


DRESS heuristic, to generate neighborhoods based on
the top-K set of the most delayed agents, using multi-
armed bandits like Thompson Sampling. We formulate
a simplified variant of MAPF-LNS using only our AD-
DRESS heuristic, as illustrated in Figure 1.

• We evaluate ADDRESS in multiple maps from the
MAPF benchmark set (Stern et al. 2019) and demonstrate
cost improvements by at least 50% in large-scale scenar-
ios with up to a thousand agents, compared with the orig-
inal MAPF-LNS and other state-of-the-art methods.

While our paper focuses on MAPF, our ADDRESS
heuristic can also be applied to other problem classes, where
variables can be sorted by their cost contribution to generate
LNS neighborhoods (Pisinger and Ropke 2019).

2 Background

2.1 Multi-Agent Path Finding (MAPF)

We focus on maps as undirected unweighted graphs G =
⟨V, E⟩, where vertex set V contains all possible locations and
edge set E contains all possible transitions or movements
between adjacent locations. An instance I consists of a map
G and a set of agents A = {a1, ..., am} with each agent ai
having a start location si ∈ V and a goal location gi ∈ V .
At every time step t, all agents can move along the edges in
E or wait at their current location (Stern et al. 2019).

MAPF aims to find a collision-free plan for all agents.
A plan P = {p1, ..., pm} consists of individual paths
pi = ⟨pi,1, ..., pi,l(pi)⟩ per agent ai, where ⟨pi,t, pi,t+1⟩ =
⟨pi,t+1, pi,t⟩ ∈ E , pi,1 = si, pi,l(pi) = gi, and l(pi) is the

length or travel distance of path pi. The delay del(pi) of
path pi is defined by the difference of path length l(pi) and
the length of the shortest path from si to gi w.r.t. map G.

In this paper, we consider vertex conflicts ⟨ai, aj , v, t⟩ that
occur when two agents ai and aj occupy the same location
v ∈ V at time step t and edge conflicts ⟨ai, aj , u, v, t⟩ that
occur when two agents ai and aj traverse the same edge
⟨u, v⟩ ∈ E in opposite directions at time step t (Stern et al.
2019). A plan P is a solution, i.e., feasible when it does
not have any vertex or edge conflicts. Our goal is to find
a feasible solution by minimizing the flowtime

∑

p∈P l(p)
equivalent to minimizing the sum of delays or (total) cost
c(P ) =

∑

p∈P del(p). In the context of anytime MAPF, we

also consider the Area Under the Curve (AUC) as a measure
of how quickly we approach the quality of our final solution.

2.2 Anytime MAPF with LNS

Anytime MAPF searches for solutions within a given time
budget. The solution quality monotonically improves with
increasing time budget (Cohen et al. 2018; Li et al. 2021).

MAPF-LNS based on Large Neighborhood Search (LNS)
is the current state-of-the-art approach to anytime MAPF
and shown to scale up to large-scale scenarios with hundreds
of agents (Huang et al. 2022; Li et al. 2021). Starting with
an initial feasible plan P , e.g., found via prioritized planning
(PP) from (Silver 2005), MAPF-LNS iteratively modifies P
by destroying N < m paths of the neighborhood AN ⊂ A.
The destroyed paths P− ⊂ P are then repaired or replanned

using PP to quickly generate new paths P+. If the new cost
c(P+) is lower than the previous cost c(P−), then P is re-
placed by (P\P−)∪ P+, and the search continues until the
time budget runs out. The result of MAPF-LNS is the last
accepted solution P , with the lowest cost so far.

MAPF-LNS uses a set of three destroy heuristics, namely
a random uniform selection of N agents, an agent-based
heuristic, and a map-based heuristic (Li et al. 2021). The
agent-based heuristic generates a neighborhood, including a
seed agent aj with the current maximum delay and other
agents, determined via random walks, that prevent aj from
achieving a lower delay. The map-based heuristic randomly
chooses a vertex v ∈ V with a degree greater than 2 and
generates a neighborhood of agents moving around v. All
heuristics are randomized but stationary since they do not
adapt their rules and degree of randomization, i.e., the distri-
butions, based on prior improvements made to the solution.

The original MAPF-LNS uses an adaptive selection mech-
anism π by maintaining selection weights to choose destroy
heuristics P (Li et al. 2021; Ropke and Pisinger 2006).

2.3 Multi-Armed Bandits

Multi-armed bandits (MABs) or simply bandits are funda-
mental decision-making problems, where an MAB or selec-
tion algorithm π repeatedly chooses an arm j among a given
set of arms or options {1, ...,K} to maximize an expected
reward of a stochastic reward function R(j) := Xj , where
Xj is a random variable with an unknown distribution fXj

(Auer, Cesa-Bianchi, and Fischer 2002). To solve an MAB,
one has to determine an optimal arm j∗, which maximizes
the expected reward E

[

Xj

]

. The MAB algorithm π has to
balance between exploring all arms j to accurately estimate
E
[

Xj

]

and exploiting its knowledge by greedily selecting

the arm j with the currently highest estimate of E
[

Xj

]

. This
is known as the exploration-exploitation dilemma, where ex-
ploration can find arms with higher rewards but requires
more time for trying them out, while exploitation can lead to
fast convergence but possibly gets stuck in a poor local op-
timum. We will focus on Thompson Sampling and ϵ-Greedy
as MAB algorithms and explain them in Section 4.2.

3 Related Work

3.1 Multi-Armed Bandits for LNS

In recent years, MABs have been used to tune learning and
optimization algorithms on the fly (Badia et al. 2020; Hen-
del 2022; Schaul et al. 2019). UCB1 and ϵ-Greedy are com-
monly used for LNS destroy heuristic selection in traveling
salesman problems (TSP), mixed integer linear program-
ming (MILP), and vehicle routing problems (VRP) (Chen
et al. 2016; Hendel 2022). In most cases, a heavily en-
gineered reward function with several weighted terms is
used for training the MAB. Recently, a MAPF-LNS variant,
called BALANCE, has been proposed to adapt the neighbor-
hood size N along with the destroy heuristic choice using a
bi-level Thompson Sampling approach (Phan et al. 2024b).

Instead of adapting the destroy heuristic selection, we pro-
pose a single adaptive destroy heuristic, thus simplifying the
high-level MAPF-LNS procedure (Figure 1). Our destroy



heuristic uses restricted Thompson Sampling with simple bi-
nary rewards to select a seed agent from the top-K set of
the most delayed agents for LNS neighborhood generation,
which can also be applied to other problem classes, such as
TSP, MILP, or VRP (Pisinger and Ropke 2019).

3.2 Machine Learning in Anytime MAPF

Machine learning has been used in MAPF to directly learn
collision-free path finding, to guide the node selection in
search trees, or to select appropriate MAPF algorithms for
certain maps (Alkazzi and Okumura 2024; Huang, Dilk-
ina, and Koenig 2021; Kaduri, Boyarski, and Stern 2020;
Phan et al. 2024a, 2025; Sartoretti et al. 2019). (Huang et al.
2022; Yan and Wu 2024) propose machine learning-guided
variants of MAPF-LNS, where neighborhoods are generated
by stationary procedures, e.g., the destroy heuristics of (Li
et al. 2021). The neighborhoods are then selected via an of-
fline trained model. Such methods cannot adapt during the
search and require extensive prior efforts like data acquisi-
tion, model training, and feature engineering.

We focus on adaptive approaches to MAPF-LNS using
online learning via MABs. Our destroy heuristic can adjust
on the fly via binary reward signals, indicating a successful
or failed improvement of the solution quality. The rewards
are directly obtained from the LNS without any prior data
acquisition or expensive feature engineering.

4 Adaptive Delay-Based MAPF-LNS

We now introduce Adaptive Delay-based Destroy-and-
Repair Enhanced with Success-based Self-learning (AD-
DRESS) as a simplified yet effective variant of MAPF-LNS.

4.1 Original Agent-Based Destroy Heuristic

Our adaptive destroy heuristic is inspired by the agent-based
heuristic of (Li et al. 2021), which is empirically confirmed
to be the most effective standalone heuristic in most maps
(Li et al. 2021; Phan et al. 2024b).

The idea is to select a seed agent aj ∈ A, whose path
pj ∈ P has a high potential to be shortened, indicated by its
delay del(pj). A random walk is performed from a random
position in pj to collect N−1 other agents ai whose paths pi
are crossed by the random walk, indicating their contribution
to the delay del(pj), to generate a neighborhood AN ⊂ A
of size |AN | = N < m for LNS destroy-and-repair.

The original destroy heuristic of (Li et al. 2021)
greedily selects the seed agent with the maximum delay
maxpi∈P del(pi). To avoid repeated selection of the same
agent, the original heuristic maintains a tabu list, which is
emptied when all agents have been selected or when the cur-
rent seed agent aj has no delay, i.e., del(pj) = 0. Therefore,
the heuristic has to iterate over all agents ai ∈ A in the
worst case, which is time-consuming for large-scale scenar-
ios with many agents, introducing a potential performance
bottleneck. The original MAPF-LNS cannot overcome this
bottleneck because it only adapts the high-level heuristic se-
lection via π, as shown in Figure 1, and thus can only switch
to other (less effective) destroy heuristics as an alternative.

4.2 ADDRESS Destroy Heuristic

Our goal is to overcome the limitation of the original agent-
based destroy heuristic, and consequently of MAPF-LNS,
using MABs. We model each agent ai ∈ A as an arm i
and maintain two counters per agent, namely αi > 0 for
successful cost improvements, and βi > 0 for failed cost
improvements. Both counters represent the parameters of a
Beta distribution Beta(αi, βi), which estimates the poten-
tial of an agent ai ∈ A to improve the solution as a seed
agent. Beta(αi, βi) has a mean of αi

αi+βi
and is initialized

with αi = 1 and βi = 1, corresponding to an initial 50:50
chance estimate that an agent ai could improve the solution
if selected as a seed agent (Chapelle and Li 2011).

Since the number of agents m can be large, a naive MAB
would need to explore an enormous arm space, which poses
a similar bottleneck as the tabu list approach of the origi-
nal agent-based heuristic (Section 4.1). Thus, we restrict the
agent selection to the top-K set AK ⊆ A of the most de-
layed agents with K ≤ m to ease exploration.

The simplest MAB is ϵ-Greedy, which selects a random
seed agent ai ∈ AK with a probability of ϵ ∈ [0, 1], and the
agent with the highest expected success rate αi

αi+βi
with the

complementary probability of (1− ϵ).
We propose a restricted Thompson Sampling approach to

select a seed agent fromAK . For each agent ai ∈ AK within
the top-K set, we sample an estimate qi ∼ Beta(αi, βi)
of the solution improvement rate and select the agent with
the highest sampled estimate qi. Thompson Sampling is a
Bayesian approach with Beta(1, 1) being the prior distribu-
tion of the improvement success rate and Beta(αi, βi) with
updated parameters αi and βi being the posterior distribu-
tion (Chapelle and Li 2011; Thompson 1933).

Our destroy heuristic, called ADDRESS heuristic, first
sorts all agents w.r.t. their delays to determine the top-K set
AK ⊆ A of the most delayed agents. Restricted Thomp-
son Sampling is then applied to the parameters αi and βi

of all agents ai ∈ AK to select a seed agent aj . An LNS
neighborhood AN ⊂ A is generated via random walks, ac-
cording to (Li et al. 2021), by adding agents ai ∈ A whose
paths are crossed by the random walk. Note that these agents
ai ∈ AN\{aj} are not necessarily part of the top-K setAK .

The full formulation of our ADDRESS heuristic with
Thompson Sampling is provided in Algorithm 1, where
I represents the instance to be solved, P represents the
current solution, K restricts the seed agent selection, and
⟨αi, βi⟩1≤i≤m represent the parameters for the correspond-
ing Beta distributions per agent for Thompson Sampling.

4.3 ADDRESS Formulation

We now integrate our ADDRESS heuristic into the MAPF-
LNS algorithm (Li et al. 2021). For a more focused search,
we propose a simplified variant, called ADDRESS, which
only uses our adaptive destroy heuristic instead of determin-
ing a promising stationary heuristic via time-consuming ex-
ploration, as illustrated in Figure 1.

ADDRESS iteratively invokes our proposed destroy
heuristic of Algorithm 1 with the parameters ⟨αi, βi⟩1≤i≤m

to select a seed agent aj ∈ A and generate an LNS neigh-



Algorithm 1: ADDRESS Destroy Heuristic

1: procedure ADDRESSDestroy(I, P,K, ⟨αi, βi⟩1≤i≤m)
2: Sort all agents ai ∈ A w.r.t. their delays del(pi)
3: Select the top-K set AK ⊆ A w.r.t. the delays
4: for agent ai in AK do
5: qi ∼ Beta(αi, βi) ▷ Restr. Thompson Sampling
6: end for
7: j ← argmaxiqi ▷ Select the seed agent index
8: AN ∼ RandomWalkNeighborhood(I, P, aj) ▷

Random walk routine of (Li et al. 2021)
9: return ⟨AN , j⟩ ▷ Neighborhood and seed agent

10: end procedure

borhood AN ⊂ A using the random walk procedure of the
original MAPF-LNS (Li et al. 2021). Afterward, the stan-
dard destroy-and-repair operations of MAPF-LNS are per-
formed on the neighborhood AN to produce a new solution
P ′ = (P\P−)∪P+. If the new solution P ′ has a lower cost
than the previous solution P , then αj is incremented and P
is replaced by P ′. Otherwise, βj is incremented. The whole
procedure is illustrated in Figure 2.

The full formulation of ADDRESS is provided in Al-
gorithm 2, where I represents the instance to be solved
and K restricts the seed agent selection. The parameters
⟨αi, βi⟩1≤i≤m are all initialized with 1 as a uniform prior.

4.4 Conceptual Discussion

ADDRESS is a simple and adaptive approach to scalable
anytime MAPF. The adaptation is controlled by the learn-
able parameters αi and βi per agent ai, and the top-K rank-
ing of potential seed agents. Our ADDRESS heuristic can
significantly improve MAPF-LNS, overcoming the perfor-
mance bottleneck of the original agent-based heuristic of (Li
et al. 2021) by selecting seed agents via MABs instead of
greedily, and restricting the selection to the top-K set of the
most delayed agents AK to ease exploration.

The parameters αi and βi enable the seed agent selec-
tion via Thompson Sampling, which considers the improve-
ment success rate under uncertainty via Bayesian inference
(Thompson 1933). Unlike prior MAB-enhanced LNS ap-
proaches, ADDRESS only uses binary rewards denoting
success or failure, thus greatly simplifying our approach
compared to alternative MAB approaches (Chen et al. 2016;
Chmiela et al. 2023; Hendel 2022; Phan et al. 2024b).

The top-K set enables efficient learning by reducing the
number of options for Thompson Sampling, which other-
wise would require exhaustive exploration of all agents ai ∈
A. The top-K set supports fast adaptation by filtering out
seed agent candidates whose paths were significantly short-
ened earlier. While the top-K ranking causes some overhead
due to sorting agents, our experiments in Section 5 suggest
that the sorting overhead is outweighed by the performance
gains regarding cost and AUC in large-scale scenarios.

Our single-destroy-heuristic approach enables a more fo-
cused search toward high-quality solutions without time-
consuming exploration of stationary (and less effective) de-
stroy heuristics. Due to its simplicity, our ADDRESS heuris-

tic can be easily applied to other problem classes, such as
TSP, MILP, or VRP, when using so-called worst or criti-
cal destroy heuristics, focusing on high-cost variables that
“spoil” the structure of the solution (Pisinger and Ropke
2019). We defer such applications to future work.

Algorithm 2: MAPF-LNS with our ADDRESS Heuristic

1: procedure ADDRESS(I,K)
2: ⟨αi, βi⟩ ← ⟨1, 1⟩ for all agents ai ∈ A
3: P = {p1, ..., pm} ← RunInitialSolver(I)
4: while runtime limit not exceeded do
5: B ← ⟨αi, βi⟩1≤i≤m ▷ Distribution parameters
6: ⟨AN , j⟩ ← ADDRESSDestroy(I, P,K,B) ▷

See Algorithm 1
7: P− ← {pi|ai ∈ AN}
8: P+ ← DestroyAndRepair(I, AN , P\P−)
9: if c(P−)− c(P+) > 0 then

10: P ← (P\P−) ∪ P+ ▷ Replace solution
11: αj ← αj + 1 ▷ Success update
12: else
13: βj ← βj + 1 ▷ Failure update
14: end if
15: end while
16: return P
17: end procedure

5 Experiments1

Maps We evaluate ADDRESS on five maps from the
MAPF benchmark set of (Stern et al. 2019), namely
(1) a Random map (Random-32-32-20), (2) two Game

maps Ost003d and (3) Den520d, (4) a Warehouse

map (Warehouse-20-40-10-2-2), and (5) a City map
(Paris 1 256). All maps have different sizes and structures.
We conduct all experiments on the publicly available 25 ran-
dom scenarios per map.

Anytime MAPF Algorithms We implemented AD-
DRESS with Thompson Sampling and ϵ-Greedy, denoted
by ADDRESS (X), where X is the MAB algorithm. Our im-
plementation is based on the public code of (Li et al. 2022;
Phan et al. 2024b). We use the original MAPF-LNS, MAPF-
LNS2, and BALANCE implementations from the respective
code bases with their default configurations, unless stated
otherwise. We also run LaCAM* from (Okumura 2023).

We always set the neighborhood size N = 8 (except for
BALANCE, which automatically adapts N ), K = 32, and
use Thompson Sampling for ADDRESS and BALANCE,
unless stated otherwise. ϵ-Greedy is used with ϵ = 1

2 . All
MAPF-LNS variants use PP to generate initial solutions and
repair LNS neighborhoods, as suggested in (Li et al. 2021;
Huang et al. 2022).

Compute Infrastructure All experiments were run on a
high-performance computing cluster with CentOS Linux,
Intel Xeon 2640v4 CPUs, and 64 GB RAM.

1Code is provided at https://github.com/JimyZ13/ADDRESS.
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