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ABSTRACT

Federated learning (FL) has been widely deployed to enable machine learning
training on sensitive data across distributed devices. However, the decentralized
learning paradigm and heterogeneity of FL further extend the attack surface for
backdoor attacks. Existing FL attack and defense methodologies typically focus
on the whole model. None of them recognizes the existence of backdoor-critical
(BC) layers—a small subset of layers that dominate the model vulnerabilities. At-
tacking the BC layers achieves equivalent effects as attacking the whole model
but at a far smaller chance of being detected by state-of-the-art (SOTA) defenses.
This paper proposes a general in-situ approach that identifies and verifies BC lay-
ers from the perspective of attackers. Based on the identified BC layers, we care-
fully craft a new backdoor attack methodology that adaptively seeks a fundamental
balance between attacking effects and stealthiness under various defense strate-
gies. Extensive experiments show that our BC layer-aware backdoor attacks can
successfully backdoor FL under seven SOTA defenses with only 10% malicious
clients and outperform latest backdoor attack methods.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) enables machine learning across large-scale dis-
tributed clients without violating data privacy. However, such decentralized learning paradigm and
heterogeneity in data distribution and client systems extensively enlarge FL’s attack surface. In-
creasing numbers of attack methods have been developed to either slow down the convergence of FL
training (i.e., untargeted attacks (Fang et al., 2020; Baruch et al., 2019; Shejwalkar & Houmansadr,
2021; El El Mhamdi et al., 2018)) or enforce the model to intentionally misclassify specific cate-
gories of data (i.e., targeted attacks (Xie et al., 2019; Bagdasaryan et al., 2020; Bhagoji et al., 2019;
Wang et al., 2020; Li et al., 2023)).

As a subset of targeted attacks, backdoor attacks (Xie et al., 2019; Bagdasaryan et al., 2020; Wang
et al., 2020; Gu et al., 2017; Li et al., 2023) are one of the stealthiest attacks for FL, which train
models on data with special triggers embedded, such as pixels, textures, and even patterns in the
frequency domain (Feng et al., 2022). Models compromised by backdoor attacks typically have
high accuracy on general data samples (i.e., main task) except that samples with triggers embedded
activate the “backdoor” inside the model (i.e., backdoor task), leading to misclassification targeted
to specific labels (e.g., recognizing a stop sign as a speed limit sign).

Several defense methods have been proposed to detect backdoor attacks and mitigate their impacts,
which can be classified into three types based on their key techniques: distance-based, inversion-
based, and sign-based defense. Distance-based defenses, such as FLTrust (Cao et al., 2021) and
FoolsGold (Fung et al., 2020), calculate the cosine similarity distance and euclidean distance be-
tween the local models to detect potential malicious clients. Inversion-based defenses, such as Zhang
et al. (2022a), utilize trigger inversion and backdoor unlearning to mitigate backdoors in global mod-
els. Sign-based defenses, such as RLR (Ozdayi et al., 2021), detect the sign change directions of
each parameter in the local model updates uploaded by clients and adjust the learning rate of each pa-
rameter to mitigate backdoor attacks. Therefore, existing backdoor attacks can hardly work around
the detection reinforced by the aforementioned multi-dimension defenses.

*This work was performed when Haomin Zhuang and Mingxian Yu were remote intern students advised by
Dr. Hao Wang at the LSU IntelliSys Lab.
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We have observed a new dimension ignored by existing studies—the effectiveness of backdoor at-
tacks is only related to a small subset of model layers—backdoor-critical (BC) layers. To demon-
strate the existence of BC layers, we first train a benign five-layer CNN model on a clean dataset
until it has converged. Then, we train a copy of the benign model on poisoned data (with triggers
embedded) and obtain a malicious model. We substitute each layer in the benign model for the same
layer in the malicious model and measure the backdoor attack success rate, which denotes the ac-
curacy of recognizing samples with trigger embedded as the targeted label. Fig. 1(a) shows that the
absence of layers in the malicious model does not degrade the BSR except for the fc1.weight
layer. Fig. 1(b) shows the reversed layer substitution that only the fc1.weight layer from the ma-
licious model enables successful backdoor tasks. Therefore, we argue that a small set of layers, such
as fcl.weight, are backdoor-critical—the absence of even one BC layer leads to a low Backdoor
Success Rate. BC layers as a small subset of models can be observed in large models like ResNet18
and VGGI19 (refer to Fig. A-22 ). Intuitively, deeper layers are more BC because shallower layers
learn simple, low-level features such as edges and textures, and deeper layers combine these features
to learn more complex, high-level concepts such as objects and their parts (Zeiler & Fergus, 2014;

Bau et al., 2017; Simonyan et al., 2013).
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Figure 1: (a) The changes in backdoor success rate (BSR)
of the malicious model with a layer substituted from the be-
nign model. (b) The changes of BSR of the benign model
with layer(s) substituted from the malicious model (“All ex-
cept fcl.weight” indicates replacing all layers except
the fc1.weight with layers from the malicious model).

* We propose Layer Substitution Analysis, a novel method that recognizes backdoor-critical
layers, which naturally fits into FL attackers’ context.

* We design two effective layer-wise backdoor attack methods, that successfully inject back-
door to BC layers and bypass SOTA defense methods without decreasing the main task
accuracy.

* Our evaluation on a wide range of models and datasets shows that the proposed layer-wise
backdoor attack methods outperform existing backdoor attacks, such as DBA (Xie et al.,
2019), on both main task accuracy and backdoor success rate under SOTA defense methods.

2 PRELIMINARIES
2.1 FEDERATED LEARNING (FL)

FL leverages a large set of distributed clients, denoted as N' = {1,..., N}, to iteratively learn a
global model w without leaking any clients’ private data to the central coordinator server (McMahan
et al., 2017). Formally, the objective is to solve the following optimization problem:

i — (@ (@
min Fw) = > pf;(w®),
ieN

where f;(w(®) = ﬁ 2 (eyyen® U@, y; w®) is the local objective function of i-th client with
its local dataset DV, and p( = [D@|/ 3. - |D@] is the relative data sample size. FL training
process solves this optimization problem by aggregating local models from distributed clients to
update the global model iteratively.

2.2 THREAT MODEL OF BACKDOOR ATTACKS

Attacker’s goal: As the existing studies on FL backdoor attacks (Gu et al., 2017; Bagdasaryan et al.,
2020; Xie et al., 2019; Ozdayi et al., 2021; Wang et al., 2020), an attacker’s goal is to enforce models
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Figure 2: Identifying BC layers with Layer Substitution Analysis. b2m(l) indicates inserting the
l,-th layer in the benign model to the malicious model, m2b(L*) indicates inserting the malicious
model’s layers within the subset L* to the benign model, and BSR indicates Backdoor Success Rate.

to classify data samples with triggers embedded to specific incorrect labels (i.e., the backdoor task),
while keeping a high accuracy for samples without triggers embedded (i.e., the main task).

Attacker’s capabilities: We assume that an attacker compromises a subset M = {1,..., M} of
malicious clients. However, the proportion of malicious clients is assumed to be less than 50%, i.e.,
IM|/|IN] < 50%. Otherwise, existing FL defense methods can hardly withstand such backdoor
attacks. Following existing studies (Fung et al., 2020; Fang et al., 2020; Bagdasaryan et al., 2020;
Baruch et al., 2019; Yin et al., 2018; Ozdayi et al., 2021; Nguyen et al., 2021), malicious clients
controlled by the attacker can communicate with each other to synchronize attacking strategies. The
attacker also has access to a snapshot of the global model in each round and can directly manipulate
model weights and datasets on each malicious client (Fang et al., 2020; Li et al., 2023).

3 IDENTIFYING BC LAYERS

In the FL setting, there is a global model in each turn, where clients can train on their local data with
a few epochs, which the models in clients are similar to each other so that the new global models are
from averaging all clients’ models (Kone¢ny et al., 2016). So in this setting, we have an opportunity
to explore the difference between the malicious models that are trained on some poison dataset and
benign that are trained on the clean dataset.

We argue that if the [-th layer (or a subset L* of layers) is critical to the backdoor task, substituting
the layer(s) in wWpepnign With the same layer(s) in wqiicious Will cause a decline in the accuracy of
backdoor task.

3.1 OVERVIEW

Fig. 2 presents the Layer Substitution Analysis to identify BC layers for each malicious client ¢
controlled by the attacker, where i € M:

Step 1: The initial model w is trained on the clean dataset D, 1qin t0 Obtain a benign model
Whenign- Then, the benign model Wyenigy is further trained on the poison dataset Dpoison, rrain
to converge for learning backdoor task to obtain the malicious model Waiicious-

Step 2: Forward layer substitution—substituting the individual /-th layer of the malicious model
Winalicious With the [-th layer of the benign model wpeyg, iteratively, where [ € L. Then
we evaluate the backdoor success rate (BSR) of the updated malicious model w;,,) and
compare it with the BSR of the original malicious model wy,yjicious- We sort the layers by
the changes in BSR.

Step 3: Performing backward layer substitution following the order of layers sorted in Step 2. We
incrementally copy the layer from the malicious model to the benign model until the BSR
of the updated model reaches a threshold. Then, the indexes of the copied layers denote the
set of BC layers L*.

3.2 LAYER SUBSTITUTION ANALYSIS
Step 1: Local Training In FL setting, malicious clients identify BC layers on their local datasets.

A local dataset D¥) in i-th malicious client is split into training sets DY and D'

clean,train poison,train as

well as validation sets D(i) and D(i)

cleanval poisonvat- OPON @ malicious client 4 receives the global model
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(@)

clean,train

to converge to

w, it trains the benign model wpeyig, from the global model on the clean dataset D, until it
converges. Then, the attacker trains the wpe,ig, On the poisoned dataset D(l)

poison,train
obtain a malicious model W,,ujicious-

Step 2: Forward Layer Substitution We argue that if a layer is BC, replacing it in the malicious
model with a “benign” layer from the benign model will decrease the malicious model’s backdoor
task accuracy (BSR).

Benign layer — malicious model: We first examine the change of BSR when the malicious model
is replaced with a layer from the benign model at each client i. Specifically, we use b2m(1) to denote
the process that replaces a malicious model’s [-th layer with a benign model’s [-th layer, where both
models have the same structure, including |L| layers (L denotes the set of layers).

As Fig. 2 shows, executing b2m([) generates an updated malicious model wy,,,,(;y per layer replace-
ment. We then evaluate the BSR of the updated malicious models wy;,,(;), [ € L with the poisoned
dataset D,ison, var- By iterating through all layers I € L, each malicious client ¢ can sort the layers
according to the change of BSR, defined as:

ABSRth(l) := BSRuaticious — BSRth(l)a

where BSRuaiicious denotes the BSR of the poisoned model wyaiicious, and BSRy,,(;) denotes the
BSR of the updated model wy,y,,(;), which has the [-th layer replaced. With the layers sorted by
the ABSR;,,,(1y from the highest to the lowest, we further perform backward layer substitution to
confirm the identification of BC layers.

Step 3: Backward Layer Substitution We argue that if a layer is BC, replacing it in the benign
model with a “malicious” layer from the malicious model will increase the BSR of the benign model.

Malicious layers — benign model: The backward layer substitution process is defined as m2b(L*).
Unlike b2m(l) that only replaces an individual layer, m2b(L*) replaces a subset L* of layers. We
iteratively add a layer into L* following the descending order of ABSR,5,,(;) and evaluate the BSR of
the updated model with the poisoned dataset D ison, var- Fig. 2 shows m2b(L*) iteratively copies the
subset L* of layers from the malicious model wugiicious to the benign model wpepign until BSR,,2p(1,+)
reaches a pre-defined threshold 7BSR,aiicious» Where 7 € (0, 1] and BSR,,;(1,-) denotes the BSR of
the updated model w;,zp(1.+). Specifically, we compare BSR,,2;(~) With the threshold 7BSR naiicious
as follows:

If BSR,26(1) < TBSRuaiicious> We should add another layer following the descending order of
ABSRym(1) to L* and execute m2b(L*) to update the model w,z;(z,-). Then, we re-evaluate the
BSR of the updated model on the poisoned dataset D,ison, vat and compare it with the threshold
again.

If BSR,.25(1) = TBSRpuaticious> the new model w51,y has achieved a similar BSR as the malicious
model BSR,ujicious- We stop adding more layers to L*.

Then, we argue that the layers in the subset L* are BC since these layers satisfy both conditions: 1)
removing them from the malicious model decreases its BSR. 2) copying them to the benign model
increases its BSR to a similar rate as the malicious model. It should be noted that backward layer
substitution can identify individual BC layers and BC combinations of layers (i.e., the backdoor task
is jointly learned by a combination of layers).

4 POISONING BC LAYERS

The identified BC layers provide a new perspective to craft more precise and stealthy backdoor
attacks on FL. This section presents two attack methods with awareness of backdoor-critical layers:
layer-wise poisoning (LP) attack that attacks both distance-based and inversion-based defense
methods and layer-wise flipping (LF) attack that attacks sign-based defense methods.

4.1 LAYER-WISE POISONING (LP) ATTACK

With the subset L* of identified BC layers, we design LP attack that selects BC layers from L* and
precisely poisons the layers with minimal modification, which can bypass existing distance-based
defense methods (Cao et al., 2021; Nguyen et al., 2021; Blanchard et al., 2017).

In t-th round, malicious clients selected by the FL server perform forward layer substitution and
backward layer substitution to find out the set L} of BC layers. After receiving the global model w;
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and wbenign

(we denote w as w; for simplicity), malicious client ¢ trains two local models w
with its local dataset D'} and D%

poison lean> TESPECHIVELY.

We propose a vector v=[v1,Vva,...,v;| to denote the selection of the subset from the model

wézzﬂgn or w,(,fa),mom. If v; = 1, the j-th layer of the benign model wlgzzlign will be sub-
We next introduce

(@)

stituted with the corresponding layer in the malicious model w, ; ious

© ) o) ORI
malicious ™ " malicious,1° “malicious,2° **> “malicious,l

Srfglicious, ; 1s the j-th layer in the model. u,(,izﬁgn denotes the model 'w,(,i?ﬁgn layer-wisely in the same

way. The goal of the attacker in round ¢ is formulated as an optimization problem:
1

to denote the model w'"

malicious 111 12yET space, where

N,
s gy, AGE=siwl
(z,y)eD®
S.t. Wiy1 = A(ﬁ(l), ‘e ’a(lﬂ)’ w(M+1)7 U 7w(N))7 (2)
ﬁ}(Z) =Vvo ur(niczlicious + (1 - V) °© ulgi’z'ig”’ (3)

where o denotes the element-wise multiplication, w;; denotes global model weight in round ¢ + 1,
A denotes the aggregation function in the server, 2’ denotes a image embedded with trigger, v’
denotes the targeted label, and G(x) denotes the predicted label of global model with input z. Ag-
gregation functions A can utilize clustering algorithm K-means or HDBSCAN, making it infeasible
to calculate gradients.

To address this optimization challenge, we propose a straightforward approach. In order to conform
to the constraints, the attacker must perform adaptive attacks by adjusting the number of layers
targeted during each round of the attack. Following previous work (Fang et al., 2020), attacker
can estimate the models in benign clients using the local benign models on the malicious clients.
These locally-available benign models can then be utilized to simulate the selection process on the
server, through the initialization of the crafted model w(%) with a subset L* obtained through Layer
Substitution Analysis. When the crafted model w(*) is rejected during the simulation, attacker
decrease the size of the subset L* by removing layers in the order in which they are added to the set
in backward layer substitution process. To further minimize the distance, attacker uses the model
averaged from those local benign models ugyeraqe = ﬁ iu:o”l(;gu gn 1O make w9 closer to the

center of benign models. Then we introduce a hyperparameter A > 0 to control the stealthiness of
the attack:

75(1) =J\vo u(l) + ReLU(l - )\) VO Ugyerage + (1 - V) O Ugyerage s 4

malicious
where ReLU (z) = x if x > 0 and ReLU(x) = 0, otherwise, and it is similar to Scaling attack
when A > 1.

For defenses that lack filter-out strategies like FedAvg, attacker can assume that the server is imple-
menting strict distance-based strategies, such as FLAME and MultiKrum, to solve the optimization
problem within this framework. The identification is not necessary for each round, attacker can
identify BC layers in any frequency, like every 5 rounds. The analysis of the trade-off between
frequency and backdoor success rate refers to §5.4.

4.2 LAYER-WISE FLIPPING (LF) ATTACK

When LP attack fails to bypass sign-based defense methods, the backdoor-related parameters prob-
ably reside in the non-consensus sign regions and are neutralized by learning rates with reversed
signs. To work around such sign-based defense methods, we propose a Layer-wise Flipping attack
that keeps the efficacy of BC layers by proactively flipping the parameters signs of the layers in L*
on each client 7 before the defense methods apply a reversed learning rate to the layers, defined as:

wélF)A = —('wsfz)b(L*) —w) +w.

Eventually, the parameters of BC layers are flipped by the FL server again, which restores the sign
of the parameters and activates the backdoor injected into the model. With the knowledge of BC
layers, Layer-wise Flipping attack avoids unnecessarily poisoning the other layers, which improves
the main task accuracy and disguises the malicious updates from being detected by the defense
methods.
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Table 1: Detection accuracy of FLAME and MultiKrum on CIFAR-10 dataset. MAR indicates
malicious clients acceptance rate (%), and BAR indicates benign clients acceptance rate (%).

Models MultiKrum FLAME MultiKrum FLAME
(Datasesl) Attack non-IID non-I1ID 1D 1ID

MAR BAR | MAR BAR | MAR BAR | MAR BAR
VGG19 Baseline | 10.1 4328 | 16.58 73.54 | 0.5 4439 | 0.0 69.11
(CIFAR-10) LP Attack | 91.0 3433 | 93.0 59.39 | 99.5 33.34 | 100 55.67
DBA 0.5 4439 | 1225 74.1 0.5 4439 | 0.08  68.61
ResNet18 Baseline | 3.0 44.11 | 558 7486 | 0.0 4444 | 0.17 7295
(CIFAR-10) LP Attack | 93.01 34.11 | 93.0 59.39 | 9435 3397 | 99.0 58.83
DBA 0.5 4439 | 3.5 75.06 | 0.0 4444 | 0.17  72.55
CNN Baseline | 0.0 4444 |1 025 66.81 | 0.0 4444 | 0.0 66.78
(Fashion-MNIST) LP Attack | 78.11 35.77 | 100.0 55.67 | 68.13 36.87 | 99.0  55.67
DBA 0.0 4444 | 05 67.11 | 0.0 4444 | 0.0 66.69

5 EVALUATION

We implement Layer Substitution Analysis and the two attack methods by PyTorch (Paszke et al.,
2019). We conduct all experiments using a NVIDIA RTX A5000 GPU. By default, we use 100
clients in FL training, while 10% of them are malicious. In each round 10% clients are selected to
train models locally. The non-IID dataset are sampled as ¢ = 0.5 following Cao et al. (2021). Please
refer to §11 for the details of experiments settings.

5.1 METRICS

Acc denotes the main task accuracy of the converged global model on the validation dataset. Back-
door success rate (BSR) is the proportion that the global model successfully mis-classifies images
with triggers embedded to the targeted labels. Benign-client acceptance rate (BAR) and malicious-
client acceptance rate (MAR) indicate the accuracy of defense strategies detecting malicious clients.
BAR denotes the proportion of benign models accepted by defense aggregation strategies among all
benign models uploaded by benign clients. MAR denotes the proportion of malicious clients ac-
cepted by defense aggregation strategies.

5.2 THE ATTACKS’ STEALTHINESS

Table 1 shows that MultiKrum and FLAME successfully prevent most malicious updates by the
baseline attack and DBA since their MARSs are approximating to zero. Besides, the large gap be-
tween MARs and BARs of the baseline attack and DBA indicates that MultiKrum and FLAME
easily distinguish malicious and benign updates when selecting updates for aggregation.

However, the high MAR achieved by LP attack indicates it successfully has its malicious updates
accepted by the FL server running MultiKrum and FLAME. LP attack bypasses the detection of
MultiKrum and FLAME on all settings. Besides, the gap between LP Attack’s MAR and BAR
indicates that malicious updates are more likely to be accepted as benign ones by the server.

To further demonstrate the stealthiness of LP attack, we plot the Krum distance in BadNets attack,
Scaling attack, and LP attack in ResNet18 trained on IID CIFAR-10. The sum of square distance is
denoted as Krum distance. A large Krum distance means the model update is far from other local
model updates and less likely to be accepted by the server. Malicious model updates from LP attack
are close to benign model updates, which causes the failure of MultiKrum detection.

Fig. A-9 plots participant clients’ Krum distance in each 5 rounds, which shows that it is hard for the
defense strategy to distinguish malicious updates attacked by LP attack from benign ones. Scaling
attack presents larger Krum distances than BadNets attack, so we do not consider Scaling attack as
a normal baseline attack in our experiments.

5.3 THE ATTACKS’ EFFECTIVENESS

Table 2 shows that LP attack achieves the highest Acc (i.e., main task accuracy) and the highest
BSR under most settings. Fig. 3 illustrate that the convergence rate of the backdoor task using the
LP attack is generally faster than the baseline attack across various settings. We can observe the
similar results in IID settings in Table A-6 and Fig. A-11 in Appendix.

Notably, for large models such as VGG19 and ResNet18 on CIFAR-10, LP attack is successful in
embedding the backdoor, while the baseline attack and DBA fail in FLAME (IID and non-IID),
MultiKrum (IID and non-IID), FLDetector (IID), and FLARE(IID). Even in the scenario of Multi-



Published as a conference paper at ICLR 2024

Table 2: Main task accuracy and BSR on Non-IID datasets. We mark the BSR below 10% (corre-
sponding to ten classes of the datasets) as red, indicating a failed attack, and mark the highest BSR
as bold within the same setting. The Baseline is BadNets (Gu et al., 2017). The results are the
average of five repeated experiments. For LP attack (LF attack), a+b, where «a is the mean value,
and b is the standard deviation. Acc: main task accuracy (%), Avg: average, BSR unit: %.

Model (Dataset) VGG19 (CIFAR-10) ResNet18 (CIFAR-10) CNN (Fashion-MNIST)
. LP Attack . LP Attack . LP Attack
Attack Baseline (LF Attack) DBA || Baseline (LF Attack) DBA || Baseline (LF Attack) ‘ DBA
FedAve Best BSR | 84.88 92.8+0.99 41.15 || 85.19 94.19+0.99 21.19 || 99.97 87.69+4.3 99.97
(non—lll%) Avg BSR | 74.69 83.55+0.43  25.88 || 70.53 89.12+1.4 10.94 || 99.9 78.84+9.16 99.9
Acc 78.89 79.95+0.46  78.97 || 77.58 77.89+0.43 77.99 | 88.28 88.42+0.23 87.95
FLTrust Best BSR | 92.91 76.56+34.38 42.14 || 92.43 82.05+25.34  37.16 || 74.17 89.44+3.44 100.0
(non-IID) Avg BSR | 67.3 65.44+31.56 15.88 || 75.84 71.52429.17  15.11 || 68.97 77.05+4.67 100.0
Acc 75.1 74.03+4.06  75.11 || 75.72 69.9+5.74 77.51 || 89.51 89.48+0.1 89.31
FLAME Best BSR | 47.03 88.68+4.98  38.25 || 23.04 95.41+0.93 9.77 0.18 84.33+3.12 0.58
(non-IID) Avg BSR | 7.78 60.72+2.44  7.33 7.22 90.15+3.51 3.88 0.1 74.91+2.66 0.4
Acc 62.91 56.92+1.12  63.3 76.04 71.48+0.36 75.27 || 87.78 87.05+0.21 87.89
92.17+1.81 93.16+0.85 0.0+0.0
Best BSR | 79.37 (2.79+0.81) 43.79 || 81.61 (1.3740.02) 13.85 || 20.27 (70.5243.13) 38.25
89.24+2.09 82.14+7.46 0.0+ 0.0
RLR Avg BSR | 74.01 (0.620.09) 33.69 || 60.83 0.740.1) 7.8 15.09 (66.12:42.94) 7.33
(non-1ID) 72.1£0.58 73.44£0.95 86.09 +0.13
Acc 67.33 (63.243.94) 64.3 75.07 (76.480.32) 75.04 || 85.56 (86.45+0.41) 63.3
MultiKrum Best BSR | 22.93 95.87+0.51  29.44 || 12.72 95.94+0.97 10.63 || 1.09 89.95+2.74 0.28
(non-IID) Avg BSR | 7.84 75.93+2.49 844 3.95 90.12+1.38 5.61 0.39 74.94+6.97 0.1
Acc 58.93 69.28+3.29  64.81 || 74.49 72.26+1.34 73.02 || 87.31 87.58+0.21 87.58
FLDetector Best BSR | 95.49 87.284+0.69 16.28 || 5.23 90.31+2.04 5.89 74.64 99.45+0.13 99.93
(non-11D) Avg BSR | 95.42 86.714+0.54 16.14 || 5.21 86.56+1.32 5.87 66.11 96.32+0.41 99.9
Acc 55.25 57.95+£1.37  56.67 || 64.39 63.89+0.91 65.25 || 79.16 75.96+0.81 79.78
FLARE Best BSR | 96.67 93.47+4.32 2548 || 17.16 79.94+4.06 26.96 || 2.02 82.641+4.16 100
(non-I1D) Avg BSR | 94.45 70.23+£5.83  8.18 6.24 53.72+7.73 6.62 1.54 78.18+2.41 100
Acc 70.25 77.28+£1.46  69.95 || 71.39 70.84+1.63 64.22 || 88.29 88.07+0.46 88.01

- Acc under baseline attack Acc under LP attack BSR under baseline attack ~ —o— BSR under LP attack
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Figure 3: VGG19 trained with different robust aggregation rules on non-IID data. Acc indicates the
main task accuracy, and BSR indicates Backdoor Success Rate.

Krum (non-IID), where LP attack shows fluctuations in BSR as illustrated in Fig. 3(c), the average
BSR is still up to 76.85%, indicating that the attack is successful in most rounds.

The sign-based defense method RLR fails to reverse the signs of parameters in large models, thus
LF attack fails to embed the backdoor by reversing the signs.

Fig. 3 and Fig. A-11 in the Appendix present the training progress of VGG19 on non-IID and IID
data, respectively. The figures show that LP attack outperforms the baseline attack in most cases in
terms of the main task accuracy and BSR. For small model CNN, FLAME (IID and non-1ID), RLR
(IID and non-IID), MultiKrum (IID and non-IID), FLDetector (IID), and FLARE (IID) effectively
defend against both baseline attacks and DBA attacks. However, the LP attack is successful in
bypassing all distance-based defense strategies in both IID and non-IID settings. The LF Attack is
also effective in circumventing sign-based defense method RLR, resulting in an increase of 35%
(IID) and 50% (non-IID) in BSR compared to the baseline attack.

5.4 SENSITIVITY ANALYSIS

BC Layer Identification Threshold 7: We conduct a sensitivity analysis of 7, which is the BC
layer identification threshold, by training ResNet18 with IID datasets under FLAME and MultiKrum
protection. The average BSR in Fig. 4 shows that LP attack is consistently effective under different
7 values. Larger 7 indicates more layers identified as BC layers and included in L*, leading to
a higher risk of being detected due to more layers being attacked. The adaptive layer control can
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vals.

decrease the number of attacking layers properly to bypass detection, which makes sure LP attack
keep effective when 7 is high.

Stealthiness Knob \: A sensitivity analysis of the parameter A, which governs the stealthiness
of attacks, is performed by utilizing CNN and ResNetl18 with IID datasets Fashion-MNIST and
CIFAR-10, respectively, under the FLAME and MultiKrum defence. Fig. 5 demonstrates that the
LP attack method attains the highest level of success when A = 0.5 for the CNN model and A = 1
for the ResNet18 model. In CNN experiments, LP attack is detected when A > 0.7 in MultiKrum
and A > 0.6 in FLAME.

The Impact of Identification Interval: In our experiments, attacker identifies BC layers in each
round, which is computationally expensive. Although the set of BC layers is varying with the process
of FL, the sets in each round are similar. So attacker can reuse the BC layers in previous rounds or
even in the first round only. We conduct experiments on ResNet18 trained on IID CIFAR-10 dataset
under FedAvg. The results in Fig. 6 show that higher frequency can achieve higher BSR. The BSR is
37.9% if always reusing first-round identification. In practice, the attacker can select the frequency
of identification based on their device capabilities.

Table 3: Ablation study on BC layers in FLAME.
5.5 ABLATION STUDY |

Model Attack | BSR (%) | MAR (%)
Importance of BC layers: To show how VGG19 ]ﬁ,aftltl:cek §323.5886 116(')%8
BC layers work in Layer-wise Poisoning (LP) Random LP Attack 3.36 98.5
attack, we design a control group—Random Baseline 333 017
Layer-wise Poisoning attack—that malicious  ResNetl8 LP Attack 89.9 100
clients randomly choose the same number of Random LP Attack | 46.48 98.5

non-BC layers in LP attack to craft model w(").
We evaluate the LP and Random LP attacks under FLAME by training the VGG19 and ResNet18
models on CIFAR-10 in IID setting.

Fig. 7 shows that attacking the same number of BC layers always achieves better performance in
BSR, especially in VGG19. The results presented in Table 3 explain that the primary reason for the
failure of baseline attacks is the low acceptance rate of malicious models, with only 16.58% and
0.17% accepted models for ResNet18 and VGG19, respectively. In contrast, the primary limitation
of the Random Layer-wise Poisoning attack is its incorrect choice of model parameters, despite its
high malicious acceptance rate of 98.5%. The failure of Random LP attack highlights the importance
of BC layers for achieving successful backdoor tasks.
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Impact of the model averaging and adaptive change of layers: The average model ugycrqg. In
Equation equation 4 and adaptive layer control are two mechanisms introduced in §4.1 to improve
the ability of malicious models to mimic benign models, thus enabling them to evade detection by
defenses. In order to demonstrate the efficacy of the LP attack, experiments are conducted both with
and without these mechanisms. The results presented in Table 4 indicate that these mechanisms sig-
nificantly contribute to deceiving defense strategies by increasing both the selection rate of malicious
models and BSR. Notably, both mechanisms have a great impact on MAR. For instance, in VGG19
trained on non-IID CIFAR-10, model averaging increases MAR from 51% to 76%, while adaptive
control rises MAR from 51% to 66%. These mechanisms are capable of working collaboratively to

further improve the MAR to 93%. Table 4: Training on CIFAR-10 dataset with (v) and with-
Further Evaluation in Appendix: out (x) Average Model and Adaptive Layer Control.

In §12, we illustrate the superior- Model  Adanti

. ’ ] C e . ptive

ity of the LP attack over SRA (Qi Distribution ~ Model Averaging  Control MAR (%) BSR (%)

et al., 2022) by significantly increas- non-IIlD  ResNetI8 v v 93.01 90.74

ing the BSR from approximately 4% Egzgg gzsgzgg i X 6766;?8 gz-‘;g
.. - S B 3.

to 96%. Additionally, we outper- ;50D ResNetls x x 51.8 87.63

form Constrain Loss Attack (Li et al.,
2023) by achieving a substantial margin of 82% BSR in MultiKrum and demonstrate how LP attack
corrupts Flip (Zhang et al., 2022a) and achieve about 60% BSR in average. In §13, we show LP
attack attains an approximate 80% BSR under low accuracy conditions in BC layers identification
scenarios. In §14, we exhibit the LP attack’s ability to evade adaptive layer-wise defense mecha-
nisms, achieving no less than a 52% BSR. In §15, we show that the LP attack can successfully inject
backdoor attacks even when only 0.02 of the clients are malicious. In §16, we provide evidence
that our LP attack performs effectively in datasets characterized by a high degree of non-IID with a
parameter ¢ = 0.8.

6 RELATED WORK

Subnet Attack: Several studies, such as Bai et al. (2020); Rakin et al. (2019; 2020; 2021), inject
backdoor by flipping limited bits in the computer memory. Qi et al. (2022) selects a path from the
input layer to the output layer to craft a subnet that activates for backdoor tasks only. However, those
attacks can be detected by FL defenses as they pay limited attention to their distance budget.

Memorization in Training Data: Stephenson et al. (2021); Baldock et al. (2021) believe deep
layers are responsible for the memorization of training datasets. However, Maini et al. (2023) finds
that the learning of noisy data in training datasets not related to the specific layers utilizing Layer
Rewinding to detect the decrease in the accuracy of the noisy training dataset, which is similar to
our forward layer substitution. The difference between our conclusions and Maini et al. (2023) may
lie in the different tasks, where we train models to link a trigger with a specific label but Maini et al.
(2023) train model to a set of “hard to learn” data, which requires more modification on parameters.

More Related Works. There are a variety of previous studies related to our work. We provide more
detailed discussion on related works in §18.

7 LIMITATION AND CONCLUSION

Limitation Single-shot attack (Bagdasaryan et al., 2020) has the capability to inject a backdoor
into the global model through a malicious client within a single round by scaling the parameters
of malicious models. While our LP attack can narrow the distance gap by targeting BC layers,
we acknowledge that it may not effectively support a large scaling parameter, such as A = 100 in
DBA, when confronted with stringent distance-based defenses. However, there are several possible
methods to improve the LP attack to support larger scaling parameters, e.g., searching BC neurons
or designing triggers related to fewer parameters.

Conclusion This paper proposes Layer Substitution Analysis, an algorithm that verifies and iden-
tifies the existence of backdoor-critical layers. We further design two layer-wise backdoor attack
methods, LP Attack and LF Attack that utilize the knowledge of backdoor-critical layers to craft
effective and stealthy backdoor attacks with minimal model poisoning. We evaluate the relationship
between backdoor tasks and layers under an extensive range of settings and show our attacks can
successfully bypass SOTA defense methods and inject backdoor into models with a small number
of compromised clients.
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Appendix
Backdoor Federated Learning by Poisoning Backdoor-critical
Layers

9 COMPLEXITY ANALYSIS

To calculate the complexity of Layer Substitution Analysis, we begin by assuming the time com-
plexity of a single sample processed by the neural network during the forward and backward steps
to be tfmvard and tpacivara. Based on this assumption, the training complexity of a benign model
in Step 1 of Fig. 2 can be expressed as O(e - 1 - (tforward + thackwara)), Where n denotes the size
of the training dataset and e denotes the epoch needed for model convergence. Assuming that the
model can converge, epoch e will be a constant, and the training complexity of the benign model
can be rewritten to O(n - (Yforward + thackwara) ), Which is equivalent to the training complexity of a
malicious model in Step 2. The insertion of a single layer from the benign model to the malicious
model in Steps 3 and 4 and the corresponding testing on the test dataset have the same complexity
of O(n-1- tforwa,d), where [ represents the number of layers in the model.

Therefore, the total complexity of the proposed Layer Substitution Analysis algorithm is O(2n -
tpackward + 21 - (1 4+ 1) - tonvara), Where n is the sample size in the dataset. While this complexity
analysis provides a baseline estimate of the algorithm’s computational requirements, actual time
complexity may vary due to various factors such as the neural network architecture, hyperparameters
in the training process, and hardware used for training.

Table A-5 The five-layer CNN architecture.

Layer Size
Input 28x28x1
Convolution + ReLU 3x3x32
Convolution + ReLU 3x3x64
Max Pooling 2x2
Dropout 0.5
Fully Connected + ReLU 128
Dropout 0.5
Fully Connected 10

10 DETAILS OF MOTIVATIONS

10.1 MOTIVATING LAYER-WISE ATTACKS

We introduce a constraint loss attack inspired by the constraint module from 3DFed (Li et al., 2023)
to evade distance-based defenses. We illustrate the challenges in bypassing distance-based defenses
with model space attacks, thus motivating the necessity of fine-grained layer-wise attacks. The
constraint loss attack circumvents distance-based defenses by incorporating a distance regularization
term in the training loss function, as shown below:

1 .
fmalicious = 6 Z K(LIJ Yy, w r(mzlzuous)

n®
Dpsisnl (0 gpemis, (5)
+(1 - 6) X er(pfzzliciom - w;;(zbal 9 ’

where wggbu, is the global model aggregated from previous rounds and 8 € [0, 1] is a hyperparam-
eter that controls the constraint level. Fig. A-8 shows that the constraint loss attack fails to bypass
the detection of MultiKrum and FLARE even setting 8 = 0.001, which calls for a refiner back-
door attack poisoning in layer space instead of poisoning in model space. Thus, we further explore
backdoor-critical (BC) layers for refining backdoor attacks in §3.

10.2 MOTIVATING ATTACKS FOR SIGN-BASED DEFENSE

Unlike distance-based and inversion-based defense methods, sign-based defense methods (Bernstein
et al., 2018; Ozdayi et al., 2021) measure the changes of individual update parameters—malicious
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Table A-6 Main task accuracy and BSR on IID dataset. We mark the BSR below 10% (corresponding
to ten classes of the datasets) as red, indicating a failed attack, and mark the highest BSR as bold
within the same setting. The Baseline is BadNets (Gu et al., 2017). The results are the average of
five repeated experiments. For LP attack (LF attack), a+b, where a is the mean value, and b is the
standard deviation. Acc: main task accuracy (%), Avg: average, BSR unit: %.

Model VGGI19 ResNet18 CNN
(Dataset) (CIFAR-10) (CIFAR-10) (Fashion-MNIST)
. LP Attack . LP Attack . LP Attack
Attack Baseline (LF Attack) DBA || Baseline (LF Attack) ‘ DBA || Baseline (LF Attack) DBA
FedAv Best BSR | 79.27 94.89+0.33 529 76.76 95.94+0.32 22.54 || 100 87.21+3.53 99.99
(IID)g Avg BSR | 73.13 93.76+0.35 40.67 || 70.2 95.35+0.32 16.93 || 99.97 80.81+5.79 99.92
Acc 83.86 84.16£0.09 83.82 || 80.38 80.27+0.64  80.37 || 89.05 89.73+0.12 89.22
FLTrust Best BSR | 93.45 96.01+1.35 75.28 || 95.97 95.66+1.09 66.52 || 99.14 95.84+0.2 100.0
(IID) Avg BSR | 85.93 85.99+5.99 4593 || 67.1 56.93+16.07 23.39 || 98.47 91.35+1.4 100.0
Acc 83.26 82.46+0.47 82.94 || 74.97 70.77+5.4 77.72 || 90.0 90.68+0.17 90.22
FLAME Best BSR | 5.26 91.85+1.08 5.09 4.79 92.41+0.26 6.08 0.8 92.37+1.32 0.22
(IID) Avg BSR | 2.58 82.93+1.91 2.16 3.33 89.41+1.22 3.68 0.53 90.72+£1.03 0.16
Acc 79.86 75.42+0.44 79.69 || 78.77 75.85+0.44  78.46 || 88.76 88.85+0.42 88.9
94.87+0.15 90.16+£3.39 0.0
Best BSR | 84.59 (L12t0.1g) 4422 8462 .08:057) 2341 844 @asio7s) 9
89.43+£3.28 72.29+6.07 0.0
RLR AvgBSR | 7746 (651019 3484|6632 gogip0g 9O | 538 40.85£4.74) 2%
(1ID) 79.07+0.27 76.88+0.73 87.36+0.19
Ace 80.7 80.78=0.16) 3033 || 77T 96017y 7710 || 8686 (87601008 8704
MultiKrum Best BSR | 6.9 96.23+1.09 493 6.34 96.18+0.35 5.16 0.18 88.22+9.83 2.81
(D) Avg BSR | 2.54 94.41+0.28 242 3.19 95.24+0.3 294 0.08 82.5+7.27 1.57
Acc 81.12 80.33+0.23 81.43 || 79.89 78.19+0.69 784 88.64 88.56+0.04 88.46
FLDetector Best BSR | 5.46 94.46+£1.51 6.56 4.89 97.68+0.4 72 0.03 98.38+0.47 100.0
(IID) Avg BSR | 543 92.65+1.01 6.51 443 97.65+0.42  4.07 0.03 98.24+0.53 100.0
Acc 62.86 52.17+3.34 63.3 68.54 65.02+1.35 69.02 || 80.56 80.56 £0.12  80.06
FLARE Best BSR | 4.33 83.12+5.5 4.57 6.18 92.37+1.07  5.21 0.09 90.32+1.88 100.0
(IID) Avg BSR | 2.33 68.78+9.3 2.94 3.76 88.19+1.84 3.29 0.05 87.97+0.83 100.0
Acc 83.75 82.32+1.01 83.55 || 774 76.56+0.56 7594 || 89.19 89.04+0.13 88.98
Table A-7 Hyper-parameter settings.
Description Fashion-MNIST | CIFAR-10
N # of clients 100
C Selected clients proportion 10%
E Local epoches 2
B Local batch size 64
R Global model training rounds 200
M/N  Malicious client proportion 10%
PDR  Malicious data proportion 50%
Ir Local learning rate 0.01 \ 0.1

clients’ update parameters usually change in an opposite direction of benign clients’—leading to a
divergence in the signs of parameters. Intuitively, this sign-based defense strategy works because
the FL server can detect conflicts between the parameter signs of malicious and benign clients’
updates and then defend against attacks by reversing the signs of learning rates to malicious update
parameters.

However, models from different clients with parameters of non-consensus signs are common in FL.
since models are trained on clients’ private data, respectively. To substantiate this observation, we
conduct experiments on a CNN trained on an IID fashion-MNIST dataset, excluding any malicious
clients. As shown in Fig. A-10 , our experiments demonstrate that RLR flips a significant number
of learning rates of dimensions in the CNN even in the absence of any malicious clients. This
vulnerability in RLR motivates us to develop a flipping attack to exploit its weaknesses.
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Figure A-8 Backdoor success rate (BSR) of constraint loss (CL) attack under FedAvg, FLAME,
MultiKrum with varying /3 values. Experiments train ResNet18 on IID CIFAR-10 dataset.
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11 DETAILS OF EXPERIMENT SETUP

11.1 FL SYSTEM SETTINGS

The proportion of clients selected in each round among n = 100 clients is C' = 0.1. Each selected
clients train E/ = 2 epochs in the local dataset with batch size B = 64. The server trains the global
model with R = 200 rounds to make it converge. We set 7 = 0.95 when identifying the BC layers
via Layer Substitution Analysis (refer to Fig. 4 for sensitivity analysis of 7). We set A = 1 when
training on CIFAR-10 and A = 0.5 when training on Fashion-MNIST (refer to Fig. 5 for sensitivity
analysis of A\). As for sampling malicious clients, following previous works (Sun et al., 2019), we
consider fixed frequency attack and set the frequency to M /N x C xn = 1. Table A-7 in Appendix
shows the detailed hyperparameter settings.

Datasets: Fashion-MNIST (60,000 images for training and 10,000 for testing with ten classes) and
CIFAR-10 (50,000 for training and 10,000 for testing with ten classes).

Data distribution: Following Cao et al. (2021); Fang et al. (2020), we use ¢ = 0.5 by default. Fol-
lowing previous works (Cao et al., 2021; Fang et al., 2020), we create non-IID datasets by dividing
clients into X groups according to the X classes of the dataset. The possibility of samples with label
x assigned to the x-th group is ¢, while the possibility of being assigned to other classes is %.
Samples in the same group are distributed to clients uniformly. A larger ¢ value means a higher
degree of non-IID. Our experiments use ¢ = 0.5 by default. Our sensitivity analysis experiments
run on IID datasets since defense strategies are more likely to detect malicious models as outliers in
IID setting, which further justifies the effectiveness of attack methods.

Models: We use the following three models: A five-layer CNN (Cao et al., 2021; Zhang et al.,
2022b), ResNet18 (He et al., 2016), and VGG19 (Simonyan & Zisserman, 2014). The CNN model
is trained on Fashion-MNIST, while ResNet18 and VGG19 are trained on CIFAR-10 (the detailed
CNN structure refers to Table A-5 in Appendix).
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Figure A-11 VGGI19 trained with robust different aggregation rules on IID data. Acc indicates the
main task accuracy, and BSR indicates Backdoor Success Rate.

11.2 DEFENSE METHODS & SETTINGS

FLTrust (Cao et al., 2021): We enlarge the size of the root dataset from 100 in the original paper to
300, which enables the server to detect attacks precisely.

RLR (Ozdayi et al., 2021): We reuse and set the threshold of learning rate flipping in each parameter
to 4 as same as the original paper, where RLR claims that the threshold should be larger than the
number of malicious clients (Our experiments have one malicious client in each round).

FLAME (Nguyen et al., 2021): min_cluster_size issetton/2 + 1, min_samples to 1, and
the noise parameter to 0.001 following the original paper.

MultiKrum (Blanchard et al., 2017): The server calculates squared distance called Krum distance
through the closest N x C' — f clients updates, where f is a hyperparameter and assumed to be
equal or larger than the number of malicious clients, which is 1 in our setting. In our experiments,
four clients with the highest distance score are selected by MultiKrum to aggregate the global model
with f = 2.

FLDetector (Zhang et al., 2022b): We reuse the same setting in the original paper. All clients
perform a single step of standard gradient descent and submit their corresponding model updates to
the server in each round. As a result, the fraction of clients participating in the aggregation is set to
C =1, the local epoch is set to £/ = 1, and the number of training rounds is enlarged to R = 500.
Additionally, the window size is set to 10 and attacks start after the server finishes the initialization
following the original paper.

Flip (Zhang et al., 2022a): We adopt the confidence threshold of 0.4 used in the original paper. The
effectiveness of adversarial training might be impeded due to the inability of trigger inversion to
invert the same trigger used by the attacker, as reported in the literature. We assume that the server
has prior knowledge of the shape of the trigger, which helps to successfully unlearn the backdoor
task.

FLARE (Wang et al., 2022): We reuse the setting in the original paper, where the root dataset
comprises 10 samples per class.

11.3 BASELINE ATTACKS

BadNets (Gu et al., 2017) injects a 5 X 5 square as triggers into the bottom right corner of the
images and relabel those images as a targeted label on each malicious client. In our experiments, we
set the targeted label to Class 5 of the Fashion-MNIST and CIFAR-10 datasets. BadNets is a typical
attack, which is regarded as a baseline attack in the following experiments by default. DBA (Xie
et al., 2019) splits the whole 5 x 5 trigger pattern into four smaller triggers (2 x 2, 2 x 3, 3 X 2,
and 3 x 3). Subnet Replacement Attack (SRA) (Qi et al., 2022) uses the same subnet structure in
ResNet18 from the original paper. Scaling attack (Bagdasaryan et al., 2020) scales up parameters
to implement model replacement, where a scale factor is set to 5 in our experiments. According to
the original paper, Scaling attack should start after the global model is close to convergence.
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Table A-8 Subnet Replacement Attack (SRA) in FL attacks ResNet18 trained on CIFAR-10 (Acc:
the main task accuracy).

Attack FedAvg MultiKrum FLAME
Best BSR (%) | Avg BSR (%) | Acc (%) | Best BSR (%) | Avg BSR (%) | Acc (%) | Best BSR (%) | Avg BSR (%) | Acc (%)

Lp(ﬁg?d‘ 96.63 9538 80.44 95.91 95.21 79.17 98.51 98.17 7721
SRA (IID) 98.14 9792 79.84 444 261 8053 6.26 436 7672
LP Attack 9452 87.34 76.67 96.2 93.64 76.65 91.43 89.51 7145
(non-1ID)

SRA 98.11 96.66 78.68 8.46 3.52 733 17.66 4381 744
(non-1ID)

Table A-9 Malicious clients acceptance rate (MAR) and Backdoor Success Rate (BSR) of constrain
loss (CL) attack on ResNetl18, trained on the IID CIFAR-10 dataset, for varying values of 3. The
MAR is not applicable for FedAvg since it does not filter out malicious clients. BSR unit: %, MAR
unit: %.

Attack FedAvg | FLARE | MultiKrum FLAME
ac BSR BSR | MAR | BSR | MAR | BSR
LP Attack | 95.3 | 88.19 | 942 | 95.1 | 99.0 | 899
CLﬁ:Agﬁ‘Ck 927 | 329 0 | 315 662 | 94.1
CL Attack
52001 83.4 4.1 0 | 32 | 783 | 282
CL Attack
520,001 3.8 4.03 0 | 31 | 845 | 38

12 CASE STUDY

12.1 COMPARISON WITH SRA (QI ET AL., 2022)

Designed for the deployment stage, SRA does not require knowledge of the model parameters and
only necessitates the alteration of a limited number of parameters to ensure the preservation of main
task performance. Though not specifically designed for FL, SRA can compromise the classical
FL process (e.g., FedAvg) with only 10% malicious clients. However, despite the relatively small
modification of 3% of the model parameters, the crafted models produced by the SRA exhibit sig-
nificant differences from benign models, making them susceptible to be detected by distance-based
defense mechanisms such as FLAME and MultiKrum. Table A-8 shows that SRA achieves over
97% average BSR against FedAvg but less than 5% average BSR against MulitKrum and FLAME.

12.2 COMPARISON WITH CONSTRAIN LOSS ATTACK

Table A-9 presents the results of the evaluation of constrain loss attack with respect to its ability to
decrease the cosine similarity with benign models and bypass the detection mechanism of FLAME.
The results indicate that when § is set to 0.1 or 0.01, constrain loss attack is able to attack FLAME
defense leading BSR to 94% even higher than LP attack (89.9%) by reducing the cosine similarity
with benign models. However, the performance of LP attack remains superior to Constrain Loss
attack under MultiKrum and Avg, where LP attack achieves both 95% in BSR higher than 3% and
92% in constrain loss attack. As the value of 3 decreases, the constraint imposed by the distance to
benign models becomes stricter. Consequently, the effectiveness of constrain loss attack is reduced
and its performance deteriorates when (3 equals 0.1 or 0.01, which is shown in FedAvg and FLAME
settings. While constrain loss attack sacrifices the effectiveness of attack to hide the distance de-
viations by decreasing (3 to 0.001, our results show that MultiKrum and FLARE are able to detect
constrain loss attack in all settings of 5 (Table A-9 ), whereas our LP attack can evade and corrupt
MultiKrum and FLARE.

12.3 LP ATTACK AND SCALING ATTACK AGAINST FLIP DEFENSE (ZHANG ET AL., 2022A)

The experimental results, presented in Fig. A-12 , reveal that Flip defense can reduce the BSR
of BadNets attack and LP attack in the normal setting A = 1. However, we also observe that Flip
defense fails to address the threat of model replacement from Scaling attack, which can overwrite the
global model by scaling up the parameters in the malicious models. As a consequence, LP attack
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Figure A-12 LP attack, BadNets attack, and Scaling attack against Flip (Zhang et al., 2022a).
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Figure A-13 LP attack (A = 5) and Scaling attack against the combination of Flip (Zhang et al.,
2022a) and MultiKrum.

can also corrupt the Flip defense and maintain the main task accuracy at a high level by setting
A = 5, which can be regarded as a combination of LP attack and Scaling attack. The fluctuations
in BSR are caused by the fact that the malicious models perform the model replacement only when
the global model has no backdoor task injected. When the global model learns the backdoor task,
adversarial training can help the global model unlearn the backdoor task and significantly reduce
the BSR. However, when the BSR is low and the loss of backdoor task is large, malicious models
perform model replacement again, leading to high BSR and fluctuations. Naturally, the defender
can combine Flip with MultiKrum to mitigate Scaling attack. Fig. A-13 shows that the combination
of Flip and MultiKrum can adaptively impede Scaling attack but LP attack can bypass the detection
and inject backdoor into the global model.

13 ROBUSTNESS OF LAYER-WISE POISONING ATTACK
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Figure A-14 Robustness of LP attack. A specific ratio of layers identified as BC layers are randomly
removed or a number of layers identified as non-BC layers (equal to a specific ration of the BC
layers) are added.

To evaluate the robustness of LP attack, we simulate the scenario where the identification of BC
layers may be inaccurate, potentially missing a portion of BC layers or including non-BC layers. We
conduct an experiment that randomly removes a specific ratio of BC layers in L* and an experiment
that randomly adds a number of non-BC layers into L*. Fig. A-14 demonstrates that LP attack is
able to maintain a high BSR even when 60% of the BC layers are removed or when a significant
number of non-BC layers (equal to 90% of the BC layers) are added.
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Attack Defense BSR (%) Acc (%)

Baseline FLAME 1.5 83.6
LP Attack FLAME 90.9 83.6
Baseline  MultiKrum 2.0 83.1
LP Attack FLAME 97.2 80.1

Table A-10 LP Attack on FEMNIST.

Table A-11 The performance of adaptive defense under LP attack. Experiments are conducted on
the CIFAR-10 dataset.

Distribution Model BSR (%) Acc (%)

ResNet18 87.32 75.79
VGGI19 94.8 80.22

ResNet18 52.39 69.33
VGG19 64.33 69.82

1D

non-I11D

14 RESILIENCE AGAINST LAYER-WISE DEFENSE

When a defense strategy realizes that the LP attack only poisons specific BC layers, it may perform
adaptive layer-wise detection and augment the defense for those specific layers. To demonstrate the
resilience of LP attack against such a layer-wise defense strategy, we design an adaptive defense and
evaluate its impact on the LP attack. According to Table 1, MultiKrum is the most effective defense
for the LP attack. So we extend it to a layer-wise MultiKrum.

Letusyq = [“t+1,la U125 -5 u¢41,;] denotes the global model w1 in round t+1, where Upy1,j
is the j-th layer. We use MultiKrum (Blanchard et al., 2017) to aggregate j-th layer’s parameters as:
Uiyl = MultiKrum(uE}j), ufj), R uif}i)), (6)

where the input ugl) in function MultiKrum (-) is a vector of j-th layer in client ¢. The proposed
layer-wise MultiKrum chooses the N x C — f closest vectors of the layer as benign layers and
aggregates those layers for the new layer in (¢ + 1)-th round global model w;1. Here, N x C' is
the number of clients selected in each round and f is the hyperparameter in MultiKrum algorithm.

We extend MultiKrum to layer-wise MultiKrum safely aggregating parameters in each layer.

Table A-11 shows that layer-wise MultiKrum cannot detect and filter LP attack effectively. The
BSR is up to 94% in VGG19 in IID setting. We calculate krum distance in each BC layer. Fig. A-
15 shows that though the BC layer—1inear.weight is easily distinguished by Krum distance,
other BC layer—convolutional layers present limited deviation from benign layers. Those BC layers
carry backdoor tasks into the global model successfully bypassing layer-wise MultiKrum detection.

15 IMPACT OF RATIOS OF MALICIOUS CLIENTS

While LP attack performs well with M /N = 0.1, we further explore if it can work with extremely
low ratios of malicious clients. In Fig. A-16 , we conduct experiments on ResNet18 trained on non-
IID CIFAR-10 datasets under FLAME and MultiKrum. The results indicate our LP attack still works
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Figure A-15 Krum distance of BC layers in LP attack. The experiment is conducted on ResNet18
trained on IID CIFAR-10 dataset.
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Figure A-16 Performance of LP attack with different ratios of malicious clients.
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Figure A-17 Performance of LP attack under different degrees of non-IID data distribution.

well with an extremely low ratio of malicious clients M /N = 0.02, where the attacker implements
one backdoor attack in each of five rounds. However, our LP attack does not attack successfully
with M /N = 0.01, where the attacker injects backdoor in every ten rounds. The possible reason is
that backdoor attack is neutralized by the average step in the server.

16 IMPACT OF NON-IID DATA

High Level of Non-IID Data Distribution. In previous sections, we have shown that LP attack
works well on the non-IID dataset with ¢ = 0.5. To explore if higher degrees of non-IID affect
the identification of BC layers, we conduct experiments on ResNet18 trained with the CIFAR-10
dataset under FLAME and MultiKrum. The results show that our LP attack can attack FLAME in a
high level of non-IID distribution settings ¢ = 0.8. However, LP attack loses its effectiveness facing
MultiKrum when ¢ = 0.7 and ¢ = 0.8, where the model might not learn well on neither main task
nor the backdoor task (the main task accuracy is lower than 40%).

Experiments on Real-world Non-IID Datasets. FEMNIST is a real-world dataset included in
LEAF (Caldas et al., 2018). FEMNIST dataset comprises 805,263 images, which are distributed
into 3550 devices. In our experiment, we group all devices into 100 clients and set the epoch to 1.
Results on Table A-10 demonstrate that the LP Attack successfully injects a backdoor, whereas the
baseline attack proves unsuccessful.

(a) Trigger 1 (b) Trigger 2 (c) Trigger 3

99 ¢

Figure A-18 Different backdoor trigger shapes in an CIFAR-10 data sample (“square,
“watermark”).

apple,” and
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Table A-12 BC layer count under varying learning rates (Ir) for overfitting training.

epoch 20 30 40 50

0.01 79 9 10
Ir 0.05 5.5 6 5
0.1 5 4 4 5

17 MORE ANALYSIS ON BC LAYERS IN CV

17.1 INFLUENCE OF HYPERPARAMETERS

Shapes of Backdoor Triggers. We explore the influence of different trigger shapes for BC layer
identification. Fig. A-18 presents three different trigger shapes applied to backdoor a ResNet18
model, trained on the CIFAR-10 dataset. Fig. A-19 shows that different triggers may lead to dif-
ferent BC layer identifications, but 1inear .weight is constantly identified as a BC layer for all
three shapes.

Types of Backdoor Attacks.In addition to BadNets attacks, we also investigate the presence of BC
layers in other types of backdoor attacks, such as GAN-based dynamic backdoor attacks Salem et al.
(2022) and filter-based backdoor attacks Cheng et al. (2021). In the case of dynamic triggers Salem
et al. (2022), our analysis reveals seventeen BC layers (41%) on ResNet18 trained on the CIFAR-10
dataset, a significant increase compared to pattern triggers (9%). In contrast, for Instagram filter
triggers Cheng et al. (2021), only three convolutional layers (7%) are identified as BC layers, and
linear.weight is not considered as BC layers, unlike the consistent identification with pattern
triggers. The detail of BC layers refers to Fig. A-20 . Our findings demonstrate that our BC layer
detection approach is versatile and applicable to various trigger types, revealing the presence of BC
layers with different types of backdoor attacks.

Model Initial Weights. We study the identification of BC layers in a model with different initial
weights. We conduct repeated identification on the ResNet18 trained on CIFAR-10 dataset. Fig. A-
21 shows that if a model is initialized with different parameters, the identification of BC layers is
likely the same, indicating that changing model parameters does not lead to different BC layers.

Trainig Hyperparameters. We explore the impact of training hyperparameters on BC layers in
ResNet18 trained on CIFAR-10 dataset. The results in Table A-12 indicates that the smaller learn-
ing rate and the larger training epochs cause the increase in the number of BC layers. But the
number of BC layers in the entire model is relatively low, with only 10 out of 62 layers being BC. It
demonstrates the existence of BC layers.

17.2 ANALYSIS OF BC LAYERS IN CV MODELS

In this section, we conduct BC layer analysis in more CV models especially large models. Then
we further verify that the existence and identification of BC layers are consistent under different
locations and shapes of backdoor triggers, different model initial weights, and different datasets.

BC Layers in Large Models. Fig. A-22 shows that a small subset of layers, referred to as BC
layers, can be observed in different architectures of neural networks on CIFAR-10 and CIFAR-100
datasets, respectively. Our findings reveal that these BC layers primarily consist of a small ratio
of weight layers (e.g., fc1.weight layer) and no bias layers (e.g., £c1.bias layer). Further-
more, we observe that deeper layers are more likely to be selected as BC layers, specifically the
linear.weight layer as the last layer, which has been consistently identified as a BC layer in
ResNet18 (He et al., 2016), as Fig. A-19 and Fig. A-21 shown in Appendix 17. In addition, we
find that BC layers in DenseNet (Huang et al., 2017), EffNet (Freeman et al., 2018), and ResNet (He
et al., 2016) are mainly focusing on the weight of convolutional layers combined with one fully
connected layers.

Locations of Backdoor Triggers. We embed a trigger to different locations shown in Fig. A-24
within a Fashion-MNIST data sample and investigate their influences over the backdoor tasks. The
experiment follows the same setting in §3.2 and trains CNN (the structure of CNN refer to Table A-5
) on Fashion-MNIST. Fig. A-23 shows that the identification of BC layers remains consistent even
when the trigger’s location changes within the data sample.
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Figure A-19 A trigger’s different shapes
and the BC layers in ResNet18, trained on
CIFAR-10.

Figure A-20 BC layers on ResNet18 embed-
ded with the dynamic trigger and Instagram
filter trigger, trained on CIFAR-10.

More analysis about the shapes of triggers, types of backdoor attacks, training hyperparameters,
and model initial weights refer to Appendix 17. In summary, BC layers are prevalent in diverse
backdoor attacks and general CV models, and several factors collectively influence the selection
of these layers. Through our experiments, we have shown that model architecture, depth, training
datasets, trigger shape, and the type of backdoor attacks all contribute to varying choices of BC
layers. The determination of which layers become BC is highly dependent on specific cases and
scenarios.

17.3 ANALYSIS OF BC LAYERS IN NLP

The identification of BC layers is applicable to NLP models, which have multiple layers. We train a
2-layer LSTM as a word predictor following Bagdasaryan et al. (2020) on Reddit dataset (November

23



Published as a conference paper at ICLR 2024

linear.weight
layer4d.1.bn2.weight
layer4.1.conv2.weight
layer4.1.bnl.weight
layer4.1.convl.weight
layer4.0.shortcut.1.weight
layer4.0.shortcut.0.weight
layer4.0.bn2.weight
layer4.0.conv2.weight
layer4.0.bnl.weight
layer4.0.convl.weight
layer3.1.bn2.weight
layer3.1.conv2.weight
layer3.1.bnl.weight
layer3.1.convl.weight
layer3.0.shortcut.1.weight
layer3.0.shortcut.0.weight
layer3.0.bn2.weight
layer3.0.conv2.weight
layer3.0.bnl.weight
layer3.0.convl.weight
layer2.1.bn2.weight
layer2.1.conv2.weight
layer2.1.bnl.weight
layer2.1.convl.weight
layer2.0.shortcut.1.weight
layer2.0.shortcut.0.weight
layer2.0.bn2.weight
layer2.0.conv2.weight
layer2.0.bnl.weight
layer2.0.convl.weight
layerl.1.bn2.weight
layerl.1l.conv2.weight
layerl.1.bnl.weight
layerl.l.convl.weight
layer1.0.bn2.weight
layerl.0.conv2.weight
layer1.0.bnl.weight
layerl.0.convl.weight
bnl.weight

convl.weight

linear.weight
layer4.1.bn2.weight
layer4.1.conv2.weight
layer4.1.bnl.weight
layer4d.1l.convl.weight
layer4.0.shortcut.1.weight
layer4.0.shortcut.0.weight
layer4.0.bn2.weight
layer4.0.conv2.weight
layer4.0.bnl.weight
layer4.0.convl.weight
layer3.1.bn2.weight
layer3.1.conv2.weight
layer3.1.bnl.weight
layer3.1.convl.weight
layer3.0.shortcut.1.weight
layer3.0.shortcut.0.weight
layer3.0.bn2.weight
layer3.0.conv2.weight
layer3.0.bnl.weight
layer3.0.convl.weight
layer2.1.bn2.weight
layer2.1.conv2.weight
layer2.1.bnl.weight
layer2.1.convl.weight
layer2.0.shortcut.1.weight
layer2.0.shortcut.0.weight
layer2.0.bn2.weight
layer2.0.conv2.weight
layer2.0.bnl.weight
layer2.0.convl.weight
layerl.1l.bn2.weight
layerl.l.conv2.weight
layerl.l.bnl.weight
layerl.l.convl.weight
layer1.0.bn2.weight
layer1.0.conv2.weight
layerl.0.bnl.weight
layerl.0.convl.weight
bnl.weight

convl.weight

12345678910

(a) Same initial model weight.

Experiment index

12345678910

Experiment index

(b) Different initial model weights.

Figure A-21 Repeated layer substitution analysis on the same model initialization (Here we omit the
layers that do not contribute gradients and “bias” layers since these layers are never identified as BC

layers).
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Figure A-22 The BC layers ratios in large models trained on CIFAR10 and CIFAR100. The ratio
of BC layers indicates the ratios of the number of BC layers on the number of layers in models and
the ratio of weight layers indicates the ratio of BC weight layers on the number of weight layers in
models.
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Figure A-23 The BC layers of the four-layer CNN model with a trigger at different locations.

2017),! and train BERT and DistilBERT as classifiers in sst2 (Socher et al., 2013) dataset follow-
ing Shen et al. (2021). Fig. A-25 shows that the ratio of BC layers is less than a quarter in all layers
and about a half in weight layers. We find that BC layers are only attached in the encoder layer in
the 2-layer LSTM. Regarding classification tasks in NLP, BC layers lie on Q, K, and V vectors in
layers closer to the output layer and linear layer of various transformer blocks. In contrast to CV
classification models, the final linear layer is not BC layer in both BERT and DistilBERT.

18 MORE RELATED WORKS

Backdoor Attack in Deployment Stage. The deployment stage of a backdoor attack aims to mis-
classify a set of crafted samples into a targeted label by modifying a small number of model weights.
Several studies, such as Bai et al. (2020); Rakin et al. (2019; 2020; 2021), have considered the
manipulation of binary-form parameters stored in computer memory to inject backdoors into models.
Other studies, such as Qi et al. (2022); Li et al. (2021); Tang et al. (2020), have proposed modifying
a subnet of the model to identify triggers. Li et al. (2021); Tang et al. (2020) need to modify the
model architecture and program, while Qi et al. (2022) selects a path from the input layer to the
output layer to craft a subnet without modifying model architecture and knowing the parameters or
training data in models. Despite these approaches having the same goal as us that only changing a
limited number of parameters or bits, they have been found to be susceptible to be detected by FL.
defense strategies, as they do not take the distance as a part of the optimization.

Backdoor Critical Parameters. Recent research has demonstrated that certain neurons twithin
neural networks are particularly susceptible to backdoor attacks. Several studies, including Wu &
Wang (2021); Li et al. (2020); Wang et al. (2019); Liu et al. (2019; 2018), have proposed pruning

"https://bigquery.cloud.google.com/dataset/fh-bigquery:reddit_comments
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Figure A-24 Backdoor trigger locations within a data sample.
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Figure A-25 The BC layers ratios in large NLP models.

these critical neurons as ap means of mitigating such attacks. Adversarial Neuron Perturbation (Wu
& Wang, 2021) is a gradient-based technique that injects backdoors with a limited perturbation
budget, however, it is computationally expensive.Yao et al. (2019) proposes a method for injecting
backdoors into transfer learning by targeting shallow layers of the network.

Backdoor Attack in Federated Learning. LIE (Baruch et al., 2019) clips models updates in each
parameter by calculating the mean and variance, but this attack fails in classical setting FedAvg
and new defense strategies like FLAME and FLDetector with a relatively large number of attackers
(20%). Scaling attack (Bagdasaryan et al., 2020) scales up malicious clients weights to overcome
the affect of other clients, which is easily detected by defense strategies. Edge-case backdoor at-
tack (Wang et al., 2020) aims to attack a set of samples with low predicted probability, which is hard
to detect. But this attack has disadvantages in that targeted inputs are decided by the model and it
is also defended by SOTA defense like Nguyen et al. (2021); Rieger et al. (2022). 3DFed (Li et al.,
2023) proposes a constraint loss module for distance-based defenses, a noise masks module for by-
passing update energies detection, a decoy model module for deceiving dimensionality reduction
techniques, and an indicator module for fine-tuning hyperparameters. However, the indicator mod-
ule and decoy model module require multiple clients to collaborate in attacks, which conflicts with
our experimental setup, where only one malicious client is allowed in each round. Consequently,
these modules are not considered in the experiment section.

Durability measures the number of rounds that backdoor attacks remain in the global after attacks.
Neurotoxin (Zhang et al., 2022c) injects backdoor into neurons with the smallest L2 norms to avoid
the mitigation from benign clients. PerDoor (Alam et al., 2023) targets parameters that deviate less
to keep adversarial samples durable.

Model compression and lottery tickets. Like iterative model pruning techniques widely applied
to identify lottery tickets (Denil et al., 2013; Cheng et al., 2015; Frankle & Carbin, 2019), we can
also iteratively prune a DNN model on poisoned data to seek for a key subnetwork that dominates
its vulnerability. However, iterative model pruning requires large volumes of training data, and the
identified structures (i.e., the lottery ticket) vary with different initial model weights. Instead, this
paper proposes a general in-situ approach that directly searches BC layers. Zhang et al. (2023)
proposed FedIT to fine-tune large language models (LLMs) via a small and trainable adapter (e.g.,
LoRA (Hu et al., 2021)) on each client. We plan to explore the backdoor-critical structures in LLM
adapters in our future work.
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