrics, users can have a better
idea of what is under the hood. Also, they can fine-tune their
code to improve performance, such as optimizing thread usage,
minimizing warp divergence, and ensuring efficient memory
coalescing. GPU profiling is an essential step in developing
high-performance GPU applications, enabling users to maxi-
mize computational throughput and achieve better scalability
for intensive workloads. In this part, we provide a hands-on
tutorial on profiling GPUs.

IITI. DISCUSSION AND CONCLUSION

In this work, we designed a self-contained course module on
high-performance computing for graph Al: from a top-down
perspective. In particular, we divide them into four levels from
the top to the bottom, including (i) level 1: graph theory
basics, (ii) level 2: fundamental theories of GNNs, (iii) level
3: efficient graph Al computation framework, and (iv) level
4: GPU architecture and programming. In addition, we have
disseminated part of this module into different educational
activities, such as courses and tutorials.

ACKNOWLEDGMENT

This work was supported in part by National Science Founda-
tion grants 2331301, 2409211, 2319975, 2419843. The views,
opinions, and/or findings expressed in this material are those
of the authors and should not be interpreted as representing
the official views of the National Science Foundation, or the
U.S. Government.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

J. Scott, “Social network analysis,” Sociology, 1988.

Y. Ji, Y. He, X. Jiang, J. Cao, and Q. Li, “Combating the evasion
mechanisms of social bots,” Computers & Security, 2016.

J. Cao, Q. Li, Ji, Yuede, Y. He, and D. Guo, “Detection of forwarding-
based malicious urls in online social networks,” International Journal
of Parallel Programming, vol. 44, no. 1, pp. 163-180, 2016.

L. Cao and J. Krumm, “From gps traces to a routable road map,”
Proceedings of ACM SIGSPATIAL, 2009.

K. L. Calvert, M. B. Doar, and E. W. Zegura,
topology,” IEEE Communications magazine, 1997.
Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
accuracy, scalability, and performance of graph neural networks with
roc,” Proceedings of Machine Learning and Systems, vol. 2, pp. 187—
198, 2020.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

L.-k. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process.” in AAAI 2018.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 3lIst International
Conference on Neural Information Processing Systems, 2017, pp. 1025—
1035.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” Advances in Neural Information Processing Systems, vol. 31,
pp. 5165-5175, 2018.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. Schardl, and C. Leiserson, “Evolvegcn: Evolving graph
convolutional networks for dynamic graphs,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 5363—
5370.

A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez,
M. Nunkesser, S. Lee, X. Guo, B. Wiltshire et al., “Eta prediction with
graph neural networks in google maps,” in Proceedings of the 30th ACM
international conference on information & knowledge management,
2021, pp. 3767-3776.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Zidek, A. Potapenko et al., “Highly
accurate protein structure prediction with alphafold,” nature, vol. 596,
no. 7873, pp. 583-589, 2021.

F. Borisyuk, S. He, Y. Ouyang, M. Ramezani, P. Du, X. Hou, C. Jiang,
N. Pasumarthy, P. Bannur, B. Tiwana et al., “Lignn: Graph neural
networks at linkedin,” in Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2024, pp. 4793—
4803.

Y. Ji, L. Cui, and H. H. Huang, “BugGraph: Differentiating Source-
Binary Code Similarity with Graph Triplet-Loss Network,” in /6th
ACM ASIA Conference on Computer and Communications Security
(AsiaCCS), 2021.

W. Feng, S. Chen, H. Liu, and Y. Ji, “Peek: A prune-centric approach
for k shortest path computation,” in SC, 2023.

“Modeling internet

(17]

(18]

(19] —

[20]

(21]

[22]

[23]

[24] H

[25]

[26]

(27]

[28]

[29]
(30]
[31]
[32]

(33]

[34]

[35]

Y. Ji and H. H. Huang, “Aquila: Adaptive parallel computation of graph
connectivity queries,” in Proceedings of HPDC, 2020.

Y. Ji, H. Liu, and H. H. Huang, “ispan: Parallel identification of strongly
connected components with spanning trees,” in Proceedings of SC.
IEEE, 2018.

“SwarmGraph: Analyzing Large-Scale In-Memory Graphs on
GPUs,” in International Conference on High Performance Computing
and Communications (HPCC). 1IEEE, 2020.

Q. Fu, Y. Ji, and H. H. Huang, “Tlpgnn: A lightweight two-level
parallelism paradigm for graph neural network computation on gpu,”
in HPDC, 2022.

S. Chen, D. Zheng, C. Ding, C. Huan, Y. Ji, and H. Liu, “Tango: Re-
thinking quantization for graph neural network training on gpus,” in SC,
2023.

H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang, and
Z. Xue, “Code is not natural language: Unlock the power of semantics-
oriented graph representation for binary code similarity detection,” in
The 33rd USENIX Security Symposium (USENIX Security), 2024.

L. Cui, J. Cui, Y. Ji, Z. Hao, L. Li, and Z. Ding, “Api2vec: Learning
representations of api sequences for malware detection,” in International

Symposmm on Software Testing and Analysts (ISSTA), 2023.
. He, Y. Ji, and H. H. Huang, “Illuminati: Towards Explaining

Graph Neural Networks for Cybersecurity Analysis,” in I[EEE European
Symposium on Security and Privacy (EuroS&P), 2022.

Y. Ji and H. H. Huang, “NestedGNN: Detecting Malicious Network
Activity with Nested Graph Neural Networks,” in IEEE International
Conference on Communications (ICC), 2022.

B. Bowman, C. Laprade, Y. Ji, and H. H. Huang, “Detecting lateral
movement in enterprise computer networks with unsupervised graph ai,”
in Proceedings of RAID, 2020.

Y. Ji, L. Cui, and H. H. Huang, “Vestige: Identifying Binary Code
Provenance for Vulnerability Detection,” in International Conference on
Applied Cryptography and Network Security (ACNS). Springer, 2021,
pp. 287-310.

Y. Ji, M. Elsabagh, R. Johnson, and A. Stavrou, “DEFInit: An Analysis
of Exposed Android Init Routines,” in 30th USENIX Security Symposium
(USENIX Security), 2021.

“Digital divas 2023,” https://digital-divas.weebly.com/.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ICLR, 2017.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in /CLR, 2018.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai et al., “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.

M. Harris, “Cuda 9 features revealed: Volta, cooperative groups
and more,” 2017. [Online]. Available: https://devblogs.nvidia.com/
cuda-9-features-revealed/

Nvidia, “Nvidia nsight compute,” Oct 2021.
https://developer.nvidia.com/nsight-compute

[Online]. Available:

https://digital-divas.weebly.com/
https://devblogs.nvidia.com/cuda-9-features-revealed/
https://devblogs.nvidia.com/cuda-9-features-revealed/
https://developer.nvidia.com/nsight-compute

	Introduction
	Methodology
	Level 1: Graph Theory Basics
	Level 2: Fundamental Theories of GNNs
	Level 3: Efficient Graph AI Computation Framework
	Level 4: GPU Architecture and Programming

	Discussion and Conclusion
	References

