
Fail2Progress: Learning from Failures with Stein

Variational Inference for Robot Manipulation

Yixuan Huang1, Novella Alvina1, Mohanraj Devendran Shanthi1, Tucker Hermans1,2

1University of Utah 2NVIDIA Research

Abstract—Skill effect models for long-horizon manipulation
tasks are prone to failures in conditions not covered by training
data distributions. Therefore, enabling robots to reason about
and learn from failures is necessary. We investigate the problem
of efficiently generating a dataset targeted to observed failures.
After fine-tuning a skill effect model on this dataset, we evaluate
the extent to which the model can recover from failures and
minimize future failures. We propose Fail2Progress, an approach
that leverages Stein variational inference to generate multiple
simulation environments in parallel, enabling efficient data sample
generation similar to observed failures. Our method is capable of
handling several challenging mobile manipulation tasks, including
transporting multiple objects, organizing a constrained shelf, and
tabletop organization. Through large-scale simulation and real-
world experiments, we demonstrate that our approach excels at
learning from failures across different numbers of objects. Further-
more, we show that Fail2Progress outperforms several baselines.

I. INTRODUCTION

Learned models of skill effects [46, 30, 10, 64, 2] show

promising results in solving long-horizon manipulation tasks

via skill sequencing. To train these models, researchers typically

leverage simulation to efficiently generate large-scale, diverse

data. However, robots using skill-based models in unstructured

and uncertain real-world environments will inevitably struggle

in out-of-distribution scenarios that are significantly different

from the training datasets. In response, we want our robots to

detect failures, recover from failures, and learn to minimize fu-

ture failures so that they can continuously adapt once deployed.

Skill-effects models predict the change in world state when

running a skill given an initial observation and continuous

parameters associated with the skill. These effects can be full

metric states, such as the poses of objects, or symbolic states

such as inter-object relations, logical states, or preconditions of

other skills. Within this paradigm, we define a symbolic-level

skill execution failure to occur when the world symbolic state

after execution does not match the predicted (i.e. planned)

symbolic effect state (i.e. incorrect symbolic predictions).

When operating with symbolic states, the robot does not need

to perfectly match any predicted metric state as long as the

high-level sub-goal is reached.

Assuming the robot itself does not break and other agents

do not disturb the environment, we can categorize failures

into two types: (1) those arising from incorrect symbolic

predictions (e.g., Fig. 1) and (2) those resulting from a

Sim-to-Real (Sim2Real) gap during closed-loop skill execution.

Specifically, if the system achieves the desired symbolic out-

come, it indicates there is no skill-symbolic Sim2Real gap, even

if the robot acts somewhat differently in the real world than in

the simulator. If a failure does occur, it arises either because the

trained model would incorrectly predict effects in an equivalent

simulation scenario or because the closed-loop execution in

simulation deviates significantly from its real-world execution.

The Sim2Real gap could be caused by real-world perception

noise, controller mismatch, or inaccurate physical modeling

in the simulation, among other causes (details in Appx. H). In

this paper, we investigate detecting failures, classifying failure

types, and learning from failures due to incorrect symbolic

predictions. Note that our approach is complementary to other

works [81, 78, 67] addressing the Sim2Real gap.

While a robot could learn directly from real-world failure

cases, a single failure instance is insufficient to effectively

refine modern large parameter models [13, 37, 45]. The robot

could instead try to explicitly generate more real-world failure

scenarios [41, 75], but making the robot explore in the open

environment poses risks to the robot and the surrounding

environment. To address this, Real-to-Sim (Real2Sim)

approaches [56, 11, 80] have gained popularity in robot manip-

ulation, as they enable safe and efficient creation of simulation

environments. Nevertheless, current methods emphasize high-

fidelity simulations, which can be computationally expensive

and require extensive fine-tuning [56, 11] or environment

scanning [80]. Therefore, generating diverse data conditioned

on failure cases efficiently and safely to improve skill effect

models is an important and open question to address.

In this work, we advocate for generating low-fidelity simula-

tion environments informed by real-world failures. We can gen-

erate such simulation datasets efficiently and safely to fine-tune

skill effect models to minimize future failures in long-horizon

tasks. Recent progress in physical simulation [55, 61] has

shown success in accelerating simulation by running multiple

environments in parallel on graphics processing units (GPUs).

To leverage the power of parallel simulation, we propose to gen-

erate multiple simulation states in parallel. To this end, we for-

mulate a variational inference problem to generate datasets tar-

geted to observed failures for use in refining a skill effect model.

To efficiently generate samples in parallel, we propose using

Stein variational inference (SVI) [63] as our variational solver.

We introduce Fail2Progress, which employs SVI to generate

a simulation dataset informed by failure cases to enhance the

skill effect model. When the robot detects a real-world failure

occurrence, it records the relevant state information (e.g.,

object relations), observation, and the executed robot skill

associated with the failure. Given this, Fail2Progress generates

a simulation dataset that approximates the joint distribution

of states that match the observed failure and actions that

maximize the robot’s information gain [74] of its current skill

A skill effect model can be trained with a large-scale

simulation dataset D={(st,Ot,φt,at,st+1,Ot+1)}, where Ot

represents the observation at time t as segmented point clouds

and st represents the simulation state information including

geometric information like object pose and physical information

like the object friction parameters and φt represents the skill to

execute on the simulated robot with corresponding continuous

parameters at. Given the initial simulation state st, we can get

the effects of the skill φt(at). The ground-truth relations rt are

a function of the simulation state st. We train the model, Γ, with

the dataset, D. The trained model can predict the probability

of achieving specific relations based on an initial point clouds

observation, O0, a robot skill sequence, and a training dataset as

Γ(r|O0,φ1:H ,a1:H ,D), where r∈R. Given a goal, G, defined

as a conjunction of desired relations g1 ∧ ... ∧ gM , gi ∈ R.

The planning objective is to find a skill sequence φ1:H(a1:H)
that maximizes the probability that the goal relations are

achieved p(G|O0, φ1:H , a1:H ,D), where the plan skeletons

φ1:H could be generated using any number of techniques

such as: foundation models [30, 48], graph search [31], or

other classical planners [24]. Given the skeleton, one can

maximize the planning objective using standard numerical

optimization techniques such as a shooting method [30, 2, 48]

or a cross-entropy method [31, 29, 32]) to generate continuous

parameters a1:H . For more details (e.g., implementation

details) about the skill effect model, please refer to Appx. L.

IV.

DETECTING AND CLASSIFYING FAILURES AUTONOMOUSLY

Consider a robot operating using a skill effect model Γ
trained on some dataset, D. A user tasks the robot to achieve a

goal, G. Given an initial observation, O0, its skill effect model,

and the goal, the robot plans a skill sequence, φ1:H(a1:H).
In addition to the skill sequence itself the skill effect model

predicts a sequence of expected relations, R′
k (i.e. symbolic

states) that the robot will observe after executing each skill in

its sequence for k=1,...,H . The robot now begins executing

its skills following the plan. After each skill execution in the

sequence, the robot can observe the current scene, Ok, and

detect the current symbolic state as R̂k. When the observed

relations, R̂k, don’t match the predicted relations, R′
k, the

robot detects that it has failed to achieve the current subtask.

In the case of a detected failure, the robot stores the

associated failure event in order to learn from it. We define

a failure event to include the relevant observations, relations

(i.e. symbolic states), and skill associated with the failure:

F =(OF =Ok−1,R
F = R̂k−1,φ

F =φk,R
F ′= R̂k). Once the

robot has detected a failure, it will classify the failure category.

It first reconstructs the same simulation based on observation

OF and predicts the relational effects of the action φk(ak)
as R′′

k . If the simulation relational effects R′′
k match the

real-world relational effects R′
k, then the robot will classify

this failure as stemming from incorrect symbolic predictions.

Otherwise, this failure is classified as a Sim2Real gap. We

now consider the problem of learning from the failure instance

to improve the skill effect model Γ.

V. GENERATING

TARGETED DATASETS TO LEARN FROM FAILURE

Since modern, large neural networks typically cannot learn

from a single failure instance [13, 37, 45], we pose the problem

of learning from failures as a problem of efficiently collecting a

new dataset D+. Determining which data points from an infinite

possible set to generate and label can naturally be defined

as an active learning problem [69, 14, 53, 74]. From this

perspective, we can quantify the effectiveness of the generated

additional training dataset D+ using the expected information

gain criteria [74]. However, we want to target our new

dataset to be similar to the scenario in which the robot failed,

something which information gain alone does not address.

We thus define our problem as finding a dataset D+ that

yields high expected information gain in terms of improvement

in the predictions from Γ associated with the detected failure.

At the same time, we ensure that the samples in D+ have a

high probability of the same relations observed by the robot

prior to executing the failed skill. Let us first define the form of

a single sample d+i ∈D
+, as d+i =(s+i ,O

+
i ,φ

F ,a+i ,s
++
i ,O++

i).
Note that the skill, φF , is fixed for all samples to be the

skill that failed to achieve the subtask. Next let us define the

results of evaluating the sample action a+i in the simulator f

as s++
i =f(s+i ,φ

F ,a+i), which when rendered defines the post

skill observation O++
i =Ψ(s++

i). We also render pre-action

states to observations as O+
i =Ψ(s+i). Thus, samples in D+

have only two free variables for us to search over: the initial

simulator state, s+i ; and the action to execute a+i . We will use

S+ to denote the set of state samples, {s+} in D+, and S

to denote the random variable associated with the state. We

will use a similar notation for actions and observations.

We can formalize our dataset generation problem as the fol-

lowing constrained optimization problem, noting that maximiz-

ing the expected information gain is equivalent to maximizing

the KL-divergence between the predictive distributions of the

updated model Γ+ fine-tuned on D+, and the original model Γ

argmax
D+

DKL

(

∏

r∈RF ′

Γ+(r|O,φF ,A,D∪D+)

∥

∥

∥

∥

∥

∏

r∈RF ′

Γ(r|O,φF ,A,D)

)

(1a)

subject to S+∼P (RF ,OF |S) (1b)

Thus, we must find a set of simulator states, S+, and actions

A+ which maximize the active learning objective, while also

ensuring the sample states would generate the same relations

and point cloud observations observed by the robot before the

failure. This distribution in Eq. 1b factorizes as

P (RF ,OF |S)=
∏

r∈RF

Γ(r|O=Ψ(S))P (OF |S)P (S) (2)

where the first term, Γ(r|O=Ψ(S)), encodes the objective of

finding states in the simulator that achieve the same relations

when rendered and evaluated by the skill effect model. The

second term, P (OF |S), ensures that we generate point clouds

that match the failure observation. The final term, P (S),
encodes a prior over valid states in the simulator.

This formulation presents several computational challenges.

(1) The objective in Eq. 1a is intractable because there exists

an infinite number of possible datasets, D+. (2) Evaluating

Eq. 1 requires running the simulator to generate all samples in

the putative D+ and retraining the skill effect model Γ for each

possible dataset. (3) Finding simulator states s+i that render

to point clouds matching the failure observation, amounts

to an inverse problem over object geometries and poses. (4)

Ensuring that the states obey the constraint while maximizing

the objective defines a high-dimensional, non-convex problem.

A. Approximate Constrained Expected Information Gain

We propose two specific approximations to the problem

defined in Eq. 1 in order to make the problem tractable. We

can summarize these approximations in the following problem:

argmax
S+,A+

∏

r∈RF ′

H
(

Γ(r |ξ(S)OF ,φF ,A,D)
)

(3a)

subject to S+∼Γ(rF |O=ξ(S)OF)P (S) (3b)

Here we have replaced the expected information gain objective

in Eq. 1a with the entropy defined over the epistemic uncer-

tainty [33, 36] of the currently trained model, Γ(·,D), where

H(P (Y |X)) =−
∑

y∈Y P (Y = y |X)lnP (Y =y |X). As a

common approximation widely used in active learning [69, 14],

this allows us to avoid running the simulator and fine-tuning

at each iteration of dataset optimization, thereby simplifying

the objective. The distribution defined in Eq. 2 implies that

one needs to search over object poses and geometries that

match the appearance of the partial-view point clouds observed

during the failure event. This defines an infinitely large space of

possible object shapes, which we wish to avoid searching over.

Instead, we simplify the constraint to transpose the poses of the

individual object point clouds in OF , while ensuring that the

point clouds still achieve the same relations when evaluated by

the detector, i.e. Γ evaluated without any actions. We denote by

ξ(s)OF the segment-wise transformation of the point cloud to

the poses defined by the state vector s. Note, this allows us to

search over object poses without using the full physics simulator

or renderer. We use the simulator to generate D+ after finding

S+ and A+. We describe how we instantiate this transformed

point cloud to a full object for the simulator in Sec V-C.

B. Generating Datasets via Stein Variational Inference

We approximately solve the constrained optimization in Eq. 3

in two stages. First, we find a set of state samples S+ that

approximates the posterior distribution defined by Eq. 3b. We

formulate finding this set as a variational inference problem.

Then keeping S+ fixed, we solve for the continuous action pa-

rameters A+ that maximize Eq. 3a using generalized Bayesian

inference [58, 63]. To solve both inference problems, we lever-

age Stein variational gradient descent which we now review.

Stein Variational Gradient Descent: In variational

inference one defines a tractable distribution q(X) to

approximate the target distribution P (X) [8]. One then

optimizes over the parameters defining the variational

distribution q in order to minimize the KL-divergence between

the variational distribution and the target distribution P (X)

as argmin
q(X)

DKL

(

q(X)
∥

∥ P (X)
)

. Stein variational inference

represents the posterior as a set of particles q = {xi}
M
i=1.

Stein variational gradient descent [50] (SVGD) leverages

gradient-based optimization to guide the particles in a

direction that minimizes the KL divergence. SVGD performs

efficient approximate inference through parallel gradient-based

optimization and can contend with high-dimensional and

multi-modal posterior distributions. An SVGD particle xi

is updated at iteration k as x
+(k)
i ← x

+(k−1)
i +ηΦ(x

+(k−1)
i),

where Φ is the Stein variational gradient computed using the

Stein operator and a kernel k(x+
j ,x

+
i). In this paper, we use

a radial basis function (i.e. squared-exponential) kernel and

set its kernel bandwidth using the median heuristic [63, 21].

In the case of generalized Bayesian inference (GBI),

we modify the variational inference objective to account

for defining a loss function over our variables instead of

a traditional likelihood [58, 63]. Given a loss function

L(Y, X) for an arbitrary random variable X and some

observations Y , GBI defines the following approximate

posterior PL(X | Y) ∝ P (x)exp(−βL(Y,X)). We can then

use this approximate posterior within a Stein variational

inference framework by solving the following problem

argmin
q∈Q

βEX∼q[L(X,Y)]+DKL

(

q(X)
∥

∥P (X)
)

.

Generating State Samples: We want to find samples

q(S) = {s+i }
M
i=1 that approximate the posterior distribution

P (rF |O+ = ξ(S)OF)P (S), where P (S) is a uniform prior

over all feasible states. The posterior distribution ensures that

the transformed point clouds match the relations in the failure

case rF . This defines the following variational inference

problem: argmin
q(S)

DKL

(

q(S)
∥

∥ Γ(rF | O+ = ξ(S)OF)P (S)
)

and it’s solved by using SVI.

Generating Action Samples: Given our state samples

generated using Stein variational inference to approximate

the distribution in Eq. 3b, we can now turn our attention to

solving for the action set A+. To formulate this problem we

make use of the generalized Bayesian inference framework

outlined above. Here we define the loss function, L, to be the

entropy loss defined in Eq. 3a and let β=1. The variational

distribution takes the form q(A) = {(s+i ,a
+
i)}

M
i=1, where we

keep the values of s+i fixed and search only over actions. This

defines the following variational inference problem:

argmin
q(A)

Es+,a+∈q(A)

[

∏

r∈RF

−H(Γ(r |ξ(s+)OF ,φF ,a+,D))

]

+ DKL

(

A+
∥

∥P (A)
)

(4)

where P (A) is uniform prior over actions. We solve the

variational inference problem for generating state and action

samples using SVI. We provide the details in Appx. N.

REFERENCES

[1] Christopher Agia, Krishna Murthy Jatavallabhula,

Mohamed Khodeir, Ondrej Miksik, Vibhav Vineet,

Mustafa Mukadam, Liam Paull, and Florian Shkurti.

Taskography: Evaluating robot task planning over large

3d scene graphs. In Conference on Robot Learning,

pages 46–58. PMLR, 2022.

[2] Christopher Agia, Toki Migimatsu, Jiajun Wu, and

Jeannette Bohg. Stap: Sequencing task-agnostic policies.

In 2023 IEEE International Conference on Robotics and

Automation (ICRA), pages 7951–7958. IEEE, 2023.

[3] Christopher Agia, Rohan Sinha, Jingyun Yang, Ziang

Cao, Rika Antonova, Marco Pavone, and Jeannette

Bohg. Unpacking failure modes of generative policies:

Runtime monitoring of consistency and progress. In

8th Annual Conference on Robot Learning, 2024. URL

https://openreview.net/forum?id=yqLFb0RnDW.

[4] Alper Ahmetoglu, Batuhan Celik, Erhan Oztop, and

Emre Ugur. Discovering predictive relational object

symbols with symbolic attentive layers. IEEE Robotics

and Automation Letters, 2024.

[5] Pasquale Antonante, David I Spivak, and Luca Carlone.

Monitoring and diagnosability of perception systems. In

2021 IEEE/RSJ international conference on intelligent

robots and systems (IROS), pages 168–175. IEEE, 2021.

[6] Rika Antonova, Jingyun Yang, Priya Sundaresan,

Dieter Fox, Fabio Ramos, and Jeannette Bohg. A

bayesian treatment of real-to-sim for deformable object

manipulation. IEEE Robotics and Automation Letters,

7(3):5819–5826, 2022.

[7] Lucas Barcelos, Alexander Lambert, Rafael Oliveira,

Paulo Borges, Byron Boots, and Fabio Ramos. Dual

Online Stein Variational Inference for Control and Dy-

namics. In Proceedings of Robotics: Science and Systems,

Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.068.

[8] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe.

Variational inference: A review for statisticians. Journal of

the American Statistical Association, 112(518):859–877,

apr 2017. doi: 10.1080/01621459.2017.1285773. URL

https://doi.org/10.1080%2F01621459.2017.1285773.

[9] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk,

Miles Macklin, Jan Issac, Nathan Ratliff, and Dieter

Fox. Closing the sim-to-real loop: Adapting simulation

randomization with real world experience. In 2019

International Conference on Robotics and Automation

(ICRA), pages 8973–8979. IEEE, 2019.

[10] Haonan Chen, Yilong Niu, Kaiwen Hong, Shuijing

Liu, Yixuan Wang, Yunzhu Li, and Katherine Rose

Driggs-Campbell. Predicting object interactions with

behavior primitives: An application in stowing tasks. In

7th Annual Conference on Robot Learning, 2023. URL

https://openreview.net/forum?id=VH6WIPF4Sj.

[11] Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun

Mo, Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox,

and Abhishek Gupta. Urdformer: A pipeline for construct-

ing articulated simulation environments from real-world

images. arXiv preprint arXiv:2405.11656, 2024.

[12] Shuo Cheng and Danfei Xu. League: Guided skill

learning and abstraction for long-horizon manipulation.

IEEE Robotics and Automation Letters, 2023.

[13] Open X-Embodiment Collaboration, Abby O’Neill,

Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri,

Abhishek Gupta, Abhishek Padalkar, Abraham Lee,

Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya

Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex

Irpan, Alexander Khazatsky, Anant Rai, Anchit Gupta,

Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh

Garg, Aniruddha Kembhavi, Annie Xie, Anthony Brohan,

Antonin Raffin, Archit Sharma, Arefeh Yavary, Arhan

Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-

Limerick, Beomjoon Kim, Bernhard Schölkopf, Blake

Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte

Le, Chelsea Finn, Chen Wang, Chenfeng Xu, Cheng

Chi, Chenguang Huang, Christine Chan, Christopher

Agia, Chuer Pan, Chuyuan Fu, Coline Devin, Danfei Xu,

Daniel Morton, Danny Driess, Daphne Chen, Deepak

Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman,

Dmitry Kalashnikov, Dorsa Sadigh, Edward Johns, Ethan

Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu

Zhao, Felipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou,

Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan, Gilbert

Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn,

Guangwen Yang, Guanzhi Wang, Hao Su, Hao-Shu Fang,

Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I

Christensen, Hiroki Furuta, Homanga Bharadhwaj, Homer

Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija

Radosavovic, Isabel Leal, Jacky Liang, Jad Abou-Chakra,

Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider,

Jasmine Hsu, Jay Vakil, Jeannette Bohg, Jeffrey Bingham,

Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu, Jialin

Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon

Oh, Jimmy Wu, Jingpei Lu, Jingyun Yang, Jitendra Malik,

João Silvério, Joey Hejna, Jonathan Booher, Jonathan

Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim,

Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl Pertsch,

Karol Hausman, Keegan Go, Keerthana Gopalakrishnan,

Ken Goldberg, Kendra Byrne, Kenneth Oslund, Kento

Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang,

Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan

Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap

Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent

Itti, Lawrence Yunliang Chen, Lerrel Pinto, Li Fei-Fei,

Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca

Weihs, Magnum Chen, Marion Lepert, Marius Memmel,

Masayoshi Tomizuka, Masha Itkina, Mateo Guaman

Castro, Max Spero, Maximilian Du, Michael Ahn,

Michael C. Yip, Mingtong Zhang, Mingyu Ding, Minho

Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin

Kim, Naoaki Kanazawa, Nicklas Hansen, Nicolas Heess,

Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di

Palo, Nur Muhammad Mahi Shafiullah, Oier Mees,

Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,

Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng

Xu, Peter David Fagan, Peter Mitrano, Pierre Sermanet,

Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan

Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto

Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose

Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell

Mendonca, Rutav Shah, Ryan Hoque, Ryan Julian,

Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan

Lin, Sherry Moore, Shikhar Bahl, Shivin Dass, Shubham

Sonawani, Shubham Tulsiani, Shuran Song, Sichun

Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon

Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal,

Stefan Welker, Stephen Tian, Subramanian Ramamoorthy,

Sudeep Dasari, Suneel Belkhale, Sungjae Park, Suraj

Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta,

Tatsuya Harada, Tatsuya Matsushima, Ted Xiao, Thomas

Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z.

Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung,

Vidhi Jain, Vikash Kumar, Vincent Vanhoucke, Wei

Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen,

Xiangyu Chen, Xiaolong Wang, Xinghao Zhu, Xinyang

Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong

Pang, Yao Lu, Yecheng Jason Ma, Yejin Kim, Yevgen

Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu,

Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung

Cho, Youngwoon Lee, Yuchen Cui, Yue Cao, Yueh-Hua

Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan

Jiang, Yunshuang Li, Yunzhu Li, Yusuke Iwasawa,

Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui,

Zichen Zhang, Zipeng Fu, and Zipeng Lin. Open

X-Embodiment: Robotic learning datasets and RT-X

models. https://arxiv.org/abs/2310.08864, 2023.

[14] Adam Conkey and Tucker Hermans. Active Learning of

Probabilistic Movement Primitives. In IEEE-RAS Interna-

tional Conference on Humanoid Robotics (Humanoids),

10 2019. URL https://arxiv.org/abs/1907.00277.

[15] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling,

Tomás Lozano-Pérez, and Caelan Reed Garrett. Long-

horizon manipulation of unknown objects via task and

motion planning with estimated affordances. In 2022

International Conference on Robotics and Automation

(ICRA), pages 1940–1946. IEEE, 2022.

[16] Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep

visual reasoning: Learning to predict action sequences

for task and motion planning from an initial scene image.

In Proceedings of Robotics: Science and Systems, 2020.

URL https://arxiv.org/abs/2006.05398.

[17] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil

Raju, Jessica Landon, Felix Hill, Nando de Freitas,

and Serkan Cabi. Vision-language models as success

detectors. arXiv preprint arXiv:2303.07280, 2023.

[18] Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru

Wang, Shulin Tian, Wentao Yuan, Ranjay Krishna,

Dieter Fox, Ajay Mandlekar, and Yijie Guo. Aha:

A vision-language-model for detecting and reasoning

over failures in robotic manipulation. arXiv preprint

arXiv:2410.00371, 2024.

[19] Amine Elhafsi, Rohan Sinha, Christopher Agia, Edward

Schmerling, Issa AD Nesnas, and Marco Pavone.

Semantic anomaly detection with large language models.

Autonomous Robots, 47(8):1035–1055, 2023.

[20] Alec Farid, David Snyder, Allen Z Ren, and Anirudha

Majumdar. Failure prediction with statistical guarantees

for vision-based robot control. arXiv preprint

arXiv:2202.05894, 2022.

[21] Damien Garreau, Wittawat Jitkrittum, and Motonobu

Kanagawa. Large sample analysis of the median heuristic.

arXiv preprint arXiv:1707.07269, 2017.

[22] Caelan Reed Garrett, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling. Sample-based methods

for factored task and motion planning. In

Robotics: Science and Systems, 2017. URL

https://dspace.mit.edu/bitstream/handle/1721.1/137701/

garrett-rss17.pdf?sequence=2&isAllowed=y.

[23] Caelan Reed Garrett, Tomás Lozano-Pérez, and

Leslie Pack Kaelbling. Pddlstream: Integrating symbolic

planners and blackbox samplers via optimistic adaptive

planning. In Proceedings of the International Conference

on Automated Planning and Scheduling, volume 30, pages

440–448, 2020. URL https://arxiv.org/abs/1802.08705.

[24] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay,

Beomjoon Kim, Tom Silver, Leslie Pack Kaelbling,

and Tomás Lozano-Pérez. Integrated task and

motion planning. Annual review of control, robotics,

and autonomous systems, 4:265–293, 2021. URL

https://arxiv.org/abs/2010.01083.

[25] Walter R Gilks and Pascal Wild. Adaptive rejection

sampling for gibbs sampling. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 41(2):

337–348, 1992.

[26] Eric Heiden, Ziang Liu, Vibhav Vineet, Erwin Coumans,

and Gaurav S Sukhatme. Inferring articulated rigid

body dynamics from rgbd video. In 2022 IEEE/RSJ

International Conference on Intelligent Robots and

Systems (IROS), pages 8383–8390. IEEE, 2022.

[27] Kohei Honda, Naoki Akai, Kosuke Suzuki, Mizuho Aoki,

Hirotaka Hosogaya, Hiroyuki Okuda, and Tatsuya Suzuki.

Stein variational guided model predictive path integral con-

trol: Proposal and experiments with fast maneuvering vehi-

cles. In 2024 IEEE International Conference on Robotics

and Automation (ICRA), pages 7020–7026. IEEE, 2024.

[28] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky

Liang, Pete Florence, Andy Zeng, Jonathan Tompson,

Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas

Jackson, Noah Brown, Linda Luu, Sergey Levine, Karol

Hausman, and brian ichter. Inner monologue: Embodied

reasoning through planning with language models. In

6th Annual Conference on Robot Learning, 2022. URL

https://openreview.net/forum?id=3R3Pz5i0tye.

[29] Yixuan Huang, Adam Conkey, and Tucker Hermans.

Planning for Multi-Object Manipulation with Graph

Neural Network Relational Classifiers. In IEEE

International Conference on Robotics and Automation

(ICRA), 2023. URL https://arxiv.org/abs/2209.11943.

[30] Yixuan Huang, Christopher Agia, Jimmy Wu, Tucker

Hermans, and Jeannette Bohg. Points2plans: From point

clouds to long-horizon plans with composable relational

dynamics. arXiv preprint arXiv:2408.14769, 2024.

[31] Yixuan Huang, Nichols Crawford Taylor, Adam Conkey,

Weiyu Liu, and Tucker Hermans. Latent Space Planning

for Multi-Object Manipulation with Environment-Aware

Relational Classifiers. IEEE Transactions on Robotics

(T-RO), 2024. URL https://arxiv.org/pdf/2305.10857.pdf.

[32] Yixuan Huang, Jialin Yuan, Chanho Kim, Pupul Pradhan,

Bryan Chen, Li Fuxin, and Tucker Hermans. Out of

Sight, Still in Mind: Reasoning and Planning about

Unobserved Objects with Video Tracking Enabled

Memory Models. In IEEE International Conference on

Robotics and Automation (ICRA), 2024.

[33] Eyke Hüllermeier and Willem Waegeman. Aleatoric

and epistemic uncertainty in machine learning: An

introduction to concepts and methods. Machine learning,

110(3):457–506, 2021.

[34] Arda Inceoglu, Eren Erdal Aksoy, Abdullah Cihan Ak, and

Sanem Sariel. Fino-net: A deep multimodal sensor fusion

framework for manipulation failure detection. In 2021

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 6841–6847. IEEE, 2021.

[35] Zhenyu Jiang, Cheng-Chun Hsu, and Yuke Zhu. Ditto:

Building digital twins of articulated objects from

interaction. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages

5616–5626, 2022.

[36] Alex Kendall and Yarin Gal. What uncertainties do we

need in bayesian deep learning for computer vision?

Advances in neural information processing systems, 30,

2017.

[37] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin

Balakrishna, Sudeep Dasari, Siddharth Karamcheti,

Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yun-

liang Chen, Kirsty Ellis, Peter David Fagan, Joey Hejna,

Masha Itkina, Marion Lepert, Yecheng Jason Ma,

Patrick Tree Miller, Jimmy Wu, Suneel Belkhale, Shivin

Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon

Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic,

Kaiyuan Wang, Albert Zhan, Kevin Black, Cheng Chi,

Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat,

Abdul Rehman, Pannag R Sanketi, Archit Sharma, Cody

Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,

Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z.

Zhao, Christopher Agia, Rohan Baijal, Mateo Guaman

Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn

Drake, Ethan Paul Foster, Jensen Gao, David Antonio

Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon

Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy

Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani,

Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario

Scalise, Derick Seale, Victor Son, Stephen Tian, Emi

Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun

Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen

Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta,

Abhishek Gupta, Dinesh Jayaraman, Joseph J Lim,

Jitendra Malik, Roberto Martı́n-Martı́n, Subramanian

Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu,

Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine,

and Chelsea Finn. Droid: A large-scale in-the-wild robot

manipulation dataset. 2024.

[38] Beomjoon Kim, Zi Wang, Leslie Pack Kaelbling, and

Tomás Lozano-Pérez. Learning to guide task and

motion planning using score-space representation. The

International Journal of Robotics Research, 38(7):

793–812, 2019. URL https://arxiv.org/abs/1807.09962.

[39] Diederik P Kingma. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[40] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi

Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,

Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,

et al. Segment anything. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages

4015–4026, 2023.

[41] Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng

Zhao, Stephen Proulx, Tomás Lozano-Pérez, Leslie Pack

Kaelbling, and Jennifer Barry. Practice makes perfect:

Planning to learn skill parameter policies. In Robotics:

Science and Systems (RSS), 2024.

[42] Alexander Lambert and Byron Boots. Entropy regularized

motion planning via stein variational inference. arXiv

preprint arXiv:2107.05146, 2021.

[43] Alexander Lambert, Brian Hou, Rosario Scalise,

Siddhartha S Srinivasa, and Byron Boots. Stein

variational probabilistic roadmaps. In 2022 International

Conference on Robotics and Automation (ICRA), pages

11094–11101. IEEE, 2022.

[44] Yewon Lee, Andrew Z Li, Philip Huang, Eric Heiden,

Krishna Murthy Jatavallabhula, Fabian Damken, Kevin

Smith, Derek Nowrouzezahrai, Fabio Ramos, and Florian

Shkurti. Stamp: Differentiable task and motion planning

via stein variational gradient descent. arXiv preprint

arXiv:2310.01775, 2023.

[45] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J

Smola. Efficient mini-batch training for stochastic

optimization. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and

data mining, pages 661–670, 2014.

[46] Jacky Liang, Mohit Sharma, Alex LaGrassa, Shivam

Vats, Saumya Saxena, and Oliver Kroemer. Search-Based

Task Planning with Learned Skill Effect Models for

Lifelong Robotic Manipulation. In IEEE International

Conference on Robotics and Automation (ICRA), 2022.

URL https://arxiv.org/abs/2109.08771.

[47] Vincent Lim, Huang Huang, Lawrence Yunliang Chen,

Jonathan Wang, Jeffrey Ichnowski, Daniel Seita, Michael

Laskey, and Ken Goldberg. Planar robot casting with

real2sim2real self-supervised learning. arXiv preprint

arXiv:2111.04814, 2021.

[48] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco

Pavone, and Jeannette Bohg. Text2motion: From natural

language instructions to feasible plans. Autonomous

Robots, 47(8):1345–1365, 2023.

[49] Peiqi Liu, Zhanqiu Guo, Mohit Warke, Soumith Chintala,

Chris Paxton, Nur Muhammad Mahi Shafiullah, and

Lerrel Pinto. Dynamem: Online dynamic spatio-semantic

memory for open world mobile manipulation. arXiv

preprint arXiv:2411.04999, 2024.

[50] Qiang Liu and Dilin Wang. Stein variational gradient

descent: A general purpose bayesian inference algorithm.

Advances in neural information processing systems, 29,

2016.

[51] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao

Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang

Su, Jun Zhu, et al. Grounding dino: Marrying dino

with grounded pre-training for open-set object detection.

arXiv preprint arXiv:2303.05499, 2023.

[52] Zeyi Liu, Arpit Bahety, and Shuran Song. Reflect:

Summarizing robot experiences for failure explanation

and correction. arXiv preprint arXiv:2306.15724, 2023.

[53] Qingkai Lu, Mark Van der Merwe, and Tucker Hermans.

Multi-Fingered Active Grasp Learning. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems

(IROS), 10 2020. URL https://arxiv.org/abs/2006.05264.

[54] Liqian Ma, Jiaojiao Meng, Shuntao Liu, Weihang Chen,

Jing Xu, and Rui Chen. Sim2real 2: Actively building

explicit physics model for precise articulated object

manipulation. In 2023 IEEE International Conference on

Robotics and Automation (ICRA), pages 11698–11704.

IEEE, 2023.

[55] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong

Guo, Michelle Lu, Kier Storey, Miles Macklin, David

Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,

et al. Isaac gym: High performance gpu-based

physics simulation for robot learning. In Advances in

Neural Information Processing Systems, 2021. URL

https://sites.google.com/view/isaacgym-nvidia.

[56] Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran

Song. Real2code: Reconstruct articulated objects via

code generation. arXiv preprint arXiv:2406.08474, 2024.

[57] Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel

Chang, and Manolis Savva. Multiscan: Scalable rgbd

scanning for 3d environments with articulated objects.

Advances in neural information processing systems, 35:

9058–9071, 2022.

[58] Takuo Matsubara, Jeremias Knoblauch, François-Xavier

Briol, and Chris J Oates. Robust generalised bayesian

inference for intractable likelihoods. Journal of the Royal

Statistical Society Series B: Statistical Methodology, 84

(3):997–1022, 2022.

[59] Marius Memmel, Andrew Wagenmaker, Chuning Zhu,

Patrick Yin, Dieter Fox, and Abhishek Gupta. Asid:

Active exploration for system identification in robotic

manipulation. arXiv preprint arXiv:2404.12308, 2024.

[60] Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen,

and Danfei Xu. Generative skill chaining: Long-horizon

skill planning with diffusion models. In Conference on

Robot Learning, pages 2905–2925. PMLR, 2023.

[61] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu,

Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh,

Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck

Babich, Gavriel State, Marco Hutter, and Animesh

Garg. Orbit: A unified simulation framework for

interactive robot learning environments. IEEE Robotics

and Automation Letters, 8(6):3740–3747, 2023. doi:

10.1109/LRA.2023.3270034.

[62] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library.

In Advances in Neural Information Processing Systems

32, pages 8024–8035. Curran Associates, Inc., 2019.

[63] Jana Pavlasek, Stanley Robert Lewis, Balakumar

Sundaralingam, Fabio Ramos, and Tucker Hermans.

Ready, set, plan! planning to goal sets using

generalized bayesian inference. In 7th Annual

Conference on Robot Learning, 2023. URL

https://openreview.net/forum?id=5JMGq83yf1N.

[64] Chris Paxton, Chris Xie, Tucker Hermans, and Dieter Fox.

Predicting Stable Configurations for Semantic Placement

of Novel Objects. In Conference on Robot Learning

(CoRL), 11 2021. URL https://arxiv.org/abs/2108.12062.

[65] Thomas Power and Dmitry Berenson. Constrained stein

variational trajectory optimization. IEEE Transactions

on Robotics, 2024.

[66] Shengyi Qian, Linyi Jin, Chris Rockwell, Siyi Chen, and

David F Fouhey. Understanding 3d object articulation

in internet videos. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 1599–1609, 2022.

[67] Fabio Ramos, Rafael Carvalhaes Possas, and Dieter

Fox. Bayessim: adaptive domain randomization via

probabilistic inference for robotics simulators. arXiv

preprint arXiv:1906.01728, 2019.

[68] Krishan Rana, Jesse Haviland, Sourav Garg, Jad

Abou-Chakra, Ian Reid, and Niko Suenderhauf.

Sayplan: Grounding large language models using

3d scene graphs for scalable task planning. In 7th

Annual Conference on Robot Learning, 2023. URL

https://openreview.net/forum?id=wMpOMO0Ss7a.

[69] Burr Settles. Active learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning, 6(1):1–114,

6 2012.

[70] Naman Shah, Jayesh Nagpal, Pulkit Verma, and Siddharth

Srivastava. From reals to logic and back: Inventing

symbolic vocabularies, actions and models for planning

from raw data. arXiv preprint arXiv:2402.11871, 2024.

[71] Rutav Shah, Albert Yu, Yifeng Zhu, Yuke Zhu, and

Roberto Martı́n-Martı́n. Bumble: Unifying reasoning and

acting with vision-language models for building-wide

mobile manipulation. arXiv preprint arXiv:2410.06237,

2024.

[72] Apoorva Sharma, Navid Azizan, and Marco Pavone.

Sketching curvature for efficient out-of-distribution

detection for deep neural networks. In Uncertainty in

artificial intelligence, pages 1958–1967. PMLR, 2021.

[73] Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew

Foutter, Edward Schmerling, and Marco Pavone. Real-

time anomaly detection and reactive planning with large

language models. arXiv preprint arXiv:2407.08735, 2024.

[74] Freddie Bickford Smith, Andreas Kirsch, Sebastian

Farquhar, Yarin Gal, Adam Foster, and Tom Rainforth.

Prediction-oriented bayesian active learning. In

International Conference on Artificial Intelligence and

Statistics, pages 7331–7348. PMLR, 2023.

[75] Laura Smith, Yunhao Cao, and Sergey Levine. Grow

your limits: Continuous improvement with real-world

rl for robotic locomotion. In 2024 IEEE International

Conference on Robotics and Automation (ICRA), pages

10829–10836. IEEE, 2024.

[76] Yujie Tang, Meiling Wang, Yinan Deng, Zibo Zheng,

Jingchuan Deng, and Yufeng Yue. Openin: Open-

vocabulary instance-oriented navigation in dynamic

domestic environments. arXiv preprint arXiv:2501.04279,

2025.

[77] Wil Thomason and Hadas Kress-Gazit. Counterexample-

guided repair for symbolic-geometric action abstractions.

IEEE Transactions on Robotics, 39(5):4152–4165, 2023.

[78] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,

Wojciech Zaremba, and Pieter Abbeel. Domain

randomization for transferring deep neural networks

from simulation to the real world. In 2017 IEEE/RSJ

international conference on intelligent robots and systems

(IROS), pages 23–30. IEEE, 2017.

[79] Marcel Torne, Arhan Jain, Jiayi Yuan, Vidaaranya Macha,

Lars Ankile, Anthony Simeonov, Pulkit Agrawal, and

Abhishek Gupta. Robot learning with super-linear scaling.

arXiv preprint arXiv:2412.01770, 2024.

[80] Marcel Torne, Anthony Simeonov, Zechu Li, April

Chan, Tao Chen, Abhishek Gupta, and Pulkit Agrawal.

Reconciling reality through simulation: A real-to-sim-

to-real approach for robust manipulation. arXiv preprint

arXiv:2403.03949, 2024.

[81] Jonathan Tremblay, Aayush Prakash, David Acuna,

Mark Brophy, Varun Jampani, Cem Anil, Thang To,

Eric Cameracci, Shaad Boochoon, and Stan Birchfield.

Training deep networks with synthetic data: Bridging the

reality gap by domain randomization. In Proceedings

of the IEEE conference on computer vision and pattern

recognition workshops, pages 969–977, 2018.

[82] Luobin Wang, Runlin Guo, Quan Vuong, Yuzhe Qin,

Hao Su, and Henrik Christensen. A real2sim2real

method for robust object grasping with neural surface

reconstruction. In 2023 IEEE 19th International

Conference on Automation Science and Engineering

(CASE), pages 1–8. IEEE, 2023.

[83] Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv:

Deep Convolutional Networks on 3D Point Clouds.

In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages

9621–9630, 2019. URL https://arxiv.org/abs/1811.07246.

APPENDIX

Overview

The appendix provides additional details, experiments, and

results. Please refer to the supplemental video for real-world

robot executions.

A Detailed Limitations A1

B Qualitative Analysis A2

C Detailed Experimental Tasks A2

D Efficiency Experiments A2

E Key Findings A2

F Ablation Study A4

G Detailed Simulation Results A4

H Detailed Sim2Real Gap A4

I Extra Related Work A4

J Relations Definition A4

K Skills Definition A4

L Details of Skill Effect Models A5

M Real-to-sim details A6

N Stein Update Details A6

O Detailed Generalization Experiments . . A7

P Hardware Information A7

A. Detailed Limitations

Our approach has several limitations. First, although

Fail2Progress significantly improves performance, it still falls

short of perfect reliability, achieving around an 80% success rate

in the real world shown in Fig. 3a. This is because, even after

fine-tuning, some scenarios remain out-of-distribution, leading

to incorrect symbolic predictions. Indeed, one can think of the

results presented in this paper as ”1-shot” Fail2Progress and that

further refinement on the observed failures would lead to higher

future success rates. To continuously improve the performance

as a lifelong learning system, the framework needs to be de-

ployed in a real environment over several days, where we allow

Fail2Progress to update as needed when failures are detected

and classified as being caused by incorrect symbol predictions.

Safely deploying Fail2Progress in such open environments

remains an open research question. Furthermore, our framework

needs to be evaluated under more diverse conditions, including

more complex and dexterous manipulation tasks involving

varied objects, such as deformable objects and liquids.

Second, we do not investigate correcting for failures caused

by the Sim2Real gap in this work. The Sim2Real gap could

potentially be mitigated by methods that explicitly address this

challenge [81, 78, 67]. Showing how to integrate Sim2Real

improvements alongside symbolic prediction failures is an

important next step.

Third, we rely on Real2Sim to classify failures and generate

high-quality fine-tuning datasets. Though our experiments

show that our Real2Sim solution is effective in classifying

failures and improving model performance, our Real2Sim

itself is not perfect, especially when modeling complex object

geometries and deformable objects.

Fourth, our failure classification scheme, which includes two

categories, does not explicitly reason about the environmental

disturbances caused by other agents (human users or other

robots). It additionally does not account for hardware breaking

or changing over time (e.g., cable or belt stretch in a robot

arm drivetrain), which might occur over long deployment

times. Hypothesizing these scenarios as failure causes is also

an interesting future direction.

Fifth, we consider only object poses as the simulation

state. Incorporating additional simulation states, such as object

friction and center of mass [59], into our framework would

be a possible next step.

Sixth, we assume a fixed set of relations. While our large-

scale experiments show that these relations are sufficient, there

are always relations outside the predefined set. Discovering

new relations [70, 4] during robot exploration could enhance

the open-world planning capability of our framework.

Finally, although we demonstrate mobile manipulation in

diverse environments, extending the system to building-wide

open spaces [71] remains an open research question. To

achieve this, our method could integrate with scene graph

construction and online updating [49, 76, 68, 1].

FailurePut four objects into the bag

FailureConstrained Packing

Success

Success

Multi-object Transport

Put capsules into the cups Hierarchical Tabletop Organization Failure

…

…

Success

Success

Fig. 4: Rollouts of real-world evaluations and corresponding failure cases. A detailed explanation of this figure is provided in Sec. B.

B. Qualitative Analysis

We present qualitative results in Fig. 4. Hierarchical

Tabletop Organization task (First row): The robot is tasked

with organizing the cups and capsules on another table while

keeping them in a row. It first places several capsules into

their corresponding cups. In the failure case, the robot fails to

recognize the correlation between cups and capsules, resulting

in the wrong organization. After learning from this failure,

Fail2Progress successfully completes this task by understanding

that the capsules will move with their corresponding cups.

Multi-object Transport task (Second row): The robot is

tasked with packing groceries and placing them on the table.

It places all four groceries inside a bag. In the failure case,

the robot places the bag on the ground instead of the table,

failing the task. After fine-tuning the model with a targeted

dataset, Fail2Progress moves the bag to the table. Constrained

Packing task (Third row): The robot is tasked with organizing

a shelf by placing a stack of cups on a constrained shelf.

In the failure case, the robot fails to make all the wipes in

contact to clear enough space. After learning from the failure,

Fail2Progress first pushes the wipes aside in contact to create

sufficient space for the cups, then places them on the shelf.

Furthermore, we demonstrate how our approach generalizes

to different numbers and shapes of objects, as well as different

tables, in Fig. 5. Specifically, the model is fine-tuned only

on failure cases with 3 objects but is able to generalize to

scenarios involving 3-6 diverse objects on two tables.

C. Detailed Experimental Tasks

Multi-object Transport tasks the robot to transport multiple

objects within a container using a single skill (e.g., carrying

multiple fruits in a grocery bag). To succeed, the robot has to

understand that all objects inside the container move together

when the container is moved. Hierarchical Tabletop Organi-

zation tasks the robot to organize a table by arranging objects

into a hierarchical structure (e.g., multiple objects in different

cups). Success requires the robot to understand the relationships

between these objects and how its skills impact future relations

based on the hierarchical structure. Constrained Packing tasks

the robot to organize objects in a constrained environment (e.g.,

a bookshelf). Success involves using a non-prehensile push skill

to create space and then packing the remaining objects onto the

shelf. In this paper, we present quantitative results for the Multi-

object Transport and Hierarchical Tabletop Organization

tasks, and qualitative results for the Constrained Packing task.

D. Efficiency Experiments

We compare Fail2Progress with the two best-performing

baselines, Gradient and Sampling, to assess optimization

efficiency using the best-performing architecture (Points2Plans).

Error bars in the figure represent standard deviations across

five different random seeds. As shown in Fig. 6, Fail2Progress

is significantly more efficient than Sampling. This superior

efficiency is attributed to the parallel computation capabilities

of SVI on GPUs. Gradient achieves comparable efficiency to

Fail2Progress, but it still performs significantly worse in terms

of fine-tuned model performance shown in Fig. 3 and Table I.

E. Key Findings

Importance of Learning from Failures: Learning from

failures is essential because an initial training dataset for a

skill effect model cannot capture all possible transitions in the

real world. When the robot encounters novel scenarios outside

the training data distributions, failures become inevitable.

By learning from these failures, the robot can improve its

performance more reliably and efficiently.

#Objs Base Original Small Large Replanning Sampling Gradient Fail2Progress

3 Points2Plans [30] 16% 18% 21% 28% 64% 52% 90%

3 Stow-GNN [10] 13% 15% 19% 24% 61% 51% 83%

3 Binary-Pred [64] 11% 13% 15% 23% 51% 47% 78%

5 Points2Plans [30] 10% 13% 15% 26% 54% 45% 87%

5 Stow-GNN [10] 9% 10% 14% 21% 52% 43% 81%

5 Binary-Pred [64] 8% 8% 13% 19% 43% 37% 73%

7 Points2Plans [30] 8% 9% 12% 18% 42% 39% 82%

7 Stow-GNN [10] 8% 7% 11% 17% 41% 37% 76%

7 Binary-Pred [64] 5% 7% 9% 14% 30% 29% 64%

Average Points2Plans [30] 11% 13% 16% 24% 53% 45% 86%

Average Stow-GNN [10] 10% 11% 15% 21% 51% 44% 80%

Average Binary-Pred [64] 8% 9% 12% 19% 41% 38% 72%

TABLE III: Simulation experiments for the Hierarchical Tabletop Organization task across different numbers of objects. The comparisons
demonstrate that Fail2Progress outperforms baselines by a large margin.

end-effector along the push direction for a specific distance.

The continuous parameter encodes both the push direction and

push distance.

Open/Close Drawer: This skill enables the robot to open

or close a drawer. The corresponding continuous parameters

encode the distance and direction of the motion.

Notably, if failures occur with a newly introduced skill,

a new skill effect model can be trained to handle that skill

effectively. Due to the composability of the skill effect model,

the planning can incorporate all the skills.

L. Details of Skill Effect Models

1) Introduction: Given an observation, Ot, at time t, repre-

sented as segmented point clouds, the skill effect model encodes

Ot to a latent state Xt using Enc. Using a decoder, Dec,

the latent state can be decoded to either geometric states like

object poses or symbolic states such as inter-object relations,

R. Furthermore, the latent state, Xt, could also be propagated

by a skill φt(at) with a dynamics model Dyn to predict the

latent state Xt+1 at the next time step. The predicted latent

state Xt+1 could also be decoded to predicted object poses or

relations. To simplify, in this paper, we use γ(·) to represent the

skill effect model composing the different components Enc,

Dec, and Dyn as γ(Ot,φt,at)=Dec(Dyn(Enc(Ot),φt(at))),
that outputs the probabilities of different relations in R,

with Γ(O0,φ1:H ,a1:H) = γH ◦ γH−1 ◦ ... ◦ γ1, representing a

composition of skill effect for a skill sequence φ1:H(a1:H).

2) Implementation Details: The input of a skill effect

model (e.g., Points2Plans) is a segmented point cloud at

timestep t, denoted as Ot={O
0
t ,...,O

n
t }, where n represents

the number of segments.

Encoder: We utilize PointConv [83] as the Enc. The

employed PointConv architecture consists of three set

abstraction layers, each processing input point data and

corresponding positional data to produce sampled positional

data and feature data as output. Both the input and output

positional data have three channels. The first abstract layer

samples 128 points, with 8 neighbors per point determined

using a bandwidth of 0.1. It employs an MLP with 6 input

channels (3 for positions and 3 for features), 32 output channels,

and a kernel size of 1. The second layer reduces the sample size

to 16 points with 16 neighbors per point and uses a bandwidth

of 0.2. This layer’s MLP takes 35 input channels (3 for positions

and 32 for features), and outputs 64 channels with a kernel

size of 1. The third layer is a ”group all” layer that generates

128-dimensional features per segment, using a bandwidth of

0.4, Its MLP has 67 input channels (3 for positions and 64

for features) and 128 output channels, with a kernel size of 1.

Specifically, the encoder (Enc) processes each segment

to generate a corresponding point cloud feature, represented

as P i
t = Enc(Oi

t), where each point cloud feature has 128

dimensions. Additionally, we use positional encoding in

PyTorch [62] to assign a unique identifier to each object,

represented as IDi, which also has 128 dimensions. For each

object, we concatenate the point cloud feature and positional

encoding to form Xi
t = P i

t ⊕ IDi, resulting in a feature

vector with 256 dimensions. Consequently, the latent state is

represented in an object-centric form as Xt = {X
0
t ,...,X

n
t },

where each object’s latent state contains 256 features.

Dynamics: The dynamics model (Dyn) takes as input

the latent state Xt along with the corresponding skill and

continuous parameter φ1(a1). Since φ1 encodes discrete

parameter identifying the object to manipulate, we use

positional encoding to represent the manipulated object ID as

IDi, which has 128 features. For the continuous parameter a1,

we use a simple MLP MLPpara to encode a latent continuous

parameter with 128 features. The MLPpara consists of two

layers, each with 128 neurons, using ReLU as the activation

function. As a result, each skill is represented as a latent state

AL1=MLPpara(a1)⊕IDi, where AL1 has 256 features.

Once the latent skill AL1 is obtained, we use a transformer-

based dynamics model, Dyn. The transformer comprises 2

sub-encoder layers, 2 attention heads in the multi-head attention

mechanism, and a dimensionality of 256 for the input and out-

put. Given the latent state Xt and the corresponding latent skill

AL1, Dyn outputs the change in each latent state, represented

as δXt. The predicted new latent state is then computed as

Xt+1 =Xt+ δXt. For long-horizon planning, the dynamics

model can be applied recurrently as Xt+H =Dyn(Xt,AL1:H).
Decoder: The decoder (Dec) consists of three distinct

modules: a position decoder Decp, a unary relation decoder

Decu, and a binary relation decoder Decb. All decoders take

the latent state (Xt) as input.

Position Decoder (Decp): The position decoder processes

the predicted changes in each latent state (δXt) and outputs

the predicted changes in object positions (δpt). Decp is a

three-layer network, with each layer containing 64 neurons

and ReLU as the activation function.

Unary relation decoder (Decu): The unary relation decoder

takes the absolute latent state (Xt) as input and outputs unary

object relations. Decu consists of two layers, each with 64

neurons, and uses Softmax as the activation function because

unary relations are binary variables.

Binary relation decoder (Decb): The binary relation decoder

takes pairwise latent states ((Xi
t ,X

j
t)) as input and outputs

pairwise object relations, defined as Decb(X
i
t ,X

j
t). Decb is

a three-layer network, with each layer containing 64 neurons.

Like Decu, Decb uses Softmax as the activation function

since binary relations are also binary variables.

Training Details: We collect ground-truth data from the

simulation at the current step, including point cloud observa-

tions (Ot), relations (Rt), and position (pt). Ground-truth data

at the next step is collected after executing a robot skill, which

includes point cloud observations (Ot+1), relations (Rt+1),

and position (pt+1). To train the skill effect model using the

simulation dataset (D), we employ several loss functions:

Current step detection loss: Using the current step point

cloud observation (Ot), the model (Γ) predicts current step

relations (R̂t). The current step detection loss is calculated as

Ldetection=CE(R̂t,Rt), where CE denotes the cross-entropy

loss.

Latent space regularization loss: The mode encodes the

observations (Ot, Ot+1) into the current step latent state (Xt)

and the next step latent state (Xt+1). Using a skill, Γ
predicts the next time step latent state (X ′

t+1), where X ′
t+1

is derived from Ot and the skill while Xt+1 derives from

Ot+1. The regularization loss, calculated as the L2 norm, is

Lregulization= ||Xt+1−X
′
t+1||

2
2.

Position loss: Based on Ot and the applied skill, the model

predicts the change in object positions (δpt). The position loss

compares the predicted position changes with the ground-truth

position changes: Lpos = b ·
√

a·||δpt−(pt+1−pt)||. Here,

a = 12 and b = 5 are used to balance other loss terms, as

defined in [30].

Prediction loss: To minimize the difference between

predicted relations (R′
t+1 = Decb(X

′
t+1)) and ground-truth

relations (Rt+1) at the next time step, we compute the

prediction loss as: Lprediction=CE(R′
t+1,Rt+1).

The total loss is the sum of all four terms:

L = Ldetection+Lregulization+Lpos+Lprediction. We train

and fine-tune the skill effect model using the Adam optimizer

with a learning rate of 1× 10−4. In this paper, we use 10

epochs for the pre-training and 200 epochs for the fine-tuning.

Planning Details: To achieve the goal relations (G), we

employ a shooting-based approach to sample the continuous

parameters (a1:H) given the initial observation (O1) and the

plan skeleton (φ1:H). To maximize the likelihood of achieving

the goal relations, we sample a set of continuous parameters

{aj1:H}
Ka
j=1 from the robot’s workspace. Each continuous

parameter sequence a
j
1:H is rolled out, and we select the

sequence that maximizes the probability of satisfying G.

M. Real-to-sim details

For the real-to-sim process, SVI generates both simulation

states and robot skills. The simulation states specify the pose

of each object.

To create a simulation scene, we assume a set of object

shape priors, including cuboids, open boxes, shelves, drawers,

and tables. Based on the semantics of each segment in the

observation, our method selects the appropriate object shape

prior. The bounding box of each segment determines the

dimension of the corresponding object in the simulation. By

combining these dimensions with the object poses, we can

construct the simulation scene.

For the robot skills, we directly execute the parameterized

skills within the simulation, starting from the initial scene.

During the process, we could record point clouds and object

relations both before and after manipulation. Combined with

the executed robot skills, we can generate a fine-tuning dataset

to refine the skill effect model.

Note that we select this bounding-box approximation for

the real-to-sim approach due to efficiency considerations.

However, Fail2Progress can compliment other real-to-sim

approaches [11, 56, 80].

N. Stein Update Details

1) Generating State Samples: First, we aim to solve for

the simulation state set S+. Here we want to find samples

q(S) = {s+i }
M
i=1 that approximate the posterior distribution

P (rF |O+ = ξ(S)OF)P (S), where P (S) is a uniform prior

over all feasible simulation states. The posterior distribution

ensures that the transformed point clouds match the relations

in the failure case rF . This defines the following variational

inference problem:

argmin
q(S)

DKL

(

q(S)
∥

∥Γ(rF |O+=ξ(S)OF)P (S)
)

(5)

For each state particle s+i , the Stein update term is:

Φ(s+i)=
1

M

M
∑

j=1

[

k(s+j ,s
+
i)∇s

+

j
lnP (RF |ξ(s+j)O

F)+

∇s
+

j
k(s+j ,s

+
i)
]

(6)

where k(s+j ,s
+
i) is a kernel function that defines the similarity

between different particles. The first term in Eq. 6 represents

an attractive force that pushes the particles to move in a

direction based on the gradient while the second term is a

repulsive term that prevents the particles from collapsing. This

update can generate object states that match the failure case

while ensuring diversity over object states.

2) Generating Action Samples: Given our state samples

generated by using Stein variational inference to approximate

the distribution in Eq. 3b, we can now turn our attention to

solving for the action set A+. To formulate this problem we

make use of the generalized Bayesian inference framework

outlined above. Here we define the loss function, L, to be

the entropy loss defined in Eq. 3a and let β = 1. Note that

the variational distribution q(A)={(s+i ,a
+
i)}

M
i=1, however we

keep the values of s+i fixed and search only over actions. This

defines the following variational inference problem:

argmin
q(A)

Es+,a+∈q(A)

[

∏

r∈RF

−H(Γ(r |ξ(s+)OF ,φF ,a+,D))

]

+ DKL

(

A+
∥

∥P (A)
)

(7)

where P (A) is uniform prior over actions.

The Stein update term for the action particles a+i is:

Φ(a+i)=
1

M

M
∑

j=1

[

k(a+j ,a
+
i)

·∇a
+

j
lnH(Γ(RF |ξ(s+j)O

F ,φF ,a+j))

+∇a
+

j
k(a+j ,a

+
i)
]

(8)

3) Implementation Details of SVI: We use RBF kernels for

SVI and follow previous works [63, 21] by applying the median

heuristics to determine the kernel bandwidth. Additionally, the

step size is optimized using the Adam optimizer [39].

O. Detailed Generalization Experiments

Generalization Scenarios 3objs ↑ 5objs ↑ 7objs ↑ view1 ↑ view2 ↑

Fail2Progress 87% 81% 71% 83% 85%

Gradient 51% 40% 18% 42% 44%

Sampling 62% 45% 23% 51% 47%

TABLE IV: Generalization results for the Multi-object Transport
task. We show the generalization capability of Fail2Progress with
respect to different numbers of objects and different viewpoints (5objs,
7objs, view1, and view2 are unseen in the training dataset). Evaluations
on unseen objects and unseen viewpoints show that Fail2Progress per-
forms well and outperforms the best-performing baselines (Sampling
and Gradient).

Generalization Evaluation: We assess the generalization

capability of Fail2Progress compared to the Gradient and

Sampling baselines in the Multi-object Transport task. First,

we evaluate generalization to an unseen number of objects, as

shown in Table IV. The model is fine-tuned only on scenarios

with 3 objects and tested on unseen scenarios with 5 and 7

objects. While all approaches experience some performance

degradation, Fail2Progress maintains strong performance, even

in scenarios with 7 objects. In contrast, Gradient and Sampling

perform poorly, particularly in the 7-object scenarios. Next,

we assess generalization to unseen viewpoints, also shown in

Table IV. Fail2Progress demonstrates robust performance across

two unseen viewpoints and consistently outperforms Gradient

and Sampling baselines. For both evaluations, we perform 100

trials per approach for each evaluation metric. Visualizations

of these generalization scenarios are provided in Fig. 8.

3objs (seen) view1 (unseen) view2 (unseen)5objs (unseen) 7objs (unseen)

Fig. 8: Visualizations of simulation generalization scenarios.
Fail2Progress, fine-tuned on a dataset with 3 objects, successfully
generalizes to scenes with 5 and 7 objects. Additionally, Fail2Progress
demonstrates generalization to two unseen viewpoints.

P. Hardware Information

All the skill effect models are trained and fine-tuned on a

standard workstation with an NVIDIA GeForce RTX 3090

Ti GPU. All the real-world experiments are conducted with

a Stretch-re2 from Hello-Robot.

	Introduction
	Related Work
	Skill Effect Models
	Detecting and Classifying Failures Autonomously
	Generating Targeted Datasets to Learn from Failure
	Approximate Constrained Expected Information Gain
	Generating Datasets via Stein Variational Inference
	Real-to-Sim Object Generation

	Experiments & Results
	Conclusion
	Appendix
	Detailed Limitations
	Qualitative Analysis
	Detailed Experimental Tasks
	Efficiency Experiments
	Key Findings
	Ablation Study
	Detailed Simulation Results
	Detailed Sim2Real Gap
	Extra Related Work
	Relations Definition
	Skills Definition
	Details of Skill Effect Models
	Real-to-sim details
	Stein Update Details
	Detailed Generalization Experiments
	Hardware Information

