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Abstract
We consider a cooperative learning scenario
where a collection of networked agents with in-
dividually owned classifiers dynamically update
their predictions, for the same classification task,
through communication or observations of each
other’s predictions. Clearly if highly influential
vertices use erroneous classifiers, there will be a
negative effect on the accuracy of all the agents
in the network. We ask the following question:
how can we optimally fix the prediction of a few
classifiers so as maximize the overall accuracy in
the entire network. To this end we consider an
aggregate and an egalitarian objective function.
We show a polynomial time algorithm for opti-
mizing the aggregate objective function, and show
that optimizing the egalitarian objective function
is NP-hard. Furthermore, we develop approxima-
tion algorithms for the egalitarian improvement.
The performance of all of our algorithms are guar-
anteed by mathematical analysis and backed by
experiments on synthetic and real data.

1. Introduction
With the breakthrough of AI technologies and the availabil-
ity of big data, we are witnessing a flourish of AI models
that are owned by different entities and trained by using
private or proprietary data, even for generic purposes such
as voice recognition, natural language processing or image
segmentation. These models do not stay in isolation. There
is a natural opportunity for these models to interact with
each other and collectively improve their performance.

One of the concrete application scenarios is in cybersecu-
rity, where security agents in a network collectively detect
anomalous traffic patterns that are potentially associated

1Rutgers Business School, Piscataway, NJ, USA 2Department
of Computer Science, Rutger University, Piscataway, NJ,
USA. Correspondence to: Shahrzad Haddadan <shad-
dadan@business.rutgers.edu>, Jie Gao <jg1555@rutgers.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with cyber attacks. These security agents may be affiliated
with different entities in the network. They may or may not
be able to directly share their collected data due to privacy or
other logistic reasons but can share their beliefs on whether
the network is under attack or not, and if so, which type
of attack. In such a scenario, improving the model of one
agent by collecting more data, recruiting domain experts to
provide high quality labels of observation data, or retraining
using a more powerful model can help to improve the qual-
ity of prediction locally. As these security agents stay on a
network, they naturally have the opportunity to exchange
their assessments. The quality improvement at one agent
spills to other agents in the network.

Another application scenario is in online social networks.
With generative AI, it is now a lot easier to create fake
contents such as images and videos. Consider an online
social network in which agents share pictures and comment
on them, e.g., Instagram. Assume that some of these pictures
may be AI generated. While everyone can have his or her
opinion on whether a wide-spreading picture is real or fake,
the participants who are more skilled in image generation
or who have access to powerful models can help the rest of
the network to discern real ones and fake ones.

It is not new to utilize data and models in a distributed set-
ting. With the explosion of personal data from smartphones
and wearable devices and the increasing awareness of data
privacy, decentralized learning, as opposed to users sharing
their data to a central enterprise, has gained popularity in
recent years. Federated learning and gossip learning are
such examples. However in this scenarios, the decentralized
agents are still tightly coupled – they use the same model
architecture and sometimes exchange gradient or model
parameters directly. In our work, we consider a loosely cou-
pled, cooperative setting where agents share a general task
requirement and they select individual model parameters
and architecture, train their models on their private data.
Such agent autonomy is a necessity when the agents are
not affiliated with the same ownership. In addition, we con-
sider the agents sharing their predictions with other agents
preferably those within proximity or with established trust
relationships. We call this model cooperative learning in a
social setting. Essentially each agent has her own view of
the world and through exchanging predictions with others,
collectively we hope to improve the accuracy for all agents.
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When only predictions from other agents are shared, it is
up to the individual agent to decide how to update their
models. On a first-order basis, we can assume for now that
the outcome of such information sharing can be approxi-
mated by a weighted linear combination of the agent u’s
own assessment and the predictions from other neighbors.
The weights can be either fixed or time-varying, e.g., based
on the trust level of neighbors. This leads to two natural
models, DeGroot (1974) and Friedkin & Johnsen (1990),
originally proposed in modeling opinion dynamics in social
network. In DeGroot model, each agent’s prediction is a
simple weighted linear combination of neighbors’ predic-
tions. When the weight coefficients are fixed (or when the
updates are frequently enough for time-varying weights),
all agents converge to global consensus. In FJ model, each
agent incorporates in the update step a vector of personal
assessment (which can be guided by the difference of lo-
cal data distribution). The model still converges, and each
agent arrives at possibly different predictions, reflecting
adaptation to individual local data distributions.

The generic framework captures how a group of networked
agents build their respective models collectively. When new
training data is introduced to one agent in the system, the
other agents indirectly receive the benefit of it. Therefore
it is an interesting question to analyze the collective benefit
and also ask the optimization question of where to inject
new training data to maximize the collective benefit. This is
the research question we focus on in this paper.

1.1. Related Work

Decentralized learning Training a single high-quality
global model using decentralized data and computation
has been studied extensively in decentralized optimization
(e.g., for kernel methods (Colin et al., 2016), PCA (Fellus
et al., 2015), stochastic gradient descent (Blot et al., 2016),
multi-armed bandit (Lazarsfeld & Alistarh, 2023) and gen-
eralized linear models (He et al., 2018)). Federated learn-
ing (Konečný et al., 2015; 2016a;b; McMahan et al., 2017;
Krishnan et al., 2024) uses a client-server architecture and
considers multiple local models, trained using respective
local data, with model parameters aggregated and shared
through a central global model. Gossip learning (Ormándi
et al., 2013; He et al., 2018; Hegedűs et al., 2019; 2016;
Giaretta & Girdzijauskas, 2019), on the other hand, does not
assume a central node. Instead, each node updates its own
local parameters via training and then its updated parame-
ters are shared by information exchange with other nodes in
the network. This setting removes the single point of failure
in the system and thus is more robust and scalable, without
compromised performance (Hegedűs et al., 2016; 2021).
These gossip learning protocols consider the exchange of
local models (or crucial parameters such as local gradients)
directly. This requires that all agents participating in gossip

learning use the same type of models, which is a limita-
tion. It is also known that models or gradients can reveal
knowledge of the training data (thus raising concerns to data
privacy, see a recent survey here (Zhang et al., 2023)).

Social learning The study of learning and decision mak-
ing in a social network has been studied for longer than
a decade. In these works, agents predict the status of the
world, and based on their prediction they take an action to
maximize a utility function. In a social setting these deci-
sions are not made in a void, as each agent observes the
prediction of her neighbors or their actions, and henceforth
updates her prediction. These models are vastly studied by
economists who are interested in understanding whether the
agents’ decisions converge to the same value (consensus),
how fast is the rate of convergence, whether an equilibrium
exists, and if the consensus leads agents to an optimal deci-
sion (learning) (Acemoglu et al., 2011; Arieli et al., 2021;
Golub & Jackson, 2010; Golub & Sadler, 2016; Rahimian
& Jadbabaie, 2017; Hązła et al., 2019; Eckles et al., 2019;
Bindel et al., 2015).

Given a social network, various works tackle optimization
problems in which an algorithm makes minimal changes in
the network to maximize the improvement of a desirable
property. For instance, various works consider the problem
of maximizing information diffusion by seeding information
in a number of selected source vertices (Kempe et al., 2003;
Seeman & Singer, 2013; Eckles et al., 2019; Garimella et al.,
2017) or by adding links (Borgs et al., 2014; D’Angelo et al.,
2019). Some works optimally insert links into a network
to maximize the information flow between two groups of
nodes (Cinus et al., 2023; Zhu et al., 2021; Adriaens et al.,
2023; Haddadan et al., 2021; 2022; Santos et al., 2021), and
others optimaly alter innate opinion of users in the FJ model
to reduce polarization or disagreements (Tsioutsiouliklis
et al., 2022; Abebe et al., 2018; Musco et al., 2018).

Our work bridges the above lines of work. We study a
framework in which agents are performing learning tasks
and exchange their predictions until each makes a final deci-
sion. Unlike prior decentralized learning works, our agents
do not necessarily use the same model nor they share any
parameters, they solely exchange their predictions. In this
sense, our framework falls into the context of social learning.
However, instead of studying problems such as existence of
consensus or convergence rates, we focus on the problem
of optimally injecting information to a selected subset of
agents to improve the overall betterness in the network. An-
other difference with social learning framework is that we
do not consider one fixed model of information exchange,
in contrast, we assume a general linear model for informa-
tion exchange. Therefore, our methods are applicable to
any linear model whether it describes users of a social net-
work, each evaluating the truthfulness of an online content,
or whether it describes intelligent systems in which agents
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cooperate for a classification task.

1.2. Summary of Contributions

Motivated by prior works on decentralized and social learn-
ing, we consider a new framework called cooperative learn-
ing in a social setting. In this framework, we consider the
problem of optimally selecting k agents and improving their
innate predictions to maximize the overall network improve-
ment. We consider both an aggregate objective function and
an egalitarian one, and assume different levels of access to
the model’s parameters which are (1) the joint probability
distribution of the classifiers forming agents’ innate predic-
tions, denoted by π, and (2) the expressed social influence
matrix, denoted by W̄ .

1. We provide a polynomial time algorithm for the aggre-
gate improvement problem. This algorithm uses only
the innate error rates and W̄ , and it does not need any
additional knowledge of π; see Section 4.1.

2. We show that solving the egalitarian improvement prob-
lem is hard: it is NP-hard to solve it exactly even if both
parameters are entirely known. We also show that if W̄
and only the innate error rates are available, without
any further assumption even finding an approximation
solution is hard; see Theorems A.3 and A.4 .

3. We provide two approximation algorithms for the egal-
itarian improvement problem. The first algorithm,
EgalAlg is a greedy algorithm and needs full access
to π. The second one, EgalAlg(appx), approximates
the greedy choice and only needs access to the innate
error rates, but it assume that the innate predictions are
pairwise independent. We show that with some modifi-
cations EgalAlg(appx)works under the assumption that
the vertices have group dependency; see Section 4.2.

4. We compare the two algorithms for egalitarian improve-
ment by running experiments on real and synthetic
graphs and compare their performance to four bench-
mark methods. Our experiments show that by modify-
ing only a few vertices, we succeed in increasing the
accuracy of a high percentage of network’s agents; see
Figure 1.

2. Models and Problem Definition
Consider a set Ω whose elements are labeled as +1 or −1,
i.e., there exists a function y : Ω → {−1,+1} such that
for any a ∈ Ω, y(a) ∈ {−1,+1} is the (true) label of
a. Consider a set of agents V = {v1, v2, . . . , vn} who
lack access to the true labels. Given a ∈ Ω, each agent vi
uses a classifier ŷi to predict the label of a, i.e., we have
ŷ1, ŷ2, . . . , ŷn where for any i, ŷi : Ω → {−1,+1}. The

Figure 1: Comparison of # modified nodes for Accuracy > 90%
on different dataset (lower is better).
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innate error rate of each agent vi is defined as:

err(vi) = E
a∼Ω

[1 (ŷi(a) ̸= y(a))] = P
a∼Ω

(ŷi(a) ̸= y(a)) .

We assume that this error is independent of true label. This
assumption merely makes our analysis simpler and without
it our results can be generalized with trivial modifications.

These predictions form the innate assessment of the agents,
which we denote by z(0)(i, a), for arbitrary i and a; thus,
z(0)(i, a) = ŷi(a). After, agents communicate with each
other through a time varying averaging process. At each
point of time, each agent vi communicates with a subset of
other agents N (t)(vi), and her assessment will update as:

z(t)(i, a) = Ci·

 ∑
vj∈N (t)(vi)

W
(t)
i,j z

(t−1)(j, a) + αiŷi(a)

 ,

where W
(t)
i,j denotes the influence of vj on vi at time t,

αi is vi’s stubbornness, Ci is a normalizing constant and
z(t−1)(i, a) and z(t)(i, a) respectively denote vi’s assess-
ment before the tth round of communication and after it.

Formally, given a ∈ Ω, let ŷ(a) = (ŷ1(a), ŷ2(a), . . . ŷn(a))
and z(0)(a) = ŷ(a). Assume having a sequence of n × n
matrices

(
W (t)

)∞
t=1

, α = (α1, α2, . . . , αn) and C(t) =

(C
(t)
1 , C

(t)
2 , . . . , C

(t)
n ). For any t ≥ 1 we have:

z(t)(a) = C(t) ⊙
(
W (t)z(t−1)(a) +α⊙ ŷ(a)

)
, (1)

where ⊙ denotes the Hadamard product which is defined to
be the vector (matrix) obtained from the pairwise product
of the elements in two other vectors (matrices). 1 Let
z∗(a) = (z∗(1, a), z∗(2, a), . . . , z∗(n, a)) be the vector
that the above process converges to i.e.,

z∗(a) = lim
t→∞

z(t)(a) .

We call z∗(a) the the expressed prediction vector. We as-
sume that this limit has the following closed form:

∃W̄ ∈ R+n×n s. t. ∀a ∈ Ω, z∗(a) = W̄ ŷ(a)T . (2)

1Let A,B ∈ Rn×m, and C = A ⊙ B. We have that C ∈
Rn×m and Cij = Aij ·Bij
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R+ being the set of all non-negative real numbers. We call
W̄ the expressed (social) influence matrix.

The above assumption is indeed proven to hold true in many
well studied models. To name a few:

DeGroot Model (DeGroot, 1974) Given a row-stochastic
matrix W ∈ R+n×n, DeGroot Model evolves as:

z
(t)
DEGROOT(a) = Wz

(t−1)
DEGROOT(a), z

(0)
DEGROOT(a) = ŷ(a),

It is known that
z∗DEGROOT(a) = Πŷ(a) ,

where Π is a block diagonal matrix with blocks
Π1,Π2, . . . ,Πk, and each block corresponds to a strongly
connected component of the graph corresponding to W . In
each block all rows are identical.

Friedkin–Johnsen (FJ) Model (Friedkin & Johnsen,
1990) Given an arbitrary matrix with non-negative weights
W , for each i ∈ [n] let Ci = 1/(1 +

∑
j∈N (i) Wi,j). FJ

model evolves as follows:

z
(t)
FJ (a) = C ⊙

(
Wz

(t−1)
FJ (a) + ŷ(a)

)
, z

(0)
FJ (a) = ŷ(a).

It is known that if W is symmetric the FJ model converges
to the following closed form:

z∗FJ(a) = (I + L)−1ŷ(a),

where L is the combinatorial Laplacian of the indirected
graph corresponding to W and I denotes the identity matrix.

Both DeGroot and FJ model use a constant matrix W in their
evolution. The following shows a time varying evolution:

Finite time Models Assume a finite sequence of row
stochastic matrices W (1),W (2), . . . ,W (T ), for any t > T ,
let W (t) be the identity matrix and let α be all zeros vec-
tor. It is straightforward to see that the general equation of
Equation (1) will converge to

z∗FINITE(a) = W̄ ŷ(a), W̄ =
T∏

i=1

W (i) .

2.1. Statement of Problems

Assume any time varying averaging model which converges
to a close form as Equation (2). Thus, for a given a ∈ Ω
and vi ∈ V the expressed prediction of vi on a is equal to

z∗(i, a) =
n∑

j=1

W̄ij ŷj(a) .

Note that the value of z∗(i, a) is a function of the expressed
social influence matrix W̄ as well as the quality of all agents’
classifiers which is formulated in the joint probability dis-
tribution of ŷ. If the true label y(a) equals +1, the pos-
itive values of z∗(i, a) are preferable, otherwise negative

values of z∗(i, a) are better. In other words, we would
like y(a) and z∗(i, a) to have the same sign. We define
Z(i, a) : V × Ω → [−1, 1] as follows:

Z(i, a) = y(a) · z∗(i, a) .

The larger values for Z(i, a) correspond to the fact that
agent vi makes a good prediction on an object a. If
Z(i, a) < 0 we consider this prediction faulty.

Improving quality of selected classifiers Assume that we
have a tool to improve the quality of classifiers. Formally,
let φ ∈ (0, 1] be a given constant. For any arbitrary agent
vi we may improve ŷi to ỹi : Ω → [0, 1] as follows:

∀a ∈ Ω, ỹi(a) = (1− φ)ŷi(a) + φy(a) . (3)

We would like to improve the quality of a selected subset
of agents’ classifiers (innate predictions) to maximize the
overall quality of expressed predictions among all agents.
Formally we are interested in selecting a subset S of k
agents, i.e., S ⊆ V , |S| = k and improve the quality of the
classifier as follows:

∀a ∈ Ω, ỹi(a) =

{
(1− φ)ŷi(a) + φy(a) if vi ∈ S

ŷi(a) if vi /∈ S

(4)
Let

z∗new(i, a) =

n∑
j=1

W̄ij ỹj(a) &Znew(i, a) = y(a)·z∗new(i, a) .

In the first problem that we study, S is selected to maximize
an aggregate objective function:

G(agg)
(S) ≜ E

a∼Ω

[
n∑

i=1

Znew(i, a)−Z(i, a)

]
(5)

The above objective function is great, but it has the shortcom-
ing of any other aggregate objective function: it is possible
that one agent benefits enormously from it at the cost of
many other agents getting extremely little.

Therefore, we also study the following egalitarian objective
function in which we count the expected number of agents
whose faulty predictions will improve.

G(egal)
(S)≜ E

a∼Ω

[
n∑

i=1

1(Z(i,a)<0 ∧ Z(i,a)<Znew(i,a))

]
.

We are now ready to formally state the problems.

Problem 1 (Aggregate improvement through improving k
selected agents). What is an optimal way to select a subset
S ⊆ V and update their innate predictions as Equation (4)
to maximize the following objective function:

OPT(agg) = max
S⊆V ;|S|=k

G(agg)
(S) .

4



Optimally Improving Cooperative Learning in a Social Setting

Problem 2 (Egalitarian improvement through improving k
selected agents). What is an optimal way to select a subset
S ⊆ V and update their innate predictions as Equation (4)
to maximize the following objective function:

OPT(egal) = max
S⊆V ;|S|=k

G(egal)
(S) .

The above process has two main parameters: a joint proba-
bility distribution π : Ω× {−1,+1}V → [0, 1], where for
any a ∈ Ω and b⃗ ∈ {−1,+1}n, π(a, b⃗) = P(∧n

i=1ŷi(a) =
bi) as well as W̄ which is the expressed influence matrix.
While in most applications W̄ is either available in closed
form (e.g., for DeGroot, FJ or finite models) or it can be
approximated using iterative methods, our access to π de-
pends on assumptions which may vary depending on our
application. In fact, we present our algorithms assuming
different access levels to the joint probability distribution π.

3. Summary of Results
In this section, we present a summary of our main results.
Let us first list the assumptions we make on the access level
to π and W̄ :

Assumption 3.1 (Best scenario). Assume having complete
knowledge of π.

The above assumption is reasonable if Ω is a small finite
set. For instance in cases where Ω can be partitioned to a
few types and the agents make the same predictions on any
element of the same type, e.g., see (DeMarzo et al., 2003;
Hązła et al., 2023; Gaitonde et al., 2021)

Clearly, it is possible that the above assumption does not
hold true. However, the algorithm needs to have some knowl-
edge of the probability distribution of innate predictions.

Assumption 3.2 (some knowledge of π). Assume having
some knowledge of classifiers’ dependence/independence
and the innate error rates.

Assumption 3.3 (minimum knowledge of π). Assume hav-
ing only knowledge of innate error rates {err(vi)}vi∈V .

The summary of our main results is that Problem 1 is easy,
i.e., we show an exact polynomial time algorithm for it as-
suming minimum knowledge of π. On the other hand, we
show that Problem 2 is hard, i.e., we show that exactly solv-
ing it is NP-complete even assuming full knowledge of π.
Note that this hardness also holds for the cases in which we
have less knowledge of π. Later, we show greedy algorithms
for approximately solving it under different assumptions.

Initially, in all of our results we assume access to the closed
form of W̄ . We then show that the guarantees still hold with
a slight change when an approximation of W̄ is given.

Assumption 3.4 (knowledge to an approximation of W̄ ).
Assume having knowledge of ̂̄W such that∣∣∣̂̄W − W̄

∣∣∣
1
≤ ϵ ,

where |·|1 is the ℓ1 norm and ϵ a precision parameter.

3.1. Optimizing the aggregate objective function

Theorem 3.5. There is an algorithm with run-time com-
plexity Θ

(
n2
)

which given W̄ and {err(vi)}ni=1 as input

parameters outputs S such that G(agg)
(S) = OPT(agg).

Remark 3.6. Let ALG be the algorithm whose performance
guarantees are presented in Theorem 3.5. Let S be the
output of ALG when W̄ is given to it as input parameter,
and let S′ be the output if ̂̄W is given. We have:

G(egal)
(S′) ≥ G(egal)

(S)− 2kϵ .

We present this algorithm in Section 4.1 and Appendix A.1.

3.2. Optimizing the egalitarian objective function

We now present our results about Problem 2.

We call a matrix with no negative entry non-negative. In DE-
GROOT model if W is non-negative, W̄ is also non-negative
and in FJ model if W is non-negative and symmetric, W̄ is
also non-negative (Chebotarev & Shamis, 2006) .

In this section we assume that W̄ is non-negative.

Theorem 3.7. Under Assumption 3.1 and assuming |Ω| is
polynomial in n , Problem 2 is NP-hard.

Since Problem 2 is NP-hard, we concentrate on finding an
approximation algorithm for it in different scenarios.

Approximate solution with full access to π. Assume that
Ω is finite and for any a ∈ Ω and b ∈ {−1,+1}n we can
evaluate the probability of the event

∧n
i=1 ŷi(a) = b(i).

Theorem 3.8. There is a greedy algorithm with runtime
Θ
(
|Ω|n2k

)
which by receiving π and W̄ as input parame-

ters outputs S satisfying

G(egal)
(S) ≥ (1− 1/e)OPT(egal).

A pseudocode of our algorithm, EgalAlg is presented in
Appendix A.3, an overview of main ideas is presented Sec-
tion 4.2. Note that the runtime of EgalAlg grows linearly
in |Ω|. Later, we present EgalAlg(appx)whose complexity
does not grow with |Ω| (see Section 4.2). Therefore, even
if π is fully known, by employing EgalAlg(appx), we may
prefer to suffice to a lower quality approximation to gain
better time complexity.
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Approximate solution with minimum information
While the previous result shows a constant approximation,
the following theorem shows that by only having the innate
error rates {err(vj)}nj=1 and W̄ we are not able to achieve
any good approximation.

Theorem 3.9. Any solution to Problem 2 which only uses W̄
and innate error rates {err(vj)}nj=1 makes an error which
can be as large as Ω(n).

We restate and prove the above theorem in Theorem A.4.

Motivated by the above results, we now present our results
when more knowledge about the classifiers are available.
For instance, in addition to knowing the error rates we as-
sume that the classifiers are pairwise independent.

Using these assumptions we design EgalAlg(appx) and show
theoretical guarantees for its performance.

Approximate solution assuming independence. Assume
that the classifiers {ŷi}vi∈V are pairwise independent. We
have:

Theorem 3.10. There is a greedy algorithm, EgalAlg(appx),
with run-time Θ(n3k) which by receiving {err(vi)}vi∈V

and W̄ as input parameters outputs S satisfying

G(egal)
(S) ≥ [(1− 1/e)−∆ind] ·OPT(egal) ,

where ∆ind is a parameter depending on the network. If the
network is nicely structured ∆ind = o(1); see Section 4.2.1 .

We generalize the assumption of pairwise independence to
group dependence as follows:

Approximate solution assuming group dependence. As-
sume that some agents belong to opposing groups R and B
and some agents are colorless; they are in W . The classifiers
of the agents in W are independent, and the classifiers of
R and B agents have positive intra-correlation and negative
inter-correlation as described in Definition 4.7. This model
describes a situation when have a classification task that can
be influenced by an exogenous factor, e.g, their position or
political leaning. Clearly by setting V = W we will have
the previous model. In this case we have:

Theorem 3.11. There is a greedy algorithm, EgalAlg(appx),
with run-time Θ(n3k) which by receiving individual and
group error rates and W̄ as input parameters outputs S
satisfying

G(egal)
(S) ≥ [(1− 1/e)−∆gr] ·OPT(egal) ,

where ∆gr ≥ ∆ind is a parameter depending on the net-
work and the dominance of colors R and B on other agents.
Not surprisingly, ∆gr becomes closer to ∆ind as the number
of colorless agents increases. If the network is nicely struc-
tured and nicely colored ∆gr = o(1); See Section 4.2.2 .

The following remark holds ture both under pairwise Inde-
pendence and group dependency:
Remark 3.12. Let S be the output of EgalAlg(appx)when W̄
is given to it as input parameter, and let S′ be the output if̂̄W is given. We have:

G(egal)
(S′) ≥ G(egal)

(S)(1− 8kϵ) .

4. Algorithms
In this section we present our algorithms. All of the algo-
rithms are greedy. We provide an exact solution for Prob-
lem 1 in Section 4.1. In Section 4.2, because of the NP-
harness of Problem 2, we present a constant approximation
algorithm for it; we call this algorithm EgalAlg . We then
present EgalAlg(appx) which has a lower time complexity
but worst approximation guarantees assuming pairwise in-
dependence of agents. In this case, our approximation ratio
depends on the network structure. In Section 4.2.2, we mod-
ify EgalAlg(appx) so that it works under a milder assumption
formalized as group dependency.

Pseudocodes for our egalitarian algorithms are presented in
Appendix A.3

4.1. The aggregate objective function

For any vertex vj let’s define the influence score and its
approximation by Inf(vj) =

∑n
i=1 W̄ijerr(vi) . The fol-

lowing lemma is proven in Appendix A.1.

Lemma 4.1. Let U = {u1, u2, . . . , uk} be top-k vertices
with highest value of

∑
uj∈U Inf(uj). We have that:

G(agg)
(U) = OPT(agg) .

Proof of Theorem 3.5 and Remark 3.6 With the above
lemma, we design an algorithm that for all vjs calculates
their influence score, and outputs the top-k. The complexity
of such algorithm is Θ(n2 + n log n + k) = Θ(n2). In
Appendix A.1 we also prove Remark 3.6.

4.2. The egalitarian objective function

Optimizing the egalitarian function is NP-hard (See The-
orem A.3). We show that G(egal)

: 2V → [0, n] is mono-
tonic and sub-modular (See Lemmas A.5 and A.6). Thus, a
greedy algorithm will provides a (1− 1/e) approximation
(Nemhauser & Wolsey, 1978).

We now concentrate on obtaining the greedy choice. For-
mally, we define the function gr(S) : 2V → V as follows:

gr(S) = argmax
u∈V

G(egal)
(S ∪ {u})− G(egal)

(S) . (6)

The following lemma is proven in Appendix A.3.1:

6
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Lemma 4.2. For any S ⊆ V we have:

gr(S) = argmax
u∈V

∑
i=1:n
W̄iu ̸=0

∆Gi(S, u) , (7)

where ∆Gi(S, u) is defined to be2

P
a∼Ω

Z(i, a) ≤ 0 ∧

 ∧
vj∈S

W̄ji ̸=0

y(a)=ŷj(a)

 ∧ y(a) ̸=ŷu(a)


Proof of Theorem 3.8 Our proposed algorithm, EgalAlg
starts with S = ∅. Iteratively, gr(S) is added to S until
|S| = k. Assume that Ω is finite and we have access to π.
Using Lemma 4.2 we obtain the greedy choice as follows:
for any a ∈ Ω and vi ∈ V , we evaluate the validity of the

event

(∧
vj∈S

W̄ji ̸=0

y(a)=ŷj(a)

)
∧ y(a) ̸=ŷu(a). If this event

is valid, we calculate Z(i, a) and verify Z(i, a) < 0 which
takes n steps. We find best u by using Equation (7) and
iterating over all choices of i ∈ V and a ∈ Ω. The total
runtime for k iterations is Θ(|Ω|n2k).

4.2.1. INDEPENDENT CLASSIFIERS

In this section we consider the case where the classifiers
{ŷi}vi∈V are pairwise independent which falls into the sce-
nario in which we have some knowledge of π (Assump-
tion 3.2). In this case we may estimate the greedy choice as
a function of {err(vi)}ni=1 and W̄ .

Let’s state the main result of this section and then we present
the steps that lead us to the selection of the greedy choice:

Theorem 4.3. Let S be the output of a greedy algorithm
which starts by taking S = ∅ and for k steps keeps updating
S to S ∪ {g} where

g = argmax
u

∑
i=1:n
W̄iu ̸=0

∆̂Gi(S, u) ,

and ∆̂Gi(S, u) is defined in Lemma 4.6, we have:

G(egal)
(S) ≥ [(1− 1/e)−∆ind] ·OPT(egal) ,

with ∆ind = Θ(|A|) and A is the set of ambiguous vertices.

Ambiguous vertices Consider the partitioning of V with
V + as low error vertices and V − as high error vertices:

V + = {vj | err(vj) ≤ 1/2} & V − = {vj | err(vj) > 1/2}
2We use ∧ and ∨ to denote respectively the logical operations

conjunction and disjunction which are “and” and “or”.

with respect to this partition we define the following vectors
whose elements are in [0, 1]:

E+ = (1− 2err(vj))vj∈V + & E− = (2err(vj)− 1)vj∈V −

For any arbitrary vertex vi ∈ V , low error and high error ver-
tices contribute in the value of Z(i, a) through the following
coefficient vectors:

W̄+
i = (W̄ij)vj∈V + & W̄−

i = (W̄ij)vj∈V −

The ambiguous vertices are those who are not dominated
by neither V + or V −. Formally,
Definition 4.4. [Ambiguous vertices] Let W̄i =
(W̄i1, W̄i2, . . . , W̄in), |·|2 denote the ℓ2 norm and ⟨·, ·⟩ dot
product. We call a vertex vi ∈ V ambiguous if it satisfies:∣∣∣∣∣ ⟨W̄+

i , E+⟩∣∣W̄i

∣∣
2

− ⟨W̄−
i , E−⟩∣∣W̄i

∣∣
2

∣∣∣∣∣ ≤ 4
√
log n .

A network is nicely structured if it has no ambiguous vertex.

If a vertex is non-ambiguous we can estimate the gain asso-
ciated to it very precisely:

Lemma 4.5. Let ∆Gi(S, u) and ∆̂Gi(S, u) be as defined
respectively as in Lemma 4.2 and Lemma 4.6. If a vertex is
non-ambiguous we have:∣∣∣∆Gi(S, u)− ∆̂Gi(S, u)

∣∣∣ ≤ o(n−1) .

We now present the following lemma related to the approx-
imation of greedy choice. All the proofs and details are
presented in Appendix A.4.
Lemma 4.6. Let ∆Gi(S, u) be as Lemma 4.2. Let
∆̂Gi(S, u) : 2

V × V → [0, 1] be defined as follows:

∆̂Gi(S, u) ≜ 1 (Ψi(S, u) < 0) err(u)
∏
vj∈S

W̄ij ̸=0

(1− err(vj)) .

We have:∣∣∣∆̂Gi(S, u)−∆Gi(S, u)
∣∣∣ ≤ exp

(
− Ψi(S, u)

2

4
∑n

i=1 W̄
2
ij

)
,

where

Ψi(S, u) = −W̄iu+
∑
vj∈S

W̄ij+
∑
j=1:n

j ̸∈S∪{u}

W̄ij [1−2err(j)] .

Proof of Theorem 3.10 and Remark 3.12 A complete
pseudocode of our proposed algorithm, EgalAlg(appx), is
presented in Appendix A.3 (Algorithm 2). It is easy to
see that the runtime is dominated by Θ(n3k). Note that
the correctness of Theorem 3.10 is directly concluded from
Theorem 4.3 by setting |A| = 0. We present the proof of
Theorem 4.3 and Remark 3.12 in Appendix A.4.2.
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4.2.2. GROUP DEPENDENT CLASSIFIERS

We now consider a case when agents are either red, blue or
none (white). The agents who are red or blue agent either
all follow a group decision, or they independently follow an
individual decision. The group decision of the blue agents
is always the opposite of the group decision of red agents.

Definition 4.7. [Group Dependence] Assume that the set
of agents V can be partitioned as V = R ∪ B ∪ W . We
assume a set of classifiers ŷindv1 , ŷindv2 , . . . , ŷindvn : Ω →
{−1,+1} which are pairwise independent. Furthermore,
we assume two group classifiers ŷgrR , ŷgrB : Ω → {−1,+1}
which satisfy:

∀a ∈ Ω, ŷgrR(a) ̸= ŷgrB (a) .

Given a constant ρ ∈ [0, 1], these classifiers construct
{ŷ1, ŷ2, . . . , ŷn} as follows:

With probability ρ the red and blue agents follow their
groups’ decision, i.e.,

∀vi ∈ R, ŷi(a) = ŷgrR(a) ∧ ∀vi ∈ B, ŷi(a) = ŷgrB (a)

And the white agents independently follow their individual
decisions, i.e, for all vi ∈ W , ŷi(a) = ŷindvi (a) .

Alternatively, with probability 1 − ρ , all agents indepen-
dently use their individual classifiers. i.e,

∀vi ∈ V, ŷi(a) = ŷindvi (a) .

In the above setting we use the following notation: For any
vj ∈ V we define errindv(vj) = P

(
ŷindvj (a) ̸= y(a)

)
, and

err(R) = P (ŷgrR(a) ̸= y(a)) & err(B) = P (ŷgrB (a) ̸= y(a))

It is immediate from the definition that 1−err(B) = err(R).

In this setting, the estimation of ∆Gi(S, u) is more involved
and is presented in Section 4.2.2. In this case, our greedy
algorithm uses {errindv(vj)}nj=1, err(R), err(B) and W̄ or
its approximation. The final result follows:

Theorem 4.8. Let S be the output of a greedy algo-
rithm which approximates greedy choice as defined in
Lemma A.12. We have:

G(egal)
(S) ≥ [(1− 1/e)−∆gr] ·OPT(egal) ,

where ∆gr = Θ(ρ
∣∣AW

∣∣ + (1 − ρ)|A|), A is the set of
ambiguous vertices defined before and AW is the set of
W-ambiguous vertices.

W-Ambiguous vertices. As in Section 4.2.2, we partition
W to low error vertices W+ and high error vertices W−.
Similarly we define EW+, EW− and for any vi ∈ V , W̄W+

i

and W̄W−
i ; for details see Appendix A.5.4. We define:

Definition 4.9. [ W-Ambiguous vertices ] Let W̄W
i =

(W̄ij)vj∈W , and |·|2 be the ℓ2 norm and ⟨·, ·⟩ be dot product.

We call an agent vi ∈ V , W-ambiguous if it satisfies∣∣∣∣∣ ⟨W̄W+
i , EW+⟩∣∣W̄W

i

∣∣
2

− ⟨W̄W−
i , EW−⟩∣∣W̄W

i

∣∣
2

∣∣∣∣∣ ≤ 4
√

log n+∆W̄i ,

where ∆W̄i =
∣∣∣∑vj∈R W̄ij −

∑
vj∈B W̄ij

∣∣∣ . A network is
nicely colored if no vertex is W-ambiguous.

Proof of Theorem 3.11 and Remark 3.12 Pseudocode
and details are presented in Appendices A.3, A.5 and A.5.5.
Theorem 3.11 can be directly concluded from Theorem 4.8
by setting |A| =

∣∣AW
∣∣ = 0.

5. Experiments
In this section, we empirically validate the effectiveness of
our proposed methods for Problem 2 through a series of
meticulously designed experiments. We test our algorithms
EgalAlg and EgalAlg(appx) (pseudocodes in Appendix A.3)
benchmarked against random selections together with three
heuristic methods: selecting nodes based on degree (De-
gree), innate error rate (ErrRate), and the product of degree
and error rate (DegXErr).
Synthetic Datasets Synthetic data is generated with three
components: a random graph G, a weight matrix W̄ and
initial opinions ŷ. To generate G, we employ Erdős-Rényi
model (ER) (Erdös & Rényi, 1959), Barabási-Albert model
(PA) (Barabási & Albert, 1999) and Watts-Strogatz model
(WS) (Watts & Strogatz, 1998). We generate the weight
matrix W̄ using the FJ model. Each ŷi(a) is sampled from
Bernoulli distribution with a randomly chosen pi.

Real-World Graphs We also evaluate our methods
on four diverse real network datasets (Rossi & Ahmed,
2015), BIO (Duch & Arenas, 2005; Bader et al., 2012),
CSPK (Bader et al., 2013), FB (Rozemberczki et al., 2019),
WIKI (Leskovec et al., 2010). Here we also apply finite
step FJ model to construct weight matrix W̄ and randomly
sample ŷ from Bernoulli distributions.

We define our accuracy Acc to be the achieved egalitarian
gain, normalized by its upper bound. For each dataset, we
progressively increase k. Obviously, as k increases, the
accuracy should increase. Therefore, we fix the threshold
value k = log(n) for different datasets and compare the
corresponding Acc of different methods. We also report
the number of modified nodes k required to achieve certain
levels of accuracy. See Table 1 for details. Figure 2 shows
two of these results on real and synthetic graphs and more
are presented in Figure 3. More details about experiments
can be found in Appendix B. Code of our experiments is
available through link 3.

3
https://github.com/jackal092927/social_learning_public
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Table 1: Comparison of experiments on five methods Egal=EgalAlg, Appx=EgalAlg(appx), Rand=Random selection.

Datasets
Score Method ER

(128)
PA
(128)

WS
(128)

RandW
(128)

BIO
(297)

CSPK
(39)

FB
(620)

WIKI
(890)

Acc@
k=log(n)

Rand 0.11 0.88 0.53 0.18 0.80 0.63 0.35 0.48
Degree 0.08 0.96 0.42 0.12 0.78 0.84 0.36 0.49
ErrRate 0.22 1.00 0.76 0.47 0.96 0.94 0.53 0.54
DegXErr 0.18 1.00 0.89 0.37 0.96 1.00 0.72 0.78
Appx 0.18 1.00 0.87 0.41 0.94 0.84 0.62 0.64
Egal 0.27 1.00 1.00 0.58 1.00 1.00 0.88 0.96

#k @
Acc>90%

Rand >100 7 10 34 8 10 94 22
Degree >100 4 17 45 9 4 93 26
ErrRate 71 2 7 18 3 3 19 13
DegXErr 71 2 6 18 3 3 32 7
Appx 61 1 5 18 3 5 30 15
Egal 55 1 3 12 1 1 9 2

#k @
Acc>75%

Rand 83 8 16 61 15 14 37 55
Degree 83 5 28 64 14 6 20 54
ErrRate 46 3 10 31 5 4 14 26
DegXErr 51 3 8 36 4 3 8 16
Appx 47 2 9 35 6 7 11 39
Egal 36 2 4 19 2 2 4 3
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Figure 2: Algorithms performance on ER (top) and WIKI (bottom).

From the results we can conclude that, in sum-
mary, all six algorithms can be categorized into
four tiers: Tier1={EgalAlg}, Tier2={EgalAlg(appx)},
Tier3={DegXErr, ErrRate}, Tier4={Degree, Rand}.
We rank the efficiency of these methods as:
Tier1≫Tier2≥Tier3≫Tier4. Our greedy algorithm
EgalAlg in general performs best on all datasets. In
some datasets the EgalAlg(appx) algorithm outperforms
algorithms in Tier3 & 4 when k is very small, however,
the performances of Tier2 & 3 algorithms quickly become

similar as k increases. Tier4 algorithms are always the
slowest in improving our egalitarian objective function.
On almost all datasets, our greedy algorithm can achieve
more than 80% accuracy within only log n nodes selected
to intervene, and it beats all the other baselines. Our greedy
approximation algorithm can achieve more than 70%
accuracy. On all datasets, it beats our two baselines in Tier4
and on some data sets it beats all the baselines of Tier3 & 4.

Conclusion
Given a network in which agents cooperatively perform
a classification task, we analyse the problem of optimally
choosing k vertices and improving their innate predictions
to maximize the overall network improvement.

Limitations and Future Directions In this paper, our
modeling relies on a few simplifications which may pose
limitations in the applicability of the methods, and they may
be addressed in future works:

1. We assume that the social planner is capable of improv-
ing every agent’s innate prediction equally through
Equation (3). In reality, this improvement may depend
on the agent, i, as well as the data point, a.

2. Our analyses are valid when the social influence graph
has non-negative weights and, in the current form, they
do not generalize to graphs with negative weights, e.g.,
signed graphs.

We believe that overcoming any of the above limitations
would be an interesting extension of our work, and we pro-
pose them as future directions.
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A. Additional material: proofs and details of algorithms
Let Ω+ = {a ∈ Ω | y(a) = +1} and Ω− = {a ∈ Ω | y(a) = −1}. The following are some useful lemmas that we will use
throughout:

Lemma A.1. Let vj ∈ V be an arbitrary agent. We have:

E
a∼Ω+

[ŷi(a)] = 1− 2err(vi), E
a∼Ω−

[ŷi(a)] = 2err(vi)− 1 .

Proof.

E
a∼Ω+

[ŷi(a)] = +1 · P (ŷi(a) = +1)− 1 · P (ŷi(a) = −1)

= +1 · P(ŷi(a) = y(a))− 1 · P(ŷi(a) ̸= y(a))

= (1− err(vi))− err(vi)

= 1− 2err(vi) .

Similarly we have that

E
a∼Ω−

[ŷi(a)] = +1 · P (ŷi(a) ̸= y(a))− 1 · P (ŷi(a) = y(a)) = err(vi)− (1− err(vi)) = 2err(vi)− 1 .

Proposition A.2. Given any non-negative W̄ used in equation (2) and S on which we improve ŷj to ỹj , we have

∀vi ∈ V, Znew(i, a) > Z(i, a) ⇐⇒ ∃vj ∈ S, y(a)ŷj(a) = −1 ∧ W̄ij > 0 .

Proof. By looking at Equation (4), it is evident that if ŷj(a) = y(a) then ỹj(a) = ŷj(a). Thus, improving vj will only
improve prediction on a ∈ Ω iff ŷj(a) ̸= y(a) or equivalently ŷj(a)y(a) = −1. Note that for any other vi ∈ V , ỹj(a)
appears in Znew(i, a) with coefficient W̄ij . Since the matrix is non-negative we either have Znew(i, a) = Z(i, a) or
Znew(i, a) > Z(i, a). Therefore, we will have Znew(i, a) > Z(i, a) iff ŷj(a)y(a) = −1 and W̄ij ̸= 0.

A.1. Missing proofs from Section 4.1: Analysis of aggregate optimization

Proof of Lemma 4.1. Let Ω+ = {a ∈ Ω | y(a) = +1} and Ω− = {a ∈ Ω | y(a) = −1}. We have that:

G(agg)
(S) = E

a∼Ω

[
n∑

i=1

Znew(i, a)−Z(i, a)

]

= E
a∼Ω+

[
n∑

i=1

z∗new(i, a)− z∗(i, a)

]
P(a ∈ Ω+) + E

a∼Ω−

[
n∑

i=1

z∗(i, a)− z∗new(i, a)

]
P(a ∈ Ω−)

=

n∑
i=1

(
E

a∼Ω+
[z∗new(i, a)− z∗(i, a)]P(a ∈ Ω+) + E

a∼Ω−
[z∗(i, a)− z∗new(i, a)]P(a ∈ Ω−)

)
. (8)

Note that:

z∗(i, a)− z∗new(i, a) =

n∑
j=1

W̄ij(ŷj(a)− ỹj(a)) =
∑
j∈S

W̄ij(ŷj(a)− ỹj(a)) = φ
∑
j∈S

W̄ij [ŷj(a)− y(a)]

Thus,

z∗(i, a)− z∗new(i, a) =

{
φ
∑

j∈S W̄ij [ŷj(a) + 1] if a ∈ Ω−

φ
∑

j∈S W̄ij [ŷj(a)− 1] if a ∈ Ω+

13
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Using linearity of expectation and plugging in Lemma A.1 we have:

E [z∗(i, a)− z∗new(i, a)] =

{
φ
∑

j∈S W̄ij [2err
(0)(vi)− 1 + 1] if a ∈ Ω−

φ
∑

j∈S W̄ij [1− 2err(0)(vi)− 1] if a ∈ Ω+

Therefore,

E
a∼Ω−

[z∗(i, a)− z∗new(i, a)] = 2φ err(0)(vi)
∑
j∈S

W̄ij = E
a∼Ω+

[z∗new(i, a)− z∗(i, a)] .

Plugging in the above in Equation (8) we obtain:

G(agg)
(S) = 2φ

∑
j∈S

n∑
i=1

W̄ijerr
(0)(vi)[P(a ∈ Ω+) + P(a ∈ Ω−)] = 2φ

∑
j∈S

n∑
i=1

W̄ijerr
(0)(vi) .

This means by picking k vertices with highest values of Inf(j) =
∑n

i=1 W̄ijerr
(0)(vi) we will obtain the optimal solution

for Problem 1. In order to find these values, we first need to find all the values of Inf(j) for all j ∈ V . Which takes Θ(n2)
number of steps. Then we have to find top k elements among these values, which will take Θ(kn).

Proof of Remark 3.6. Let Înf(j) =
∑n

i=1
̂̄W i,jerr

(0)(vj). For all j, we have that∣∣∣Inf(j)− Înf(j)
∣∣∣ = n∑

i=1

∣∣∣W̄ij − ̂̄W ij

∣∣∣ err(0)(vj) ≤ n∑
i=1

∣∣∣W̄ij − ̂̄W ij

∣∣∣
Note that the right-hand side is the ℓ1 norm of the jth column of W̄ − ̂̄W , let’s denote the jth column of these matrix
respectively by W̄·j and ̂̄W ·j . Since the ℓ1 norm of a matrix is defined the be the maximum over ℓ1 norm of all of its
columns we have that

∀j
∣∣∣Inf(j)− Înf(j)

∣∣∣ ≤ ∣∣∣W̄·j − ̂̄W ·j

∣∣∣
1
≤ ϵ .

In the previous theorem we showed that
G(agg)

(S) = 2φ
∑
j∈S

Inf(j) .

Since size of S is k and φ ≤ 1 the total error is bounded by 2kϵ .

A.2. Missing proof from Section 4.2: Analysis of egalitarian optimization

A.2.1. HARDNESS RESULTS

Theorem A.3. There is a polynomial time reduction from the set cover problem to Problem 1.

Proof. Consider an arbitrary S ⊆ V . We use Proposition A.2 to simplify G(egal)
(S). For any vi ∈ V , we define:

Ωvj ≜ {a ∈ Ω | y(a)ŷj(a) = −1}. For any a ∈ Ω, we denote its probability by µa. For a given S we have:

G(egal)
(S) = E

a∼Ω

[
n∑

i=1

1(Z(i, a) < 0 ∧ Z(i, a) < Znew(i, a))

]

=
∑
a∈Ω

n∑
i=1

µa1(Z(i, a) < 0) · 1

 ∨
vj∈S

(
a ∈ Ωvj ∧ W̄ij > 0

)
=

∑
(a,vi)∈Ω×V

µa1(Z(i, a) < 0) · 1

 ∨
vj∈S

(
a ∈ Ωvj ∧ W̄ij > 0

) (9)
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Using the above simplification, we now construct the following instance of the weighted set cover problem:

Consider a bipartite graph where one part is U = {(vi, a) ∈ V × Ω | Z(i, a) < 0} and the other part is S = V . There is an
edge between any vj ∈ V to a pair (vi, a) ∈ U iff a ∈ Ωvj

∧ W̄ij > 0 and the weight of each pair (a, vi) is µa. Under the
new definition Equation (9) is equivalent to

G(egal)
(S) =

∑
(a,vi)∈U

µa · 1

 ∨
vj∈S

(
a ∈ Ωvj

∧ W̄ij > 0
)

Note that

1

 ∨
vj∈S

(
a ∈ Ωvj

∧ W̄ij > 0
) = 1 ⇐⇒ there is an edge between vj and (a, vi) and vj ∈ S .

The reduction is polynomial in sizes of Ω and V . Since we assume that Ω has polynomial size, it is a polynomial time
reduction. This completes the proof.

Proof of Theorem 3.7. The proof follows from Theorem A.3 and the fact that set cover is NP-hard.

Theorem A.4. Consider Problem 2 and assume k = 1. There exist two networks with the same number of agents, same W̄
and same error rates {err(vj)}nj=1. In these network, only the joint probability distributions π1 and π2 are different. There

are subsets V1, V2 ⊆ V such that V1 ∩ V2 = ∅. In the first network we have that for any u ∈ V1,G
(egal)

(u) = Θ(n) and

for any u /∈ V1 we have G(egal)
(u) = Θ(1). In the second network for any u ∈ V2 will have G(egal)

(u) = Θ(n) and any

u /∈ V2 will satisfy G(egal)
(u) = Θ(1).

Proof. Let V = {u1, u2, u3, u4} ∪ {v1, v2, v3, . . . , v2n}. We define W̄ to be the following matrix:

W̄u1,vj
= W̄u2,vj

= 1 for all j = 1 : n , and W̄u3,vj
= W̄u4,vj

= 1 for all j = n+ 1 : 2n.

For each vertex in V we also have a self loop of weight 1, i.e., W̄uiui
= W̄vjvj

= 1 for all i, j.

The error rates of these agents are as follows: err(vj) = 0 for all j = 1 : 2n and err(ui) = 1/2 for all j = 1 : 4.

In the first network the error of ŷu1(a) is negatively correlated with ŷu2(a) and ŷu3 is positively correlated with ŷu4 as:

P (ŷu1(a) ̸= ŷu2(a)) = 1 & P (ŷu3(a) = ŷu4(a)) = 1

Both ŷu1 and ŷu2 are independent from ŷu3 and ŷu4 .

Let V1 = {u3, u4}. We now show that G(egal)
(u3) = G(egal)

(u4) = n and for any u /∈ V1, G(egal)
(u) ∈ {0, 1}.

From Lemma 4.2 we conclude that for any vertex u we have:

G(egal)
(u) =

∑
i;W̄iu ̸=0

P
a∼Ω

(Z(i, a) ≤ 0 ∧ y(a) ̸= ŷu(a))

Thus, it is immediate that for each vj , we have G(egal)
(vj) = 0.

Consider u1

G(egal)
(u1) =

∑
i=1:n

P
a∼Ω

(Z(i, a) ≤ 0 ∧ y(a) ̸= ŷu1
(a)) + P

a∼Ω
(Z(u1, a) ≤ 0 ∧ y(a) ̸= ŷu1

(a))
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Since u1 is connected to v1, . . . vn, the last summand is 0 if n > 1, and it is 1/2 if n = 1. In any case it is a constant. We
now look at the first summand.

first summand =
∑
i=1:n

P
a∼Ω

((ŷu1(a) + ŷu2(a) + ŷi(a)) · y(a) ≤ 0 ∧ y(a) ̸= ŷu(a))

=
∑
i=1:n

P
a∼Ω

(
y(a)2 ≤ 0 ∧ y(a) ̸= ŷu(a)

)
= 0

The last equation follows from the fact that always ŷu1
(a) ̸= ŷu2

(a), and ŷi(a) = y(a).

Similarly we can show that G(egal)
(u2) = {0, 1/2}.

For u3, let c be a constant which is c ∈ {0, 1/2}. We have:

G(egal)
(u3) =

∑
i=n+1:2n

P
a∼Ω

(Z(i, a) ≤ 0 ∧ y(a) ̸= ŷu3
(a)) + P

a∼Ω
(Z(u3, a) ≤ 0 ∧ y(a) ̸= ŷu3

(a))

=
∑
i=1:n

P
a∼Ω

((ŷu3
(a) + ŷu4

(a) + ŷi(a)) · y(a) ≤ 0 ∧ y(a) ̸= ŷu(a)) + c

=
∑
i=1:n

P
a∼Ω

((y(a)− 2y(a)) · y(a) ≤ 0) err(u3) + c

= n/2 + c .

Similarly we have G(egal)
(u4) ∈ {n/2, (n+ 1)/2}.

Therefore, both u3 and u4 can be the optimal choice for this network. And any other choice will have an error of magnitude
Θ(n).

In the second network, we make the following change:

P (ŷu1
(a) = ŷu2

(a)) = 1 & P (ŷu3
(a) ̸= ŷu4

(a)) = 1

We still let both ŷu1
and ŷu2

are independent from ŷu3
and ŷu4

.

Using a similar analysis we can show that

G(egal)
(u1) = G(egal)

(u2) = n/2 + 1 & ∀u ∈ V, u ̸= u1, u2 =⇒ G(egal)
(u) ∈ {0, 1/2} .

A.2.2. MONOTONICITY AND SUBMODULARITY OF G(egal)

Lemma A.5. Assume S′ ⊆ S ⊆ V , we have: G(egal)
(S′) ≤ G(egal)

(S) .

Proof. From Proposition A.2 that for any arbitrary S ⊆ V we have:

G(egal)
(S) =

n∑
i=1

P

y(a)z∗(i, a) ≤ 0 ∧
∨

vj∈S

W̄ij ̸=0

(y(a) ̸= ŷj(a))


For S′ ⊆ S, we split the event

∨
vj∈S

W̄ij ̸=0

(y(a) ̸= ŷj(a)) to the two following non-intersecting events:
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∨
vj∈S

W̄ij ̸=0

(y(a) ̸= ŷj(a)) =

 ∨
vj∈S′

W̄ij ̸=0

(y(a) ̸= ŷj(a))


︸ ︷︷ ︸

Ei1

∨

 ∨
vj∈S\S′

W̄ij ̸=0

(y(a) ̸= ŷj(a)) ∧
∧

vj∈S′

W̄ij ̸=0

(y(a) = ŷj(a))


︸ ︷︷ ︸

Ei2

Since E1 and E2 are non-intersecting we have:

G(egal)
(S) =

n∑
i=1

P(y(a)z∗(i, a) < 0 ∧ Ei1) +
n∑

i=1

P(y(a)z∗(i, a) < 0 ∧ Ei2) .

Note that G(egal)
(S′) =

∑n
i=1 P(y(a)z∗(i, a) < 0 ∧ Ei1). Therefore, we conclude the premise.

Lemma A.6. Consider arbitrary S ⊆ V and u, v ∈ V \ S. We have:

G(egal)
(S ∪ {u, v}) + G(egal)

(S) ≤ G(egal)
(S ∪ {u}) + G(egal)

(S ∪ {v}) .

Proof. Like previous lemma, we split the events of RHS and LHS to non-intersecting smaller events.

Consider the following events:

EFFF (i) ≡

 ∨
vj∈S

W̄ij ̸=0

ŷi(a) ̸= y(a)

 ∧
(
ŷu(a) ̸= ŷ(a) ∧ W̄iu ̸= 0

)
∧
(
ŷv(a) ̸= y(a) ∧ W̄iv ̸= 0

)

ETFF (i) ≡

¬
∨

vj∈S

W̄ij ̸=0

ŷi(a) ̸= y(a)

 ∧ (ŷu(a) ̸= ŷ(a) ∧ W̄iu ̸= 0) ∧
(
ŷv(a) ̸= y(a) ∧ W̄iv ̸= 0

)

ETTF (i) ≡

¬
∨

vj∈S

W̄ij ̸=0

ŷi(a) ̸= y(a)

 ∧ ¬
(
ŷu(a) ̸= ŷ(a) ∧ W̄iu ̸= 0

)
∧
(
ŷv(a) ̸= y(a) ∧ W̄iv ̸= 0

)

ETFT (i) ≡

¬
∨

vj∈S

W̄ij ̸=0

ŷi(a) ̸= y(a)

 ∧
(
ŷu(a) ̸= ŷ(a) ∧ W̄iu ̸= 0

)
∧ ¬

(
ŷv(a) ̸= y(a) ∧ W̄iv ̸= 0

)

and similar definitions for ETTT (i), EFTT (i), EFTF (i) and EFFT (i).

G(egal)
(S ∪ {u, v}) =

n∑
i=1

∑
(X,Y,Z)∈{T,F}3\{(F,F,F )}

P (y(a)z∗(i, a) ≤ 0 ∧ EX,Y,Z(i)) ,

G(egal)
(S) =

n∑
i=1

∑
(Y,Z)∈{T,F}2

P (y(a)z∗(i, a) ≤ 0 ∧ ET,Y,Z(i)) ,

G(egal)
(S ∪ {u}) =

n∑
i=1

∑
(X,Y,Z)∈{T,F}3\{(F,F,F ),(F,F,T )}

P (y(a)z∗(i, a) ≤ 0 ∧ EX,Y,Z(i))
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and finally

G(egal)
(S ∪ {v}) =

n∑
i=1

∑
(X,Y,Z)∈{T,F}3\{(F,F,F ),(F,T,F )}

P (y(a)z∗(i, a) ≤ 0 ∧ EX,Y,Z(i))

By counting the number of appearances of each term on the RHS and LHS we may conclude the premise.

A.3. Pseudocode of the greedy algorithms

In this section we present our algorithms for egalitarian improvement.

Overview of algorithms The first algorithm EgalAlg has access to π and finds the greedy choice accurately.

The second algorithm EgalAlg(appx) receives parameters mode, e⃗rr and W̄ as input parameters. If we assume pairwise
independence of classifiers, mode = ind and e⃗rr contains agents’ error rates. If we assume group dependency mode = gr
and e⃗rr contains the agent’s individual error rates as well as err(R) and err(B). Depending on the mode of the algorithm,
EgalAlg(appx)calls subsequent procedures EstGainind and EstGaingr for estimating the greedy choice.

The pseudocodes are as follows and analysis is presented in subsequent subsections:

Algorithm 1 EgalAlg
(
π, W̄

)
S = ∅
for i = 1 : k do
maxval = 0
for j = 1 : n do
∆G(S, vj) = 0
for a ∈ Ω do

for ℓ = 1 : n do

E = Z(i, a) ≤ 0 ∧

(∧
vj∈S

W̄ji ̸=0

y(a)=ŷj(a)

)
∧ y(a) ̸=ŷu(a)

if E ≡ T and W̄ℓj ̸= 0 then
∆G(S, vj) = ∆G(S, vj) + π(E)

end if
end for

end for
if ∆G(S, vj) ≥ maxval,

g = vj
end for
S = S ∪ {g}

end for
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Algorithm 2 EgalAlg(appx)
(
mode, e⃗rr, W̄

)
S = ∅
for i = 1 : k do
maxval = 0
for j = 1 : n do
∆̂G

indv
(S, vj) = EstGainind(S, vj , {err(vi)}ni=1, W̄ ) (Algorithm 3)

∆̂G(S, vj) = ∆̂G
indv

(S, vj)
if mode = gr then
∆̂G

gr
(S, vj) = EstGaingr(S, vj , {err(vi)}ni=1, err(R), err(B), W̄ ) (Algorithm 4)

∆̂G(S, vj) = ρ∆̂G
gr
(S, vj) + (1− ρ)∆̂G

indv
(S, vj)

end if
if ∆̂G(S, vj) ≥ maxval,
g = vj

end for
S = S ∪ {g}

end for

Algorithm 3 EstGainind(S, u, {err(vj)}nj=1, W̄ )

∆̂G(S, u) = 0
for ℓ = 1 : n do
truℓ(S) = 1
for vm ∈ S do

if W̄ℓm ̸= 0,
truℓ(S) = truℓ(S)× (1− err(vm))

end for
if Ψℓ(S, u) < 0 and W̄ℓu ̸= 0

∆̂G(S, u) += err(u) · truℓ(S)
end for
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Algorithm 4 EstGaingr(S, u, {err(vj)}nj=1, err(R), err(B), W̄ )

∆̂G(S, u) = 0
boolean Case1 = T
boolean Case2R = F
boolean Case2B = F
boolean Case3 = F
for ℓ = 1 : n do
truℓ(S) = 1
for vm ∈ S do

if W̄ℓm ̸= 0 then
if vm ∈ W then truℓ(S) = truℓ(S)× (1− err(vm))
if (vm ∈ R) ∧ Case1 = T then

Case1 = F
Case2R = T

end if
if (vm ∈ B) ∧ Case1 = T then

Case1 = F
Case2B = T

end if
if (vm ∈ R ∧ Case2B = T ) or (vm ∈ B ∧ Case2R = T ) then
Case2B = Case2R = F
Case3 = T

end if
end if

end for
if Case1 ∧ u ∈ W then
∆G(S, u)+ = truℓ(S)err(u)[1(Ψi(B ∪ S),R∪ {u})err(R) + 1(R∪ S),B ∪ {u})err(B)]

end if
if Case1 ∧ u ∈ R then

∆G(S, u)+ = truℓ(S)err(u)1Ψi(R∪ S,B ∪ {u})
end if
if Case1 ∧ u ∈ B then

∆G(S, u)+ = truℓ(S)err(u)1Ψi(B ∪ S,R∪ {u})
end if
if Case2B ∧ u ∈ W then
∆G(S, u)+ = err(u)err(R)tru(S)1Ψ(B ∪ S,R∪ {u})

end if
if Case2R ∧ u ∈ W then
∆G(S, u)+ = err(u)err(B)tru(S)1Ψ(R∪ S,B ∪ {u})

end if
if Case2B ∧ u ∈ R then
∆G(S, u)+ = err(R)tru(S)1Ψ(B ∪ S,R)

end if
if Case2R ∧ u ∈ B then

∆G(S, u)+ = err(B)tru(S)1Ψ(R∪ S,B)
end if

end for
return ∆G(S, u)
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A.3.1. FINDING THE GREEDY CHOICE

Remember from the main text that

∆Gi(u, S) = P
a∼Ω

Z(i, a) ≤ 0 ∧

 ∧
vj∈S

W̄ji ̸=0

y(a)=ŷj(a)

 ∧ y(a) ̸=ŷu(a)

 .

Proof of Lemma 4.2. It is immediate from Proposition A.2 that for any arbitrary S ⊆ V we have:

G(egal)
(S) =

n∑
i=1

P

y(a)z∗(i, a) ≤ 0 ∧
∨

vj∈S

(W̄ij ̸= 0 ∧ y(a) ̸= ŷj(a))


Writing the above for S ∪ {u} and simplifying we obtain:

G(egal)
(S ∪ {u}) =

n∑
i=1

P

y(a)z∗(i, a) ≤ 0 ∧
∨

vj∈S∪{u}

(W̄ij ̸= 0 ∧ y(a) ̸= ŷj(a))


=

n∑
i=1

P

y(a)z∗(i, a) ≤ 0 ∧
∨

vj∈S

(W̄ij ̸= 0 ∧ y(a) ̸= ŷj(a))


+ P

y(a)z∗(i, a) ≤ 0 ∧
∧

vj∈S

(W̄ij = 0 ∨ y(a) = ŷj(a)) ∧ (W̄iu ̸= 0 ∧ y(a) ̸= ŷu(a))



=G(egal)
(S) +

∑
i=1:n
W̄iu ̸=0

P

y(a)z∗(i, a) ≤ 0 ∧

 ∧
vj∈S

W̄ij ̸=0

y(a) = ŷj(a)

 ∧ y(a) ̸= ŷu(a)


=G(egal)

(S) +
∑
i=1:n
W̄iu ̸=0

∆Gi(S, u)

The following lemma is a middle step for approximation of the greedy choice:

Lemma A.7. Let ∆Gi(S, u) be

∆Gi(S, u) = P
a∼Ω

Z(i, a) ≤ 0 ∧

 ∧
vj∈S

W̄ij ̸=0

y(a) = ŷj(a)

 ∧ y(a) ̸= ŷu(a)



We have that

∆Gi(S, u) = P (Ti(S) ∧ F (u)) Γi(S, u) ,
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where

Γi(S, u) =P
(
a ∈ Ω+

)
P

a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ji + W̄iu



+ P
(
a ∈ Ω−) P

a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) >
∑
vj∈S

W̄ji − W̄iu

 .

and Ti(S) and F (u) are the following events:

Ti(S)
.
=

∧
vj∈S

W̄ij ̸=0

ŷj(a) = y(a), F (u)
.
= ŷu(a) ̸= y(a)

Proof. Let E denote the event

E ≜

 ∧
vj∈S

W̄ji ̸=0

y(a) = ŷj(a)

 ∧ y(a) ̸= ŷu(a) .

We may write
P (y(a)z∗(i, a) ≤ 0 ∧ E) = P (y(a)z∗(i, a) ≤ 0 | E)P(E)

In order find P (y(a)z∗(i, a) ≤ 0 | E), we split the probability based on the true label of a:

If a ∈ Ω+ we have:

P (y(a)z∗(i, a) ≤ 0 | E) = P

z∗(i, a) ≤ 0 |

 ∧
vj∈S

W̄ij ̸=0

ŷj(a) = +1

 ∧ ŷu(a) = −1


Note that

z∗(i, a) =
n∑

j=1

W̄ij ŷj(a)

thus,

P (y(a)z∗(i, a) ≤ 0 | E) = P

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) +
∑
vj∈S

W̄ij − W̄iu ≤ 0


Similarly, if a ∈ Ω− we have:

P (y(a)z∗(i, a) ≤ 0 | E) = P

z∗(i, a) ≥ 0 |

 ∧
vj∈S

W̄ij ̸=0

ŷj(a) = −1

 ∧ ŷu(a) = +1


Since

z∗(i, a) =
n∑

j=1

W̄ij ŷj(a)
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we have:

P (y(a)z∗(i, a) ≥ 0 | E) = P

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)−
∑
vj∈S

W̄ij + W̄iu ≥ 0


Rearranging and putting together, we obtain the premise.

A.4. Missing material from Section 4.2.1: estimating greedy choice assuming independence

Proof of Lemma 4.6. Let

trui(S) = P

 ∧
vj∈S

W̄ij ̸=0

ŷj(a) = y(a)

 .

Using independence and from Lemma A.7 we can write

∆Gi(S, u) = err(u)trui(S)Γi(S, u) (10)

In Lemma A.8 which follows this proof, we show that by taking

Γ̂i(S, u) =

{
0 if Ψi(S, u) ≥ 0

1 otherwise

we have ∣∣∣Γ̂i(S, u)− Γi(S, u)
∣∣∣ ≤ exp

(
− Ψi(S, u)

2

4
∑n

i=1 W̄
2
ij

)
≤ exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
,

Plugging in this approximation in Equation (10) we obtain:

∆̂Gi(S, u) =

{
err(u)trui(S) if Ψi(S, u) < 0

0 otherwise
(11)

Note that since the classifiers are independent we have

trui(S) = P

 ∧
vj∈S

W̄ij ̸=0

ŷj(a) = y(a)

 =
∏
vj∈S

W̄ij ̸=0

P (ŷj(a) = y(a)) =
∏
vj∈S

W̄ij ̸=0

(1− err(vj)) .

We have trui(S), err(u) ≤ 1, thus the error of approximating ∆Gi(S, u) using Equation (11) is at most exp
(
− Ψi(u)

2

4
∑n

i=1 W̄ 2
ij

)
.

Lemma A.8. Assume that all the all the classifiers ŷ1(a), ŷ2(a), . . . , ŷn(a) are pairwise independent. We can estimate
Γi(S, u) as follows:

Γ̂i(S, u) =

{
0 if Ψi(S, u) > 0

1 otherwise
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where,

Ψi(S, u) =
∑
vj∈S

W̄ij +
∑
j=1:n

j ̸∈S∪{u}

W̄ij [1− 2err(j)]− W̄iu

The error of this estimation is bounded by:

∣∣∣Γ̂i(S, u)− Γi(S, u)
∣∣∣ ≤ exp

(
− Ψi(S, u)

2

4
∑n

i=1 W̄
2
ij

)
≤ exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
,

where

Ψi(u) =
n∑

j=1

W̄ij [1− 2err(j)]− 2err(u)W̄iu .

Proof. Let’s remember the definition of Γi(S, u) from Lemma A.7:

Γi(S, u) =P
(
a ∈ Ω+

)
P

a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄iu



+ P
(
a ∈ Ω−) P

a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) >
∑
vj∈S

W̄ij − W̄iu

 . (12)

Assume first that Ψi(S, u) > 0. We use the Hoeffding bound Theorem A.20 to estimate

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄iu

 & P
a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) >
∑
vj∈S

W̄ij − W̄iu

 (13)

In order to bound the first probability in Equation (13), note that
∑

j=1:n
vj /∈S∪{u}

W̄ij ŷj(a) < −
∑

vj∈S W̄ij + W̄iu iff :

∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

− E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

−
∑
vj∈S

W̄ij + W̄iu

furthermore, from Lemma A.1 we have a ∈ Ω+ implies:

E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

 =
∑
j=1:n

vj /∈S∪{u}

W̄ij [1− 2err(j)] .
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Thus,

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄ui



= P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

−
∑
j=1:n

vj /∈S∪{u}

W̄ij [1− 2err(j)]−
∑
vj∈S

W̄ij + W̄iu



= P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

−Ψi(S, u)



Since ŷi(a)s are pairwise independent, and Ψi(S, u) > 0 we may use the Hoeffding bound to obtain:

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄iu

 ≤ exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ij

 .

The second probability in Equation (13) may be bounded similarly as follows:

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) >
∑
vj∈S

W̄ji − W̄ui



= P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) > E

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a)

−
∑
j=1:n

vj /∈S∪{u}

W̄ji[2err(j)− 1] +
∑
vj∈S

W̄ji − W̄ui



= P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) > E

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a)

+Ψi(S, u)



Again, under pairwise independence and Ψi(S, u) > 0 the above probability is bounded as:

P
a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) >
∑
vj∈S

W̄ji − W̄ui

 ≤ exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

 .
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Putting together, we obtain: If Ψi(S, u) > 0:

Γi(S, u) =P
(
a ∈ Ω+

)
P

a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) < −
∑
vj∈S

W̄ji + W̄ui



+ P
(
a ∈ Ω−) P

a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) >
∑
vj∈S

W̄ji − W̄ui


≤ exp

 Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

 [P(a ∈ Ω+) + P(a ∈ Ω−)] = exp

 Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji



Note that Γi(S, u) ≥ 0. Therefore, if Ψi(S, u) > 0, we define Γ̂i(S, u) = 0 and we will have:

0 ≤ Γi(S, u)− Γ̂i(S, u) ≤ exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

 .

Let’s now find a lower bound on Ψi(S,u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

which is independent of S. We have:

∑
j=1:n

vj /∈S∪{u}

W̄ 2
ji ≤

n∑
i=1

W̄ 2
ji .

and

Ψi(S, u) =
∑
vj∈S

W̄ij +
∑
j=1:n

j ̸∈S∪{u}

W̄ij [1− 2err(j)]− W̄iu

≥
∑
j=1:n
j ̸=u

W̄ij [1− 2err(j)]− W̄iu

=
n∑

j=1

W̄ij [1− 2err(j)]− 2err(u)W̄iu = Ψi(u) .

Thus,

0 ≤ Γi(S, u)− Γ̂i(S, u) ≤ exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

 ≤ exp

(
− Ψi(u)

2∑n
j=1 W̄

2
ji

)
.
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Assume now that Ψi(S, u) < 0. In this case we write the first probability in Equation (13) as:

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄iu

 = 1− P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) ≥ −
∑
vj∈S

W̄ij + W̄iu



=1− P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) ≥ E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

−
∑
j=1:n

vj /∈S∪{u}

W̄ij [1− 2err(j)]−
∑
vj∈S

W̄ji + W̄iu



=1− P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) ≥ E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

−Ψi(S, u)


Since Ψi(S, u) < 0, we have −Ψi(S, u) > 0 using the pairwise independence of the classifiers, we employ the Hoeffding
bound and obtain that:

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄iu

 ≥ 1− exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ij

 .

Similarly we have :

P
a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) >
∑
vj∈S

W̄ij − W̄ui

 ≥ 1− exp

 Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ij

 .

Putting together, we obtain: If Ψi(S, u) < 0:

∆Gi(S, u) =P
(
a ∈ Ω+

)
P

a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) < −
∑
vj∈S

W̄ji + W̄ui



+ P
(
a ∈ Ω−) P

a∈Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄jiŷj(a) >
∑
vj∈S

W̄ji − W̄ui


≥[1− exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

][P(a ∈ Ω+) + P(a ∈ Ω−)] = 1− exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji


Note that Γi(S, u) ≤ 1. Therefore, if Ψi(S, u) < 0, we define Γ̂i(S, u) = 1 and we will have:

0 ≤ Γ̂i(S, u)− Γi(S, u) ≤ exp

− Ψi(S, u)
2∑

j=1:n
vj /∈S∪{u}

W̄ 2
ji

 ≤ exp

(
− Ψi(u)

2∑n
j=1 W̄

2
ji

)
.

This completes our proof.
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A.4.1. MISSING MATERIAL FROM SECTION 4.2.1 RELATED TO AMBIGUOUS VERTICES

Lemma A.9. Let V + be those agents with error less than 1/2 and V − be those agents with error greater than 1/2. i.e,

V + = {vj | err(vj) ≤ 1/2} & V − = {vj | err(vj) > 1/2}

and consider the following vectors

W̄+
i = (W̄ij)vj∈V + & E+ = (1− 2err(vj))vj∈V +

and
W̄−

i = (W̄ij)vj∈V − & E− = (2err(vj)− 1)vj∈V −

and
W̄i = (W̄i1, W̄i2, . . . , W̄in)

We have that:

exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
≤ exp

−1

4

(
⟨W̄+

i , E+⟩∣∣W̄i

∣∣
2

− ⟨W̄−
i , E−⟩∣∣W̄i

∣∣
2

− 2

)2


≤ exp

−1

4

(
M ·

∣∣W̄+
i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E+

∣∣
2
−
∣∣W̄−

i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E−∣∣

2
− 2

)2


where

M =
max W̄+

i

min W̄+
i

· 1

min E+
i

.

Proof. We show the above equation by finding an lower bound for Ψi(u)
2∑n

i=1 W̄ 2
ij

.

Consider an arbitrary vector Xthe ℓ2 norm is defined as:

|X|2 =

√∑
xj∈X

x2
j

Note that all of the above vectors only have positive elements.

We have:

Ψi(u)
2∑n

i=1 W̄
2
ij

=

(
Ψi(u)∣∣W̄i(V )

∣∣
2

)2

=

(∑
vi∈V + W̄ij(1− 2err(vj))∣∣W̄i(V )

∣∣
2

−
∑

vi∈V − W̄ij(2err(vj)− 1)∣∣W̄i(V )
∣∣
2

− 2err(u)W̄iu∣∣W̄i(V )
∣∣
2

)2

=

(
⟨W̄+

i , E+⟩∣∣W̄i

∣∣
2

− ⟨W̄−
i , E−⟩∣∣W̄i

∣∣
2

− 2err(u)W̄iu∣∣W̄i

∣∣
2

)2

(14)

where in the last equation ⟨⟩ denotes dot product.

Using Pólya-Szegö’s inequality we have:

⟨W̄+
i , E+⟩∣∣W̄i

∣∣
2

≥
∣∣W̄+

i

∣∣
2∣∣W̄i

∣∣
2

· max W̄+
i

min W̄+
i

·
|E+|2
min E+

28



Optimally Improving Cooperative Learning in a Social Setting

Using Cauchy Schwarz we have
⟨W̄−

i , E−⟩∣∣W̄i

∣∣
2

≤
∣∣W̄i

∣∣
2∣∣W̄−

i

∣∣
2

·
∣∣E−∣∣

2

Therefore, letting M =
max W̄+

i

min W̄+
i

· 1
min E+

i

we have:

Ψi(u)
2∑n

i=1 W̄
2
ij

≥

(
M ·

∣∣W̄+
i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E+

∣∣
2
−
∣∣W̄−

i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E−∣∣

2
− 2err(u)W̄iu∣∣W̄i

∣∣
2

)2

The premise may be concluded from the fact that err(u)W̄iu

|W̄i|
2

≤ 1.

Proof of Lemma 4.5. From Lemma 4.6 we now that

∣∣∣∆̂Gi(S, u)−∆Gi(S, u)
∣∣∣ ≤ exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
,

and from Lemma A.9 we have:

exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
≤ exp

−1

4

(
M ·

∣∣W̄+
i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E+

∣∣
2
−
∣∣W̄−

i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E−∣∣

2
− 2

)2


Putting together and assume that vi is not ambiguous. We have that:

∣∣∣∆̂Gi(S, u)−∆Gi(S, u)
∣∣∣ ≤ exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
≤ exp

−1

4

(
M ·

∣∣W̄+
i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E+

∣∣
2
−
∣∣W̄−

i

∣∣
2∣∣W̄i

∣∣
2

·
∣∣E−∣∣

2
− 2

)2


≤ exp

(
−1

4

(
3
√
log n− 2

)2)
≤ exp

(
−1

4
(5 log n)

)
= o(n−1) .

A.4.2. MISSING MATERIAL FROM SECTION 4.2.1: PROOF OF THE MAIN THEOREMS

In this subsection we present a pseudocode of our algorithm under the assumption that the agents are pairwise independent.

The following theorem bounds the error of this algorithm:

Theorem A.10. Assume that S is the output of Algorithm 2. We have that:

G(egal)
(S) ≥ [(1− 1/e)−∆ind] ·OPT(egal) ,

where

∆ind =
n∑

i=1

exp

(
− Ψi(u)

2∑n
i=1 W̄

2
ij

)
.

Proof. The proof immediately follows from the fact that we have a submodular and monotone function and that the error
greedy choice taken as

g = argmax
u

n∑
i=1

∆̂Gi(S, u) ,
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and that for any vi we have ∣∣∣∆̂Gi(S, u)−∆Gi(S, u)
∣∣∣ ≤ exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
,

Proof of Theorem 4.3 and Theorem 3.10 . Using the above theorem Theorem 4.3 and Theorem 3.10 can be directly
concluded just by noticing that for any non-ambiguous vertex the error induced on the greedy choice is at most o(n−1).
Thus, in total all of non-ambiguous vertices together will have an error of o(1). The ambiguous each can have an error as
large as 1.

Assuming having access to approximation ̂̄W . If we only have access to ̂̄W , we may run EgalAlgoind using ̂̄W . In this
case the approximation guarantee can be concluded from the following lemma which is similar to Lemma A.8:

Lemma A.11. Assume that all the all the classifiers ŷ1(a), ŷ2(a), . . . , ŷn(a) are pairwise independent. We can estimate
Γi(S, u) (See Equation (12)) as follows:

Γ̂i(S, u) =

{
0 if Ψ̂i(S, u) > 0

1 otherwise

where,

Ψ̂i(S, u) =
∑
vj∈S

̂̄W ij +
∑
j=1:n

j ̸∈S∪{u}

̂̄W ij [1− 2err(j)]− ̂̄W iu

The error of this estimation is bounded by:

∣∣∣Γ̂i(S, u)− Γi(S, u)
∣∣∣ ≤ exp

(
− Ψi(u)

2

4
∑n

i=1 W̄
2
ij

)
(1 + ϵ) ,

where

Ψi(u) =

n∑
j=1

W̄ij [1− 2err(j)]− 2err(u)W̄iu .

Proof. Similar to the proof of Lemma A.8 we may bound the two terms of Γi(S, u) as follows:

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < −
∑
vj∈S

W̄ij + W̄ui



≤ P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) < E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

− Ψ̂i(S, u)− 2ϵ



Similarly to the previous case if Ψ̂i(S, u) > 0 we may use Hoeffding bound to bound the above probability as:

exp

(
− (Ψ̂i(u)− 2ϵ)2∑n

j=1 W̄
2
ij

)
≤ exp

(
− (Ψi(u)− 4ϵ)2∑n

j=1 W̄
2
ij

)
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Let’s now bound RHS:

exp

(
− (Ψi(u)− 4ϵ)2∑n

j=1 W̄
2
ij

)
≤ exp

(
− Ψi(u)

2∑n
j=1 W̄

2
ij

+ 8ϵ
Ψi(u)∑n
j=1 W̄

2
ij

)
≤ exp

(
− Ψi(u)

2∑n
j=1 W̄

2
ij

+ 8ϵ

)

≤ exp

(
− Ψi(u)

2∑n
j=1 W̄

2
ij

)
exp(8ϵ) ≤ (1 + 8ϵ) exp

(
− Ψi(u)

2∑n
j=1 W̄

2
ij

)

If Ψ̂i(S, u) < 0 we may write:

P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) > −
∑
vj∈S

W̄ij + W̄ui



≤ P
a∈Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) > E

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)

− Ψ̂i(S, u) + 2ϵ


and with a similar argument we obtain the same bound. Bounding the probability in the case where a ∈ Ω− can be done
similarly. And the rest of the proof holds similarly to proof of Lemma A.8.

Proof of Remark 3.12 independent case . The remark is a direct conclusion of the fact that the error of the greedy choice
is bounded by

n∑
i=1

∣∣∣Γ̂i(S, u)− Γi(S, u)
∣∣∣ ≤ (1 + ϵ)

n∑
i=1

exp

(
− Ψi(u)

2

4
∑n

j=1 W̄
2
ij

)
.

A.5. Missing proofs from Section 4.2.2: Estimating greedy choice assuming group dependence

Assume the assumption presented in Definition 4.7 and remember the following definition from previous sections

∆Gi(S, u) = P
a∼Ω

Z(i, a) ≤ 0 ∧

 ∧
vj∈S

W̄ij ̸=0

y(a) = ŷj(a)

 ∧ y(a) ̸= ŷu(a)

 ,

and our goal is to estimate ∆Gi(S, u) for all S ⊆ V , u ∈ V and i ∈ [n].

We may write

∆Gi(S, u) = ∆Ggr
i (S, u)ρ+∆Gindv

i (S, u)(1− ρ) ,

, where the super-scripts show whether individual or group decisions have been made. Estimation of ∆Gindv
i (S, u) can be

obtained using Lemma 4.6 and by calling EstGainind of Algorithm 2. Estimation of ∆Ggr
i (S, u) can be done through a

series of lemmas that we present here, and it depends on the whether vertices of Si, defined as Si ≜ {vj ∈ S | W̄ij ̸= 0},
intersects R, B or both. A pseudocode is presented at Algorithms 2 and 4. Our analysis is presented in Appendices A.5.1
to A.5.3. The following lemma summarizes these results:

Lemma A.12. Assume the model presented in Definition 4.7. Having a set S let g be the vertex which maximizes the
following function

g = argmax
u∈V

ρ
∑
i=1:n
Wij ̸=0

∆̂G
gr

i (S, u) + (1− ρ)
∑
i=1:n
Wij ̸=0

∆̂G
indv

i (S, u)
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Where ∆̂G
gr

i (S, u) may be obtained from Lemmas A.14, A.16 and A.17, and ∆̂G
indv

i (S, u) may be obtained from Lemma 4.6.
We have that:

G(egal)
(S ∪ {gr(S)})− G(egal)

(S ∪ {g}) ≤ ρ
n∑

i=1

exp

(
− (ΨW

i (u)−∆W̄i)
2

4
∑

vj∈W W̄ 2
ij

)
+ (1− ρ)

n∑
i=1

exp

(
− (Ψi(u))

2

4
∑

vj∈V W̄ 2
ij

)

We will use the following definitions and results throughout the section.

∆Ggr
i (S, u) =

gr

P
a∼Ω

(Z(i, a) ≤ 0 ∧ Ti(S) ∧ F(u)) ,

where Ti(S) and F(u) are the following events:

Ti(S) =
∧

vj∈Si

y(a) = ŷj(a) & F(u) = y(a) ̸= ŷu(a) .

for any vi and X ⊆ V we denote:

W̄i(X) =
∑
vj∈X

W̄ij

In addition, for any X,Y ⊆ V we define,

Ψi(X,Y ) =
∑

vj∈V \(X∪Y )

[1− 2errindv(vj)] + W̄i(X)− W̄i(Y ) .

We will use the following lemma throughout:

Lemma A.13. Let’s define

Γ+
i (X,Y ) = P

a∈Ω+

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≤ W̄i(Y )− W̄i(X)

 ,

and

Γ−
i (X,Y ) = P

a∈Ω−

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ W̄i(X)− W̄i(Y )

 .

We may estimate the above probabilities as

Γ̂+
i (X,Y ) = Γ̂−

i (X,Y ) =

{
0 if Ψi(X,Y ) ≥ 0

1 if Ψi(X,Y ) < 0

We have that: ∣∣∣Γ+
i (X,Y )− Γ̂+

i (X,Y )
∣∣∣ ≤ exp

(
− (Ψi(X,Y ))2∑

vj∈V \(X∪Y ) W̄
2
ij

)
,

and ∣∣∣Γ−
i (X,Y )− Γ̂−

i (X,Y )
∣∣∣ ≤ exp

(
− (Ψi(X,Y ))2∑

vj∈V \(X∪Y ) W̄
2
ij

)
.
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Proof. Assume a ∈ Ω+ in this case we have that

E
a∈Ω+

[
ŷindvj (a)

]
= 1− 2errindv(vj)

Thus, ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≤ W̄i(Y )− W̄i(X) ⇐⇒

∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≤ E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

−

E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

− W̄i(Y ) + W̄i(X)

 ⇐⇒

∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≤ E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

−Ψi(X,Y )

If Ψi(X,Y ) > 0 we may use the Hoeffding bound to obtain:

P
a∈Ω+

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≤ W̄i(Y )− W̄i(X)

 ≤ exp

(
− (Ψi(X,Y ))

2∑
vj∈V \(X∪Y ) W̄

2
ij

)
.

If −Ψi(X,Y ) > 0, we write: ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ W̄i(Y )− W̄i(X) ⇐⇒

∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

−Ψi(X,Y )

Thus,

P
a∈Ω+

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ W̄i(Y )− W̄i(X)

 ≤ exp

(
− (Ψi(X,Y ))

2∑
vj∈V \(X∪Y ) W̄

2
ij

)

Therefore,

P
a∈Ω+

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≤ W̄i(Y )− W̄i(X)


=1− P

a∈Ω+

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ W̄i(Y )− W̄i(X)


≥1− exp

(
− (Ψi(X,Y ))

2∑
vj∈V \(X∪Y ) W̄

2
ij

)
.

Putting together we have: ∣∣∣Γ+
i (X,Y )− Γ̂+

i (X,Y )
∣∣∣ ≤ exp

(
− (Ψi(X,Y ))2∑

vj∈V \(X∪Y ) W̄
2
ij

)
,

Similarly if a ∈ Ω− we have:
E

a∈Ω−

[
ŷindvj (a)

]
= 2errindv(vj)− 1
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thus, ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ W̄i(X)− W̄i(Y ) ⇐⇒

∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a) ≥ E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

+

−E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

+ W̄i(X)− W̄i(Y )


and

−E

 ∑
vj∈V \(X∪Y )

W̄ij ŷ
indv
j (a)

+ W̄i(X)− W̄i(Y ) = −
∑

vj∈V \(X∪Y )

W̄ij [2err
indv(vj)− 1] + W̄i(X)− W̄i(Y )

= Ψi(X,Y ) .

The rest of the proof follows similarly to the previous case.

A.5.1. CASE 1. COLORLESS Si

Assume that Si ⊆ W ,

Lemma A.14. If Si ⊆ W and u ∈ W , for any arbitrary vi we may take:

∆̂G
gr

i (S, u)

=



errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) if Ψi(R∪ S,B ∪ {u}) < 0 &Ψi(B ∪ S,R∪ {u}) < 0

errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) · err(R) if Ψi(R∪ S,B ∪ {u}) > 0 &Ψi(B ∪ S,R∪ {u}) < 0

errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) · err(B) if Ψi(R∪ S,B ∪ {u}) < 0 &Ψi(B ∪ S,R∪ {u}) > 0

0 otherwise

and we have: ∣∣∣∆̂G
gr

i (S, u)−∆Ggr
i (S, u)

∣∣∣ ≤ exp

(
− (ΨW

i (u)−∆W̄i)
2

4
∑

vj∈W W̄ 2
ij

)

Proof.

gr

P
a∼Ω

(Z(i, a) ≤ 0 ∧ Ti(S) ∧ F(u)) =
gr

P
a∼Ω+

(z(i, a) ≤ 0 ∧ Ti(S) ∧ F(u))P(a ∈ Ω+)

+
gr

P
a∼Ω−

(z(i, a) ≥ 0 ∧ Ti(S) ∧ F(u))P(a ∈ Ω−) .

We have:

gr

P
a∼Ω+

(z(i, a) ≤ 0 ∧ Ti(S) ∧ F(u)) =
gr

P
a∼Ω+

(z(i, a) ≤ 0 | Ti(S) ∧ F(u))
gr

P
a∼Ω+

(Ti(S) ∧ F(u)) &

gr

P
a∼Ω−

(z(i, a) ≤ 0 ∧ Ti(S) ∧ F(u)) =
gr

P
a∼Ω−

(z(i, a) ≤ 0 | Ti(S) ∧ F(u))
gr

P
a∼Ω−

(Ti(S) ∧ F(u))

Note that since S ⊆ W and u ∈ W we have:

gr

P
a∼Ω−

(Ti(S) ∧ F(u)) =
gr

P
a∼Ω+

(Ti(S) ∧ F(u)) = errindv(u) ·
∏
vj∈S

W̄ij ̸=0

(1− errindv(vj)) .
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Furthermore,
gr

P
a∼Ω+

(z(i, a) ≤ 0 | Ti(S) ∧ F(u))

=
gr

P
a∼Ω+

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a) +
∑
vj∈S

W̄ij − W̄iu ≤ 0



= P
a∼Ω+

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a) +

∑
vj∈R

W̄ij ŷ
gr
j (a) +

∑
vj∈B

W̄ij ŷ
gr
j (a) +

∑
vj∈S

W̄ij − W̄iu ≤ 0



= P
a∼Ω+

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a) +

∑
vj∈R

W̄ij −
∑
vj∈B

W̄ij +
∑
vj∈S

W̄ij − W̄iu ≤ 0

 err(B)

+ P
a∼Ω+

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a) +

∑
vj∈B

W̄ij −
∑
vj∈R

W̄ij +
∑
vj∈S

W̄ij − W̄iu ≤ 0

 err(R)

=Γ+
i (R∪ S,B ∪ {u})err(B) + Γ+

i (B ∪ S,R∪ {u})err(R) .

Similarly we have that:
gr

P
a∼Ω−

(z(i, a) ≥ 0 | Ti(S) ∧ F(u))

=
gr

P
a∼Ω−

 ∑
j=1:n

vj /∈S∪{u}

W̄ij ŷj(a)−
∑
vj∈S

W̄ij + W̄iu ≥ 0



= P
a∼Ω−

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a) +

∑
vj∈R

W̄ij ŷ
gr
j (a) +

∑
vj∈B

W̄ij ŷ
gr
j (a)−

∑
vj∈S

W̄ij + W̄iu ≥ 0



= P
a∼Ω−

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a)−

∑
vj∈R

W̄ij +
∑
vj∈B

W̄ij −
∑
vj∈S

W̄ij + W̄iu ≥ 0

 err(B)

+ P
a∼Ω−

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a)−

∑
vj∈B

W̄ij +
∑
vj∈R

W̄ij −
∑
vj∈S

W̄ij + W̄iu ≥ 0

 err(R)

=Γ−
i (R∪ S,B ∪ {u})err(B) + Γ−

i (B ∪ S,R∪ {u})err(R) .

Therefore, Pgr
a∼Ω (Z(i, a) ≤ 0 ∧ Ti(S) ∧ F(u)) is equal to

errindv(u) ·
∏
vj∈S

W̄ij ̸=0

(1− errindv(vj)) · ([Γ+
i (R∪ S,B ∪ {u})err(B) + Γ+

i (B ∪ S,R∪ {u})err(R)]P(a ∈ Ω+)

+ [Γ−
i (R∪ S,B ∪ {u})err(B) + Γ−

i (B ∪ S,R∪ {u})err(R)]P(a ∈ Ω−))
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We may now employ Lemma A.13 to estimate the above probabilities.

By replacing the estimations Γ̂+
i and Γ̂−

i in the above formula we obtain:

∆̂G
gr

i (S, u)

=



errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) if Ψi(R∪ S,B ∪ {u}) < 0 &Ψi(B ∪ S,R∪ {u}) < 0

errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) · err(R) if Ψi(R∪ S,B ∪ {u}) > 0 &Ψi(B ∪ S,R∪ {u}) < 0

errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) · err(B) if Ψi(R∪ S,B ∪ {u}) < 0 &Ψi(B ∪ S,R∪ {u}) > 0

0 otherwise

Lemma A.15. If Si ⊆ W and u ∈ R, for any arbitrary vi we may take:

∆̂G
gr

i (S, u) =

errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) if Ψi(B ∪ S,R∪ {u}) < 0

0 otherwise

If u ∈ B, for any arbitrary vi we may take:

∆̂G
gr

i (S, u) =

errindv(u) ·
∏

vj∈S

W̄ij ̸=0

(1− errindv(vj)) if Ψi(R∪ S,B ∪ {u}) < 0

0 otherwise

and in both cases we have: ∣∣∣∆̂G
gr

i (S, u)−∆Ggr
i (S, u)

∣∣∣ ≤ exp

(
− (ΨW

i (u)−∆W̄i)
2

4
∑

vj∈W W̄ 2
ij

)
.

Proof. Like previous lemma we have:

gr

P
a∼Ω+

(z(i, a) ≤ 0 | Ti(S) ∧ F(u))

= P
a∼Ω+

 ∑
vj∈W

vj /∈S∪{u}

W̄ij ŷ
indv
j (a) +

∑
vj∈R

W̄ij ŷ
gr
j (a) +

∑
vj∈B

W̄ij ŷ
gr
j (a) +

∑
vj∈S

W̄ij − W̄iu ≤ 0


If u ∈ R since we are conditioning on F(u) the above probability is equal to:

gr

P
a∼Ω+

(z(i, a) ≤ 0 | Ti(S) ∧ F(u)) = Γ+
i (B ∪ S,R∪ {u}) .

Similarly

gr

P
a∼Ω+

(z(i, a) ≥ 0 | Ti(S) ∧ F(u)) = Γ−
i (B ∪ S,R∪ {u}) .

If u ∈ B we have

gr

P
a∼Ω+

(z(i, a) ≤ 0 | Ti(S) ∧ F(u)) = Γ+
i (R∪ S,B ∪ {u}) .
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Similarly

gr

P
a∼Ω+

(z(i, a) ≥ 0 | Ti(S) ∧ F(u)) = Γ−
i (R∪ S,B ∪ {u}) .

Putting together, and employing Lemma A.13 we get the premise.

A.5.2. CASE 2. MONOCHROMATIC Si

Lemma A.16. Let C be either R or B and C̄ be the other color. Assume Si ∩ C ̸= ∅ and Si ∩ C̄ = ∅. In this case, for any
u ∈ C, we have ∀i,∆Ggr

i (S, u) = 0.

For u ∈ C̄ we may use the following estimation:

∆̂G
gr

i (S, u) =

{
err(C̄)

∏
vj∈Si∩W(1− errindv(vj)) if Ψi(C ∪ S, C̄) < 0

0 otherwise .

and for u ∈ W we may use the following estimation:

∆̂G
gr

i (S, u) =

{
err(u)err(C̄)

∏
vj∈Si∩W(1− errindv(vj)) if Ψi(C ∪ S, C̄ ∪ {u}) < 0

0 otherwise .

The above estimations satisfy:

∣∣∣∆̂G
gr

i (S, u)−∆Ggr
i (S, u)

∣∣∣ ≤ exp

(
− (ΨW

i (u)−∆W̄i)
2

4
∑

vj∈W W̄ 2
ij

)
.

Proof of Lemma A.16. Assume that Si intersects only with one color C and its intersection with the other color C̄ is empty.

If u ∈ C, then P(Ti(S) ∧ F(u)) = 0. Thus, ∀i ∆Ggr
i (S, u) = 0.

If u ∈ C̄:

We have that P(Ti(S) ∧ F(u)) = err(C̄) ·
∏

vj∈Si∩W(1− errindv(vj)) . Furthermore,

gr

P
a∈Ω+

(z∗(i, a) ≤ 0 | Ti(S) ∧ F(u)) = P

 ∑
vj∈W\Si

W̄ij ŷ
indv
j (a) + W̄ (C)− W̄ (C̄) + W̄ (S ∩W) ≤ 0


= Γ+

i

(
C ∪ S, C̄

)
.

Similarly,

gr

P
a∈Ω−

(z∗(i, a) ≥ 0 | Ti(S) ∧ F(u)) = Γ−
i

(
C ∪ S, C̄

)
.

Putting together and employing Lemma A.13 we conclude the first part of the premise.

If u ∈ W : We have that P(Ti(S) ∧ F(u)) = err(u)err(C̄) ·
∏

vj∈Si∩W(1− errindv(vj)). Furthermore,

gr

P
a∈Ω+

(z∗(i, a) ≤ 0 | Ti(S) ∧ F(u)) = P

 ∑
vj∈W\Si

W̄ij ŷ
indv
j (a) + W̄i(C)− W̄i(C̄) + W̄i(S ∩W)− W̄iu ≤ 0


= Γ+

i

(
C ∪ S, C̄ ∪ {u}

)
.
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Similarly,
gr

P
a∈Ω−

(z∗(i, a) ≥ 0 | Ti(S) ∧ F(u)) = Γ−
i

(
C ∪ S, C̄ ∪ {u}

)
.

Putting together and employing Lemma A.13 we conclude the second part of the premise.

A.5.3. CASE 3. BICHROMATIC Si

Lemma A.17. If Si ∩R ̸= ∅ and Si ∩ B ̸= ∅, we have ∀i ∆Ggr
i (S, u) = 0.

Proof. Note that P(Ti(S)) = 0. Thus, we conclude the premise.

A.5.4. MISSING MATERIAL FROM SECTION 4.2.2: W -AMBIGUOUS VERTICES.

Let’s first present the definition of W-ambiguous vertices in detail:

Consider the following partitioning of white vertices to low and high error parts:

W+ = {vj | err(vj) ≤ 1/2} & W− = {vj | err(vj) > 1/2}

with respect to this partition we define the following vectors:

EW+
=(1− 2err(vj))vj∈W+ & EW−

=(2err(vj)− 1)vj∈W−

and W̄W+
i = (W̄ij)vj∈W+ & W̄W−

i = (W̄ij)vj∈W−

Definition A.18 ( W-Ambiguous vertices ). Let W̄W
i = (W̄ij)vj∈W , and |·|2 be the ℓ2 norm and ⟨·, ·⟩ be dot product.

We call an agent vi ∈ V , W-ambiguous if it satisfies∣∣∣∣∣ ⟨W̄W+
i , EW+⟩∣∣W̄W

i

∣∣
2

− ⟨W̄W−
i , EW−⟩∣∣W̄W

i

∣∣
2

∣∣∣∣∣ ≤ 4
√

log n+∆W̄i ,

where ∆W̄i =
∣∣∣∑vj∈R W̄ij −

∑
vj∈B W̄ij

∣∣∣ . A network is nicely colored if no vertex is W-ambiguous.

We now show that if a vertex is not ambiguous w.r.t. W the group gain associated to it can be estimated with high precision:

Lemma A.19. Let ∆̂Gi

gr
(S, u) be as defined in Lemmas A.14, A.16 and A.17. If a vertex is non-ambiguous w.r.t W we

have: ∣∣∣∆Ggr
i (S, u)− ∆̂G

gr

i (S, u)
∣∣∣ ≤ o(n−1) .

Proof. Note that from Lemmas A.14, A.16 and A.17 we have that for any vi:∣∣∣∆Ggr
i (S, u)− ∆̂G

gr

i (S, u)
∣∣∣ ≤ exp

(
− (ΨW

i (u)−∆W̄i)
2

4
∑

vj∈W W̄ 2
ij

)
.

Note that we have:

(ΨW
i (u)−∆W̄i)

2∑
vj∈W W̄ 2

ij

=

(
ΨW

i (u)−∆W̄i∣∣W̄W
i

∣∣
2

)2

=

(
⟨W̄W+

i , EW+⟩∣∣W̄W
i

∣∣
2

− ⟨W̄W−
i , EW−⟩∣∣W̄W

i

∣∣
2

− 2err(u)W̄iu∣∣W̄W
i

∣∣
2

− ∆W̄i∣∣W̄W
i

∣∣
2

)2

≥

(
⟨W̄W+

i , EW+⟩∣∣W̄W
i

∣∣
2

− ⟨W̄W−
i , EW−⟩∣∣W̄W

i

∣∣
2

− ∆W̄i∣∣W̄W
i

∣∣
2

− 2

)2
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Assuming that the vertex is not ambiguous w.r.t. whites we have:∣∣∣∣∣ ⟨W̄W+
i , EW+⟩∣∣W̄W

i

∣∣
2

− ⟨W̄W−
i , EW−⟩∣∣W̄W

i

∣∣
2

∣∣∣∣∣ > 4
√

log n+∆W̄i

which implies

(ΨW
i (u)−∆W̄i)

2∑
vj∈W W̄ 2

ij

=

(
ΨW

i (u)−∆W̄i∣∣W̄W
i

∣∣
2

)2

≥ (3
√
log n)2 ≥ 5 log n

From which we conclude that the error is bounded as:

exp

(
− (ΨW

i (u)−∆W̄i)
2∑

vj∈W W̄ 2
ij

)
≤ exp(−5/4 log n) = o(n−1) .

A.5.5. MISSING MATERIAL FROM SECTION 4.2.2: PROOF OF THE MAIN THEOREMS

Proof of Theorem 4.8 and Remark 3.12. Note that the error of the greedy choice approximation is either generated from

approximation of
∑n

i=1 ∆̂G
gr

i (S, u) or
∑n

i=1 ∆̂G
indv

i (S, u). The error of ∆̂G
indv

i (S, u) may be bounded similar to the
independent case. To see the bound the error of

∑n
i=1 ∆̂G

gr

i (S, u) note that the error induced by all non-ambiguous vertices
is o(n× n−1) = o(1). The error of each ambiguous vertex is at most one, therefore, we conclude the result.

Approximation when having access Ŵ . Follows similarly as in Lemma A.11

A.6. Concentration Bounds

Theorem A.20. Let X1, X2, . . . Xk be independent random variables in range [−1, 1] with means µ1, . . . , µk and let wis
be weight coefficients . Taking µ =

∑k
i=1 wiµi. We have that for any ε > 0:

P

(
k∑

i=1

wiXi ≥ µ+ ε

)
≤ exp

(
− ε2

4
∑k

i=1 w
2
i

)
,

and

P

(
k∑

i=1

wiXi ≤ µ− ε

)
≤ exp

(
− ε2

4
∑k

i=1 w
2
i

)
.

B. Additional experiments and details of set up
Our proposed problem and methods in general do not assume any prior knowledge of the given datasets. Our algorithms are
deterministic with no parameter to tune. It has potential to be applied to any problems as long as the objective function of
the problems of interests related to our proposed objective function. In the following, we include the parameter settings of
the problems in our experiments. These parameters are not tuned for our methods. We just fix the parameters to make sure
the problems are nontrivial enough. We use the same parameters for all methods in our experiments.

We let |Ω| = 3 and for initial opinion ŷ, we randomly generate for each agent vi a random vector (ŷi(a) : a ∈ Ω) with each
entry sampled from Bernoulli distribution with probability pi of ŷi(a) = +1 sampled uniformly from [0.3, 0.9]. For random
graph generators, some of the key parameters are fixed as follows:

• Number of nodes: 128

• Erdős-Rényi graph: Probability for edge creation p = 0.005.

• Barabási-Albert preferential attachment model: Number of edges to attach from a new node to existing nodes m = 5
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• Watts-Strogatz small-world graph: Each node is joined with its k = 5 nearest neighbors in a ring topology; The
probability of rewiring each edge p = 0.25

In practice, we found that the infinite FJ model with weight matrix converging to (I + L)−1 makes the problem less
interesting than general case in practice. The reason is that all entries of the matrix (I + L)−1 are positive and non-zero.
With such weight matrix, we found even a random selection algorithm can converge very fast. To avoid such simple cases,
here we apply a finite t-step FJ model. We fix t = 3 to ensure the induced matrix W̄ is sparse enough.

Besides randomly generated graphs from tree classical models (ER, PA and WS), we also test our algorithms on random
generated matrix W̄ directly, denoted as RandomW. Each entry of W̄ is independently sampled from a uniform distribution
on [0, 1]. We let the sparsity of W̄ to be around 0.95. Each row of W̄ is normalized thus sum up to be 1.

The statistics of real and synthetic datasets are summarized in Table 2. Experiment results are illustrated in Figure 3.

We let the set of faulty prediction be Zf ≜ Ea∈Ω[
∑n

i=1 1Z(i, a) < 0] , which serves as an upperbound on the egalitarian
improvement. We define the accuracy Acc as:

Acc =
G(egal)

(S)

Zf
.

We calculate all expected values by taking averages over a ∈ Ω.

Table 2: Table of statistics of datasets. Sparsity of W̄ represents the percentage of zero entries in W̄ .

size sparsity of W̄ faulty prediction Zf

ER 128 0.98 74.67
PA 128 0.37 32.0
WS 128 0.74 38.67
BIO 297 0.45 55.33
CSPK 39 0.75 14.67
FB 620 0.75 161.33
WIKI 890 0.66 238.67
RandomW 128 0.95 37.67
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Figure 3: More experimental results on different datasets.
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