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Abstract

Compute Express Link (CXL) is a promising interconnect
technology that enables system memory expansion, but it
comes at the cost of long latencies and low bandwidth com-
pared to socket-local memory. To fully understand the per-
formance potential of CXL and mitigate its high latency
overhead, a detailed characterization of CXL performance
is crucial to guide the modeling and optimization of CXL
memory Systems.

We present SupMario, a characterization framework de-
signed to thoroughly analyze, model, and optimize CXL
memory performance. SupMario is based on extensive eval-
uation of 265 workloads spanning 4 real CXL devices within
7 memory latency configurations across 4 processor plat-
forms. SupMario uncovers many key insights, including de-
tailed workload performance at sub-us memory latencies
(140-410 ns), CXL tail latencies, CPU tolerance to CXL la-
tencies, CXL performance root-cause analysis and precise
performance prediction models. In particular, SupMario
performance models rely solely on 12 CPU performance
counters and accurately fit over 99% and 91%-94% work-
loads with a 10% misprediction target for NUMA and CXL
memory, respectively.

We demonstrate the practical utility of SupMario charac-
terization findings, models, and insights by applying them
to popular CXL memory management schemes, such as
page interleaving and tiering policies, to identify system
inefficiencies during runtime. We introduce a novel “best-
shot” page interleaving policy and a regulated page tiering
policy (Alto) tailored for memory bandwidth- and latency-
sensitive workloads. In bandwidth bound scenarios, our
“best-shot” interleaving, guided by our novel performance
prediction model, achieves close-to optimal scenarios by
exploiting the aggregate system and CXL/NUMA memory
bandwidth. For latency sensitive workloads, Alto, driven by
our key insight of utilizing “amortized” memory latency to
regulate unnecessary page migrations, achieves up to 177%
improvement over state-of-the-art memory tiering systems
like TPP, as demonstrated through extensive evaluation with
8 real-world applications.
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Figure 1: CXL latency and bandwidth heterogeneity.
1 Introduction

The demand for increased memory capacity is rapidly rising,
driven by the growing requirements of data-intensive appli-
cations [43]. The surge is further compounded by DRAM
scaling challenges [47]. Emerging interconnects like Com-
pute Express Link (CXL) holds the promise of both scale-up
and scale-out coherent memory expansion at the server/rack
levels [6, 41, 42]. Memory vendors have introduced CXL
memory expanders [4, 5, 10, 21], facilitating access to sig-
nificantly larger amounts of DRAM than previously feasi-
ble. For instance, Samsung’s CXL Memory Module - Box
(CMM-B) [21] offers 16TB of DRAM with 8 CXL devices.

Memory performance is key to system performance.
However, CXL memory expansion introduces higher access
latencies compared to traditional socket-local DRAM con-
figurations. Figure | illustrates the substantial heterogene-
ity in CXL latency and bandwidth, as measured across var-
ious CXL devices within our platform (Table 1) and from
public sources'[21, 22]. Furthermore, CXL devices can ex-
hibit varying performance characteristics. The variability
in latency and bandwidth arises from varying interconnec-
tion topologies and vendor optimizations. For instance, the
latencies of locally-attached CXL range from ~200-400ns,
slightly exceeding cross-socket/NUMA latency. Accessing
CXL from a remote socket results in increased latency and
diminished bandwidth (CXL+NUMA). The incorporation of a
CXL switch to extend connectivity will introduce additional
latencies (CXL+Switch), even elevating latency to approxi-
mately 600ns. In the future, with CXL potentially involving

IcXL+Switch data is from [21], bandwidth averaged for 1 CXL device.



multiple routing hops and its use with slow memory media
(e.g., Flash) [20], latency is projected to increase to ps-level.

The current CPU architecture and memory hierarchy are
tailored for typical 1-2 socket systems, offering ~100ns la-
tency and 100s of GB/s bandwidth. However, the perfor-
mance implications of emerging CXL memory technology
remain uncertain. Currently, there is a lack of research
exploring detailed CXL characteristics and its impact on
memory-intensive workloads at large-scale. Conducting a
thorough characterization is crucial to provide valuable in-
sights for the imminent CXL deployment in production sys-
tems and software/hardware memory management.

In particular, how do CXL devices vary from each other
in terms of detailed performance characteristics? How does
CXL’s long latency impact CPU efficiency and workload
performance? What are the root causes? Addressing these
questions requires a deep understanding of the dynamic na-
ture of CXL’s performance characteristics, which span a
spectrum rather than adhering to fixed, static values of la-
tency and bandwidth. While previous studies [41, 44, 48—
50] provide valuable insights into CXL performance impact,
they are primarily done at a coarse-grained level, overlook-
ing critical aspects such as CXL performance stability (i.e.,
tail latencies), CPU tolerance to long CXL latencies, CXL’s
architectural implications and performance predictability.

We present SupMario, a comprehensive characterization
framework for large-scale CXL performance profiling, anal-
ysis, modeling, and optimizations. Our goals are:

(1) Understanding CXL latency and throughput impli-
cations. How (much) does CXL impact workload perfor-
mance? What are the root causes? And how to reason about
it systematically? Can workloads benefit from the higher ag-
gregate memory bandwidth by splitting the dataset between
local and CXL memory and how? We conduct a large-scale
performance study of the characteristics of 4 CXL devices
and assess 265 workloads across 7 memory latency config-
urations ranging from 140-410 ns on 4 processor platforms.
This study provides a quantitative analysis of CXL perfor-
mance at scale, uncovering new findings and insights that
would not have been possible without a large-scale approach.

(2) Memory performance modeling. Can lightweight mod-
els reliably predict workload performance in CXL-enabled
environments? Through an in-depth root-cause analysis
complementing our characterization findings, we delve into
CXL implications on CPU efficiency and develop novel lin-
ear models for workload performance prediction under CXL.
Our models are based on novel combinations of solely 12
CPU performance counters but can work surprisingly well.
We emphasize that our accurate prediction models represent
a significant advancement in enhancing the observability
and predictability of memory system performance. They
are simple, easy-to-use, explainable, general, and can serve
as fundamental performance metrics which we believe can

potentially enable many use cases.

(3) Memory performance optimization. What are the limi-
tations of existing memory policies in managing CXL mem-
ory, and how can we leverage CXL characteristics to design
better memory management policies? We show that Sup-
Mario’s approach can be used to quantitatively analyze the
inefficiencies of complex memory policies in managing CXL
memory. Additionally, we can leverage insights from Sup-
Mario to develop enhanced memory management strategies.
We apply SupMario’s characterization techniques and pre-
diction models to memory tiering [2] and interleaving [26].
Our experiments demonstrate the effectiveness and broad ap-
plicability of SupMario’s insights in identifying system inef-
ficiencies and enhancing the observability of complex mem-
ory systems. More importantly, we introduce SupMario-
augmented interleaving and tiering policies, which lead to
significant performance improvements compared to state-of-
the-art. In summary, our key contributions are:

(1) SupMario, the largest-scale CXL performance study, to
the best of our knowledge, characterizing 265 workloads
under 4 real CXL devices across 7 memory latency con-
figurations on 4 processors, detailing many new findings
about workload performance under sub-ps memory la-
tencies, CXL device performance (such as latency sta-
bility) and deep-dive analysis of CXL and CPU interac-
tions across workloads and setups.

(2) Anovel root-cause analysis approach based on CPU stall
cycles for workload performance dissection under CXL,
identifying and quantifying various sources of CXL-
induced performance degradations in the CPU.

(3) A linear performance prediction model for both latency
and bandwidth sensitive scenarios that are workload-
independent and robust (validated under multiple CXL
and processor platforms and various memory policies),
simple and lightweight (using only 12 CPU performance
counters), accurate (for both NUMA and CXL mem-
ory), and explainable (from root-cause performance
breakdown analysis).

(4) A “best-shot” page interleaving policy for bandwidth-
bound workloads to effectively utilize both system and
CXL bandwidth simultaneously, achieving near-ideal
bandwidth improvements”.

(5) Alto, a memory tiering policy based on a core insight
of “amortized” memory access latency by incorporating
both memory-level-parallelism and access latencies to
precisely capture the impact of page migrations to work-
load performance. By minimizing unnecessary page
migrations and reducing the associated overhead, Alto
achieves up to 177% improvement compared to TPP
[42], a popular CXL memory tiering solution.

2Calculated as CXL bandwidth over system socket-local DRAM band-
width, i.e., BWcxr./BWpran) -



2 Background and Motivation

Below we present CXL background on the protocol, CPU-
CXL interactions, memory profiling, and CXL memory
management policies.

CXL for memory expansion. CXL [3] is an emerging cache
coherent interconnect built atop PCle. It enables many po-
tential use cases, such as memory expansion, pooling, and
sharing. CXL memory seamlessly integrates into systems
as cacheable, byte-addressable memory within a zero-core
NUMA (zZNUMA) node (i.e., CPU-less NUMA) [41]. Thus,
applications can simply treat it as a slower-tier of mem-
ory compared to local DRAM. Although CXL outperforms
PCle in speed due to tailored transaction and link protocols,
it is commonly perceived that its latency is comparable or
slightly worse than that of one NUMA hop [17]. More-
over, CXL can increase system bandwidth, potentially ben-
efiting bandwidth-bound workloads. Despite the rollout of
CXL products in the last three years, there remains a lack of
in-depth studies to comprehensively understand their perfor-
mance implications, which motivates our work.

CXL request processing. In a conventional pyramid-shaped
memory hierarchy [12] with L1, L2, and L3/LLC caches, if
a memory request (e.g., reading 64B of data) is not satisfied
by the L1-L3 caches due to cache misses, the request is for-
warded to the CXL memory controller (MC) via the CXL
link. Once CXL memory returns the requested data, L.1-L3
caches are updated to serve future requests more efficiently.
At a high level, the CPU’s request processing flow remains
the same for both local DRAM and CXL [33]. However,
the use of different buses (DIMM vs. CXL/PCle) and MCs
(on-CPU integrated, i.e., IMC vs. third-party) affects the ef-
ficiency of CPU cache hierarchy.

The load/store interface is used for a CPU to commu-
nicate with integrated or CXL MC to perform memory op-
erations. The CPU issues two types of load requests: on-
demand and prefetching read operations. On-demand loads
are memory read operations where the CPU requests data
from (CXL) memory only when it is needed for computa-
tion while prefetching loads are predictive reads (directed by
the hardware prefetchers) in advance. The CPU issues store
requests to write data to memory. To maintain cache coher-
ence, if the CPU wants to modify a cacheline, it needs to first
send a read-for-ownership (RFO) request to gain exclusive
access to the cacheline by asking the other cores to invali-
date their copies of the cacheline and/or load the cacheline
from (CXL) memory. Thus, the (CXL) MC needs to handle
three types of memory reads: on-demand, prefetching, and
RFO. We will later show that differtiating the three types
of memory reads is crucial for understanding CXL’s perfor-
mance implications (more in §4).

For example, CPUs heavily rely on hardware prefetch-
ers to minimize potential pipeline [8] stalls caused by the
longer access latency of (CXL) DRAM compared to L1-L3

caches. The pipeline refers to the multiple instruction pro-
cessing stages for concurrent instruction executions, which
helps improve CPU speed. However, the increased CXL ac-
cess latency can lead to delayed request prefetching, causing
the CPU pipeline to stall for a longer period (i.e., waiting for
data to arrive, more in §4). This results in degraded workload
performance under CXL.

CXL profiling and profile-guided optimizations. Mod-
ern CPUs offer robust profiling capabilities through hard-
ware counters/events sampling for top-down microarchitec-
ture analysis (TMA) [54]. This technique has been integrated
into widely used profilers, e.g., Linux perf. TMA allows
users to pinpoint CPU inefficiencies with well-defined met-
rics. For example, DRAM-bound metric measures how often
CPU was stalled on DRAM. As modern data-intensive work-
loads becomes increasingly memory-bound, they can lead to
significant stalled CPU cycles [37]. This approach is impor-
tant for understanding performance issues that arise from the
inherent memory access patterns of these workloads.

Leveraging such information to inform system optimiza-
tions is a well-established practice [39, 42, 45]. One com-
mon strategy involves utilizing hardware performance coun-
ters/events, either individually or in combination, within
heuristic or ML algorithms as performance predictors. How-
ever, it remains a challenge to define accurate performance
metrics that can capture complex system behaviors. There
are two limitations with existing approaches: accuracy and
complexity. Many widely used performance indicators, such
as LLC-miss, are inaccurate. And ML methods introduce
high computational overhead to be useful for scenarios with
tight time constraints of 100s of ns. Thus, TMA is mainly
used for offline workload analysis. We will address this with
a clever combination of multiple performance counters to
serve as reliable performance predictors (§5) and use them
online for system optimizations (§6).

CXL memory management. Utilizing CXL as regu-
lar DRAM can lead to suboptimal performance due to
CXL’s longer latency and/or relatively smaller bandwidth.
There are two popular approaches to address this challenge:
(NUMA) page interleaving and memory tiering. Page inter-
leaving involves distributing page allocations across NUMA
nodes in round-robin to maximize bandwidth usage [13]. In
contrast, tiering aims to minimize CXL latency impact by
prioritizing local DRAM for most-frequently accessed pages
via proactive page migrations. While interleaving and tier-
ing have been studied across various heterogeneous memory
contexts, including CXL, persistent memory, and disaggre-
gated memory [38, 39, 42, 45, 56], fundamental gaps remain
in effective tiering policy designs.

In the rest of the paper, we present characterizations in
§3 and §4, CXL/NUMA performance models in §5, system
optimizations for interleaving and tiering in §6, and conclude
in §9 followed by discussion and related work in §7 and §8.
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Figure 2: Overview. Our in-depth and at-scale characteriza-
tion enable CXL performance modeling and optimization.

3 Overview and CXL Characterization
3.1 SupMario Overview

Figure 2 provides a high-level overview of SupMario
pipeline. To address the research questions raised in §1, we
need to overcome the following challenges:

* Lack of fine-grained profiling tools for in-depth analysis
of CXL’s unique performance characteristics at request-
level, and their impact at scale, rather than focusing solely
on high-level average latency and bandwidth to understand
a limited set of workloads as in prior works [48, 49].

* Lack of systematic approaches to analyze CXL-induced
slowdowns and identify the root causes of performance
degradation, rather than treating CXL as a black box.

» Lack of explainable performance metrics to improve the
observability of both 1-tier and 2-tier (with NUMA/CXL)
memory systems, particularly under long memory laten-
cies, rather than relying on heuristics.

* Lack of deterministic and CXL-aware data placement
policies to exploit CXL performance potentials in memory
interleaving and tiering setups.

SupMario introduces a suite of new benchmarking and
profiling tools, analytical and modeling approaches, find-
ings, and memory policies to bridge the gaps. For the first
time, SupMario provides a detailed analysis of the unpre-
dictable CXL latencies and their impact on CPU efficiency.
It aims to distill key findings applicable to a wide range of
workloads and unify them into a set of performance metrics
and models using a simple yet accurate approach based on
the novelty combination of a few CPU performance counters.
The insights derived from SupMario’s characterization and
modeling provide deeper understanding of how CXL’s long
latencies affect CPU performance. Notably, we find that al-
though SupMario performance models are specific to certain
hardware configurations (e.g., CPU and memory), they are
independent of the workloads, allowing them to be applied
across both offline and online scenarios. SupMario-powered
memory tiering and interleaving policies not only deliver su-
perior performance gains but also provide valuable insights
for designing future CXL-aware memory systems.

3.2 Platform

We show the details of our hardware platform in Table 1.

SPR2S |16xDDR5 256 |114 218|191 97| 48KB-2MB-60MB
EMR2S |16xDDR5 256 (111 246|193 120| 48KB-2MB-160MB
SKX2S|16xDDR4 192 |90 52|140 32| 32KB-1MB-13.8MB
SKX8S | 16xDDR4 384 |81 109 411 7| 32KB-1MB-38.5MB

CXL-A|2xDDR4 128 (214 24375 14| ASIC, CXL1.1,x8
CXL-B|2xDDR5 128 |271  22|473 13| ASIC, CXL1.1, x8
CXL-C|2xDDR4 16 (394 18621 14| FPGA, CXL1.1, x8
CXL-D|4xDDR5 768 (239  52|333  14|ASIC, CXL1.1, x16

Table 1: Experimental platform. “Local” refers to the per-
formance measured by CPUs on the same socket while “+NUMA”
indicates memory access from a remote socket.

Servers. We use two servers equipped with Intel’s 4th (Sap-
phire Rapids, SPR) and 5th (Emerald Rapids, EMR) gener-
ation Xeon scalable server processors. The two servers are
identical except for their CPUs. Each server is a dual-socket
(2S) system with 16 cores per socket, running at 2.1GHz.
They are equipped with 48KB L1 data cache, 2MB L2 cache,
and 8 memory channels with 128 GB of DDR5-4800MHz
memory. The key difference between them is the size of the
L3/LLC cache: our EMR has a 160MB LLC, whereas SPR
has only 60MB. As a more recent processor, EMR offers
better support for CXL and delivers up to 28% better perfor-
mance than SPR for certain workloads we measured (due to
its much larger LLC).

We also use two Skylake servers — one with 2 sockets
(SKX2S) and another with 8 sockets (SKX8S) — to extend
the range of memory latencies from 140 to 410 ns using
zNUMA and by lowering the CPU uncore frequency. To-
gether, the setups provide a total of 7 latency configurations
(including 4 CXL devices). We find that the performance of
zNUMA and local DRAM is more stable compared to real
CXL devices, making zZNUMA a clean-slate environment for
our characterization and modeling (further details to follow).

CXL devices. We use 4 CXL memory expanders from dif-
ferent vendors (denoted as CXL-A, CXL-B, CXL-C, CXL-
D). Our CXL devices’ average latency and bandwidth are
214-394ns and 18-52GB/s, respectively, measured by Intel
Memory Latency Checker (MLC) [9]. Note that CXL-D is
hosted on a remote machine while others are in our lab envi-
ronment, CXL-C only supports 16GB DRAM, thus we were
only able to finish a subset of 265 workloads on them.

All our CXL devices are CXL 1.1 type-3 memory ex-
panders (supporting CXL.io and CXL.mem). These devices
function as black boxes to us, as we do not have access to
their internal implementation details. CXL-C is FPGA-based
(lowest performance) while the rest are ASICs. CXL-D uti-
lizes 16x PCle 5 lanes and supports 4 DIMMs, providing the
highest CXL bandwidth of 52GB/s. In contrast, the other
devices use 8x lanes and 2 DIMMs, resulting in nearly half
the bandwidth (18-24GB/s), as shown in Table 1. CXL-A
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Figure 3: CXL Latency CDF. Nor all CXL are created equal.
Unlike local/NUMA memory, CXL shows high tail latencies.

and CXL-C use DDR4 memory, while CXL-B and CXL-D
use DDRS memory. In terms of latency, interestingly, CXL-
A exhibits the lowest latency at 214ns, despite using DDR4
memory, while the DDR5-based CXL-B and CXL-D have
higher latencies of 239ns and 27 1ns, respectively. We specu-
late that these differences in performance characteristics are
primarily due to variations in CXL memory controller opti-
mizations (e.g., scheduling policies, row buffer management,
QoS, thermal management in the controller) [36]. Accessing
CXL from a remote socket (+NUMA column) increases the la-
tency and decreases bandwidth. However, to our surprise, the
latency increase via one NUMA hop vary more significantly
by device, i.e., increasing by 161ns, 202ns, 227ns, and 94ns,
for CXL A-D respectively. Later, we show CXL+NUMA
leads to unexpected slowdowns for some workloads (§3.4)
which requires careful management.

Workloads. We use a diverse set of representative work-
loads for the characterization, covering cloud workloads
(caching and DB such as Redis [18] and VoltDB [25], Cloud-
Suite [1], and Phoronix [16]), graph processing (GAPBS
[27], PBBS [24]), data analytics (Spark [35]), ML/AI (GPT-2
[7], MLPerf [19], Llama [11]), and high-performance com-
puting (SPEC CPU 2017 [23], PARSEC [30]). Some work-
loads are latency-sensitive (e.g., cloud workloads), some are
bandwidth-sensitive (e.g., HPC workloads), and others are a
mix of both. We consider a large-scale study essential to un-
cover key findings and insights (discussed later) that would
not have been achievable with a small-scale study.

3.3 CXL Device Characterization

We start with device-level microbenchmarks to understand
CXL latency characteristics in detail. We run workloads us-
ing either local or CXL memory. Local DRAM performance
is used as the baseline to calculate CXL slowdowns.

CXL latency stability and tail latencies. To understand
latency variability of different CXL devices, we measure
latencies for each cacheline request. As existing memory
benchmarking tools do not support request-level latency re-
porting, we implemented a microbenchmark program (called
MIO) that can measure cacheline-granular request latencies.

MIO average latency results are validated with Intel MLC
[9] reported ones to be accurate. MIO measures the aver-
age latency of each N (configurable, to amortize rdtsc tim-
ing overhead) pointer-chasing operations on a working set
larger than LLC size. We use an in-memory buffer from an
idle NUMA node to store the latency logs to avoid interfer-
ence and minimize performance overhead. Figure 3 shows
the CXL latency distributions of all 4 CXL devices and
Local-DRAM/NUMA under 1-32 colocated pointer-chasing
threads (from left to right). This setup mimics the co-
location of multiple memory latency-sensitive workloads.
Note that none of the CXL device bandwidth is saturated and
pointer-chasing is purely latency-sensitive operation. We
disabled L1/L2 prefetchers to measure device-level latencies.

We observe CXL-B and CXL-C suffers from significantly
high tail latencies. Local and NUMA latencies are sta-
ble, and the difference between p99.9 and p50 latencies are
only 45ns and 61ns. However, CXL latency stability largely
varies across vendors. The small latency variation for lo-
cal and NUMA are probably due to DRAM chip-level la-
tency variations (e.g., row buffer hit/miss, activation laten-
cies, etc.) widely discussed in prior DRAM characterization
works [31, 32, 34, 46, 55] (also in §8). Local DRAM latency
variation is much smaller than that of CXL. For example,
CXL-D can deliver the best latency stability, its difference
between p99.9 and pS0 is 75ns (only 30ns and 14ns more
than Local and NUMA). However, for CXL-B and CXL-C,
it can reach ~160ns, which is 50% higher than the median
latency. When looking at higher percentiles at p99.99 and
P99.999, CXL device latencies will be above 700ns for CXL-
A and CXL-D and >1us for CXL-B and CXL-C.

Similarly, when one pointer-chasing thread is co-located
with multiple bandwidth-bound read/write threads (results
not shown), we observe even worse tail latency trends on
CXL compared to Local/NUMA. When turning on CPU
prefetchers, we see effective improvement of the average la-
tency but tail latencies persist for CXL.

We speculate that high CXL tail latencies are caused by
the CXL controller sub-optimal optimizations, for example,
inefficiencies in thermal management or memory request
scheduling could lead to long queueing delays. Unfortu-
nately, there are no available tools to investigate the exact
cause of CXL tail latencies. A potential future white-box
approach could involve breaking down the latency of each
memory request and accounting for the latency across differ-
ent components, such as the CXL link, CXL controller, and
DRAM chips. This would be feasible if CXL controller ex-
poses detailed performance counters, for example, through
the upcoming CXL performance monitoring unit (CPMU)
defined in CXL 3.0 specification [3], similar to the CPU
PMU. As a first step, we aim to demonstrate and quantify
the impact of CXL tail latency to raise awareness in the sys-
tems community. To summarize,

Finding #1: Not all CXL devices are created equal, each car-
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Figure 4: CDFs of workload slowdowns under various CXL. (a) the CDFs of SPEC workloads on all our platforms; (b) tail
latency is the cause of significant workload slowdown under CXL+NUMA for a latency-insensitive workload; (c) SPR vs. EMR SPEC results
under CXL-A and CXL-B; (d) is similar to (c) but for all 265 workloads.

rying very unique performance characteristics. More impor-
tantly, CXL devices exhibit unstable and higher tail latency
compared to regular socket-local or NUMA memory. High
access parallelism and high memory pressure (e.g., band-
width) can exacerbate CXL tail latencies. Further, concur-
rent reads and writes exert differing impacts on memory la-
tency for CXL devices, especially regarding tail latencies.
While CPU hardware prefetchers can improve average mem-
ory access latencies, they fail to mitigate tail latencies. CXL
tail latencies negatively impact application performance.

Implication #1: From both software and hardware design
perspectives, there is a need to address CXL tail latencies.
Future CPUs need be improved (e.g., via smarter CXL-aware
prefetching policies) to better manage CXL’s long and un-
predictable latencies effectively. Additionally, (some) CXL
controllers need further optimizations to achieve latency pre-
dictability, rather than solely focusing on average latency and
bandwidth.

Recommendation #1: Tail latency should be used as a key
metric for evaluating CXL devices, as predictable latency is
crucial for meeting user service level objectives (SLOs) in
cloud environments.

3.4 Workload Characterization

To fairly compare results from different CXL devices, we
first analyze common workloads that we complete on all
platforms followed by more workloads analysis (265) on
zNUMA, CXL-A and CXL-B.

Figure 4a shows the CXL slowdown CDF of 43 work-
loads from SPEC CPU 2017 across 4 CXL devices on
EMR and 3 zZNUMA latency configurations. The left-most
black line is NUMA performance with up to 34% slow-
downs from two bandwidth-intensive workloads (619.1bm
and 649.fotonik3d). Almost half of the workloads do
not experience slowdowns at all due to the large cache in
EMR CPU (160MB LLC). In total, 32 workloads experi-
ence less than 5% slowdowns and 3 more workloads be-
low 10%. Among the four CXL devices, CXL-D (green
line) performs on-par with zZNUMA because its high band-
width prevents any workloads from being bandwidth-bound.

There are four bandwith-bound workloads requiring over
24GB/s — 603.bwaves, 619.1bm, 649.fotonik3d, 654.roms
— whose bandwidth needs exceed the capacity of CXL-{A,
B, C}. As a result, these workloads experience significant
slowdowns (over 50%) compared to zZNUMA/CXL-D, due to
significant device-side queueing delays as the CXL devices
become saturated. These four workloads see worse slow-
downs under CXL-B and CXL-C. because both the latency
and bandwidth deteriorate compared to CXL-A. For the re-
maining workloads which do not saturate CXL bandwidth,
we observe the performance worsens with increasing CXL
latency. For example, 602.gcc slowdown goes up from 12%
up to 13%, 21%, and 38% for CXL-A, CXL-B, and CXL-C,
respectively. Other workloads might experience more sig-
nificant performance impact under increased latency, e.g.,
503.bwaves_r slowdown jumps from 11% to 16% (CXL-A),
33% (CXL-B), and 81% (CXL-C).

CXL-C is the least performant in the four CXL devices
in terms of average latency, bandwidth, and latency stabil-
ity due to the FPGA-based CXL controller implementation.
It shows significantly worse slowdown results compared to
CXL-A and CXL-B. For example, 649.fotonik3d even sees
a 5.3x slowdown, showing a combined impact from long
(unpredictable) latency and low bandwidth.

(Suspicious) CXL+NUMA performance. We planned to
use CXL+NUMA setup to simulate CXL memory access la-
tency setups in the range of 400-700ns. However, we find
workload performance under CXL+NUMA is significantly
worse even than that of 2-hop NUMA whose latency and
bandwidth are both worse, indicating issues when CXL and
NUMA are used together. In CXL+NUMA, memory re-
quests need to go through cross-socket interconnect (e.g.,
UP)) first before reaching the CXL device. CXL+NUMA
results are shown in the “CXL-A+NUMA” dotted brown
line in Figure 4a. Surprisingly, while CXL+NUMA latency
is lower than SKX-zNUMA (375ns vs. 411ns) and band-
width is higher (14GB/s vs. 7GB/s), CXL+NUMA perfor-
mance is much worse than CXL-C, which does not seem
to make sense. Similarly, this is true for CXL+NUMA
vs. CXL-C where CXL+NUMA latency is lower (375ns vs.



394ns). Note CXL+NUMA bandwidth is indeed lower than
CXL-C (14GB/s vs. 18GB/s), but when filtering out work-
loads needing more than 10GB/s bandwidth, CXL+NUMA
slowdowns are still much worse than CXL-C. For example,
520.omnetpp sees <5% slowdowns under all CXL devices,
but experiences an astonishingly high slowdown of 2.9x
under CXL+NUMA. Upon further analysis, we found this
workload consumes <1GB/s bandwidth (read+write), and is
neither latency-sensitive or bandwidth-sensitive. We confirm
the significant slowdown is due to much worse tail latencies
under CXL+NUMA, explained next.

Tail-latency impact. 520.omnetpp performs discrete event
simulation of a large ethernet network. In Figure 4b, we
show the CDF of sampled memory latencies for the work-
load. The plot shows little difference between Local and
CXL-A (gray and blue lines), which explains the small slow-
down under CXL-A. However, CXL+NUMA (brown line)
exhibits a long tail latency starting around p98 up to 800ns.
As we reduce the load of the workload (by reducing the
number of simulated LANs on backbone switches) to 1/2
and 1/4, we observe consistently improved tail latencies
(two dotted brown lines). Correspondingly, the slowdown
on CXL+NUMA also significantly decreases from ~290%
down to ~65% and 58%. We believe this serves as direct
evidence that tail latencies are the root cause of the perfor-
mance slowdowns. Similarly, 10 other workloads do not ex-
perience noticeable slowdowns under CXL but 33%-283%
under CXL+NUMA. These findings are consistent for both
SPR and EMR, and persist regardless of CXL device used.

SPR vs. EMR. Figure 4c compares the slowdowns for SPEC
workloads under SPR and EMR. Compared to SPR, EMR
features a larger LLC size and microarchitecture optimiza-
tions for CXL, which might lead one to expect improved
performance. However, Figure 4c shows that the CXL slow-
downs with EMR are not significantly reduced despite the in-
creased LLC size, indicating that larger caches have limited
effectiveness in mitigating the impact of long CXL access la-
tencies. Although EMR shows slightly less slowdowns than
SPR on both CXL-A and CXL-B, the CXL-induced slow-
downs largely persist. This indicates that existing caches
and/or prefetchers are not effective at hiding long memory la-
tencies. These findings suggest that simply increasing CPU
cache size is insufficient for optimizing CXL. Future CPU
designs will need to incorporate further optimizations to bet-
ter mitigate the impact of CXL’s long latencies.

All workloads. Figure 4d presents the slowdown CDF
for 265 workloads on both EMR/SPR and CXL-A/CXL-
B. Compared to the CPU 2017 results in Figure 4c, the
slowdowns are more prounced as workloads from other
benchmarking suites, such as graph and ML/AI, tend to be
memory-intensive, leading to greater performance degrada-
tions. However, the overall performance patterns remain
consistent, e.g., EMR outperforms SPR (albeit by a small

margin) on both CXL devices. On EMR, more than 15% of
the workloads experience over 50% degradation on CXL-A,
while this percentage increases to 20% for CXL-B due to its
higher latency (and/or less predictable latency). For SPR,
16% and 22% of workloads exhibit over 50% performance
degradation on CXL-A and CXL-B, respectively. The slow-
down CDFs also reveal a clear “tail,” with 5% of the work-
loads suffering from slowdowns of 2.3-6.3%, primarily due
to being bandwidth-bound.

In summary, the key takeaways from the workload-level
charcterizations are as follows:

Finding #2:

* Workload performance deterioates superlinearly with in-
creasing CXL latency; more importantly, the relative slow-
downs exceed the rate of the latency increases).

* Longer CXL latencies correspond to worse bandwidth
(CXL A—B—C), which has a more pronounced impact on
bandwidth-bound workloads than purely latency-sensitive
workloads due to the combined effects of increased latency
and limited bandwith.

* CXL devices with worse tail latencies (e.g., CXL-B and
CXL-C) experience more significant slowdowns across all
evaluated workloads.

* On a positive note, many workloads can tolerate long CXL
latencies (up to 410ns) and thus experience minimal slow-
downs, suggesting that CXL could be useful for real-world
applications in pooling scenarios.

Implication #2: As future CXL devices are expected to sig-
nificantly increase bandwidth (CXL-D is a good example,
and bandwidth can also be easily enhanced through hard-
ware interleaving across multiple CXL devices) and moder-
ately reduce latency, we anticipate that future CXL workload
slowdowns will be smaller than those shown in Figure 4a.
Higher CXL bandwidth will benefit bandwidth-bound work-
loads, potentially alleviating the 2-6x slowdowns observed
in Figure 4a due to the low bandwidth of individual CXL de-
vices. Reductions in latency will improve the performance
of latency-sensitive workloads, such as cloud applications,
bringing it closer to NUMA performance.

Recommendation #2: CXL latency is more critical to per-
formance when bandwidth is no longer a bottleneck (see
Figure 4a) and deseves more attention in future CPU/CXL
designs as well as software optimizations. However, for
bandwidth-bound workloads to effectively utilize the com-
bined bandwidth of local and CXL memory, improved soft-
ware approaches are still needed.

4 Performance Modeling
4.1 Slowdown Root-Cause Analysis

Our goal is to break down workload slowdowns into con-
tributions from the CPU cache hierarchy and CXL memory.
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Figure 5: CXL slowdown breakdown. Figure (a) shows
various components where CXL introduces overheads; Figure (b)
details the flow of CXL-induced cache slowdowns.

We aim to quantify the impact of each component to bet-
ter understand how CXL affects CPU efficiency. For exam-
ple, instead of the general notion that CPU prefetchers be-
come less effective under CXL’s longer latencies [40], we
will measure CXL’s impact on prefetcher performance and
disclose why it happens.

To achieve this, we need an approach to capture the events
in the CPU pipeline that lead to performance slowdowns un-
der CXL and correlate them accurately back to workload-
level slowdowns. The extensive microarchitecture-level in-
formation offered by CPU PMU counters provides valuable
insights into the efficiency of the CPU pipeline. While work-
load slowdowns can be directly measured using application-
level metrics, identifying the underlying PMU events/metrics
that can correlate to the slowdowns is often challenging. It
is even more challenging to establish a precise correlation
between workload performance and architecture-level per-
formance metrics. The Intel TMA method [54] is a popular
approach for top-down performance analysis, but it is insuf-
ficient for our objectives.

1. TMA identifies dominant performance bottlenecks in an
application by analyzing execution inefficiencies within
the CPU pipeline for a fixed setup using either local
DRAM or CXL memory. However, it does not provide
a differential analysis to interpret pipeline differences re-
sulting from varying backend memory.

2. Although a differential analysis can be done manually,
there is no method to precisely correlate microarchitec-
ture level metrics with workload slowdowns. The TMA
metrics are designed to capture the performance or con-
tention of specific hardware components rather than over-
all workload behavior.

For these reasons, we begin by examining components of
the CPU pipeline involved in instruction execution and an-
alyzing the changes induced by CXL on those components
during memory request processing. As discussed in §2, pro-
cessing CXL memory requests requires traversing the mem-
ory hierarchy, including L1, L2, LLC, and CXL memory.
By evaluating the CPU’s efficiency at these key points, we
can identify the corresponding slowdowns caused by CXL
across workloads. Figure 5a highlights the key components
as observation points for memory request processing during
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Figure 6: CDFs of slowdown differences using stalls and
backend stalls.

between estimated slowdowns using stalls or backend stalls and the

The X-axis represents the absolute difference
actual measured slowdowns for each workload.

CPU and CXL interactions. Through detailed offline analy-
sis, we make a few key observations that lead to an accurate
slowdown breakdown method which we describe below.
Workload performance slowdowns can be represented us-
ing microarchitecture-level performance counters and rea-
soned about by checking where “stalls” happen in the CPU
pipeline. For example, if a workload takes ¢ cycles to com-
plete on local memory and ¢’ on CXL, the slowdown can be

/
denoted as S = ¢ = %.

Finding #3: The variance in cycle counts between CXL and

local DRAM primarily stems from stall cycles difference,

which further mainly arises from the CPU pipeline backend.
As such, CXL slowdowns can be estimated as:

g Ac  Astau_ Apackend—stall 0
c c c
CPU backend refers to memory-subsystem. Purely CPU-
bound workloads are not sensitive to CXL latency due to few
CXL accesses, thus experiencing minimal slowdowns.

Accuracy. To validate the finding, we measure (backend)
stall cycles for each workload and use them to estimate
the workload slowdowns according to (1). We compare
them with the actually observed workload slowdowns using
application-level metrics (e.g., time, throughput). Figure 6
presents the CDF plots of the absolute difference between
the actual slowdown and the (backend) stall based slowdown
estimations, which indicates the inaccuracies. We show the
results for zZNUMA, CXL-A, and CXL-B. We observe very
low inaccuracies — within 5% for over 95% of workloads
(the intersection of two gray lines). Therefore, CXL-induced
(backend) stall cycle difference can effectively represent the
slowdown.

Implication #3: Workload slowdowns on CXL are primar-
ily due to the additional backend stalls, which are caused by
memory subsystem inefficiencies.

Reasoning. The CPU pipeline is divided into two parts: the
frontend and the backend. In the frontend, instructions are
fetched and decoded, while in the backend, they are exe-
cuted. Stalled cycles can occur due to stalls in either the
frontend, the backend, or both. However, frontend stalls are



negligible because modern CPU instruction caches are effi-
cient and large enough to fetch and decode instructions with-
out being affected by CXL delays. Therefore, it is primar-
ily stalls in the memory subsystem (i.e., the CPU backend)
that are impacted by CXL. As a result, stalled cycles in the
memory subsystem can serve as a suitable approximation for
slowdown caused by CXL.

Breaking down the slowdown. Figure 5a highlights the
simplified CPU backend components where the majority of
these stall cycles occur, including the store buffer for serving
writes, LI-LLC, and CXL for serving reads. By observing
the number of stall cycles on each component, we can further
understand how (much) each of these backend components
contribute to workload slowdowns.

On Intel platforms, the stalls on the store buffer, L1, L2,
LLC, and (CXL) DRAM represent exclusive events which
sum up to the total backend stall cycles (see Figure 4 in [54]).
Let s be the number of stall cycles, according to TMA ap-
proach, we have:

SLocal = Sstore + SL1 + 812 + 813 + Spram (2)
i ! ! I /
SCXL = Sgtore T 511+ Sp2 + 813+ Spram 3)

In the above formula, sz; and s7, denote the number of
stall cycles on local and CXL memory, respectively, due to
L1 cache accesses. Other terms follow a similar definition.
When looking at the difference between the two, we get:

Agtall = SCXL — SLocal =
ASgtore + Asp1 + Aspo + Aspz + Aspram (4)

Here, Asy; denotes the difference (A) of stall cycles on
L1 on local and CXL DRAM. Correspondingly, by dividing
each item with total cycle-count (c), the overall slowdown
can be represented as the combined slowdowns from the five
sources as follows:

S & Sstore + S01 + Sp2 + Srs + Spram 5)

Above, each component-wise slowdown is calculated as
the delta of stall cycles on the specific component, e.g., slow-
down due to L1 cache access is A of stalled cycles on L1, de-
nominated by the total cycle count (¢), i.e., Sp,1 = Asp1/c.

DRAM (Demand Load) Slowdown (Sprans). We use the
increase in stalled cycles of LLC misses, as a primary indi-
cator of CXL slowdown from DRAM. These misses denote
demand read misses, excluding RFO and prefetch requests.
On Intel platforms, they are characterized as cycles stalled
while LLC demand read misses are unresolved. Hence,
their change suggests performance deterioration originating
from DRAM, including the (CXL) memory controller. We
also identify memory level parallelism (MLP) as another key
metric for analyzing slowdowns. Later, we will show how it
enhances slowdown prediction in §5.3.

Store Slowdown (Ss:orc). We use the increase of cycles
bound on full store buffer to gauge store operation slow-
down. Incoming store requests queued in the store buffer

are dequeued upon completion. Some writes issue RFO re-
quests before execution. If the store buffer fills up, these
RFOs would hinder load efficiency, causing CPU stalls.

4.2 Cache Slowdown (S..cne)

While DRAM and store slowdowns are relatively straight-

forward to understand, cache slowdowns are more com-

plex. In this section, we discuss our key findings on how

CXL can degrade CPU cache efficiency. Cache slowdown

(Sp1 + Spo + Sp3) indicates stall cycle increase on various

cache levels (L1, L2, and LLC). Similarly, they can be mea-

sured using the corresponding stall cycles counters. Below
we describe our findings to reason about cache slowdowns
on CXL through offline analysis.

Finding #4:

1. Cache slowdown under CXL is due to reduced prefetch
efficiency. To validate this, we disable all the hardware
prefetchers (L1 and L2, LLC-prefetcher is disabled by de-
fault) and measure workload slowdowns. With prefetch-
ers off, we found virtually no stall cycles on cache (5,1 =
Spe = Sp3 =0).

2. Through our extensive offline analysis, we find CXL’s rel-
atively longer latency causes L2-prefetcher inefficiency
(less useful data in L2 cache), thus causing L1-prefetcher
to fetch more data from LLC/CXL. As a result, L1 de-
mand reads are affected negatively (more stalls in L1),
thus causing cache-slowdown.

3. Upon further analysis, we find cache slowdown is mainly
reflected as the increase of hits on line fill buffer (LFB),
a per-core small buffer with 10-20 entries that connects
L1 and L2 caches. Due to the reduced L2 prefetcher effi-
ciency, L1 prefetcher fetches more data from LFB, caus-
ing higher LFB hits.

To summarize, as shown in Figure 5b, CXL initially leads
to reduced efficiency of L2 prefetchers. With less useful data
in L2 cache, L1 prefetchers are compelled to fetch more data
from LLC or (CXL) DRAM due to L2 misses. Moreover,
CXL affects L1 prefetch efficiency as well. Data fetched
by L1 prefetchers must be temporarily stored in LFB before
reaching L1 cache, and this would cause more requests to be
served by (slower) LFB hits instead of direct L1 hits, causing
L1 slowdowns.

Reasoning of reduced L2-prefetch efficiency under CXL.
Through offline analysis of cache-related PMU counters
for local-DRAM and CXL, we find reduced number of
L2 prefetch requests that misses L3/LLC (L2-prefetch-
L3-miss) on CXL. Meanwhile, L1 prefetch that misses
L3/LLC (L1-prefetch-L3-miss) increases. The increase is
almost the same as the decrease of L2-prefetch-L3-miss,
as shown in Figure 7a, while L2-prefetch-L3-hit does not
change. The decrease of L2-prefetch-L3-miss on CXL setup
indicates the L2-prefetcher fails to fetch as much data as on
local-DRAM-setup from CXL, thus reducing L2-prefetcher
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Figure 7: Correlations of LFB-hit, L1-prefetch-L3-miss

and L2-prefetch-L3-miss. (a)shows strong linear correlations
of L2 prefetches that miss L3 and increase of L1 prefetches that miss

Increase of L1-pref-L3-miss

L3; (b) shows a similar trend for increase of L1 prefetches that miss
L3 and increase of LFB hits.

efficiency. As a result, the L1-prefetcher can’t find data from
L2 cache that should be fetched by L2-prefetcher and it has
to fetch more data from CXL, which explains the increase in
L1-prefetch-L3-miss. Figure 7a shows that the decrease of
L2-prefetch-L.3-miss has a strong positive relationship with
the increase of L1-prefetch-L3-miss (almost y = ), with a
Pearson coefficient of 0.99.

Cache slowdown can be observed via LFB-hit increases.
LFB connects L1 and L2 caches. The data of all read re-
quests must be placed in the LFB before reaching L1 cache
from L2 or lower levels, as in Figure 5a. Due to its limited
size, LFB can become a bottleneck for data flowing to L1
cache. For example, Figure 7b shows that the increase in
L1-stalled-cycles correlate with high pressure on LFB (more
LFB hits), caused by L1-prefetch-L3-miss increasing. Par-
ticularly, the increase in LFB hits (difference between CXL
and Local-DRAM) is (almost) linearly correlated with the
increase in L1-prefetch-L3-miss. It means that more data is
fetched from CXL to L1 cache by the L1-prefetcher, which
becomes LFB hits.

Similarly, the increase in LFB hits is positively correlated
with the decrease in (demand read) L1 cache hits. The rea-
son is that the data fetched by L1-prefetcher first goes to
LFB, but has not yet been transferred to L1 cache, due to
the longer memory latency of CXL. The data required by
load instruction is fed by LFB but not L1 cache, resulting in
L1 hit becoming delayed hit on LFB.

In summary, if a workload heavily relies on data from L1
prefetch (e.g., sequential, stride, or streaming access), and
this data primarily originates from DRAM, with subsequent
data often in the same cacheline, then the stall cycles of
L1 demand misses may worsen. Consequently, such work-
loads are prone to experiencing high L2 cache slowdown
under CXL. We also observed that on SPR/EMR, cache
slowdown predominantly arises from LLC rather than L2
(SKX+zNUMA), validated similarly.

Next, we will apply this approach to various workloads.
Our aims are twofold: validate the plausibility of our as-
sumptions; and illustrate how the breakdown method can re-
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veal interesting insights overlooked in prior research.

4.3 Workload Slowdown Diversity

Figure 8 depicts the overall and breakdown of CXL slow-
downs for each workload under zZNUMA, CXL-A and CXL-
B. “Other” indicates the slowdown contribution which is not
captured via our analysis. The breakdown allows us to fur-
ther analyze various causes of CXL slowdowns. Below we
summarize some findings.

For different workloads, the contribution of slowdown
from various sources varies. Taking SPEC workloads such as
519.1bm, as an example, the majority of the slowdown orig-
inates from stalls in the CPU’s store buffer. This indicates a
high volume of RFOs and insufficient entries in the CPU’s
store buffer. These observations are further supported by ob-
servations such as high UPI non-data traffic and high write
bandwidth. However, in workloads like 649.fotonik3d, a
significant portion of the slowdown arises from the cache.

For GAPBS workloads, the primary source of slowdown
is from DRAM (stalls in LLC miss demand reads). Only a
few, such as bc-urand, sssp-web, and bfs-urand, encounter
slowdown from the cache. Many of the Llama workloads
experience L3/LLC slowdowns. Cloud workloads such as
Redis and VoltDB, mainly suffer from DRAM slowdowns.
Similarly, DRAM slowdowns take up 90% of the overall
slowdowns for ML workloads like DLRM and GPT-2.

Figure 9 shows the CDFs
of slowdowns caused by var-
ious components. Briefly, at 1

Slowdown Breakdown CDF
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degraded prefetch efficiency 41 t; N
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least 40% workloads experi- L

ence with at least 5% DRAM 05
slowdown. Interestingly, L2
cache slowdown prevails as
the dominant factor across all
examined workloads in the
breakdown analysis (on SKX-zNUMA). Notably, deterio-
rated memory latency and decreased memory bandwidth
contribute to an upsurge in stalled cycles in the L2 cache.
Additionally, the stalled cycles in L1 and L3 remain rela-
tively unaffected.

Certain workloads, such as 627.cam4, 607.cactusBSSN,
and 602.gcc, demonstrate similar CXL performance slow-
downs. However, the reasons behind the performance slow-
downs vary significantly among them. In 602.gcc, half
of the slowdown stems from LLC misses, while the other
half arises from cache. Conversely, almost all slowdown
in 607.cactusBSSN results from LLC misses, while for
627 . cam4, reads caused by stores (RFOs) dominate the per-
formance slowdown. This underscores one of the advantages
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Figure 9: CDFs of slow-
down breakdown.
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Figure 8: CXL slowdown breakdown. This figure shows the CXL slowdown breakdown on zNUMA, CXL-A, and CXL-B.

of the breakdown method, as it highlights that although the
performance slowdowns may appear similar, the underlying
causes can be vastly different.

To summarize, our approach could capture, explain and
breakdown CXL slowdowns based on the CPU stall cycles
approach. Later, we will further enhance our approach for
CXL performance prediction to show its efficacy.

5 CXL Slowdown Prediction

The capability to predict system performance is appealing
due to its wide range of applications. Our previous root-
cause analysis of CXL slowdowns has helped identify var-
ious sources of slowdown, which, when combined, can fa-
cilitate reasoning about measured CXL performance. In this
section, our objective is to transition and solidify our break-
down analysis into formal prediction models. In particular,
when the model is used together with an offline workload
run on local DRAM, it can accurately predict the amount of
slowdowns when the workload runs on CXL. Later, we will
also show the prediction model can be used in an online fash-
ion for performance optimations.

5.1 Strawman

We initially explore simple correlations between commonly
used performance metrics such as LLC miss rate, repre-
sented as misses-per-kilo-instructions, (MPKI, Figure 10a),
read memory bandwidth (Figure 10b), and TMA DRAM-
bound metric (Figure 10c), as they are used in many prior
works [41, 48]. However, none of these metrics prove re-
liable as performance predictors. For example, despite a
positive relationship between read bandwidth and the overall
slowdown, read bandwidth falls short as a reliable predictor.
Workloads with similar bandwidth often experience varying
CXL slowdowns, e.g., 5-50% under 10-20GB/s. We attribute
this to the limitations of the aforementioned metrics in cap-
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Figure 10: Strawman prediction. Metrics like MPKI, BW,
and TMA DRAM-Bound are not reliable CXL slowdown predictors.

turing CXL slowdowns across diverse sources. This prompts
us to develop separate prediction models for cache, DRAM,
and store-induced slowdowns. These efforts result in several
simple models, which can be combined to accurately predict
overall CXL slowdowns, relying solely on 12 counters on
SPR/EMR (11 on SKX).

5.2 Latency and Bandwidth Sensitivity

Workload performance is influenced by both memory la-
tency and bandwidth. Bandwidth-sensitive workloads can
benefit from increased memory bandwidth through technolo-
gies like CXL, while latency-sensitive workloads are better
managed with tiering strategies to mitigate latency impacts.
Therefore, accurately determining a workload’s sensitivity to
bandwidth or latency is crucial.

We propose using a CPU offcore latency-based model for
this purpose. Our benchmarking results indicate that under
bandwidth contention, queueing delays contribute to end-to-
end request latencies. Offcore latency reflects both memory
latency and bandwidth-induced overhead. A simple heuristic
is to set an offcore latency threshold. If latency exceeds this
threshold, it indicates bandwidth limitation; otherwise, it is
latency-bound. Additionally, the offcore latency threshold
can be easily profiled using pointer-chasing style workload,
as in SupMario tail latency analysis.

We used this approach to filter out bandwidth-bound
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Figure 11: DRAM slowdown model.  X-axis is our pre-

dictor (discussed later) and Y-axis is measured DRAM slowdown.
182 latency-sensitive workloads are shown. (a)-(c) show the ba-
sic DRAM model by using “I3-stalls/cycle” as the predictor for
SKX-zNUMA, CXL-A, and CXL-B respectively; (d)-(f) represent the
enhanced DRAM model incorporating memory level parallelism
(MLP) impact, improving the model accuracy.

workloads on CXL, which experience much higher slow-
downs (i.e., the tail in Figure 4d) where slowdowns can be
up to 6x.

5.3 DRAM (Load) Slowdown Model

There are two insights in our DRAM slowdown prediction.
The first is the overall ratio of stalled cycled on LLC (i.e.,
“Py /| P,”) as a base predictor can already positively corre-
late with DRAM-sourced slowdown. We started this anal-
ysis on SKX2S zNUMA. In Figure 11a, we correlate the
based predictor observed when the workloads run under lo-
cal DRAM (90ns) with the DRAM-slowdown in zZNUMA
(140ns). Notably, the predictor does a great job for most
workloads showing a strong linear relationship, with a few
outliers on the top right, indicating the predictor is mistak-
enly overpredicting the slowdowns.

Second, we argue that not [Reat M
taking high memory-level i Reati
parallelism (MLP), more
precisely, overlapping effect, L W
. . b a X a X
into account is the cause of “ash) «/a

the above outliers. As shown
in Figure 12, CXL has the
same impact on each single data request. For each data
request, the latency will be increased similarly, e.g., z.
However, under high MLP, the overlapping effect lowers the
CXL impact on the slowdown (DRAM load), as in Figure 12
left, reducing the latency from z/a to x/(a + b) (b indicates
the stalled cycles from previous demand requests caused by
overlapping). A large amount of demand reads could cause
considerable LLC miss stalls, but the increase of stalled
cycles of previous demand read misses could be overlapped

Figure 12: CXL MLP
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zNUMA CXL-A CXL-B

Pearson Correlation Coefficient| 0.965 0.960 0.924
Absolute Error within 5% 92.0% 94.0% 78.7%
Absolute Error within 10% 99.1% 98.3% 89.9%

Table 2: DRAM slowdown prediction accuracy. We can
achieve 78.7%—-94% accuracy under 5% misprediction target while

the accuracy goes up to 89.9%-99.1% under 10% misprediction.
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Figure 13: Cache slowdown model. X-axis is our predictor,
Y-axis is actual cache slowdown. (a)-(c) for SKX zNUMA, CXL-A
and CXL-B for all workloads.

by the last several demand read misses. The increased LLC
miss stalls of part of the data requests impacted from low
memory latency efficiency could be overlapped by the other
demand reads. In contrast, if the demand reads are spaced
out, more demand reads could be affected by memory
latency and further influence the overall increase of LLC
stalls caused by remote (CXL) memory. Therefore, we
assume that the degree of overlapping would decrease the
CXL impact on the (DRAM) slowdown.

Unfortunately, this effect cannot be directly measured. In-
stead, we choose to approximate it using the amortized of-
fcore demand read latency. By incorporating MLP into the
model, Figure 11d shows a much stronger linear relationship
(Pearson coefficient goes up from 0.905 to 0.965).

Accuracy on SPR/EMR with real CXL. Figure 1 1b-c&e-f
show the DRAM slowdown models for CXL-A and CXL-B.
Similar to zZNUMA, it could predict the DRAM slowdown
reliably. Applying MLP impact to the model still helps im-
prove model accuracy on SPR/EMR, but less so compared
to SKX. We speculate this is because latest EMR CPUs with
large LLC cache experiences less MLP, thus less outliers
caused by it. Table 2 shows the store slowdowns of 92.0%,
94.0% and 78.7% workloads can be predicted within 5%
deviation on zZNUMA, CXL-A and CXL-B, respectively.

5.4 Cache (Load) Slowdown Model

Cache introduced slowdowns are hard to directly measure
and quantify. We develop a metric to predict cache slow-
downs based on our root cause analysis. Workloads spending
more stalled cycles on L2 cache, accessing increased data on
LFB, allocated by L1 prefetching requests missing on L3,
and primarily prefetched from DRAM by L1 prefetchers,
may encounter elevated cache slowdowns. Leveraging perti-
nent performance counters, our predictor aims to effectively
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Figure 14: Store slowdown model. Similar to cache slow-

down model in Figure 3.

zNUMA CXL-A CXL-B

Pearson Correlation Coefficient| 0.947 0.832 0.836
Absolute Error within 5% 95.8% 96.5% 93.6%
Absolute Error within 10% 99.2% 98.8% 98.2%

Table 3: Prediction accuracy of cache slowdown.

capture the contention indicative of cache slowdowns.

Intel offers counters for helping derive performance pre-
dictor (M 4che) for cache slowdown (Scqche)-

Table 3 shows the store slowdowns of 94.7%, 83.2% and
83.6% workloads can be predicted within 5% deviation on
zNUMA, CXL-A and CXL-B, respectively.

5.5 Store Slowdown Model

We find that bound-on-store counter is positively related to
store slowdown. It means that on remote memory (CXL), it
is increased by the same factor for most of the workloads.
Table 4 shows the store slowdowns of 97.8%, 87.6 % and
91.4% workloads can be predicted correctly within 2% de-
viation on zZNUMA, CXL-A and CXL-B, respectively.

5.6 Put It All Together

Each component contributing to the breakdown of slow-
down can be individually predicted by our introduced model.
The overall slowdown is determined by summing the slow-
down from DRAM, cache, and store. Given that most real-
world servers share similar architectural organizations, such
as multiple cache levels, a store buffer, LFB, SQ, and L1/L2
prefetching, we believe this methodology can be universally
applied across different server models to analyze and pre-
dict performance slowdowns caused by sub-us memory la-
tencies.

The limited availability of CPU counters impacts the accu-
racy of performance modeling under CXL. Nevertheless, we
demonstrate that by meticulously integrating multiple coun-
ters in a novel manner, we can effectively capture system
performance and use it for reliable performance prediction.

The overall slowdown model (S) is described below. P;—
P4 are the CPU counters needed for the DRAM (Mpran),
cache (M qche), and store (More) performance predictors.
k1, ko, k3, k4 are constants.

S=k1 X Mpranm + k2 X Mecache + k3 X Mstore + ka
Mpram =Ps/P1 x1/(p X 1/(Pi2/Pi1) + q)
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zNUMA CXL-A CXL-B

Pearson Correlation Coefficient| 0942 0.876 0.914
Absolute Error within 2% 97.8% 93.7% 95.6%
Absolute Error within 5% 99.1% 97.5% 98.1%

Table 4: Prediction accuracy of store slowdown.

Meache = (P3—Py) | P1x Psl (Ps+Fs) X P13/ P1ax P15/(P15s+P1e)
Mstore = P?/Pl

Mispredictions. Mispredictions may arise partly due to the
absence of certain performance counters provided by Intel.
First, measuring the proportion of L1 prefetching data re-
quests within LFB hits is impractical. Second, gauging L1
prefetching hits on L2 cache, even with the total number of
prefetching data requests from LFB hits known, remains un-
feasible. Therefore, we solely employ the L1 prefetching L3
miss ratio to represent the ratio of data prefetched directly
from DRAM by L1 over the total number of data prefetched
by L1 on LFB. This explains the outliers in SKX. SPR/EMR
has the simialr issues on SQ. Moreover, SPR/EMR does not
support measuring L1/L2 prefetching offcore hit for each
process. This limitation explains the slightly worse predic-
tions on SPR/EMR.

Deployment. To derive the DRAM slowdown model for
a server and CXL configuration, users do not need to go
through the extensive characterization process as we do be-
cause our models are robust and independent of workloads.
Thus, one could use microbenchmarks (e.g., pointer chas-
ing) to derive the parameters of the linear model. Below we
provide a high-level overview of the process. There are sev-
eral constants (k1-k4, p, ) in our prediction model equation.
They can be obtained by a set of microbenchmarks with dis-
tinct memory access patterns.

We rely on three types of microbenchmarking workloads
to derive the model parameters. The first one is a random
pointer-chasing workloads, which imposes zero cache and
store slowdowns. It can be seen as having pure DRAM slow-
down on CXL. After running it on both local and CXL mem-
ory, we can get the overall slowdown (S) and calculate the
DRAM metric (Mprans)- Due to Sgiore and Seqene being
0, I€1 will be S/MDRAI\/I-

Our next microbenchmark is a store-bound workload, e.g.,
one with many malloc (). It does not experience cache slow-
down, because its accesses do not rely on data from prefetch-
ers. In this case, S = (k1 * Mpranr) + (k3 * Mgiore ). After
the microbenchmark running on both local and remote, S is
the overall slowdown. M., and M praps can be obtained
from the local run. Then k3 could be calculated .

To reveal cache slowdown, the third microbenchmark con-
ducts linked-list traversal, which requires data fetched by
prefetchers. After running it on both local and remote, .S can
be obtained by the running time. And S = (k1 * Mpran )+
(k3*Msiore )+ (kax Megene ). Indeed, (ks Miore ) should be



small because it has few data allocations or writes. M pranm
can be calculated with CPU counters measured on local.
Given by S, ki, k3, Mstore and Mprans, k2 can be ob-
tained. Finally, to improve accuracy, one could consider
mixing up these types of memory access and also applying
linear fitting.

6 System Optimization

In this section, we show SupMario root-cause analysis ap-
proach and slowdown prediction models can aid inefficiency
detection and performance optimizations under complex
memory policies, such as interleaving and tiering.

6.1 Interleaving Characterization

NUMA interleaving can potentially speedup bandwidth-
bound workloads by leveraging the additional CXL band-
width alongside system memory. Recently Linux kernel
introduced weighted interleaving policy [26] which allows
more flexible page interleaving across two or more NUMA
nodes. Traditionally, Linux defaults to 1:1 page inter-
leaving (i.e., MPOL_INTERLEAVED) where page allocations are
done in round-robin fashion across multiple NUMA nodes.
Weighted interleaving define a general M:N interleaving ratio
so that one could use the bias to match the bandwith char-
acteristics. For instance, in a two-node system, weighted in-
terleaving M: N means that the first M pages are allocated from
one node, followed by the next N pages from the other node,
alternating between the two in this pattern. However, it is
not intuitive to decide the best interleaving ratio to extract
the best potential performance for certain workloads.

For bandwidth-bound workloads, it is alluring to exploit
both system and CXL bandwidth to improve performance.
Suppose system memory bandwidth is M and CXL memory
bandwidth is N, simply using an interleaving ratio of M:N do
not always lead to the best performance. A naive approach
is to randomly try out M x N interleaving ratios which can be
extremely time-consuming for long-running workloads. In
a recent work, Caption [48] proposed heuristics to converge
over the best interleaving ratio setup but still requires a few
runs and could potentially lead to suboptimal results.

We show that by adopting a sw:“g'”“’”“"*s
performance “slowdown” pre- 40 = oru o
diction model for interleaving
similar to §5, we can predict
the best page interleaving ra-
tio for best performance, thus 20 i |
“best-shot interleaving.” 1000 B o0

Interleaving Ratio
Offline Analysis. We con- Figure 15: Weighted in-
ducted an extensive offline terleaving performance.
analysis across 100 different
local/CXL interleaving ratios (100:0, 99:1 to 0:100), for over
100 workloads. Figure 15 illustrates one such example for
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Figure 16: Best-shot interleaving for SKX. In (a) and (b),
X-axis is our predictor (R), and Y-axis is the (predicted) speedup

from DRAM and cache respectively. The black circles are offline

optimal interleaving results. In (c) and (d), X-axis is the best inter-
leaving ratio assigned to zNUMA and Y is the actual interleaving
performance speedup sourced from DRAM and cache. The best in-
terleaving ratio on SKX ranges from 34%-40%.
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Figure 17: Best-shot interleaving model for zZNUMA, 1
and 2 CXL-A device(s). (a)-(c) show that best-shot inter-
leaving model is accurate for both zZNUMA and real CXL devices.
Under 20 workloads in zNUMA, 1 and 2 CXL-A devices, best-shot
interleaving can accurately predict and achieve performance gains
of 2-21%, 1-13%, 1-26%, respectively.
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workload 649.fotonik. The study yields following key in-
sights used to develop the best-shot interleaving model.

Finding #5:

1. Non-bandwidth-bound workloads typically cannot ben-
efit from (weighted) interleaving. Even for bandwidth-
bound workloads, we observed various slowdowns (and
occasional speedups) across different interleaving ratio
settings, reflecting the combined impact of CXL latency
and bandwidth.

2. Various bandwidth-bound workloads have different opti-
mal interleaving ratios, outperforming local DRAM per-
formance to the greatest extent (there may exist a range of
ratios yielding superior performance than local DRAM).

Our model aims to (1) predict whether a workload can
benefit from interleaving (otherwise referring to a tiering
policy), (2) predict the best interleaving ratio in one run, and
(3) predict potential performance gains.

6.2 Best-Shot Interleaving Prediction

Our slowdown breakdown method (§4) can be used to an-
alyze and predict NUMA interleaving performance as well.
For those workloads benefiting from interleaving, the per-
formance improvement (i.e., negative slowdown) can still be
attributed to various sources (DRAM, cache and store).



We observe that offcore latency goes down when work-
load performance is improved under efficient interleaving.
Under effective interleaving, we observe offcore latency (L)
and memory metric (M, §5.6) are complementary, where
M indicates the latency-impact of the memory subsystem
and offcore latency indicates memory bandwidth constraints.
Thus, our model simply adopts (L x M) as the performance
metric (R) for interleaving performance prediction. Simi-
larly, it is beneficial to break down the NUMA performance
improvement or slowdown into various sources for accurate
modeling. As such, we define the following models to pre-
dict interleaving speedup/slowdown from DRAM, cache and
store, respectively.

Rpram = Mpram X Lpram 6
Rcache = Mcache X Lcache (7)
Rstore = Mstore X Lstore (8)

We will demonstrate how R can be used to predict the
optimal NUMA interleaving performance across various
NUMA interleaving ratios. Through an analysis of offcore
latency when running all workloads on the local DRAM,
we identify 20 bandwidth-intensive workloads (comprising 3
SPEC workloads and 17 Llama workloads) that exhibit per-
formance improvements with NUMA interleaving. We use
them for our model evaluation.

Evaluation on SKX-zZNUMA. Figure 16a&b show our
model accuracy to derive interleaving speedup contributions
from DRAM and cache. We also observe that for work-
loads with over 5% improvement, the optimal ratio falls
within the range of 34% to 40% (Figure 16c&d). Within this
range, NUMA interleaving performance are roughly equally
good. SKX2S local and zZNUMA bandwidth ratio is approx-
imately 5/3 (Table 1). The theoretically ideal proportion of
memory allocation is 5/8 (62.5%) and 3/8 (37.5%) for lo-
cal and CXL, respectively. Consequently, the optimal ra-
tio consistently falls within the range of 34% to 40% for
workloads that significantly benefit from NUMA interleav-
ing. For workloads with less pronounced benefits (<5%),
the ratio predominantly ranges between 20% and 36%. The
store model (R;ore) 1s trivial for most workloads, thus, we
omit store interleaving slowdown analysis here.

Evaluation on CXL-A. Figure 17 demonstrates the linear
relationship between the best interleaving ratio and our pre-
dictor (R). Compared to Caption [48], our approach greatly
simplify the process in an automatic way. Overall, best-
shot interleaving achieves 1-13% performance improvement
compared to local-DRAM on 20 workloads (upper bound is
limited by the relatively low CXL bandwidth).

Latency-bound workloads. For workloads not constrained
by bandwidth, the performance varies approximately linearly
across different ratios. Although we could not gain interleav-
ing benefits, interestingly, our model still allows us to predict
the slowdown under a givn interleaving ratio x using a sim-
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ple mode such as & X Y5 pans cache.store Sis Where T rep-
resents N/(N + M) (with N denoting the remote node ratio
and M representing the local node ratio), and S; denotes the
slowdown on CXL for different hardware components.

Implication #4: Weighted page interleaving can be used
to improve performance for certain bandwidth-bound work-
loads under local and CXL memory. However, the optimal
interleaving ratio varies across different workloads and the
degree of performance improvements also differs. Best-shot
interleaving can help predict the best interleaving ratios to
achieve optimal performance and predict the precise amount
of performance gains.

Recommendation #3: For bandwidth-bound workloads, the
users can rely on our best-shot interleaving policy to run their
workloads using the best setup for optimal performance.

6.3 Tiering Characterization

We now show SupMario root-cause breakdown analysis and
performance models can be applied to tiering systems to dis-
sect inefficiencies in tiering systems.

Existing tiering designs implicitly treat each LLC miss
equally in terms of their contribution to system performance
and heavily rely on LLC misses as the primary technique
for sampling hot pages as migration candidates. However,
our slowdown breakdown analysis (§4) has demonstrated
that LLC misses (or their rate, i.e., bandwidth) cannot re-
liably serve as a performance predictor/metric. This is be-
cause LLC misses caused by prefetching or RFO may not di-
rectly impact system performance. For instance, a prefetched
cacheline may end up not being used. Instead, we assert that
the rate of LLC stalled cycles and other stall cycle-related
events are more accurate measures to gauge and predict sys-
tem pressure.

Nonetheless, current tiering policies overlook this nu-
ance and indiscriminately assume that high rates of LLC
misses (or equivalently, DRAM traffic) inevitably result in
performance degradation, inadvertently promoting excessive
pages to local DRAM. This approach carries two down-
sides. First, migrating a large number of pages incurs non-
negligible overheads, further compromising workload per-
formance. Second, the assumption that these pages merit
promotion to the fast tier (local DRAM) is unfounded, as
they may not induce significant slowdowns. In combination,
these factors lead to suboptimal tiering performance.

Characterizing tiering inefficiencies. We now use the prior
analysis to reason about potential inefficiencies in tiering
systems with a realistic workload, namely tc-twitter. In Fig-
ure 18a, we applied our “slowdown” prediction models to an-
alyze tc-twitter slowdowns-over-time under CXL. Here, we
apply our model to a period of the workoad executions (e.g.,
every 1B instruction interval). Similar to previous workload
level DRAM-contributed slowdown prediction, applying the
LLC-stalls together with MLP factor delivers better predic-
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Figure 18: Tiering performance characterization. LLC
miss is not a good predictor for guiding memory tiering decisions.
Our L3-stalls+MLP metric is more accurate. Note that over 99%
of te-twitter’s slowdown originates from DRAM.

tion, even at very fine-granularity (pink line is very close to
blue line). We can see that the most significant DRAM-
introduced slowdowns for tc-twitter occur during the final
phase of the execution (3rd-4th billion instruction period).
Upon further profiling of the LLC miss rate of tc-twitter over
time (Figure 18b), we found that the bulk of LLC misses oc-
cur during the initial phase. That said, the substantial number
of LLC misses during the initial phase do not contribute sig-
nificantly to the workload performance as the rest of phases.

However, existing tiering designs operate under the as-
sumption that performance degradation correlates positively
with memory access rates. Consequently, they tend to ag-
gressively “detect/scan” and migrate “hot” pages (both pro-
motion and demotion).

Finding #6: As a result, it causes two potential problems:
(1) “hot” pages are wrongly detected, i.e., the migration of
these seemingly hot pages does not lead to an overall per-
formance enhancement as they don’t cause CPU stalls by
default; (2) As a result of the wrong hot page detection,
it triggers unnecessarily high number of page migrations,
which inversely degrade system performance (page-level mi-
grations are long-latency and blocking operation in nature,
causing high overhead). Combined, these would render tier-
ing systems underperform compared to no-tiering.

Using TPP [42] as an illustrative example, we demonstrate
how such memory tiering designs can exacerbate overhead
and result in wrong page promotion decisions. In Figure 18d,
the blue line shows the page promotion rate over time, which
shows similar patterns as the LLC misses over time in Fig-
ure 18b. Correspondingly, a peak of 50,000 pages/s were
observed around time 30s.

Finding #7: We define a new metric called “amortized of-
fcore latency” considering both memory latency and MLP
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impact to capture the impact of CXL memory accesses to
workload performance (details ommitted). And we find it to
be able to capture workload performance very well.

In Figure 18c, we show that the “amortized offcore la-
tency” during the initial phase remains notably low, indicat-
ing significant read request overlappings during the period.
This overlapping mitigates performance degradation even in
the presence of high LLC miss stalls, as many memory ac-
cesses, despite being affected by increased remote memory
latency, are concealed by other parallel reads.

Further validation in Figure 18a and Figure 18b confirms
that the high LLC misses during the initial phase result in
marginal DRAM slowdown that is not as pronounced as ob-
served during the final phase of the workload.

6.4 Alto: Adaptive Layered Tiering Orchestration

Our optimization is straightforward: limiting page promo-
tions when the overlapping effect of memory accesses is
evident. To this end, we propose Alto, an adaptive lay-
ered tiering orchestration scheme, built on top of TPP, to
demonstrate the efficacy of our method. We chose TPP as it
is the latest tiering effort tailored for CXL while alternatives
like Hemem [45] and Memtis [39] primarily target persis-
tent memory. Additionally, it’s worth noting that page sam-
pling (e.g., Intel PEBS), an enabling technique for Hemem
and Memtis does not support CXL yet.

We implement Alto by constraining the page promotion
rate proportionally to the “amortized offcore latency” based
on two thresholds. Specifically, if the “amortized offcore la-
tency” (§5.3) falls below a lower bound, e.g., 40 cycles, we
disable page promotion to account for the evident memory
access overlapping effect. Otherwise, if it exceeds the upper
threshold, e.g., 100 cycles, we do not limit page promotions.
Both the lower bound and upper bound thresholds can be de-
rived offline using a microbenchmark similar to §5.6.

In between, we gradually reduce page promotion rate as
amortized offcore latency decreases, using a default 5-step
interval. In our implementation, we achieve this by period-
ically ignoring potential promotion page candidates within
small sets of pages. For instance, if we aim to allow 20% of
TPP-identified candidate pages to be promoted, we allow the
first two pages of every 10 pages to go through.

To monitor the “amortized offcore latency”, we collect
PMU counters periodically, e.g., every 1s. Subsequently, we
calculate the amortized offcore latency based on these coun-
ters, enabling us to dynamically adjust the page promotion
rate based on the observed latency. Our user-level tool is
lightweight and imposes no additional overheads. The ker-
nel side only involves ~30 LOC changes to Linux MM mi-
gration policies. Reading a couple of PMU counters is ex-
tremely lightweight. Alto reads only 5 PMU counters every
second, imposing almost zero overhead.

Alto Evaluation. We test Alto with 8 workloads, includ-
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Figure 19: Alto performance vs. TPP. X-axis is 8 different
workloads under test, Y-axis is normalized workload runtime to Lo-
cal DRAM. Alto can outperform TPP by 0.7-177%.

ing graphs, ML and SPEC, comparing it with TPP and three
additional settings: workloads backed by all local memory
(Local), CXL memory (CXL), and default Linux hybrid lo-
cal/CXL memory without tiering (default Linux). Since TPP
performance is sensitive to the fast-tier memory size, we con-
figure the local memory size to be large enough to accommo-
date the entire workload working set (profiled offline).

Workload working set (WSS) means the part of memory
footprint which is actively accessed during workload run-
time. We estimated WSS using heatmaps obtained via offline
PEBS-based LLC-miss sampling (high sampling rate at 100
for accuracy). For each workload, we set its local DRAM to
be slightly larger than its working set size (WSS), and CXL is
used for the remaining memory footprint (i.e., total memory
footprint minus WSS). CXL memory is constantly accessed
by the workloads as first-touch doesn’t guarantee all the hot
pages (in WSS) are initially placed in local memory, Figure
18d showcases heavy page promotions from CXL to local
memory for tc-twitter. The gap between Linux and Local in
Figure 18 stems from the accesses to CXL. We argue our lo-
cal/CXL setup is fair to evaluate TPP as TPP performs much
worse when more (slow) CXL memory is used, under which
case Alto can actually improve TPP up to 9x (not shown).

In our evaluation, TPP typically underperforms default
Linux due to erroneous page migration decisions and the re-
sulting excessive overhead. We present all the results in Fig-
ure 19. Alto demonstrates improved performance compared
to default Linux for workloads such as bc-twitter (+16%),
bc-urand (+18%), and tc-kron (+3%). This enhancement
stems from the fact that memory tiering can achieve better
performance when it migrates correct pages. Alto enables
TPP to constrain unnecessary page migrations by using an
accurate performance metric, thereby aligning its behavior
more closely with optimal performance scenario.

In detail, Alto demonstrates a performance improvement
over TPP ranging from 0.7% to 177.5%. The most notable
enhancement is observed in workload GPT-2, attributed to
its highly parallel memory accesses and the substantial mi-
gration overheads in TPP. For be-twitter, TPP even exhibits a
62% slower performance compared to CXL, while Alto sig-
nificantly enhances TPP’s performance. Workload tc-kron
experiences the least performance improvement under Alto,
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primarily because only a small portion of it exhibits over-
lapped memory accesses. Alto outperforms Linux for 3 out
of the 8 workloads in Figure 19 by 3%, 11%, and 14% while
only slightly underperforming by 3-6% for the rest. Note
that, in most cases, tiering designs such as TPP/AutoNUMA
lose to first-touch/Linux as tiering becomes more sensitive
to page migration overhead given the small latency gap (1.9-
2.4x) between CXL/local memory.

It is an unfortunate (and maybe surprising) fact that first-
touch/Linux under CXL is actually better than many (if not
all) state-of-the-art tiering policies. According to our eval-
uations, TPP, AutoNUMA, and Nomad [52] loses to Linux
by up to 181%, 22%, and 50%, respectively. Nomad au-
thors also acknowledged in their paper (Section 4.2) that No-
Migration (aka, Linux) performance exceeds (all) tiering so-
lutions. This is because CXL latency is only 1.9-2.4x that
of local-DRAM (for CXL-A,B,D) and the overhead of page
migration can easily outweigh its benefits if migration policy
is not carefully designed.

Implication #5: More broadly, we think tierability needs
to be revisited in the CXL era. Alto’s advantage over
Linux/First-touch (even just) for some workloads calls for
the need for principled approaches like ours to (1) diag-
nose and characterize tiering inefficiencies beyond hot/cold
separation, and (2) revisit tiering policies designs to reduce
migration overheads and focus on migrating performance-
sensitive pages.

We utilize Alto to demonstrate how a performance met-
ric from SupMario insights can significantly aid in identify-
ing inefficiencies and enhancing existing tiering system per-
formance with minimal changes. While Alto does not di-
rectly address the challenge of accurately sampling the most
performance-critical hot pages for migrations, orchestrating
the page migration rates indeed helps mitigate the overhead
of incorrect migrations across a range of workloads. Ad-
ditionally, we believe that SupMario’s CPU-stall-based ap-
proach could further improve hot page sampling accuracy.

7 Discussion

SupMario implications. While the study primarily focuses
on CXL devices, the high prediction accuracy on zZNUMA
indicates a pathway to performance observability, explain-
ability, and predictability of general memory systems, re-
lying solely on simple combinations of lightweight perfor-
mance counters. Stemming from an offline performance
breakdown analysis, SupMario performance models turn out
to be workload-independent, accurate, robust, lightweight,
simple, universal, and explainable. Our models are validated
across 4 different CXL devices and 4 processor platforms,
demonstrating the broad applicability of our model and the
effectiveness of our modeling methodology. This paves the
way for potential generalization. The simplicity of SupMario
models should facilitate both offline and online usage. Our



performance models can potentially serve as general perfor-
mance metrics/predictors for various tasks, such as work-
load/VM resource management and task scheduling. Sup-
Mario identifies key performance metrics that we envision
can guide numerous system task optimizations, including hy-
brid memory policies integrating the benefits of interleaving
and tiering, as well as new tiering policy designs such as im-
proved hot/important page sampling.

CXL performance predictability. Our prediction models’
deterioration from zZNUMA to CXL-A or CXL-B indicates
that CXL-B’s worse tail latency also corresponds to the re-
duced predictability of our corresponding performance pre-
diction models compared to ZNUMA and CXL-A. This trend
may worsen when future CXL-attached persistent memory
or NAND Flash devices emerge. Addressing this challenge
requires collaborative efforts from CPU, CXL device ven-
dors, and OS/software developers to build QoS-aware and
tail-tolerant software and hardware memory systems.

Additionally, CXL tail latencies also adversely affect aca-
demic CXL research based on emulation/simulation, such as
zZNUMA, given the current scarcity of CXL devices. Prop-
erly modeling and simulating CXL’s intricate performance
characteristics are essential to ensure a true reflection of real
hardware characteristics.

Workload co-location: We validate that our models work
for colocated applications as well (e.g., multiple instances of
various CPU 2017 workloads).

Future-Proofing. Future CXL devices will significantly im-
prove bandwidth and somewhat improve latency. We antici-
pate our major indings and optimizations to remain valid.

1. CXL tail latencies are likely to persist due to various
performance-functionality trade-offs in CXL controller
implementations/optimizations, such as request schedul-
ing, thermal management, QoS, and Reliability, Avail-
ability, and Serviceability (RAS). For instance, PCle 6
will require thermal throttling, which could potentially
worsen tail latencies [14, 15]. Additionally, with future
CXL devices connected through CXL switches, the addi-
tional hops and potentially slower media (PM/Flash) will
further increase the chances of latency unpredictability.

2. Future CXL workload slowdowns will likely be smaller
than those in Figure 4a. Increased CXL bandwidth will
benefit bandwidth-bound workloads, alleviating the 2-6x
slowdowns seen in Figure 4a due to low-bandwidth per
CXL device in our setup. Further latency reductions will
improve the performance of latency-sensitive workloads,
such as cloud applications, approaching NUMA perfor-
mance. This is already evident with CXL-D" (hardware-
interleaving across two CXL-Ds, >100GB/s bandwidth,
green line) in Figure 4a, where bandwidth is no longer
a bottleneck, similar to NUMA (black line). However,
the latency gap between CXL and local memory per-
sists. Mitigating slowdowns from CXL latencies will
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remain challenging without software/hardware optimiza-
tions, underscoring the need for detailed studies to char-
acterize, analyze, model, and optimize performance to
match local DRAM.

3. Our performance modeling approach will remain valid
with improved CXL performance, and we expect our
CXL prediction models (§5) to become more accurate,
approaching the accuracy of zZNUMA.

4. Our best-shot interleaving policy can further benefit
bandwidth-intensive workloads such as HPC applica-
tions, by enabling them to exploit the higher aggregate
system memory bandwidth.

5. We expect Alto to be more effective compared to state-of-
the-art tiering policies, as their migration overhead will
become more apparent when the latency gap between
CXL and local memory narrows. For instance, our Alto
evaluations on zZNUMA (ideal-CXL) show an improve-
ment to TPP up to 248% (not shown in the paper), sig-
nificantly higher than the 177% improvement for Alto on
current real CXL.

8 Related Work

CXL-based memory disaggregation. Memory disaggrega-
tion [28, 29, 39, 41, 42, 45, 51, 53] is a promising technique
to improve memory resource utilization, which recently be-
comes more practical thanks to CXL’s cache coherent in-
terface. CXL-based systems [41, 57] need to address vari-
ous aspects of memory management, including performance
predictability. Our large-scale study contributes to a deep
understanding of CXL performance implications, potentially
motivating tailored management schemes to align with CXL
performance characteristics for its imminent deployment.

Memory characterization. While DRAM characteristics
have been extensively studied and modeled [31, 32, 34, 46,
55], the introduction of CXL prompts a reevaluation due to
its unique performance characteristics. For instance, we un-
veiled CXL tail latency in the range of 100s of nanosec-
onds which is much larger than DRAM chip-level latency
variations. Caption [48] is one of the first works character-
izing real CXL devices, revealing measurement results of
microbenchmarks and Redis/DLRM-like workloads. Due
to the black box nature of CXL devices, Caption’s analy-
sis of workload performance is heavily reliant on specula-
tions. While facing similar challenges, we purposely fo-
cused on different goals in our work: a much larger set of of-
fline workload characterizations to reveal the detailed CXL
impact on CPU pipelines, validated to be accurate, which
further enabled us to develop an accurate performance pre-
diction model. This model can be used for CXL memory
management optimizations in interleaving and tiering sce-
narios. Our finding on CXL tail latencies, to the best of our
knowledge, is a first in the community, and we carefully de-
signed experiments to quantify its impact. Caption also con-



tributes an algorithm to derive a good interleaving ratio for
bandwidth-bound workloads; however, Caption relies on a
heuristic approach that requires running the workload mul-
tiple times (e.g., 4—10 repeated runs) to converge on the re-
sult by relying on empirical metrics (e.g., L1 miss latency).
Our best-shot interleaving policy is inspired by Caption de-
sign and shares similar goals. However, we achieve more
ambitious goals to predict both the optimal performance and
weighted interleaving ratio in one run, guided by a system-
atic reasoning which is more accurate.

Memory tiering. Memory tiering [38, 39, 42, 45, 52, 56]
typically relies on page table scanning, NUMA page-fault
hints, and hardware event sampling (e.g., Intel PEBS) to de-
tect hot/cold pages, treating all memory accesses to DRAM
equally without considering their relative contribution to
workload performance in terms of CPU stalls. Although our
work is not a typical tiering paper, our prediction models are
shown to be useful in understanding inefficiencies in tiering
and enhancing its performance. We hope that our findings
and insights will guide the development of next-generation
tiering policies, as we have demonstrated using the case of
Alto in §6.4.

Performance prediction: Effective performance predictors,
whether based on heuristics or machine learning, are cru-
cial for system resource management and scheduling deci-
sions. TMO [51] utilizes the PSI metric to guide tiering
choices across multiple types of memory backends, mea-
suring the amount of lost work due to resource shortages.
Pond [41] employs an ML-based latency-sensitivity predic-
tor to guide pool memory allocations. Caption [48] combines
three metrics: L1 miss latency, DRAM latency, and IPC, to
converge on the best NUMA interleaving ratio progressively.
Our work shares similar aspirations but aims to identify a
fundamental performance metric that is thoroughly reasoned
and validated to be accurate. The novel combinations of a
few performance counters in SupMario make it simple and
lightweight. We believe our work is complementary to paral-
lel explorations of new performance prediction methods with
many potential use cases. For example, SupMario models
could potentially serve as a simple and accurate replacement,
e.g., for Pond’s [41] ML models, due to their simplicity and
high accuracy.

9 Conclusion

In this paper, we present SupMario, the largest-scale CXL
memory performance characterization conducted on a com-
bination of hundreds of real-world applications and multiple
hardware CXL and memory configurations. Our study un-
veils new findings regarding CXL performance characteris-
tics, contributing novel insights to the community. Impor-
tantly, the characterization results enable a root-cause anal-
ysis for sub-ps memory latencies, leading to our most sig-
nificant contribution: memory system performance predic-
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tion models built on just over ten performance counters. We
demonstrate that our approach to derive the model and the
model itself are useful in real-world interleaving and tiering
scenarios. We plan to open-source SupMario and hope to in-
spire more research in this direction to better understand and
manage CXL implications for efficient system designs.
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