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Abstract

Compute Express Link (CXL) is a promising interconnect

technology that enables system memory expansion, but it

comes at the cost of long latencies and low bandwidth com-

pared to socket-local memory. To fully understand the per-

formance potential of CXL and mitigate its high latency

overhead, a detailed characterization of CXL performance

is crucial to guide the modeling and optimization of CXL

memory systems.

We present SupMario, a characterization framework de-

signed to thoroughly analyze, model, and optimize CXL

memory performance. SupMario is based on extensive eval-

uation of 265 workloads spanning 4 real CXL devices within

7 memory latency configurations across 4 processor plat-

forms. SupMario uncovers many key insights, including de-

tailed workload performance at sub-µs memory latencies

(140-410 ns), CXL tail latencies, CPU tolerance to CXL la-

tencies, CXL performance root-cause analysis and precise

performance prediction models. In particular, SupMario

performance models rely solely on 12 CPU performance

counters and accurately fit over 99% and 91%-94% work-

loads with a 10% misprediction target for NUMA and CXL

memory, respectively.

We demonstrate the practical utility of SupMario charac-

terization findings, models, and insights by applying them

to popular CXL memory management schemes, such as

page interleaving and tiering policies, to identify system

inefficiencies during runtime. We introduce a novel “best-

shot” page interleaving policy and a regulated page tiering

policy (Alto) tailored for memory bandwidth- and latency-

sensitive workloads. In bandwidth bound scenarios, our

“best-shot” interleaving, guided by our novel performance

prediction model, achieves close-to optimal scenarios by

exploiting the aggregate system and CXL/NUMA memory

bandwidth. For latency sensitive workloads, Alto, driven by

our key insight of utilizing “amortized” memory latency to

regulate unnecessary page migrations, achieves up to 177%

improvement over state-of-the-art memory tiering systems

like TPP, as demonstrated through extensive evaluation with

8 real-world applications.
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Figure 1: CXL latency and bandwidth heterogeneity.

1 Introduction

The demand for increased memory capacity is rapidly rising,

driven by the growing requirements of data-intensive appli-

cations [43]. The surge is further compounded by DRAM

scaling challenges [47]. Emerging interconnects like Com-

pute Express Link (CXL) holds the promise of both scale-up

and scale-out coherent memory expansion at the server/rack

levels [6, 41, 42]. Memory vendors have introduced CXL

memory expanders [4, 5, 10, 21], facilitating access to sig-

nificantly larger amounts of DRAM than previously feasi-

ble. For instance, Samsung’s CXL Memory Module - Box

(CMM-B) [21] offers 16TB of DRAM with 8 CXL devices.

Memory performance is key to system performance.

However, CXL memory expansion introduces higher access

latencies compared to traditional socket-local DRAM con-

figurations. Figure 1 illustrates the substantial heterogene-

ity in CXL latency and bandwidth, as measured across var-

ious CXL devices within our platform (Table 1) and from

public sources1[21, 22]. Furthermore, CXL devices can ex-

hibit varying performance characteristics. The variability

in latency and bandwidth arises from varying interconnec-

tion topologies and vendor optimizations. For instance, the

latencies of locally-attached CXL range from ∼200-400ns,

slightly exceeding cross-socket/NUMA latency. Accessing

CXL from a remote socket results in increased latency and

diminished bandwidth (CXL+NUMA). The incorporation of a

CXL switch to extend connectivity will introduce additional

latencies (CXL+Switch), even elevating latency to approxi-

mately 600ns. In the future, with CXL potentially involving

1CXL+Switch data is from [21], bandwidth averaged for 1 CXL device.
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multiple routing hops and its use with slow memory media

(e.g., Flash) [20], latency is projected to increase to µs-level.

The current CPU architecture and memory hierarchy are

tailored for typical 1-2 socket systems, offering ∼100ns la-

tency and 100s of GB/s bandwidth. However, the perfor-

mance implications of emerging CXL memory technology

remain uncertain. Currently, there is a lack of research

exploring detailed CXL characteristics and its impact on

memory-intensive workloads at large-scale. Conducting a

thorough characterization is crucial to provide valuable in-

sights for the imminent CXL deployment in production sys-

tems and software/hardware memory management.

In particular, how do CXL devices vary from each other

in terms of detailed performance characteristics? How does

CXL’s long latency impact CPU efficiency and workload

performance? What are the root causes? Addressing these

questions requires a deep understanding of the dynamic na-

ture of CXL’s performance characteristics, which span a

spectrum rather than adhering to fixed, static values of la-

tency and bandwidth. While previous studies [41, 44, 48–

50] provide valuable insights into CXL performance impact,

they are primarily done at a coarse-grained level, overlook-

ing critical aspects such as CXL performance stability (i.e.,

tail latencies), CPU tolerance to long CXL latencies, CXL’s

architectural implications and performance predictability.

We present SupMario, a comprehensive characterization

framework for large-scale CXL performance profiling, anal-

ysis, modeling, and optimizations. Our goals are:

(1) Understanding CXL latency and throughput impli-

cations. How (much) does CXL impact workload perfor-

mance? What are the root causes? And how to reason about

it systematically? Can workloads benefit from the higher ag-

gregate memory bandwidth by splitting the dataset between

local and CXL memory and how? We conduct a large-scale

performance study of the characteristics of 4 CXL devices

and assess 265 workloads across 7 memory latency config-

urations ranging from 140-410 ns on 4 processor platforms.

This study provides a quantitative analysis of CXL perfor-

mance at scale, uncovering new findings and insights that

would not have been possible without a large-scale approach.

(2) Memory performance modeling. Can lightweight mod-

els reliably predict workload performance in CXL-enabled

environments? Through an in-depth root-cause analysis

complementing our characterization findings, we delve into

CXL implications on CPU efficiency and develop novel lin-

ear models for workload performance prediction under CXL.

Our models are based on novel combinations of solely 12

CPU performance counters but can work surprisingly well.

We emphasize that our accurate prediction models represent

a significant advancement in enhancing the observability

and predictability of memory system performance. They

are simple, easy-to-use, explainable, general, and can serve

as fundamental performance metrics which we believe can

potentially enable many use cases.

(3) Memory performance optimization. What are the limi-

tations of existing memory policies in managing CXL mem-

ory, and how can we leverage CXL characteristics to design

better memory management policies? We show that Sup-

Mario’s approach can be used to quantitatively analyze the

inefficiencies of complex memory policies in managing CXL

memory. Additionally, we can leverage insights from Sup-

Mario to develop enhanced memory management strategies.

We apply SupMario’s characterization techniques and pre-

diction models to memory tiering [2] and interleaving [26].

Our experiments demonstrate the effectiveness and broad ap-

plicability of SupMario’s insights in identifying system inef-

ficiencies and enhancing the observability of complex mem-

ory systems. More importantly, we introduce SupMario-

augmented interleaving and tiering policies, which lead to

significant performance improvements compared to state-of-

the-art. In summary, our key contributions are:

(1) SupMario, the largest-scale CXL performance study, to

the best of our knowledge, characterizing 265 workloads

under 4 real CXL devices across 7 memory latency con-

figurations on 4 processors, detailing many new findings

about workload performance under sub-µs memory la-

tencies, CXL device performance (such as latency sta-

bility) and deep-dive analysis of CXL and CPU interac-

tions across workloads and setups.

(2) A novel root-cause analysis approach based on CPU stall

cycles for workload performance dissection under CXL,

identifying and quantifying various sources of CXL-

induced performance degradations in the CPU.

(3) A linear performance prediction model for both latency

and bandwidth sensitive scenarios that are workload-

independent and robust (validated under multiple CXL

and processor platforms and various memory policies),

simple and lightweight (using only 12 CPU performance

counters), accurate (for both NUMA and CXL mem-

ory), and explainable (from root-cause performance

breakdown analysis).

(4) A “best-shot” page interleaving policy for bandwidth-

bound workloads to effectively utilize both system and

CXL bandwidth simultaneously, achieving near-ideal

bandwidth improvements2.

(5) Alto, a memory tiering policy based on a core insight

of “amortized” memory access latency by incorporating

both memory-level-parallelism and access latencies to

precisely capture the impact of page migrations to work-

load performance. By minimizing unnecessary page

migrations and reducing the associated overhead, Alto

achieves up to 177% improvement compared to TPP

[42], a popular CXL memory tiering solution.

2Calculated as CXL bandwidth over system socket-local DRAM band-

width, i.e., BWCXL/BWDRAM).
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2 Background and Motivation

Below we present CXL background on the protocol, CPU-

CXL interactions, memory profiling, and CXL memory

management policies.

CXL for memory expansion. CXL [3] is an emerging cache

coherent interconnect built atop PCIe. It enables many po-

tential use cases, such as memory expansion, pooling, and

sharing. CXL memory seamlessly integrates into systems

as cacheable, byte-addressable memory within a zero-core

NUMA (zNUMA) node (i.e., CPU-less NUMA) [41]. Thus,

applications can simply treat it as a slower-tier of mem-

ory compared to local DRAM. Although CXL outperforms

PCIe in speed due to tailored transaction and link protocols,

it is commonly perceived that its latency is comparable or

slightly worse than that of one NUMA hop [17]. More-

over, CXL can increase system bandwidth, potentially ben-

efiting bandwidth-bound workloads. Despite the rollout of

CXL products in the last three years, there remains a lack of

in-depth studies to comprehensively understand their perfor-

mance implications, which motivates our work.

CXL request processing. In a conventional pyramid-shaped

memory hierarchy [12] with L1, L2, and L3/LLC caches, if

a memory request (e.g., reading 64B of data) is not satisfied

by the L1–L3 caches due to cache misses, the request is for-

warded to the CXL memory controller (MC) via the CXL

link. Once CXL memory returns the requested data, L1–L3

caches are updated to serve future requests more efficiently.

At a high level, the CPU’s request processing flow remains

the same for both local DRAM and CXL [33]. However,

the use of different buses (DIMM vs. CXL/PCIe) and MCs

(on-CPU integrated, i.e., IMC vs. third-party) affects the ef-

ficiency of CPU cache hierarchy.

The load/store interface is used for a CPU to commu-

nicate with integrated or CXL MC to perform memory op-

erations. The CPU issues two types of load requests: on-

demand and prefetching read operations. On-demand loads

are memory read operations where the CPU requests data

from (CXL) memory only when it is needed for computa-

tion while prefetching loads are predictive reads (directed by

the hardware prefetchers) in advance. The CPU issues store

requests to write data to memory. To maintain cache coher-

ence, if the CPU wants to modify a cacheline, it needs to first

send a read-for-ownership (RFO) request to gain exclusive

access to the cacheline by asking the other cores to invali-

date their copies of the cacheline and/or load the cacheline

from (CXL) memory. Thus, the (CXL) MC needs to handle

three types of memory reads: on-demand, prefetching, and

RFO. We will later show that differtiating the three types

of memory reads is crucial for understanding CXL’s perfor-

mance implications (more in §4).

For example, CPUs heavily rely on hardware prefetch-

ers to minimize potential pipeline [8] stalls caused by the

longer access latency of (CXL) DRAM compared to L1–L3

caches. The pipeline refers to the multiple instruction pro-

cessing stages for concurrent instruction executions, which

helps improve CPU speed. However, the increased CXL ac-

cess latency can lead to delayed request prefetching, causing

the CPU pipeline to stall for a longer period (i.e., waiting for

data to arrive, more in §4). This results in degraded workload

performance under CXL.

CXL profiling and profile-guided optimizations. Mod-

ern CPUs offer robust profiling capabilities through hard-

ware counters/events sampling for top-down microarchitec-

ture analysis (TMA) [54]. This technique has been integrated

into widely used profilers, e.g., Linux perf. TMA allows

users to pinpoint CPU inefficiencies with well-defined met-

rics. For example, DRAM-bound metric measures how often

CPU was stalled on DRAM. As modern data-intensive work-

loads becomes increasingly memory-bound, they can lead to

significant stalled CPU cycles [37]. This approach is impor-

tant for understanding performance issues that arise from the

inherent memory access patterns of these workloads.

Leveraging such information to inform system optimiza-

tions is a well-established practice [39, 42, 45]. One com-

mon strategy involves utilizing hardware performance coun-

ters/events, either individually or in combination, within

heuristic or ML algorithms as performance predictors. How-

ever, it remains a challenge to define accurate performance

metrics that can capture complex system behaviors. There

are two limitations with existing approaches: accuracy and

complexity. Many widely used performance indicators, such

as LLC-miss, are inaccurate. And ML methods introduce

high computational overhead to be useful for scenarios with

tight time constraints of 100s of ns. Thus, TMA is mainly

used for offline workload analysis. We will address this with

a clever combination of multiple performance counters to

serve as reliable performance predictors (§5) and use them

online for system optimizations (§6).

CXL memory management. Utilizing CXL as regu-

lar DRAM can lead to suboptimal performance due to

CXL’s longer latency and/or relatively smaller bandwidth.

There are two popular approaches to address this challenge:

(NUMA) page interleaving and memory tiering. Page inter-

leaving involves distributing page allocations across NUMA

nodes in round-robin to maximize bandwidth usage [13]. In

contrast, tiering aims to minimize CXL latency impact by

prioritizing local DRAM for most-frequently accessed pages

via proactive page migrations. While interleaving and tier-

ing have been studied across various heterogeneous memory

contexts, including CXL, persistent memory, and disaggre-

gated memory [38, 39, 42, 45, 56], fundamental gaps remain

in effective tiering policy designs.

In the rest of the paper, we present characterizations in

§3 and §4, CXL/NUMA performance models in §5, system

optimizations for interleaving and tiering in §6, and conclude

in §9 followed by discussion and related work in §7 and §8.
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1

Figure 2: Overview. Our in-depth and at-scale characteriza-

tion enable CXL performance modeling and optimization.

3 Overview and CXL Characterization

3.1 SupMario Overview

Figure 2 provides a high-level overview of SupMario

pipeline. To address the research questions raised in §1, we

need to overcome the following challenges:

• Lack of fine-grained profiling tools for in-depth analysis

of CXL’s unique performance characteristics at request-

level, and their impact at scale, rather than focusing solely

on high-level average latency and bandwidth to understand

a limited set of workloads as in prior works [48, 49].

• Lack of systematic approaches to analyze CXL-induced

slowdowns and identify the root causes of performance

degradation, rather than treating CXL as a black box.

• Lack of explainable performance metrics to improve the

observability of both 1-tier and 2-tier (with NUMA/CXL)

memory systems, particularly under long memory laten-

cies, rather than relying on heuristics.

• Lack of deterministic and CXL-aware data placement

policies to exploit CXL performance potentials in memory

interleaving and tiering setups.

SupMario introduces a suite of new benchmarking and

profiling tools, analytical and modeling approaches, find-

ings, and memory policies to bridge the gaps. For the first

time, SupMario provides a detailed analysis of the unpre-

dictable CXL latencies and their impact on CPU efficiency.

It aims to distill key findings applicable to a wide range of

workloads and unify them into a set of performance metrics

and models using a simple yet accurate approach based on

the novelty combination of a few CPU performance counters.

The insights derived from SupMario’s characterization and

modeling provide deeper understanding of how CXL’s long

latencies affect CPU performance. Notably, we find that al-

though SupMario performance models are specific to certain

hardware configurations (e.g., CPU and memory), they are

independent of the workloads, allowing them to be applied

across both offline and online scenarios. SupMario-powered

memory tiering and interleaving policies not only deliver su-

perior performance gains but also provide valuable insights

for designing future CXL-aware memory systems.

3.2 Platform

We show the details of our hardware platform in Table 1.

Local +NUMA Specification

CPU DDR Size Lat BW Lat BW L1D-L2-L3

/ CXL Type GB ns GB/s ns GB/s / CXL-dev-spec

SPR2S 16×DDR5 256 114 218 191 97 48KB-2MB-60MB

EMR2S 16×DDR5 256 111 246 193 120 48KB-2MB-160MB

SKX2S 16×DDR4 192 90 52 140 32 32KB-1MB-13.8MB

SKX8S 16×DDR4 384 81 109 411 7 32KB-1MB-38.5MB

CXL-A 2×DDR4 128 214 24 375 14 ASIC, CXL1.1, ×8

CXL-B 2×DDR5 128 271 22 473 13 ASIC, CXL1.1, ×8

CXL-C 2×DDR4 16 394 18 621 14 FPGA, CXL1.1, ×8

CXL-D 4×DDR5 768 239 52 333 14 ASIC, CXL1.1, ×16

Table 1: Experimental platform. “Local” refers to the per-

formance measured by CPUs on the same socket while “+NUMA”

indicates memory access from a remote socket.

Servers. We use two servers equipped with Intel’s 4th (Sap-

phire Rapids, SPR) and 5th (Emerald Rapids, EMR) gener-

ation Xeon scalable server processors. The two servers are

identical except for their CPUs. Each server is a dual-socket

(2S) system with 16 cores per socket, running at 2.1GHz.

They are equipped with 48KB L1 data cache, 2MB L2 cache,

and 8 memory channels with 128 GB of DDR5-4800MHz

memory. The key difference between them is the size of the

L3/LLC cache: our EMR has a 160MB LLC, whereas SPR

has only 60MB. As a more recent processor, EMR offers

better support for CXL and delivers up to 28% better perfor-

mance than SPR for certain workloads we measured (due to

its much larger LLC).

We also use two Skylake servers – one with 2 sockets

(SKX2S) and another with 8 sockets (SKX8S) – to extend

the range of memory latencies from 140 to 410 ns using

zNUMA and by lowering the CPU uncore frequency. To-

gether, the setups provide a total of 7 latency configurations

(including 4 CXL devices). We find that the performance of

zNUMA and local DRAM is more stable compared to real

CXL devices, making zNUMA a clean-slate environment for

our characterization and modeling (further details to follow).

CXL devices. We use 4 CXL memory expanders from dif-

ferent vendors (denoted as CXL-A, CXL-B, CXL-C, CXL-

D). Our CXL devices’ average latency and bandwidth are

214-394ns and 18-52GB/s, respectively, measured by Intel

Memory Latency Checker (MLC) [9]. Note that CXL-D is

hosted on a remote machine while others are in our lab envi-

ronment, CXL-C only supports 16GB DRAM, thus we were

only able to finish a subset of 265 workloads on them.

All our CXL devices are CXL 1.1 type-3 memory ex-

panders (supporting CXL.io and CXL.mem). These devices

function as black boxes to us, as we do not have access to

their internal implementation details. CXL-C is FPGA-based

(lowest performance) while the rest are ASICs. CXL-D uti-

lizes 16× PCIe 5 lanes and supports 4 DIMMs, providing the

highest CXL bandwidth of 52GB/s. In contrast, the other

devices use 8× lanes and 2 DIMMs, resulting in nearly half

the bandwidth (18-24GB/s), as shown in Table 1. CXL-A

4
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Unlike local/NUMA memory, CXL shows high tail latencies.

and CXL-C use DDR4 memory, while CXL-B and CXL-D

use DDR5 memory. In terms of latency, interestingly, CXL-

A exhibits the lowest latency at 214ns, despite using DDR4

memory, while the DDR5-based CXL-B and CXL-D have

higher latencies of 239ns and 271ns, respectively. We specu-

late that these differences in performance characteristics are

primarily due to variations in CXL memory controller opti-

mizations (e.g., scheduling policies, row buffer management,

QoS, thermal management in the controller) [36]. Accessing

CXL from a remote socket (+NUMA column) increases the la-

tency and decreases bandwidth. However, to our surprise, the

latency increase via one NUMA hop vary more significantly

by device, i.e., increasing by 161ns, 202ns, 227ns, and 94ns,

for CXL A–D respectively. Later, we show CXL+NUMA

leads to unexpected slowdowns for some workloads (§3.4)

which requires careful management.

Workloads. We use a diverse set of representative work-

loads for the characterization, covering cloud workloads

(caching and DB such as Redis [18] and VoltDB [25], Cloud-

Suite [1], and Phoronix [16]), graph processing (GAPBS

[27], PBBS [24]), data analytics (Spark [35]), ML/AI (GPT-2

[7], MLPerf [19], Llama [11]), and high-performance com-

puting (SPEC CPU 2017 [23], PARSEC [30]). Some work-

loads are latency-sensitive (e.g., cloud workloads), some are

bandwidth-sensitive (e.g., HPC workloads), and others are a

mix of both. We consider a large-scale study essential to un-

cover key findings and insights (discussed later) that would

not have been achievable with a small-scale study.

3.3 CXL Device Characterization

We start with device-level microbenchmarks to understand

CXL latency characteristics in detail. We run workloads us-

ing either local or CXL memory. Local DRAM performance

is used as the baseline to calculate CXL slowdowns.

CXL latency stability and tail latencies. To understand

latency variability of different CXL devices, we measure

latencies for each cacheline request. As existing memory

benchmarking tools do not support request-level latency re-

porting, we implemented a microbenchmark program (called

MIO) that can measure cacheline-granular request latencies.

MIO average latency results are validated with Intel MLC

[9] reported ones to be accurate. MIO measures the aver-

age latency of each N (configurable, to amortize rdtsc tim-

ing overhead) pointer-chasing operations on a working set

larger than LLC size. We use an in-memory buffer from an

idle NUMA node to store the latency logs to avoid interfer-

ence and minimize performance overhead. Figure 3 shows

the CXL latency distributions of all 4 CXL devices and

Local-DRAM/NUMA under 1-32 colocated pointer-chasing

threads (from left to right). This setup mimics the co-

location of multiple memory latency-sensitive workloads.

Note that none of the CXL device bandwidth is saturated and

pointer-chasing is purely latency-sensitive operation. We

disabled L1/L2 prefetchers to measure device-level latencies.

We observe CXL-B and CXL-C suffers from significantly

high tail latencies. Local and NUMA latencies are sta-

ble, and the difference between p99.9 and p50 latencies are

only 45ns and 61ns. However, CXL latency stability largely

varies across vendors. The small latency variation for lo-

cal and NUMA are probably due to DRAM chip-level la-

tency variations (e.g., row buffer hit/miss, activation laten-

cies, etc.) widely discussed in prior DRAM characterization

works [31, 32, 34, 46, 55] (also in §8). Local DRAM latency

variation is much smaller than that of CXL. For example,

CXL-D can deliver the best latency stability, its difference

between p99.9 and p50 is 75ns (only 30ns and 14ns more

than Local and NUMA). However, for CXL-B and CXL-C,

it can reach ∼160ns, which is 50% higher than the median

latency. When looking at higher percentiles at p99.99 and

p99.999, CXL device latencies will be above 700ns for CXL-

A and CXL-D and >1µs for CXL-B and CXL-C.

Similarly, when one pointer-chasing thread is co-located

with multiple bandwidth-bound read/write threads (results

not shown), we observe even worse tail latency trends on

CXL compared to Local/NUMA. When turning on CPU

prefetchers, we see effective improvement of the average la-

tency but tail latencies persist for CXL.

We speculate that high CXL tail latencies are caused by

the CXL controller sub-optimal optimizations, for example,

inefficiencies in thermal management or memory request

scheduling could lead to long queueing delays. Unfortu-

nately, there are no available tools to investigate the exact

cause of CXL tail latencies. A potential future white-box

approach could involve breaking down the latency of each

memory request and accounting for the latency across differ-

ent components, such as the CXL link, CXL controller, and

DRAM chips. This would be feasible if CXL controller ex-

poses detailed performance counters, for example, through

the upcoming CXL performance monitoring unit (CPMU)

defined in CXL 3.0 specification [3], similar to the CPU

PMU. As a first step, we aim to demonstrate and quantify

the impact of CXL tail latency to raise awareness in the sys-

tems community. To summarize,

Finding #1: Not all CXL devices are created equal, each car-
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rying very unique performance characteristics. More impor-

tantly, CXL devices exhibit unstable and higher tail latency

compared to regular socket-local or NUMA memory. High

access parallelism and high memory pressure (e.g., band-

width) can exacerbate CXL tail latencies. Further, concur-

rent reads and writes exert differing impacts on memory la-

tency for CXL devices, especially regarding tail latencies.

While CPU hardware prefetchers can improve average mem-

ory access latencies, they fail to mitigate tail latencies. CXL

tail latencies negatively impact application performance.

Implication #1: From both software and hardware design

perspectives, there is a need to address CXL tail latencies.

Future CPUs need be improved (e.g., via smarter CXL-aware

prefetching policies) to better manage CXL’s long and un-

predictable latencies effectively. Additionally, (some) CXL

controllers need further optimizations to achieve latency pre-

dictability, rather than solely focusing on average latency and

bandwidth.

Recommendation #1: Tail latency should be used as a key

metric for evaluating CXL devices, as predictable latency is

crucial for meeting user service level objectives (SLOs) in

cloud environments.

3.4 Workload Characterization

To fairly compare results from different CXL devices, we

first analyze common workloads that we complete on all

platforms followed by more workloads analysis (265) on

zNUMA, CXL-A and CXL-B.

Figure 4a shows the CXL slowdown CDF of 43 work-

loads from SPEC CPU 2017 across 4 CXL devices on

EMR and 3 zNUMA latency configurations. The left-most

black line is NUMA performance with up to 34% slow-

downs from two bandwidth-intensive workloads (619.lbm

and 649.fotonik3d). Almost half of the workloads do

not experience slowdowns at all due to the large cache in

EMR CPU (160MB LLC). In total, 32 workloads experi-

ence less than 5% slowdowns and 3 more workloads be-

low 10%. Among the four CXL devices, CXL-D (green

line) performs on-par with zNUMA because its high band-

width prevents any workloads from being bandwidth-bound.

There are four bandwith-bound workloads requiring over

24GB/s – 603.bwaves, 619.lbm, 649.fotonik3d, 654.roms

– whose bandwidth needs exceed the capacity of CXL-{A,

B, C}. As a result, these workloads experience significant

slowdowns (over 50%) compared to zNUMA/CXL-D, due to

significant device-side queueing delays as the CXL devices

become saturated. These four workloads see worse slow-

downs under CXL-B and CXL-C. because both the latency

and bandwidth deteriorate compared to CXL-A. For the re-

maining workloads which do not saturate CXL bandwidth,

we observe the performance worsens with increasing CXL

latency. For example, 602.gcc slowdown goes up from 12%

up to 13%, 21%, and 38% for CXL-A, CXL-B, and CXL-C,

respectively. Other workloads might experience more sig-

nificant performance impact under increased latency, e.g.,

503.bwaves r slowdown jumps from 11% to 16% (CXL-A),

33% (CXL-B), and 81% (CXL-C).

CXL-C is the least performant in the four CXL devices

in terms of average latency, bandwidth, and latency stabil-

ity due to the FPGA-based CXL controller implementation.

It shows significantly worse slowdown results compared to

CXL-A and CXL-B. For example, 649.fotonik3d even sees

a 5.3× slowdown, showing a combined impact from long

(unpredictable) latency and low bandwidth.

(Suspicious) CXL+NUMA performance. We planned to

use CXL+NUMA setup to simulate CXL memory access la-

tency setups in the range of 400-700ns. However, we find

workload performance under CXL+NUMA is significantly

worse even than that of 2-hop NUMA whose latency and

bandwidth are both worse, indicating issues when CXL and

NUMA are used together. In CXL+NUMA, memory re-

quests need to go through cross-socket interconnect (e.g.,

UPI) first before reaching the CXL device. CXL+NUMA

results are shown in the “CXL-A+NUMA” dotted brown

line in Figure 4a. Surprisingly, while CXL+NUMA latency

is lower than SKX-zNUMA (375ns vs. 411ns) and band-

width is higher (14GB/s vs. 7GB/s), CXL+NUMA perfor-

mance is much worse than CXL-C, which does not seem

to make sense. Similarly, this is true for CXL+NUMA

vs. CXL-C where CXL+NUMA latency is lower (375ns vs.
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394ns). Note CXL+NUMA bandwidth is indeed lower than

CXL-C (14GB/s vs. 18GB/s), but when filtering out work-

loads needing more than 10GB/s bandwidth, CXL+NUMA

slowdowns are still much worse than CXL-C. For example,

520.omnetpp sees <5% slowdowns under all CXL devices,

but experiences an astonishingly high slowdown of 2.9×

under CXL+NUMA. Upon further analysis, we found this

workload consumes <1GB/s bandwidth (read+write), and is

neither latency-sensitive or bandwidth-sensitive. We confirm

the significant slowdown is due to much worse tail latencies

under CXL+NUMA, explained next.

Tail-latency impact. 520.omnetpp performs discrete event

simulation of a large ethernet network. In Figure 4b, we

show the CDF of sampled memory latencies for the work-

load. The plot shows little difference between Local and

CXL-A (gray and blue lines), which explains the small slow-

down under CXL-A. However, CXL+NUMA (brown line)

exhibits a long tail latency starting around p98 up to 800ns.

As we reduce the load of the workload (by reducing the

number of simulated LANs on backbone switches) to 1/2

and 1/4, we observe consistently improved tail latencies

(two dotted brown lines). Correspondingly, the slowdown

on CXL+NUMA also significantly decreases from ∼290%

down to ∼65% and 58%. We believe this serves as direct

evidence that tail latencies are the root cause of the perfor-

mance slowdowns. Similarly, 10 other workloads do not ex-

perience noticeable slowdowns under CXL but 33%-283%

under CXL+NUMA. These findings are consistent for both

SPR and EMR, and persist regardless of CXL device used.

SPR vs. EMR. Figure 4c compares the slowdowns for SPEC

workloads under SPR and EMR. Compared to SPR, EMR

features a larger LLC size and microarchitecture optimiza-

tions for CXL, which might lead one to expect improved

performance. However, Figure 4c shows that the CXL slow-

downs with EMR are not significantly reduced despite the in-

creased LLC size, indicating that larger caches have limited

effectiveness in mitigating the impact of long CXL access la-

tencies. Although EMR shows slightly less slowdowns than

SPR on both CXL-A and CXL-B, the CXL-induced slow-

downs largely persist. This indicates that existing caches

and/or prefetchers are not effective at hiding long memory la-

tencies. These findings suggest that simply increasing CPU

cache size is insufficient for optimizing CXL. Future CPU

designs will need to incorporate further optimizations to bet-

ter mitigate the impact of CXL’s long latencies.

All workloads. Figure 4d presents the slowdown CDF

for 265 workloads on both EMR/SPR and CXL-A/CXL-

B. Compared to the CPU 2017 results in Figure 4c, the

slowdowns are more prounced as workloads from other

benchmarking suites, such as graph and ML/AI, tend to be

memory-intensive, leading to greater performance degrada-

tions. However, the overall performance patterns remain

consistent, e.g., EMR outperforms SPR (albeit by a small

margin) on both CXL devices. On EMR, more than 15% of

the workloads experience over 50% degradation on CXL-A,

while this percentage increases to 20% for CXL-B due to its

higher latency (and/or less predictable latency). For SPR,

16% and 22% of workloads exhibit over 50% performance

degradation on CXL-A and CXL-B, respectively. The slow-

down CDFs also reveal a clear “tail,” with 5% of the work-

loads suffering from slowdowns of 2.3-6.3×, primarily due

to being bandwidth-bound.

In summary, the key takeaways from the workload-level

charcterizations are as follows:

Finding #2:

• Workload performance deterioates superlinearly with in-

creasing CXL latency; more importantly, the relative slow-

downs exceed the rate of the latency increases).

• Longer CXL latencies correspond to worse bandwidth

(CXL A→B→C), which has a more pronounced impact on

bandwidth-bound workloads than purely latency-sensitive

workloads due to the combined effects of increased latency

and limited bandwith.

• CXL devices with worse tail latencies (e.g., CXL-B and

CXL-C) experience more significant slowdowns across all

evaluated workloads.

• On a positive note, many workloads can tolerate long CXL

latencies (up to 410ns) and thus experience minimal slow-

downs, suggesting that CXL could be useful for real-world

applications in pooling scenarios.

Implication #2: As future CXL devices are expected to sig-

nificantly increase bandwidth (CXL-D is a good example,

and bandwidth can also be easily enhanced through hard-

ware interleaving across multiple CXL devices) and moder-

ately reduce latency, we anticipate that future CXL workload

slowdowns will be smaller than those shown in Figure 4a.

Higher CXL bandwidth will benefit bandwidth-bound work-

loads, potentially alleviating the 2-6× slowdowns observed

in Figure 4a due to the low bandwidth of individual CXL de-

vices. Reductions in latency will improve the performance

of latency-sensitive workloads, such as cloud applications,

bringing it closer to NUMA performance.

Recommendation #2: CXL latency is more critical to per-

formance when bandwidth is no longer a bottleneck (see

Figure 4a) and deseves more attention in future CPU/CXL

designs as well as software optimizations. However, for

bandwidth-bound workloads to effectively utilize the com-

bined bandwidth of local and CXL memory, improved soft-

ware approaches are still needed.

4 Performance Modeling

4.1 Slowdown Root-Cause Analysis

Our goal is to break down workload slowdowns into con-

tributions from the CPU cache hierarchy and CXL memory.
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Figure 5: CXL slowdown breakdown. Figure (a) shows

various components where CXL introduces overheads; Figure (b)

details the flow of CXL-induced cache slowdowns.

We aim to quantify the impact of each component to bet-

ter understand how CXL affects CPU efficiency. For exam-

ple, instead of the general notion that CPU prefetchers be-

come less effective under CXL’s longer latencies [40], we

will measure CXL’s impact on prefetcher performance and

disclose why it happens.

To achieve this, we need an approach to capture the events

in the CPU pipeline that lead to performance slowdowns un-

der CXL and correlate them accurately back to workload-

level slowdowns. The extensive microarchitecture-level in-

formation offered by CPU PMU counters provides valuable

insights into the efficiency of the CPU pipeline. While work-

load slowdowns can be directly measured using application-

level metrics, identifying the underlying PMU events/metrics

that can correlate to the slowdowns is often challenging. It

is even more challenging to establish a precise correlation

between workload performance and architecture-level per-

formance metrics. The Intel TMA method [54] is a popular

approach for top-down performance analysis, but it is insuf-

ficient for our objectives.

1. TMA identifies dominant performance bottlenecks in an

application by analyzing execution inefficiencies within

the CPU pipeline for a fixed setup using either local

DRAM or CXL memory. However, it does not provide

a differential analysis to interpret pipeline differences re-

sulting from varying backend memory.

2. Although a differential analysis can be done manually,

there is no method to precisely correlate microarchitec-

ture level metrics with workload slowdowns. The TMA

metrics are designed to capture the performance or con-

tention of specific hardware components rather than over-

all workload behavior.

For these reasons, we begin by examining components of

the CPU pipeline involved in instruction execution and an-

alyzing the changes induced by CXL on those components

during memory request processing. As discussed in §2, pro-

cessing CXL memory requests requires traversing the mem-

ory hierarchy, including L1, L2, LLC, and CXL memory.

By evaluating the CPU’s efficiency at these key points, we

can identify the corresponding slowdowns caused by CXL

across workloads. Figure 5a highlights the key components

as observation points for memory request processing during
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Figure 6: CDFs of slowdown differences using stalls and

backend stalls. The X-axis represents the absolute difference

between estimated slowdowns using stalls or backend stalls and the

actual measured slowdowns for each workload.

CPU and CXL interactions. Through detailed offline analy-

sis, we make a few key observations that lead to an accurate

slowdown breakdown method which we describe below.

Workload performance slowdowns can be represented us-

ing microarchitecture-level performance counters and rea-

soned about by checking where “stalls” happen in the CPU

pipeline. For example, if a workload takes c cycles to com-

plete on local memory and c′ on CXL, the slowdown can be

denoted as S = c
′
−c

c
= ∆c

c
.

Finding #3: The variance in cycle counts between CXL and

local DRAM primarily stems from stall cycles difference,

which further mainly arises from the CPU pipeline backend.

As such, CXL slowdowns can be estimated as:

S =
∆c

c
≈

∆stall

c
≈

∆backend−stall

c
(1)

CPU backend refers to memory-subsystem. Purely CPU-

bound workloads are not sensitive to CXL latency due to few

CXL accesses, thus experiencing minimal slowdowns.

Accuracy. To validate the finding, we measure (backend)

stall cycles for each workload and use them to estimate

the workload slowdowns according to (1). We compare

them with the actually observed workload slowdowns using

application-level metrics (e.g., time, throughput). Figure 6

presents the CDF plots of the absolute difference between

the actual slowdown and the (backend) stall based slowdown

estimations, which indicates the inaccuracies. We show the

results for zNUMA, CXL-A, and CXL-B. We observe very

low inaccuracies – within 5% for over 95% of workloads

(the intersection of two gray lines). Therefore, CXL-induced

(backend) stall cycle difference can effectively represent the

slowdown.

Implication #3: Workload slowdowns on CXL are primar-

ily due to the additional backend stalls, which are caused by

memory subsystem inefficiencies.

Reasoning. The CPU pipeline is divided into two parts: the

frontend and the backend. In the frontend, instructions are

fetched and decoded, while in the backend, they are exe-

cuted. Stalled cycles can occur due to stalls in either the

frontend, the backend, or both. However, frontend stalls are
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negligible because modern CPU instruction caches are effi-

cient and large enough to fetch and decode instructions with-

out being affected by CXL delays. Therefore, it is primar-

ily stalls in the memory subsystem (i.e., the CPU backend)

that are impacted by CXL. As a result, stalled cycles in the

memory subsystem can serve as a suitable approximation for

slowdown caused by CXL.

Breaking down the slowdown. Figure 5a highlights the

simplified CPU backend components where the majority of

these stall cycles occur, including the store buffer for serving

writes, L1–LLC, and CXL for serving reads. By observing

the number of stall cycles on each component, we can further

understand how (much) each of these backend components

contribute to workload slowdowns.

On Intel platforms, the stalls on the store buffer, L1, L2,

LLC, and (CXL) DRAM represent exclusive events which

sum up to the total backend stall cycles (see Figure 4 in [54]).

Let s be the number of stall cycles, according to TMA ap-

proach, we have:

sLocal = sstore + sL1 + sL2 + sL3 + sDRAM (2)

sCXL = s′store + s′L1 + s′L2 + s′L3 + s′DRAM (3)

In the above formula, sL1 and s′L1
denote the number of

stall cycles on local and CXL memory, respectively, due to

L1 cache accesses. Other terms follow a similar definition.

When looking at the difference between the two, we get:

∆stall = sCXL − sLocal =

∆sstore +∆sL1 +∆sL2 +∆sL3 +∆sDRAM (4)

Here, ∆sL1 denotes the difference (∆) of stall cycles on

L1 on local and CXL DRAM. Correspondingly, by dividing

each item with total cycle-count (c), the overall slowdown

can be represented as the combined slowdowns from the five

sources as follows:

S ≈ Sstore + SL1 + SL2 + SL3 + SDRAM (5)

Above, each component-wise slowdown is calculated as

the delta of stall cycles on the specific component, e.g., slow-

down due to L1 cache access is ∆ of stalled cycles on L1, de-

nominated by the total cycle count (c), i.e., SL1 = ∆sL1/c.

DRAM (Demand Load) Slowdown (SDRAM ). We use the

increase in stalled cycles of LLC misses, as a primary indi-

cator of CXL slowdown from DRAM. These misses denote

demand read misses, excluding RFO and prefetch requests.

On Intel platforms, they are characterized as cycles stalled

while LLC demand read misses are unresolved. Hence,

their change suggests performance deterioration originating

from DRAM, including the (CXL) memory controller. We

also identify memory level parallelism (MLP) as another key

metric for analyzing slowdowns. Later, we will show how it

enhances slowdown prediction in §5.3.

Store Slowdown (Sstore). We use the increase of cycles

bound on full store buffer to gauge store operation slow-

down. Incoming store requests queued in the store buffer

are dequeued upon completion. Some writes issue RFO re-

quests before execution. If the store buffer fills up, these

RFOs would hinder load efficiency, causing CPU stalls.

4.2 Cache Slowdown (Scache)

While DRAM and store slowdowns are relatively straight-

forward to understand, cache slowdowns are more com-

plex. In this section, we discuss our key findings on how

CXL can degrade CPU cache efficiency. Cache slowdown

(SL1 + SL2 + SL3) indicates stall cycle increase on various

cache levels (L1, L2, and LLC). Similarly, they can be mea-

sured using the corresponding stall cycles counters. Below

we describe our findings to reason about cache slowdowns

on CXL through offline analysis.

Finding #4:

1. Cache slowdown under CXL is due to reduced prefetch

efficiency. To validate this, we disable all the hardware

prefetchers (L1 and L2, LLC-prefetcher is disabled by de-

fault) and measure workload slowdowns. With prefetch-

ers off, we found virtually no stall cycles on cache (SL1 =
SL2 = SL3 = 0).

2. Through our extensive offline analysis, we find CXL’s rel-

atively longer latency causes L2-prefetcher inefficiency

(less useful data in L2 cache), thus causing L1-prefetcher

to fetch more data from LLC/CXL. As a result, L1 de-

mand reads are affected negatively (more stalls in L1),

thus causing cache-slowdown.

3. Upon further analysis, we find cache slowdown is mainly

reflected as the increase of hits on line fill buffer (LFB),

a per-core small buffer with 10-20 entries that connects

L1 and L2 caches. Due to the reduced L2 prefetcher effi-

ciency, L1 prefetcher fetches more data from LFB, caus-

ing higher LFB hits.

To summarize, as shown in Figure 5b, CXL initially leads

to reduced efficiency of L2 prefetchers. With less useful data

in L2 cache, L1 prefetchers are compelled to fetch more data

from LLC or (CXL) DRAM due to L2 misses. Moreover,

CXL affects L1 prefetch efficiency as well. Data fetched

by L1 prefetchers must be temporarily stored in LFB before

reaching L1 cache, and this would cause more requests to be

served by (slower) LFB hits instead of direct L1 hits, causing

L1 slowdowns.

Reasoning of reduced L2-prefetch efficiency under CXL.

Through offline analysis of cache-related PMU counters

for local-DRAM and CXL, we find reduced number of

L2 prefetch requests that misses L3/LLC (L2-prefetch-

L3-miss) on CXL. Meanwhile, L1 prefetch that misses

L3/LLC (L1-prefetch-L3-miss) increases. The increase is

almost the same as the decrease of L2-prefetch-L3-miss,

as shown in Figure 7a, while L2-prefetch-L3-hit does not

change. The decrease of L2-prefetch-L3-miss on CXL setup

indicates the L2-prefetcher fails to fetch as much data as on

local-DRAM-setup from CXL, thus reducing L2-prefetcher
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Figure 7: Correlations of LFB-hit, L1-prefetch-L3-miss

and L2-prefetch-L3-miss. (a) shows strong linear correlations

of L2 prefetches that miss L3 and increase of L1 prefetches that miss

L3; (b) shows a similar trend for increase of L1 prefetches that miss

L3 and increase of LFB hits.

efficiency. As a result, the L1-prefetcher can’t find data from

L2 cache that should be fetched by L2-prefetcher and it has

to fetch more data from CXL, which explains the increase in

L1-prefetch-L3-miss. Figure 7a shows that the decrease of

L2-prefetch-L3-miss has a strong positive relationship with

the increase of L1-prefetch-L3-miss (almost y = x), with a

Pearson coefficient of 0.99.

Cache slowdown can be observed via LFB-hit increases.

LFB connects L1 and L2 caches. The data of all read re-

quests must be placed in the LFB before reaching L1 cache

from L2 or lower levels, as in Figure 5a. Due to its limited

size, LFB can become a bottleneck for data flowing to L1

cache. For example, Figure 7b shows that the increase in

L1-stalled-cycles correlate with high pressure on LFB (more

LFB hits), caused by L1-prefetch-L3-miss increasing. Par-

ticularly, the increase in LFB hits (difference between CXL

and Local-DRAM) is (almost) linearly correlated with the

increase in L1-prefetch-L3-miss. It means that more data is

fetched from CXL to L1 cache by the L1-prefetcher, which

becomes LFB hits.

Similarly, the increase in LFB hits is positively correlated

with the decrease in (demand read) L1 cache hits. The rea-

son is that the data fetched by L1-prefetcher first goes to

LFB, but has not yet been transferred to L1 cache, due to

the longer memory latency of CXL. The data required by

load instruction is fed by LFB but not L1 cache, resulting in

L1 hit becoming delayed hit on LFB.

In summary, if a workload heavily relies on data from L1

prefetch (e.g., sequential, stride, or streaming access), and

this data primarily originates from DRAM, with subsequent

data often in the same cacheline, then the stall cycles of

L1 demand misses may worsen. Consequently, such work-

loads are prone to experiencing high L2 cache slowdown

under CXL. We also observed that on SPR/EMR, cache

slowdown predominantly arises from LLC rather than L2

(SKX+zNUMA), validated similarly.

Next, we will apply this approach to various workloads.

Our aims are twofold: validate the plausibility of our as-

sumptions; and illustrate how the breakdown method can re-

veal interesting insights overlooked in prior research.

4.3 Workload Slowdown Diversity

Figure 8 depicts the overall and breakdown of CXL slow-

downs for each workload under zNUMA, CXL-A and CXL-

B. “Other” indicates the slowdown contribution which is not

captured via our analysis. The breakdown allows us to fur-

ther analyze various causes of CXL slowdowns. Below we

summarize some findings.

For different workloads, the contribution of slowdown

from various sources varies. Taking SPEC workloads such as

519.lbm, as an example, the majority of the slowdown orig-

inates from stalls in the CPU’s store buffer. This indicates a

high volume of RFOs and insufficient entries in the CPU’s

store buffer. These observations are further supported by ob-

servations such as high UPI non-data traffic and high write

bandwidth. However, in workloads like 649.fotonik3d, a

significant portion of the slowdown arises from the cache.

For GAPBS workloads, the primary source of slowdown

is from DRAM (stalls in LLC miss demand reads). Only a

few, such as bc-urand, sssp-web, and bfs-urand, encounter

slowdown from the cache. Many of the Llama workloads

experience L3/LLC slowdowns. Cloud workloads such as

Redis and VoltDB, mainly suffer from DRAM slowdowns.

Similarly, DRAM slowdowns take up 90% of the overall

slowdowns for ML workloads like DLRM and GPT-2.

Figure 9 shows the CDFs
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Figure 9: CDFs of slow-

down breakdown.

of slowdowns caused by var-

ious components. Briefly, at

least 15% workloads experi-

ence at least 5% cache slow-

down on CXL, indicating the

degraded prefetch efficiency

under CXL. Meanwhile, at

least 40% workloads experi-

ence with at least 5% DRAM

slowdown. Interestingly, L2

cache slowdown prevails as

the dominant factor across all

examined workloads in the

breakdown analysis (on SKX-zNUMA). Notably, deterio-

rated memory latency and decreased memory bandwidth

contribute to an upsurge in stalled cycles in the L2 cache.

Additionally, the stalled cycles in L1 and L3 remain rela-

tively unaffected.

Certain workloads, such as 627.cam4, 607.cactusBSSN,

and 602.gcc, demonstrate similar CXL performance slow-

downs. However, the reasons behind the performance slow-

downs vary significantly among them. In 602.gcc, half

of the slowdown stems from LLC misses, while the other

half arises from cache. Conversely, almost all slowdown

in 607.cactusBSSN results from LLC misses, while for

627.cam4, reads caused by stores (RFOs) dominate the per-

formance slowdown. This underscores one of the advantages
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Figure 8: CXL slowdown breakdown. This figure shows the CXL slowdown breakdown on zNUMA, CXL-A, and CXL-B.

of the breakdown method, as it highlights that although the

performance slowdowns may appear similar, the underlying

causes can be vastly different.

To summarize, our approach could capture, explain and

breakdown CXL slowdowns based on the CPU stall cycles

approach. Later, we will further enhance our approach for

CXL performance prediction to show its efficacy.

5 CXL Slowdown Prediction

The capability to predict system performance is appealing

due to its wide range of applications. Our previous root-

cause analysis of CXL slowdowns has helped identify var-

ious sources of slowdown, which, when combined, can fa-

cilitate reasoning about measured CXL performance. In this

section, our objective is to transition and solidify our break-

down analysis into formal prediction models. In particular,

when the model is used together with an offline workload

run on local DRAM, it can accurately predict the amount of

slowdowns when the workload runs on CXL. Later, we will

also show the prediction model can be used in an online fash-

ion for performance optimations.

5.1 Strawman

We initially explore simple correlations between commonly

used performance metrics such as LLC miss rate, repre-

sented as misses-per-kilo-instructions, (MPKI, Figure 10a),

read memory bandwidth (Figure 10b), and TMA DRAM-

bound metric (Figure 10c), as they are used in many prior

works [41, 48]. However, none of these metrics prove re-

liable as performance predictors. For example, despite a

positive relationship between read bandwidth and the overall

slowdown, read bandwidth falls short as a reliable predictor.

Workloads with similar bandwidth often experience varying

CXL slowdowns, e.g., 5-50% under 10-20GB/s. We attribute

this to the limitations of the aforementioned metrics in cap-
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Figure 10: Strawman prediction. Metrics like MPKI, BW,

and TMA DRAM-Bound are not reliable CXL slowdown predictors.

turing CXL slowdowns across diverse sources. This prompts

us to develop separate prediction models for cache, DRAM,

and store-induced slowdowns. These efforts result in several

simple models, which can be combined to accurately predict

overall CXL slowdowns, relying solely on 12 counters on

SPR/EMR (11 on SKX).

5.2 Latency and Bandwidth Sensitivity

Workload performance is influenced by both memory la-

tency and bandwidth. Bandwidth-sensitive workloads can

benefit from increased memory bandwidth through technolo-

gies like CXL, while latency-sensitive workloads are better

managed with tiering strategies to mitigate latency impacts.

Therefore, accurately determining a workload’s sensitivity to

bandwidth or latency is crucial.

We propose using a CPU offcore latency-based model for

this purpose. Our benchmarking results indicate that under

bandwidth contention, queueing delays contribute to end-to-

end request latencies. Offcore latency reflects both memory

latency and bandwidth-induced overhead. A simple heuristic

is to set an offcore latency threshold. If latency exceeds this

threshold, it indicates bandwidth limitation; otherwise, it is

latency-bound. Additionally, the offcore latency threshold

can be easily profiled using pointer-chasing style workload,

as in SupMario tail latency analysis.

We used this approach to filter out bandwidth-bound
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Figure 11: DRAM slowdown model. X-axis is our pre-

dictor (discussed later) and Y-axis is measured DRAM slowdown.

182 latency-sensitive workloads are shown. (a)-(c) show the ba-

sic DRAM model by using “l3-stalls/cycle” as the predictor for

SKX-zNUMA, CXL-A, and CXL-B respectively; (d)-(f) represent the

enhanced DRAM model incorporating memory level parallelism

(MLP) impact, improving the model accuracy.

workloads on CXL, which experience much higher slow-

downs (i.e., the tail in Figure 4d) where slowdowns can be

up to 6×.

5.3 DRAM (Load) Slowdown Model

There are two insights in our DRAM slowdown prediction.

The first is the overall ratio of stalled cycled on LLC (i.e.,

“P4 / P1”) as a base predictor can already positively corre-

late with DRAM-sourced slowdown. We started this anal-

ysis on SKX2S zNUMA. In Figure 11a, we correlate the

based predictor observed when the workloads run under lo-

cal DRAM (90ns) with the DRAM-slowdown in zNUMA

(140ns). Notably, the predictor does a great job for most

workloads showing a strong linear relationship, with a few

outliers on the top right, indicating the predictor is mistak-

enly overpredicting the slowdowns.

Second, we argue that not

Figure 12: CXL MLP

taking high memory-level

parallelism (MLP), more

precisely, overlapping effect,

into account is the cause of

the above outliers. As shown

in Figure 12, CXL has the

same impact on each single data request. For each data

request, the latency will be increased similarly, e.g., x.

However, under high MLP, the overlapping effect lowers the

CXL impact on the slowdown (DRAM load), as in Figure 12

left, reducing the latency from x/a to x/(a+ b) (b indicates

the stalled cycles from previous demand requests caused by

overlapping). A large amount of demand reads could cause

considerable LLC miss stalls, but the increase of stalled

cycles of previous demand read misses could be overlapped

zNUMA CXL-A CXL-B

Pearson Correlation Coefficient 0.965 0.960 0.924

Absolute Error within 5% 92.0% 94.0% 78.7%

Absolute Error within 10% 99.1% 98.3% 89.9%

Table 2: DRAM slowdown prediction accuracy. We can

achieve 78.7%–94% accuracy under 5% misprediction target while

the accuracy goes up to 89.9%–99.1% under 10% misprediction.
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Figure 13: Cache slowdown model. X-axis is our predictor,

Y-axis is actual cache slowdown. (a)-(c) for SKX zNUMA, CXL-A

and CXL-B for all workloads.

by the last several demand read misses. The increased LLC

miss stalls of part of the data requests impacted from low

memory latency efficiency could be overlapped by the other

demand reads. In contrast, if the demand reads are spaced

out, more demand reads could be affected by memory

latency and further influence the overall increase of LLC

stalls caused by remote (CXL) memory. Therefore, we

assume that the degree of overlapping would decrease the

CXL impact on the (DRAM) slowdown.

Unfortunately, this effect cannot be directly measured. In-

stead, we choose to approximate it using the amortized of-

fcore demand read latency. By incorporating MLP into the

model, Figure 11d shows a much stronger linear relationship

(Pearson coefficient goes up from 0.905 to 0.965).

Accuracy on SPR/EMR with real CXL. Figure 11b-c&e-f

show the DRAM slowdown models for CXL-A and CXL-B.

Similar to zNUMA, it could predict the DRAM slowdown

reliably. Applying MLP impact to the model still helps im-

prove model accuracy on SPR/EMR, but less so compared

to SKX. We speculate this is because latest EMR CPUs with

large LLC cache experiences less MLP, thus less outliers

caused by it. Table 2 shows the store slowdowns of 92.0%,

94.0% and 78.7% workloads can be predicted within 5%

deviation on zNUMA, CXL-A and CXL-B, respectively.

5.4 Cache (Load) Slowdown Model

Cache introduced slowdowns are hard to directly measure

and quantify. We develop a metric to predict cache slow-

downs based on our root cause analysis. Workloads spending

more stalled cycles on L2 cache, accessing increased data on

LFB, allocated by L1 prefetching requests missing on L3,

and primarily prefetched from DRAM by L1 prefetchers,

may encounter elevated cache slowdowns. Leveraging perti-

nent performance counters, our predictor aims to effectively
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Figure 14: Store slowdown model. Similar to cache slow-

down model in Figure 13.

zNUMA CXL-A CXL-B

Pearson Correlation Coefficient 0.947 0.832 0.836

Absolute Error within 5% 95.8% 96.5% 93.6%

Absolute Error within 10% 99.2% 98.8% 98.2%

Table 3: Prediction accuracy of cache slowdown.

capture the contention indicative of cache slowdowns.

Intel offers counters for helping derive performance pre-

dictor (Mcache) for cache slowdown (Scache).

Table 3 shows the store slowdowns of 94.7%, 83.2% and

83.6% workloads can be predicted within 5% deviation on

zNUMA, CXL-A and CXL-B, respectively.

5.5 Store Slowdown Model

We find that bound-on-store counter is positively related to

store slowdown. It means that on remote memory (CXL), it

is increased by the same factor for most of the workloads.

Table 4 shows the store slowdowns of 97.8%, 87.6% and

91.4% workloads can be predicted correctly within 2% de-

viation on zNUMA, CXL-A and CXL-B, respectively.

5.6 Put It All Together

Each component contributing to the breakdown of slow-

down can be individually predicted by our introduced model.

The overall slowdown is determined by summing the slow-

down from DRAM, cache, and store. Given that most real-

world servers share similar architectural organizations, such

as multiple cache levels, a store buffer, LFB, SQ, and L1/L2

prefetching, we believe this methodology can be universally

applied across different server models to analyze and pre-

dict performance slowdowns caused by sub-µs memory la-

tencies.

The limited availability of CPU counters impacts the accu-

racy of performance modeling under CXL. Nevertheless, we

demonstrate that by meticulously integrating multiple coun-

ters in a novel manner, we can effectively capture system

performance and use it for reliable performance prediction.

The overall slowdown model (S) is described below. P1–

P12 are the CPU counters needed for the DRAM (MDRAM ),

cache (Mcache), and store (Mstore) performance predictors.

k1, k2, k3, k4 are constants.

S = k1 ×MDRAM + k2 ×Mcache + k3 ×Mstore + k4
MDRAM = P4/P1 × 1/(p× 1/(P12/P11) + q)

zNUMA CXL-A CXL-B

Pearson Correlation Coefficient 0.942 0.876 0.914

Absolute Error within 2% 97.8% 93.7% 95.6%

Absolute Error within 5% 99.1% 97.5% 98.1%

Table 4: Prediction accuracy of store slowdown.

Mcache = (P3–P4) / P1× P6/ (P5+P6) × P13/ P14× P15/(P15+P16)

Mstore = P7/P1

Mispredictions. Mispredictions may arise partly due to the

absence of certain performance counters provided by Intel.

First, measuring the proportion of L1 prefetching data re-

quests within LFB hits is impractical. Second, gauging L1

prefetching hits on L2 cache, even with the total number of

prefetching data requests from LFB hits known, remains un-

feasible. Therefore, we solely employ the L1 prefetching L3

miss ratio to represent the ratio of data prefetched directly

from DRAM by L1 over the total number of data prefetched

by L1 on LFB. This explains the outliers in SKX. SPR/EMR

has the simialr issues on SQ. Moreover, SPR/EMR does not

support measuring L1/L2 prefetching offcore hit for each

process. This limitation explains the slightly worse predic-

tions on SPR/EMR.

Deployment. To derive the DRAM slowdown model for

a server and CXL configuration, users do not need to go

through the extensive characterization process as we do be-

cause our models are robust and independent of workloads.

Thus, one could use microbenchmarks (e.g., pointer chas-

ing) to derive the parameters of the linear model. Below we

provide a high-level overview of the process. There are sev-

eral constants (k1-k4, p, q) in our prediction model equation.

They can be obtained by a set of microbenchmarks with dis-

tinct memory access patterns.

We rely on three types of microbenchmarking workloads

to derive the model parameters. The first one is a random

pointer-chasing workloads, which imposes zero cache and

store slowdowns. It can be seen as having pure DRAM slow-

down on CXL. After running it on both local and CXL mem-

ory, we can get the overall slowdown (S) and calculate the

DRAM metric (MDRAM ). Due to Sstore and Scache being

0, k1 will be S/MDRAM .

Our next microbenchmark is a store-bound workload, e.g.,

one with many malloc(). It does not experience cache slow-

down, because its accesses do not rely on data from prefetch-

ers. In this case, S = (k1 ∗MDRAM )+ (k3 ∗Mstore). After

the microbenchmark running on both local and remote, S is

the overall slowdown. Mstore and MDRAM can be obtained

from the local run. Then k3 could be calculated .

To reveal cache slowdown, the third microbenchmark con-

ducts linked-list traversal, which requires data fetched by

prefetchers. After running it on both local and remote, S can

be obtained by the running time. And S = (k1∗MDRAM )+
(k3∗Mstore)+(k2∗Mcache). Indeed, (k3∗Mstore) should be
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small because it has few data allocations or writes. MDRAM

can be calculated with CPU counters measured on local.

Given by S, k1, k3, Mstore and MDRAM , k2 can be ob-

tained. Finally, to improve accuracy, one could consider

mixing up these types of memory access and also applying

linear fitting.

6 System Optimization

In this section, we show SupMario root-cause analysis ap-

proach and slowdown prediction models can aid inefficiency

detection and performance optimizations under complex

memory policies, such as interleaving and tiering.

6.1 Interleaving Characterization

NUMA interleaving can potentially speedup bandwidth-

bound workloads by leveraging the additional CXL band-

width alongside system memory. Recently Linux kernel

introduced weighted interleaving policy [26] which allows

more flexible page interleaving across two or more NUMA

nodes. Traditionally, Linux defaults to 1:1 page inter-

leaving (i.e., MPOL INTERLEAVED) where page allocations are

done in round-robin fashion across multiple NUMA nodes.

Weighted interleaving define a general M:N interleaving ratio

so that one could use the bias to match the bandwith char-

acteristics. For instance, in a two-node system, weighted in-

terleaving M:N means that the first M pages are allocated from

one node, followed by the next N pages from the other node,

alternating between the two in this pattern. However, it is

not intuitive to decide the best interleaving ratio to extract

the best potential performance for certain workloads.

For bandwidth-bound workloads, it is alluring to exploit

both system and CXL bandwidth to improve performance.

Suppose system memory bandwidth is M and CXL memory

bandwidth is N, simply using an interleaving ratio of M:N do

not always lead to the best performance. A naive approach

is to randomly try out M × N interleaving ratios which can be

extremely time-consuming for long-running workloads. In

a recent work, Caption [48] proposed heuristics to converge

over the best interleaving ratio setup but still requires a few

runs and could potentially lead to suboptimal results.

We show that by adopting a
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Figure 15: Weighted in-

terleaving performance.

performance “slowdown” pre-

diction model for interleaving

similar to §5, we can predict

the best page interleaving ra-

tio for best performance, thus

“best-shot interleaving.”

Offline Analysis. We con-

ducted an extensive offline

analysis across 100 different

local/CXL interleaving ratios (100:0, 99:1 to 0:100), for over

100 workloads. Figure 15 illustrates one such example for
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Figure 16: Best-shot interleaving for SKX. In (a) and (b),

X-axis is our predictor (R), and Y-axis is the (predicted) speedup

from DRAM and cache respectively. The black circles are offline

optimal interleaving results. In (c) and (d), X-axis is the best inter-

leaving ratio assigned to zNUMA and Y is the actual interleaving

performance speedup sourced from DRAM and cache. The best in-

terleaving ratio on SKX ranges from 34%-40%.
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Figure 17: Best-shot interleaving model for zNUMA, 1

and 2 CXL-A device(s). (a)-(c) show that best-shot inter-

leaving model is accurate for both zNUMA and real CXL devices.

Under 20 workloads in zNUMA, 1 and 2 CXL-A devices, best-shot

interleaving can accurately predict and achieve performance gains

of 2-21%, 1-13%, 1-26%, respectively.

workload 649.fotonik. The study yields following key in-

sights used to develop the best-shot interleaving model.

Finding #5:

1. Non-bandwidth-bound workloads typically cannot ben-

efit from (weighted) interleaving. Even for bandwidth-

bound workloads, we observed various slowdowns (and

occasional speedups) across different interleaving ratio

settings, reflecting the combined impact of CXL latency

and bandwidth.

2. Various bandwidth-bound workloads have different opti-

mal interleaving ratios, outperforming local DRAM per-

formance to the greatest extent (there may exist a range of

ratios yielding superior performance than local DRAM).

Our model aims to (1) predict whether a workload can

benefit from interleaving (otherwise referring to a tiering

policy), (2) predict the best interleaving ratio in one run, and

(3) predict potential performance gains.

6.2 Best-Shot Interleaving Prediction

Our slowdown breakdown method (§4) can be used to an-

alyze and predict NUMA interleaving performance as well.

For those workloads benefiting from interleaving, the per-

formance improvement (i.e., negative slowdown) can still be

attributed to various sources (DRAM, cache and store).
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We observe that offcore latency goes down when work-

load performance is improved under efficient interleaving.

Under effective interleaving, we observe offcore latency (L)

and memory metric (M , §5.6) are complementary, where

M indicates the latency-impact of the memory subsystem

and offcore latency indicates memory bandwidth constraints.

Thus, our model simply adopts (L×M ) as the performance

metric (R) for interleaving performance prediction. Simi-

larly, it is beneficial to break down the NUMA performance

improvement or slowdown into various sources for accurate

modeling. As such, we define the following models to pre-

dict interleaving speedup/slowdown from DRAM, cache and

store, respectively.

RDRAM = MDRAM × LDRAM (6)

Rcache = Mcache × Lcache (7)

Rstore = Mstore × Lstore (8)

We will demonstrate how R can be used to predict the

optimal NUMA interleaving performance across various

NUMA interleaving ratios. Through an analysis of offcore

latency when running all workloads on the local DRAM,

we identify 20 bandwidth-intensive workloads (comprising 3

SPEC workloads and 17 Llama workloads) that exhibit per-

formance improvements with NUMA interleaving. We use

them for our model evaluation.

Evaluation on SKX-zNUMA. Figure 16a&b show our

model accuracy to derive interleaving speedup contributions

from DRAM and cache. We also observe that for work-

loads with over 5% improvement, the optimal ratio falls

within the range of 34% to 40% (Figure 16c&d). Within this

range, NUMA interleaving performance are roughly equally

good. SKX2S local and zNUMA bandwidth ratio is approx-

imately 5/3 (Table 1). The theoretically ideal proportion of

memory allocation is 5/8 (62.5%) and 3/8 (37.5%) for lo-

cal and CXL, respectively. Consequently, the optimal ra-

tio consistently falls within the range of 34% to 40% for

workloads that significantly benefit from NUMA interleav-

ing. For workloads with less pronounced benefits (<5%),

the ratio predominantly ranges between 20% and 36%. The

store model (Rstore) is trivial for most workloads, thus, we

omit store interleaving slowdown analysis here.

Evaluation on CXL-A. Figure 17 demonstrates the linear

relationship between the best interleaving ratio and our pre-

dictor (R). Compared to Caption [48], our approach greatly

simplify the process in an automatic way. Overall, best-

shot interleaving achieves 1-13% performance improvement

compared to local-DRAM on 20 workloads (upper bound is

limited by the relatively low CXL bandwidth).

Latency-bound workloads. For workloads not constrained

by bandwidth, the performance varies approximately linearly

across different ratios. Although we could not gain interleav-

ing benefits, interestingly, our model still allows us to predict

the slowdown under a givn interleaving ratio x using a sim-

ple mode such as x ×

∑
DRAM,cache,store Si, where x rep-

resents N/(N +M) (with N denoting the remote node ratio

and M representing the local node ratio), and Si denotes the

slowdown on CXL for different hardware components.

Implication #4: Weighted page interleaving can be used

to improve performance for certain bandwidth-bound work-

loads under local and CXL memory. However, the optimal

interleaving ratio varies across different workloads and the

degree of performance improvements also differs. Best-shot

interleaving can help predict the best interleaving ratios to

achieve optimal performance and predict the precise amount

of performance gains.

Recommendation #3: For bandwidth-bound workloads, the

users can rely on our best-shot interleaving policy to run their

workloads using the best setup for optimal performance.

6.3 Tiering Characterization

We now show SupMario root-cause breakdown analysis and

performance models can be applied to tiering systems to dis-

sect inefficiencies in tiering systems.

Existing tiering designs implicitly treat each LLC miss

equally in terms of their contribution to system performance

and heavily rely on LLC misses as the primary technique

for sampling hot pages as migration candidates. However,

our slowdown breakdown analysis (§4) has demonstrated

that LLC misses (or their rate, i.e., bandwidth) cannot re-

liably serve as a performance predictor/metric. This is be-

cause LLC misses caused by prefetching or RFO may not di-

rectly impact system performance. For instance, a prefetched

cacheline may end up not being used. Instead, we assert that

the rate of LLC stalled cycles and other stall cycle-related

events are more accurate measures to gauge and predict sys-

tem pressure.

Nonetheless, current tiering policies overlook this nu-

ance and indiscriminately assume that high rates of LLC

misses (or equivalently, DRAM traffic) inevitably result in

performance degradation, inadvertently promoting excessive

pages to local DRAM. This approach carries two down-

sides. First, migrating a large number of pages incurs non-

negligible overheads, further compromising workload per-

formance. Second, the assumption that these pages merit

promotion to the fast tier (local DRAM) is unfounded, as

they may not induce significant slowdowns. In combination,

these factors lead to suboptimal tiering performance.

Characterizing tiering inefficiencies. We now use the prior

analysis to reason about potential inefficiencies in tiering

systems with a realistic workload, namely tc-twitter. In Fig-

ure 18a, we applied our “slowdown” prediction models to an-

alyze tc-twitter slowdowns-over-time under CXL. Here, we

apply our model to a period of the workoad executions (e.g.,

every 1B instruction interval). Similar to previous workload

level DRAM-contributed slowdown prediction, applying the

LLC-stalls together with MLP factor delivers better predic-
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Figure 18: Tiering performance characterization. LLC

miss is not a good predictor for guiding memory tiering decisions.

Our L3-stalls+MLP metric is more accurate. Note that over 99%

of tc-twitter’s slowdown originates from DRAM.

tion, even at very fine-granularity (pink line is very close to

blue line). We can see that the most significant DRAM-

introduced slowdowns for tc-twitter occur during the final

phase of the execution (3rd-4th billion instruction period).

Upon further profiling of the LLC miss rate of tc-twitter over

time (Figure 18b), we found that the bulk of LLC misses oc-

cur during the initial phase. That said, the substantial number

of LLC misses during the initial phase do not contribute sig-

nificantly to the workload performance as the rest of phases.

However, existing tiering designs operate under the as-

sumption that performance degradation correlates positively

with memory access rates. Consequently, they tend to ag-

gressively “detect/scan” and migrate “hot” pages (both pro-

motion and demotion).

Finding #6: As a result, it causes two potential problems:

(1) “hot” pages are wrongly detected, i.e., the migration of

these seemingly hot pages does not lead to an overall per-

formance enhancement as they don’t cause CPU stalls by

default; (2) As a result of the wrong hot page detection,

it triggers unnecessarily high number of page migrations,

which inversely degrade system performance (page-level mi-

grations are long-latency and blocking operation in nature,

causing high overhead). Combined, these would render tier-

ing systems underperform compared to no-tiering.

Using TPP [42] as an illustrative example, we demonstrate

how such memory tiering designs can exacerbate overhead

and result in wrong page promotion decisions. In Figure 18d,

the blue line shows the page promotion rate over time, which

shows similar patterns as the LLC misses over time in Fig-

ure 18b. Correspondingly, a peak of 50,000 pages/s were

observed around time 30s.

Finding #7: We define a new metric called “amortized of-

fcore latency” considering both memory latency and MLP

impact to capture the impact of CXL memory accesses to

workload performance (details ommitted). And we find it to

be able to capture workload performance very well.

In Figure 18c, we show that the “amortized offcore la-

tency” during the initial phase remains notably low, indicat-

ing significant read request overlappings during the period.

This overlapping mitigates performance degradation even in

the presence of high LLC miss stalls, as many memory ac-

cesses, despite being affected by increased remote memory

latency, are concealed by other parallel reads.

Further validation in Figure 18a and Figure 18b confirms

that the high LLC misses during the initial phase result in

marginal DRAM slowdown that is not as pronounced as ob-

served during the final phase of the workload.

6.4 Alto: Adaptive Layered Tiering Orchestration

Our optimization is straightforward: limiting page promo-

tions when the overlapping effect of memory accesses is

evident. To this end, we propose Alto, an adaptive lay-

ered tiering orchestration scheme, built on top of TPP, to

demonstrate the efficacy of our method. We chose TPP as it

is the latest tiering effort tailored for CXL while alternatives

like Hemem [45] and Memtis [39] primarily target persis-

tent memory. Additionally, it’s worth noting that page sam-

pling (e.g., Intel PEBS), an enabling technique for Hemem

and Memtis does not support CXL yet.

We implement Alto by constraining the page promotion

rate proportionally to the “amortized offcore latency” based

on two thresholds. Specifically, if the “amortized offcore la-

tency” (§5.3) falls below a lower bound, e.g., 40 cycles, we

disable page promotion to account for the evident memory

access overlapping effect. Otherwise, if it exceeds the upper

threshold, e.g., 100 cycles, we do not limit page promotions.

Both the lower bound and upper bound thresholds can be de-

rived offline using a microbenchmark similar to §5.6.

In between, we gradually reduce page promotion rate as

amortized offcore latency decreases, using a default 5-step

interval. In our implementation, we achieve this by period-

ically ignoring potential promotion page candidates within

small sets of pages. For instance, if we aim to allow 20% of

TPP-identified candidate pages to be promoted, we allow the

first two pages of every 10 pages to go through.

To monitor the “amortized offcore latency”, we collect

PMU counters periodically, e.g., every 1s. Subsequently, we

calculate the amortized offcore latency based on these coun-

ters, enabling us to dynamically adjust the page promotion

rate based on the observed latency. Our user-level tool is

lightweight and imposes no additional overheads. The ker-

nel side only involves ∼30 LOC changes to Linux MM mi-

gration policies. Reading a couple of PMU counters is ex-

tremely lightweight. Alto reads only 5 PMU counters every

second, imposing almost zero overhead.

Alto Evaluation. We test Alto with 8 workloads, includ-
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Figure 19: Alto performance vs. TPP. X-axis is 8 different

workloads under test, Y-axis is normalized workload runtime to Lo-

cal DRAM. Alto can outperform TPP by 0.7-177%.

ing graphs, ML and SPEC, comparing it with TPP and three

additional settings: workloads backed by all local memory

(Local), CXL memory (CXL), and default Linux hybrid lo-

cal/CXL memory without tiering (default Linux). Since TPP

performance is sensitive to the fast-tier memory size, we con-

figure the local memory size to be large enough to accommo-

date the entire workload working set (profiled offline).

Workload working set (WSS) means the part of memory

footprint which is actively accessed during workload run-

time. We estimated WSS using heatmaps obtained via offline

PEBS-based LLC-miss sampling (high sampling rate at 100

for accuracy). For each workload, we set its local DRAM to

be slightly larger than its working set size (WSS), and CXL is

used for the remaining memory footprint (i.e., total memory

footprint minus WSS). CXL memory is constantly accessed

by the workloads as first-touch doesn’t guarantee all the hot

pages (in WSS) are initially placed in local memory, Figure

18d showcases heavy page promotions from CXL to local

memory for tc-twitter. The gap between Linux and Local in

Figure 18 stems from the accesses to CXL. We argue our lo-

cal/CXL setup is fair to evaluate TPP as TPP performs much

worse when more (slow) CXL memory is used, under which

case Alto can actually improve TPP up to 9× (not shown).

In our evaluation, TPP typically underperforms default

Linux due to erroneous page migration decisions and the re-

sulting excessive overhead. We present all the results in Fig-

ure 19. Alto demonstrates improved performance compared

to default Linux for workloads such as bc-twitter (+16%),

bc-urand (+18%), and tc-kron (+3%). This enhancement

stems from the fact that memory tiering can achieve better

performance when it migrates correct pages. Alto enables

TPP to constrain unnecessary page migrations by using an

accurate performance metric, thereby aligning its behavior

more closely with optimal performance scenario.

In detail, Alto demonstrates a performance improvement

over TPP ranging from 0.7% to 177.5%. The most notable

enhancement is observed in workload GPT-2, attributed to

its highly parallel memory accesses and the substantial mi-

gration overheads in TPP. For bc-twitter, TPP even exhibits a

62% slower performance compared to CXL, while Alto sig-

nificantly enhances TPP’s performance. Workload tc-kron

experiences the least performance improvement under Alto,

primarily because only a small portion of it exhibits over-

lapped memory accesses. Alto outperforms Linux for 3 out

of the 8 workloads in Figure 19 by 3%, 11%, and 14% while

only slightly underperforming by 3-6% for the rest. Note

that, in most cases, tiering designs such as TPP/AutoNUMA

lose to first-touch/Linux as tiering becomes more sensitive

to page migration overhead given the small latency gap (1.9-

2.4×) between CXL/local memory.

It is an unfortunate (and maybe surprising) fact that first-

touch/Linux under CXL is actually better than many (if not

all) state-of-the-art tiering policies. According to our eval-

uations, TPP, AutoNUMA, and Nomad [52] loses to Linux

by up to 181%, 22%, and 50%, respectively. Nomad au-

thors also acknowledged in their paper (Section 4.2) that No-

Migration (aka, Linux) performance exceeds (all) tiering so-

lutions. This is because CXL latency is only 1.9-2.4× that

of local-DRAM (for CXL-A,B,D) and the overhead of page

migration can easily outweigh its benefits if migration policy

is not carefully designed.

Implication #5: More broadly, we think tierability needs

to be revisited in the CXL era. Alto’s advantage over

Linux/First-touch (even just) for some workloads calls for

the need for principled approaches like ours to (1) diag-

nose and characterize tiering inefficiencies beyond hot/cold

separation, and (2) revisit tiering policies designs to reduce

migration overheads and focus on migrating performance-

sensitive pages.

We utilize Alto to demonstrate how a performance met-

ric from SupMario insights can significantly aid in identify-

ing inefficiencies and enhancing existing tiering system per-

formance with minimal changes. While Alto does not di-

rectly address the challenge of accurately sampling the most

performance-critical hot pages for migrations, orchestrating

the page migration rates indeed helps mitigate the overhead

of incorrect migrations across a range of workloads. Ad-

ditionally, we believe that SupMario’s CPU-stall-based ap-

proach could further improve hot page sampling accuracy.

7 Discussion

SupMario implications. While the study primarily focuses

on CXL devices, the high prediction accuracy on zNUMA

indicates a pathway to performance observability, explain-

ability, and predictability of general memory systems, re-

lying solely on simple combinations of lightweight perfor-

mance counters. Stemming from an offline performance

breakdown analysis, SupMario performance models turn out

to be workload-independent, accurate, robust, lightweight,

simple, universal, and explainable. Our models are validated

across 4 different CXL devices and 4 processor platforms,

demonstrating the broad applicability of our model and the

effectiveness of our modeling methodology. This paves the

way for potential generalization. The simplicity of SupMario

models should facilitate both offline and online usage. Our
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performance models can potentially serve as general perfor-

mance metrics/predictors for various tasks, such as work-

load/VM resource management and task scheduling. Sup-

Mario identifies key performance metrics that we envision

can guide numerous system task optimizations, including hy-

brid memory policies integrating the benefits of interleaving

and tiering, as well as new tiering policy designs such as im-

proved hot/important page sampling.

CXL performance predictability. Our prediction models’

deterioration from zNUMA to CXL-A or CXL-B indicates

that CXL-B’s worse tail latency also corresponds to the re-

duced predictability of our corresponding performance pre-

diction models compared to zNUMA and CXL-A. This trend

may worsen when future CXL-attached persistent memory

or NAND Flash devices emerge. Addressing this challenge

requires collaborative efforts from CPU, CXL device ven-

dors, and OS/software developers to build QoS-aware and

tail-tolerant software and hardware memory systems.

Additionally, CXL tail latencies also adversely affect aca-

demic CXL research based on emulation/simulation, such as

zNUMA, given the current scarcity of CXL devices. Prop-

erly modeling and simulating CXL’s intricate performance

characteristics are essential to ensure a true reflection of real

hardware characteristics.

Workload co-location: We validate that our models work

for colocated applications as well (e.g., multiple instances of

various CPU 2017 workloads).

Future-Proofing. Future CXL devices will significantly im-

prove bandwidth and somewhat improve latency. We antici-

pate our major indings and optimizations to remain valid.

1. CXL tail latencies are likely to persist due to various

performance-functionality trade-offs in CXL controller

implementations/optimizations, such as request schedul-

ing, thermal management, QoS, and Reliability, Avail-

ability, and Serviceability (RAS). For instance, PCIe 6

will require thermal throttling, which could potentially

worsen tail latencies [14, 15]. Additionally, with future

CXL devices connected through CXL switches, the addi-

tional hops and potentially slower media (PM/Flash) will

further increase the chances of latency unpredictability.

2. Future CXL workload slowdowns will likely be smaller

than those in Figure 4a. Increased CXL bandwidth will

benefit bandwidth-bound workloads, alleviating the 2-6×

slowdowns seen in Figure 4a due to low-bandwidth per

CXL device in our setup. Further latency reductions will

improve the performance of latency-sensitive workloads,

such as cloud applications, approaching NUMA perfor-

mance. This is already evident with CXL-D* (hardware-

interleaving across two CXL-Ds, >100GB/s bandwidth,

green line) in Figure 4a, where bandwidth is no longer

a bottleneck, similar to NUMA (black line). However,

the latency gap between CXL and local memory per-

sists. Mitigating slowdowns from CXL latencies will

remain challenging without software/hardware optimiza-

tions, underscoring the need for detailed studies to char-

acterize, analyze, model, and optimize performance to

match local DRAM.

3. Our performance modeling approach will remain valid

with improved CXL performance, and we expect our

CXL prediction models (§5) to become more accurate,

approaching the accuracy of zNUMA.

4. Our best-shot interleaving policy can further benefit

bandwidth-intensive workloads such as HPC applica-

tions, by enabling them to exploit the higher aggregate

system memory bandwidth.

5. We expect Alto to be more effective compared to state-of-

the-art tiering policies, as their migration overhead will

become more apparent when the latency gap between

CXL and local memory narrows. For instance, our Alto

evaluations on zNUMA (ideal-CXL) show an improve-

ment to TPP up to 248% (not shown in the paper), sig-

nificantly higher than the 177% improvement for Alto on

current real CXL.

8 Related Work

CXL-based memory disaggregation. Memory disaggrega-

tion [28, 29, 39, 41, 42, 45, 51, 53] is a promising technique

to improve memory resource utilization, which recently be-

comes more practical thanks to CXL’s cache coherent in-

terface. CXL-based systems [41, 57] need to address vari-

ous aspects of memory management, including performance

predictability. Our large-scale study contributes to a deep

understanding of CXL performance implications, potentially

motivating tailored management schemes to align with CXL

performance characteristics for its imminent deployment.

Memory characterization. While DRAM characteristics

have been extensively studied and modeled [31, 32, 34, 46,

55], the introduction of CXL prompts a reevaluation due to

its unique performance characteristics. For instance, we un-

veiled CXL tail latency in the range of 100s of nanosec-

onds which is much larger than DRAM chip-level latency

variations. Caption [48] is one of the first works character-

izing real CXL devices, revealing measurement results of

microbenchmarks and Redis/DLRM-like workloads. Due

to the black box nature of CXL devices, Caption’s analy-

sis of workload performance is heavily reliant on specula-

tions. While facing similar challenges, we purposely fo-

cused on different goals in our work: a much larger set of of-

fline workload characterizations to reveal the detailed CXL

impact on CPU pipelines, validated to be accurate, which

further enabled us to develop an accurate performance pre-

diction model. This model can be used for CXL memory

management optimizations in interleaving and tiering sce-

narios. Our finding on CXL tail latencies, to the best of our

knowledge, is a first in the community, and we carefully de-

signed experiments to quantify its impact. Caption also con-

18



tributes an algorithm to derive a good interleaving ratio for

bandwidth-bound workloads; however, Caption relies on a

heuristic approach that requires running the workload mul-

tiple times (e.g., 4–10 repeated runs) to converge on the re-

sult by relying on empirical metrics (e.g., L1 miss latency).

Our best-shot interleaving policy is inspired by Caption de-

sign and shares similar goals. However, we achieve more

ambitious goals to predict both the optimal performance and

weighted interleaving ratio in one run, guided by a system-

atic reasoning which is more accurate.

Memory tiering. Memory tiering [38, 39, 42, 45, 52, 56]

typically relies on page table scanning, NUMA page-fault

hints, and hardware event sampling (e.g., Intel PEBS) to de-

tect hot/cold pages, treating all memory accesses to DRAM

equally without considering their relative contribution to

workload performance in terms of CPU stalls. Although our

work is not a typical tiering paper, our prediction models are

shown to be useful in understanding inefficiencies in tiering

and enhancing its performance. We hope that our findings

and insights will guide the development of next-generation

tiering policies, as we have demonstrated using the case of

Alto in §6.4.

Performance prediction: Effective performance predictors,

whether based on heuristics or machine learning, are cru-

cial for system resource management and scheduling deci-

sions. TMO [51] utilizes the PSI metric to guide tiering

choices across multiple types of memory backends, mea-

suring the amount of lost work due to resource shortages.

Pond [41] employs an ML-based latency-sensitivity predic-

tor to guide pool memory allocations. Caption [48] combines

three metrics: L1 miss latency, DRAM latency, and IPC, to

converge on the best NUMA interleaving ratio progressively.

Our work shares similar aspirations but aims to identify a

fundamental performance metric that is thoroughly reasoned

and validated to be accurate. The novel combinations of a

few performance counters in SupMario make it simple and

lightweight. We believe our work is complementary to paral-

lel explorations of new performance prediction methods with

many potential use cases. For example, SupMario models

could potentially serve as a simple and accurate replacement,

e.g., for Pond’s [41] ML models, due to their simplicity and

high accuracy.

9 Conclusion

In this paper, we present SupMario, the largest-scale CXL

memory performance characterization conducted on a com-

bination of hundreds of real-world applications and multiple

hardware CXL and memory configurations. Our study un-

veils new findings regarding CXL performance characteris-

tics, contributing novel insights to the community. Impor-

tantly, the characterization results enable a root-cause anal-

ysis for sub-µs memory latencies, leading to our most sig-

nificant contribution: memory system performance predic-

tion models built on just over ten performance counters. We

demonstrate that our approach to derive the model and the

model itself are useful in real-world interleaving and tiering

scenarios. We plan to open-source SupMario and hope to in-

spire more research in this direction to better understand and

manage CXL implications for efficient system designs.
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