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Abstract

Domain generalization (DG) seeks to develop mod-
els that generalize well to unseen target domains,
addressing distribution shifts in real-world appli-
cations. One line of research in DG focuses on
aligning domain-level gradients and Hessians to en-
hance generalization. However, existing methods
are computationally inefficient and the underlying
principles of these approaches are not well under-
stood. In this paper, we develop a theory of moment
alignment for DG. Grounded in transfer measure,
a principled framework for quantifying generaliz-
ability between domains, we prove that aligning
derivatives across domains improves transfer mea-
sure. Moment alignment provides a unifying under-
standing of Invariant Risk Minimization, gradient
matching, and Hessian matching, three previously
disconnected approaches. We further establish the
duality between feature moments and derivatives
of the classifier head. Building upon our theory,
we introduce Closed-Form Moment Alignment
(CMA), a novel DG algorithm that aligns domain-
level gradients and Hessians in closed-form. Our
method overcomes the computational inefficien-
cies of existing gradient and Hessian-based tech-
niques by eliminating the need for repeated back-
propagation or sampling-based Hessian estimation.
We validate our theory and algorithm through quan-
titative and qualitative experiments.

1 INTRODUCTION
Classic machine learning methods rely on the assumption
that training and test data are drawn from the same distri-
bution, typically described as being independent and iden-
tically distributed (i.i.d.). However, the i.i.d. assumption
is often violated in real-world scenarios due to variations
in sampling populations (Santurkar et al., 2020), tempo-

ral changes (Shankar et al., 2019), and geographic dif-
ferences (Hansen et al., 2013; Christie et al., 2018). Per-
formance degradation due to distribution shifts is partic-
ularly critical in high-stake applications. For instance, an
autonomous driving system (Dai and Van Gool, 2018; Hu
et al., 2021) trained on data collected in the United States
may encounter different traffic conditions when deployed
in other regions. Similarly, in medical imaging (Wachinger
et al., 2021; AlBadawy et al., 2018; Tellez et al., 2019),
models trained on data from one demographic group may
face challenges when applied to a different demographic.

Domain generalization (DG) aims to tackle this issue by
leveraging data from multiple source domains to learn
a model that performs well on unseen but related target
domains. Although various approaches have been studied to
address the DG problem, including Invariant Risk Minimiza-
tion (IRM) Arjovsky et al. (2020), gradient matching (Shi
et al., 2021; Koyama and Yamaguchi, 2021; Parascandolo
et al., 2020), Hessian matching (Rame et al., 2022; Hemati
et al., 2023), and domain-invariant feature representation
learning (Ben-David et al., 2010; Li et al., 2018; Tzeng
et al., 2017; Hoffman et al., 2017; Muandet et al., 2013;
Long et al., 2015; Zhao et al., 2019), these methods often
appear disconnected and are based on different underlying
principles. We discuss these related research in Appendix E.

We unify these seemingly disparate methods through the
theory of moment alignment. Our theory builds upon trans-
fer measure, a principled DG framework proposed by Zhang
et al. (2021). We first extend the definition of transfer mea-
sure to multi-source DG, inducing a target error bound. We
then prove that aligning the derivatives improves transfer
measure under different assumptions: when there exists a
classifier that is simultaneously optimal across all domains
(referred to as the IRM assumption), and when there is not.
We show that IRM, gradient matching, and Hessian match-
ing approaches are special cases of moment alignment. Our
theory explains the success of state-of-the-art methods like
HGP and Hutchinson’s algorithm (Hemati et al., 2023),
which perform both gradient and Hessian matching. This



Table 1: Comparison of our method and prior algorithms.

ERM IRM Fish/IGA/AND-Mask Fishr/CORAL HGP/Hutchinson CMA

Gradient Matching No Yes Yes No Yes Yes
Hessian Matching No No No Yes Yes Yes
Closed-Form Hessian – – – No No Yes

combined approach provides an advantage over methods
that only match gradients or Hessians. Furthermore, we es-
tablish the duality between feature moments and the deriva-
tives of the classifiers, thereby unifying these approaches.

Drawing from the theoretical results, we proposed Closed-
Form Moment Alignment (CMA), a novel algorithm to DG
that aligns the first- and second-order derivatives across
domains. The loss objective in CMA is similar to those
of HGP and Hutchinson’s, but CMA enjoys computational
efficiency by analytically computing gradients and Hes-
sians. Our method bypasses the computational limitations
of existing gradient and Hessian matching techniques that
rely on repeated backpropagation or sampling-based esti-
mation. Additionally, we provide two Hessian computation
methods—direct Frobenius norm computation for faster per-
formance at higher memory cost, and a memory-efficient
method that reduces memory requirement at the expense of
increased computation time. This flexibility allows users to
balance memory usage and computational time.

The empirical evaluation consists of two settings designed to
validate our theoretical framework and proposed algorithm.
First, we conduct linear probing experiments on Waterbirds,
CelebA, and MultiNLI datasets, where the IRM assumption
holds. Second, we perform full fine-tuning experiments on
selected datasets from the DomainBed benchmark (Gulra-
jani and Lopez-Paz, 2020), where the IRM assumption may
not be satisfied. In the DomainBed experiment, where the
IRM assumption is not guaranteed. We compare CMA with
ERM, CORAL (Sun and Saenko, 2016), and Fishr (Rame
et al., 2022). CMA’s performance aligns with our theory and
matches state-of-the-art performance.

Below we summarize our main contributions:

• Unified Theory of Moment Alignment: We develop a
theory of moment alignment that unifies IRM, gra-
dient matching, and Hessian matching. This unified
framework enhances our understanding of the inter-
play between these methods and their combined effect
on improving generalization across domains. We fur-
ther establish the duality between feature moments and
the classifier derivatives.

• New Algorithm: We propose Closed-Form Moment
Alignment (CMA), a novel DG algorithm that performs
both gradient and Hessian matching. CMA enjoys com-
putational efficiency by analytically computing gradi-
ents and Hessians, avoiding the need for repeated back-
propagation or sampling-based estimation. We offer
two Hessian computation methods to optimize memory
usage and computational speed.

• Empirical Validation: We validate CMA through both
quantitative and qualitative analyses. CMA matches
state-of-the-art performance while achieving superior
worst-group accuracy and feature moment alignment,
reducing first- and second-moment discrepancies more
effectively than Fishr and ERM.

Our work offers a unified perspective that enhances theoret-
ical understanding and practical performance in addressing
distribution shifts. As summarized in Table 1, our method
is, to the best of our knowledge, the first to achieve exact
gradient and Hessian matching.

2 PRELIMINARIES
We consider the problem of DG, where predictors are
trained on data drawn from a set of source domains and
are evaluated on an unseen target domain. The goal is
to learn a predictor that generalizes well to the target do-
main. Formally, the data are drawn from K source domains
S := {µ1, . . . , µK} and a target domain T := µT . Each
domain µi is a distribution over the input space X and the
label space Y . The loss of a predictor h : X → Y on do-
main µ is defined as Lµ(h) = E(x,y)→µ[ω(h(x), y)], where
ω is the loss function on a single example. The goal of do-
main generalization is to learn h ↑ H to minimize the loss
on the target domain T : LµT (h) = E(x,y)→µT [ω(h(x), y)].
ERM minimizes the average loss over the source domains,
LERM := 1

K

∑K
i=1 Lµi . However, ERM often fails under

distribution shifts, especially when the data exhibits spurious
correlation. To address this, Arjovsky et al. (2020) proposes
the IRM principle, aiming to jointly learn a features extrac-
tor and a predictor such that there exists a predictor on the
extracted features that is optimal for all domains simultane-
ously. Subsequent studies, such as those by Rosenfeld et al.
(2021) and Wang et al. (2022, 2023), have shown that IRM
alone is not sufficient for DG. Recent work by Zhang et al.
(2021) on transferability introduces a framework to measure
how much success a predictor trained on one domain can
transfer to another. Below we review the original definition
of transfer measures between two domains and extend it to
multi-source domain settings.

2.1 TRANSFER MEASURES

We restate the definitions of transfer measures (Zhang et al.,
2021) and its induced target error bound.

Definition 1 (transfer measures (Zhang et al., 2021)).
Given some ! ↓ H, L↑

S
:= infh↓! LS(h) and L↑

T
:=

infh↓! LT (h), we define the one-sided transfer measure,
symmetric transfer measure, and the realizable transfer



measure respectively as:

T!(S↔T ) := sup
h↓!

LT (h)↗ L↑

T
↗ (LS(h)↗ L↑

S
)

T!(S, T ) :=max {T!(S↔T ),T!(T ↔S)}
=sup

h↓!
|LS(h)↗ L↑

S
↗ (LT (h)↗ L↑

T
)|

Tr
!(S, T ) := sup

h↓!
|LS(h)↗ LT (h)|

(1)

From the definition of one-sided transfer measure, we have
the following target error bound.

Proposition 1 (target error bound (Zhang et al., 2021)).
For any h ↑ ! ↓ H, the target error is bounded by:

LT (h) ↘LS(h) + L↑

T
↗ L↑

S
+T!(S↔T ) (2)

The implication of Proposition 1 is that by minimizing the
loss on the source domain and the one-sided transfer mea-
sure between the source and target domains, we can effec-
tively minimize an upper bound on the target loss.

2.2 APPROXIMATE HESSIAN ALIGNMENT

Hemati et al. (2023) proves an upper bound on the transfer
measure by the spectral norm of the Hessian matrices be-
tween source and target domains and is the first to propose
simultaneously aligning gradients and Hessians. However,
their analysis is limited to the single source domain adap-
tation setting and assumes the existence of an invariant
optimal predictor.

Definition 2 (invariant optimal predictor (Arjovsky et al.,
2020)). A predictor h ↑ H is an invariant optimal predictor
if Lµi(h) = minh↓H Lµi(h) for all i ↑ [K].

Assumption 1 (IRM assumption). There exists an in-
variant optimal predictor h ↑ H on the source domains
S = {µi}Ki=1.

The algorithms in Hemati et al. (2023) approximate the
Hessian matrices. Both methods are computationally inten-
sive: Hessian-Gradient Product (HGP) requires repeated
backpropagation, whereas Hutchinson’s method relies on
estimation through sampling.

In this work, we extend the analysis of Hessian alignment
to DG, addressing scenarios both with and without the IRM
assumption. We also propose a more efficient algorithm that
analytically computes the Hessian matrices with respect to
(w.r.t.) the classifier head.

2.3 NATURE OF DISTRIBUTION SHIFT

In the DG literature, there are two main types of assumptions
on the underlying data-generating process and the nature of
the distribution shift.

The first type relies on causal graphs (directed graphical
models) to explicitly model the ground-truth data-generating
distribution, over which one can also aim for the minimax
out-of-distribution generalization performance using the in-
variant predictor principle (Peters et al., 2015; Arjovsky
et al., 2020; Wang et al., 2023; Zhang et al., 2023). How-
ever, these explicit assumptions on the causal structure of
the variables are often too restrictive and hard to verify in
practice, due to the unobserved confounders.

The second type of assumption explicitly models the nature
of the distribution shift, such as covariate shift, label shift,
concept shift (Ben-David et al., 2010; Heinze-Deml et al.,
2018; Zhao et al., 2019). These assumptions make technical
analysis possible but often oversimplify the true real-world
shifts, which rarely adhere strictly to such constraints. More-
over, these assumptions are sufficient but not necessary for
provable OOD generalizations.

Given the limitations of these two types of assumptions, our
work aims to broaden its potential applicability by avoid-
ing explicit assumptions on the underlying data-generating
distributions and the nature of distribution shifts. Instead,
our approach focuses on the loss landscapes of the train and
test distributions, which are more fine-grained and funda-
mental. We would also like to point out that typical explicit
distribution shift assumptions, such as the covariate shift
assumption, which is closely related to the line of work on
invariant risk minimization, can be used to simplify certain
terms in our generalization upper bound.

3 THEORY OF MOMENT ALIGNMENT
In this section, we first extend the transfer measures to
multi-source domain generalization (Section 3.1) and prove
a bound on the transfer measure independent of the target
distribution (Section 3.2). We then apply this bound and
Proposition 1 to show that aligning derivatives across do-
mains minimizes the target loss both under the IRM assump-
tion (Section 3.3), and when it does not hold (Section 3.4).
We defer the proof of propositions, theorems, and corollaries
to Appendix A, Appendix B, and Appendix C respectively.

3.1 TRANSFER MEASURES FOR MULTI-SOURCE
DOMAINS

The original definition of transfer measures is defined only
for a single source domain S and a target domain T . Next,
we first state the generalized definition to multiple source
domains S = {µi}Ki=1.

Definition 3 (transfer measures on multiple source do-
mains). Given S = {µi}Ki=1, some ! ↓ H, L↑

µi
:=

infh↓! Lµi(h) for all i ↑ [K], L↑

T
:= infh↓! LT (h),

µ
↑ := argminµ maxi↓[K] T! (µi↔µ), and LS (h) :=

Lµ→ (h). we define the one-sided transfer measure, symmet-
ric transfer measure, and the realizable transfer measure



respectively as:

T!(S↔T ) := sup
h↓!

LT (h)↗ L↑

T
↗ (LS(h)↗ L↑

S
)

= sup
h↓!

LT (h)↗ L↑

T
↗
(
Lµ→(h)↗ L↑

µ→
)

=T!(µ
↑↔T )

T!(S, T ) :=max {T!(S↔T ),T!(T ↔S)}
=T!(µ

↑
, T )

Tr
!(S, T ) := sup

h↓!
|LS(h)↗ LT (h)|

=sup
h↓!

|Lµ→(h)↗ LT (h)| = Tr
!(µ

↑
, T )

In words, we define the transfer measure between a set
of domains S and a domain T as the transfer measure
between a distribution µ

↑ and T , where µ
↑ is the center of

mass. Note that it is not necessary to find µ
↑ explicitly, as

shown next. For the remainder of this paper, we use transfer
measure to refer to the one-sided transfer measure and
leave the analogous results for the symmetric and realizable
transfer measures to Appendix D.

3.2 BOUNDING TRANSFER MEASURE

Although Definition 3 defines the transfer measure in
the multiple source domain setting, in DG, one can only
access the source domains S = {µi}Ki=1. In this section, we
prove an upper bound on the transfer measure on the target
domain T under the following mixture assumption:

Assumption 2 (convex combination of source domains).
The target domain T is a convex combination of the source
domains S = {µi}Ki=1, i.e., ≃wi ⇐ 0 and

∑K
i=1 wi = 1

such that µT =
∑K

i=1 wiµi.

Note that although Assumption 2 seems restrictive, this
assumption generally holds. In particular, the assumption is
satisfied in the simple case where each source distribution
is a Gaussian. Moreover, as a well-known result in the
literature of mixture models shows, when the number of
mixture components is large enough, any smooth contin-
uous distribution can be well-approximated by a mixture
of Gaussians. Furthermore, in the literature of domain gen-
eralization, similar assumptions have been adopted as well
for the purpose of analysis and design of algorithms (Hu
et al., 2018; Sagawa et al., 2020; Krueger et al., 2021).

From the definition of transfer measure and Assumption 2,
we have the following proposition.

Proposition 2 (upper bound on transfer measure). Given
S = {µi}Ki=1 and some ! ↓ H. Define L↑

µi
:=

infh↓! Lµi(h) for all i ↑ [K], LT
↑ := infh↓! LT (h),

µ
↑ := argminµ maxi↓[K] T! (µi↔µ), and LS (h) :=

Lµ→ (h). Under Assumption 2, we have:

T!(S↔T ) ↘ 1

2
max
i ↔=j

T! (µj↔µi) (3)

A direct consequence of Proposition 2 is a target error bound
analogous to Proposition 1, but does not require the knowl-
edge of the target domain T except that it is a mixture of
the source distributions.

Proposition 3 (target error bound – multiple source do-
mains). Given ! ↓ H, for any h ↑ !, the target error is
bounded by:

LT (h) ↘ LS(h) + L↑

T
↗ L↑

S
+

1

2
max
i ↔=j

T! (µj↔µi) (4)

Having established the transfer measure provides an upper
bound on the target error, we now focus on bounding the
transfer measure.

3.3 MOMENT ALIGNMENT UNDER IRM
ASSUMPTION

For ease of notation, we assume that the classifier h ↑ H is
parameterized by ω ↑ Rd so that Lµ(h) = Lµ (ω).

Theorem 1 (moment alignment under IRM). Given
K source domains S = {µi}Ki=1 and a target
domain T ↑ conv(µ1, . . . , µk), assume the losses
Lµi ⇒i ↑ [K] are ε-strongly convex w.r.t. the clas-
sifier head and M -times differentiable. Under the
IRM assumption (Assumption 1), let ω↑ be the opti-
mal invariant predictor, ! = argmin(LS , ϑS)H :={
ω | hω↓H : maxi↓[K] (Lµi (ω)↗ Lµi (ω

↑)) ↘ ϑS

}
, and

ϑ = 2ωS
ε , we have:

T!(S↔T ) ↘ max
i ↔=j

( N∑

n=2

1

n!
ϑ

n
2 ↔⇑n

ωLµj (ω
↑)

↗ ⇑n
ωLµi (ω

↑) ↔nF
)
+ o(ϑ

N
2 )

(5)

for any integer 2 ↘ N ↘ M . ⇑n
ωL(ω) is an n

th or-
der tensor with dimension d ⇓ · · · ⇓ d (n times) where
⇑n

ωL(ω)(k1,··· ,kn)
= ϑn

L(ω)
ϑωk1 ...ϑωkn

.

The implication of Theorem 1 is that the transfer measure is
upper-bounded by the sum of the differences in higher-order
derivatives across domains. Specifically, this suggests that
aligning higher-order moments of the loss function promotes
domain generalization.

Consider the special case when N = 2, we recover an
upper bound similar to the Hessian alignment theorem in
Hemati et al. (2023), which we state next as a corollary.

Corollary 2 (hessian alignment under IRM). Under the
same setup as in Theorem 1, we have:

T!(S↔T ) ↘ 1

2
ϑmax

i ↔=j
↔Hµj (ω

↑)↗Hµi (ω
↑) ↔F + o(ϑ)

(6)
where H(ω) denotes the Hessian matrix of L(ω).



Corollary 2 implies that the transfer measure is upper-
bounded by the Frobenius norm of the difference of the
Hessian matrices across domains. This result aligns with
the findings of Hemati et al. (2023). However, unlike their
result, Corollary 2 does not require knowledge of the target
domain; instead, it relies on the assumption of T being a
convex combination of the source domains.

3.4 MOMENT ALIGNMENT WITHOUT IRM
ASSUMPTION

In practice, unless the features are explicitly trained or post-
processed to satisfy the IRM assumption—such as through
IRM training or Invariant Feature Subspace Recovery (Wang
et al., 2023)—invariant optimal predictors generally do not
exist. In this section, we derive a bound on the transfer
measure under this setting.

Assumption 3 (bounded gradients, approximate
IRM). There exists a constant g > 0 such that
minω↓H maxi↓[K] ↔⇑ωLµi (ω) ↔2 ↘ g.

Theorem 3 (moment alignment). Given K source
domains S = {µi}Ki=1 and target domain T ↑
conv(µ1, . . . , µk). Assume loss Lµi , ⇒i ↑ [K] are ε-
strongly convex and M -times differentiable w.r.t. the clas-
sifier head. Let P({Lµi}Ki=1) := {ω : maxi↓[K](ω

→ ↗
ω)↗⇑ωLµi(ω) ⇐ 0, ⇒ω→ ↑ !} (a set of weakly
Pareto optimal points for the objectives {Lµi}Ki=1), and
let ω↑ ↑ argminω↓P

maxi↓[K] ↔⇑Lµi (ω) ↔2, ! :={
ω ↑ H : maxi↓[K] (Lµi (ω)↗ Lµi (ω

↑)) ↘ ϑS

}
, and ϑ =

2ωS
ε , we have:

T!(S↔T ) ↘1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj (ω
↑

j )

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+
N∑

n=1

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F

)

+o(ϑ
N
2 )

(7)
where ω↑

i is the minimizer of Lµi (ω). Furthermore, sup-
pose Assumption 3 holds with g > 0:

T!(S↔T ) ↘ϑ
1
2 g +

1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj

(
ω↑

j

)

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+
N∑

n=2

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F

)

+o(ϑ
N
2 )

(8)

As a special case, when N = 2, we have the following
guarantee on gradient and Hessian alignment.

Corollary 4 (hessian alignment). Under the same setup as
in Theorem 3, we have:

T!(S↔T ) ↘1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj

(
ω↑

j

)

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+ϑ
1
2

∥∥⇑ωLµj (ω
↑)↗⇑ωLµj (ω

↑)
∥∥
2

+
1

2
ϑ
∥∥Hµj (ω

↑)↗Hµi (ω
↑)
∥∥
F

)
+ o(ϑ)

(9)

where ω↑

i is the minimizer of Lµi (ω).

Furthermore, suppose Assumption 3 holds with g > 0:

T!(S↔T ) ↘ϑ
1
2 g +

1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj

(
ω↑

j

)

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+
1

2
ϑ
∥∥Hµj (ω

↑)↗Hµi (ω
↑)
∥∥
F

)
+ o(ϑ)

(10)

To summarize, under the IRM assumption, the transfer mea-
sure is bounded by the differences in higher-order deriva-
tives (second order and above) across domains. Conversely,
when the IRM assumption does not hold, the transfer mea-
sure is bounded by the maximum optimality gaps and the
gradient norms, in addition to the differences in higher-order
derivatives across domains.

The implication of Theorem 3 is the necessity of minimizing
the gradient norm, as the upper bound depends on it regard-
less of the differences in higher-order derivatives. Fortu-
nately, this bound can be reduced by incorporating gradient
norm minimization—a strategy already embedded in many
existing methods, as we will see later.

The results above rely on the assumption that the loss is
strongly convex w.r.t. the classifier head, which is satisfied
by widely used losses with L2 regularization, such as cross-
entropy loss or mean-square error.

4 MOMENT ALIGNMENT: A UNIFYING
FRAMEWORK

While various approaches to DG exist, they appear largely
disconnected, and, to the best of our knowledge, no prior
work has explicitly drawn connections between them. In
this section, we unify IRM, gradient matching, and Hessian
matching under the CMA framework. We further establish a
duality between feature learning space and classifier fitting.

4.1 IRM AS MOMENT ALIGNMENT

When the features are fixed and satisfy the IRM assumption,
minimizing the IRMv1 objective (Arjovsky et al., 2020)

LIRM := LERM + ϖ
1

K

K∑

i=1

↔⇑ωLµi (ω) ↔22, (IRMv1)



recovers such invariant optimal predictor, and Theorem 1
provides an upper bound on the target error. On the other
hand, when the fixed features do not satisfy the IRM as-
sumption, The IRMv1 penalty seeks a parameter ω whose
average gradient norm is small, thereby minimizing g in the
upper bound in Theorem 3.

4.2 GRADIENT AND HESSIAN MATCHING AS
MOMENT ALIGNMENT

Their general gradient and Hessian matching objectives are
either the following or their variants:

LGM := LERM + ω
1
K

K∑

i=1

∥∥∥→ωLµi (ω)↑→ωL (ω)
∥∥∥
2

2
(GM)

LHM := LERM + ω
1
K

K∑

i=1

↓Hµi (ω)↑H (ω)↓2F (HM)

By their definitions, gradient matching and Hessian match-
ing are special cases of moment alignment, reducing the
first-order and second-order terms, respectively, in the up-
per bound of the transfer measure. Notably, when the IRM
assumption holds, the penalty in Eq. (GM) will favor an
invariant optimal predictor.

From the results in Section 3, aligning both gradients and
Hessians improves DG over aligning only one of them. This
explains the success of HGP and Hutchinson (Hemati et al.,
2023) over methods that focus on gradient matching (Shi
et al., 2021; Parascandolo et al., 2020; Koyama and Yam-
aguchi, 2020) or Hessian matching (Rame et al., 2022; Sun
and Saenko, 2016).

4.3 FEATURE MATCHING AS MOMENT
ALIGNMENT

So far, we have discussed moment alignment under fixed
features. Next, we establish a connection between the deriva-
tives of the classifier and moments of features, where the
classifier is assumed to be the last layer of an NN, i.e., linear
predictor over the learned features.

For a softmax classifier, the prediction is a function of x↗ω,
where x is a feature vector and ω is the classifier. Therefore,
⇑n

ωω(ω) involves the n
th moment of x, and by matching

the n
th order derivatives w.r.t. the classifier head, we are

matching the n
th moment of x across domains. Another

view of this duality is that by the symmetry between x

and ω, we can derive analogously results in Section 3 with
optimization target x.

IRM (Ahuja et al., 2020) and CORAL (Sun and Saenko,
2016) are two concrete examples of this feature-parameter
duality. Going from the feature space to the parameter space,
CORAL (Sun and Saenko, 2016) matches the feature co-
variance, namely the second moment of x. Thus, CORAL
is approximately Hessian matching in the parameter space.
We refer interested readers to Proposition 4 in Hemati et al.

(2023) for discussion on the attributes aligned by CORAL.
Conversely, starting from the parameter space and moving
to the feature space, the penalty term in Eq. (IRMv1) regu-
larizes the gradient w.r.t. the classifier, corresponding to the
first-moment alignment in the feature space, i.e., aligning
the features themselves.

5 CLOSED-FORM MOMENT
ALIGNMENT

Motivated by the theory of moment alignment, we introduce
Closed-Form Moment Alignment (CMA), a DG algorithm
that minimizes the following objective:

LCMA =
1

K

K∑

i=1

Lµi + ϱ↔⇑ωLµi ↗⇑ωL↔22

+ς↔Hµi ↗H↔2F ,

(CMA)

where ⇑ωL = 1
K

∑K
i=1 ⇑ωLµi and H = 1

K

∑K
i=1 Hµi

are the average gradient and Hessian. Similar to HGP and
Hutchinson (Hemati et al., 2023), CMA aligns the gradients
and Hessians across domains, but we compute the deriva-
tives in closed form. In Appendix F, we connect CMA and
other DG algorithms.

Gradient and Hessian matching (Koyama and Yamaguchi,
2020; Shi et al., 2021; Hemati et al., 2023; Rame et al.,
2022), despite their theoretical and empirical success, often
incur significant computations due to multiple backpropaga-
tions for a single update. CMA bypasses this limitation by
analytically computing gradient and Hessian penalty.

5.1 CLOSED-FORM GRADIENT AND HESSIAN
CMA computes the gradient and Hessian penalty without
requiring additional backpropagations. Leveraging closed-
form solutions for the gradients and Hessians of the cross-
entropy loss w.r.t. a linear classifier, CMA reduces computa-
tional overhead. The derivations are provided in Appendix G.

5.2 MEMORY-EFFICIENT HESSIAN MATCHING
The Hessian of the cross-entropy loss for a single feature
vector x w.r.t. a softmax classifier is:

H =
(
diag(p)↗ pp

↗
)
⇔

(
xx

↗
)
,

where p ↑ RC is a vector of predicted probabilities,
diag(p) ↑ RC↘C is the diagonal matrix with elements
of p, xx↗ ↑ Rd↘d, and ⇔ is the Kronecker product.

The dimension of H is quadratic in the number of classes
C and feature dimension d, which could be memory-
prohibitive under many features or classes. To mitigate this
issue, we use properties of the Frobenius norm to avoid
storing the full dC ⇓ dC matrix. Instead, we compute:

↔H↔2F = tr
(
diag(p)↗ pp

↗
)
tr
(
xx

↗
)

(11)

which only requires storing a C ⇓ C and a d⇓ d matrix.



5.3 TRADE-OFFS IN HESSIAN COMPUTATION
Our code offers two versions of Hessian computation, each
with its trade-offs. The first version directly computes the
Frobenius norm of the Kronecker product, which is faster
but requires more memory. The second version avoids stor-
ing the full Kronecker product matrix, reducing memory
usage, but requires computing traces for all pairs of Hes-
sians. We lay out the derivation in Appendix G.1.4.

6 EXPERIMENTS
We validate CMA through both quantitative and qualitative
analyses. First, we describe the experimental setup, includ-
ing dataset details and model training procedures. We then
present quantitative results, evaluating CMA’s performance
under the IRM assumption and scenarios where it does not
hold. Finally, we conduct qualitative analyses to better un-
derstand CMA’s effect on worst-group performance and
feature moment alignment.

6.1 IMPLEMENTATION
Linear Probing (IRM) We evaluate liner probing perfor-
mance on Waterbirds (Sagawa et al., 2020), CelebA (Liu
et al., 2015), and MultiNLI (Williams et al., 2018). To en-
force the IRM assumption, we apply the Invariant-feature
Subspace Recovery (ISR) algorithm (Wang et al., 2022,
2023), which provably yields features that induce an op-
timal invariant predictor. For Waterbirds and CelebA, we
extract features from a CLIP-pretrained Vision Transformer
(ViT-B/32). For MultiNLI, we fine-tune a BERT model us-
ing the code and hyperparameters in Sagawa et al. (2020),
then extract features from the fine-tuned model. These fea-
tures are transformed using the ISR-mean algorithm (Wang
et al., 2022, 2023). Finally, we train a linear classifier using
ERM, Fishr (Rame et al., 2022), and CMA objectives.

Full Fine-Tuning (Non-IRM) We run end-to-end fine-
tuning on a subset of DomainBed (Gulrajani and Lopez-Paz,
2020), applying gradient and Hessian regularization from
Eq. (CMA) to the classifier head while back-propagating
the loss through both the linear classifier and the encoder.
Specifically, penalizing large gradient variance aligns gra-
dients across domains, while the ERM loss drives gradi-
ents toward zero. The two mechanisms promote a small
gradient norm for each domain, aligning with the the-
ory in Section 3.4 and Section 4.3. Given recent empiri-
cal evidence supporting strong DG capabilities of Vision
Transformers (Ghosal et al., 2022; Zheng et al., 2022; Sul-
tana et al., 2022), we have selected ViT-S as the back-
bone for DomainBed experiments. Using the DomainBed
codebase (Gulrajani and Lopez-Paz, 2020), we compare
ERM (Vapnik, 1999), CORAL (Sun and Saenko, 2016),
Fishr (Rame et al., 2022), and CMA by fine-tuning small
Vision Transformers (Steiner et al., 2022; Dosovitskiy et al.,
2021; Wightman, 2019). For more implementation details,
please refer to Appendix H.1 and Appendix H.2.

Figure 1: Hessian Penalty and worst-case accuracy on
CelebA. Both curves represent the mean values, with shaded
areas indicating ± one standard deviation over five runs.

6.2 QUANTITATIVE RESULTS
Our goal is not to claim that CMA surpassed existing algo-
rithms but to demonstrate that our framework encompasses
gradient matching (e.g., Koyama and Yamaguchi (2020))
and Hessian matching (e.g., Sun and Saenko (2016); Rame
et al. (2022); Hemati et al. (2023)). To this end, our exper-
imental results confirm that CMA achieves performance
comparable to state-of-the-art moment matching methods.

Linear Probing (IRM) From Table 2, we observe that CMA
consistently outperforms ERM on worst-group accuracy
while maintaining comparable average accuracy across all
datasets. Compared to Fishr, CMA achieves higher worst-
group and average accuracy on two out of three datasets.
In contrast, Fishr’s performance varies, underperforming
ERM on CelebA. Compared to CORAL, CMA achieves
better worst-group performance across all datasets, while
maintaining similar average accuracy.

Full Fine-Tuning (Non-IRM) We follow Rame et al. (2022)
to employ the test-domain model selection method, where
the validation set is a holdout set from the test domain.
As shown in Table 3, CMA achieves comparable perfor-
mance to Fishr, with both methods consistently outperform-
ing ERM. This result supports the performance guarantee
in Corollary 4 and validates our unified framework. Please
refer to Appendix H.3 for per-dataset and training-domain
validation performance.

6.3 QUALITATIVE RESULTS
Effect of Hessian Matching We analyze CMA’s training
progression and its impact on worst-group performance by
plotting the Hessian loss:

ς

K

K∑

i=1

↔Hµi(ω)↗H(ω)↔2F

for linear probing on the CelebA dataset, with the same
hyperparameters as those reported for accuracy in Table 2
(ϱ = 5000, ς = 100, penalty annealing iterations = 4000).
As shown in Figure 1, near step 4000, when the gradient and
Hessian matching terms take effect, there is a sharp drop in
Hessian penalty, accompanied by a noticeable increase in
worst-case accuracy, aligning with our theory that aligning
Hessians across domains improves worst-case performance.



Table 2: Test accuracy (%) with standard error over three datasets. Each experiment is repeated over 5 seeds.

Method Waterbirds (CLIP ViT-B/32) CelebA (CLIP ViT-B/32) MultiNLI (BERT)
Average Worst-Group Average Worst-Group Average Worst-Group

ERM 89.52 ± 0.10 84.58 ± 0.20 78.76 ± 0.03 72.22 ± 0.39 81.15 ± 0.30 68.82 ± 0.64
CORAL 89.67 ± 0.14 84.85 ± 0.22 78.81 ± 0.03 73.00 ± 0.22 81.22 ± 0.21 68.71 ± 0.52
Fishr 89.79 ± 0.10 86.08 ± 0.10 73.95 ± 0.86 69.63 ± 1.20 81.35 ± 0.16 71.55 ± 1.20
CMA 90.11 ± 0.17 86.16 ± 0.29 77.87 ± 0.04 74.16 ± 0.10 81.30 ± 0.25 69.72 ± 0.66

Table 3: DomainBed results with test-domain validation model selection.

Algorithm ColoredMNIST RotatedMNIST VLCS PACS TerraIncognita Avg

ERM 54.5 ± 0.2 97.8 ± 0.1 76.9 ± 0.3 80.2 ± 0.5 36.5 ± 0.5 69.2
CORAL 55.7 ± 0.5 98.0 ± 0.0 75.9 ± 0.2 80.2 ± 0.2 33.6 ± 0.5 68.7
Fishr 62.0 ± 1.7 97.9 ± 0.0 77.5 ± 0.5 81.5 ± 0.2 37.3 ± 1.1 71.2
CMA 62.5 ± 0.9 97.9 ± 0.1 77.4 ± 0.8 81.6 ± 0.3 38.4 ± 1.2 71.5

Figure 2: Comparison of first and second-moment differ-
ences across test domains for the VLCS dataset. The plots
show the progression of moment differences over training
steps for ERM, Fishr, and CMA. ERM fails to align the
feature moments while CMA achieves the most effective
alignment. The shaded regions represent one standard devi-
ation above and below the mean across test domains.

Feature Moment Matching As discussed in Section 4.3,
we illustrate the effect of CMA in matching the moments
of features across domains. Figure 2 presents the moment
differences between domains on VLCS dataset, where we
average over all test domains. While ERM shows signifi-
cant discrepancies in feature moments between domains,
both Fishr and CMA successfully reduce these differences.
Notably, CMA is more effective in reducing both first and
second-moment disparities.

6.4 RUNTIME AND MEMORY COMPARISON
We report the average time per step (in seconds) and memory
usage (in GB) for each (algorithm, dataset) pair in Table 4
and Table 5. It is important to note that, in addition to the
algorithms’ efficiency, the wall-clock time also depends

on the hardware status at the time of training. We include
additional comparisons of two versions of CMA, HGP, and
Hutchinson algorithms, where “CMA (Speed)” uses the
time-efficient Hessian computation, while “CMA (Memory)”
uses the memory-efficient Hessian computation.

Among the methods compared, only CMA and Hutchin-
son compute full Hessian matrices. While CMA is inher-
ently slower than Fishr, CORAL, and HGP, which rely on
diagonal approximations of the Hessian, it remains more
time-efficient than Hutchinson’s.

To highlight the scalability of “CMA (Memory)”, we run
small-scale experiments on OfficeHome, a dataset with 65
classes. In this setting, “CMA (Speed)” requires more than
75 GB of memory and could not run on a single GPU,
whereas “CMA (Memory)” completed successfully with
peak usage under 13.7 GB.

7 LIMITATIONS AND FUTURE
DIRECTIONS

Our analysis assumes that the target distribution is in the
convex hull of the source distributions, which may not al-
ways hold or be verifiable in practice. It might be of future
interest to relax this convexity assumption to accommodate
a broader range of target distributions.

While closed-form Hessians eliminate the need for
sampling-based approximations or multiple backpropaga-
tions, they introduce scalability challenges. Specifically, the
Hessian matrix of the cross-entropy loss w.r.t. the classifier
head scales quadratically with the number of classes and
feature dimensions. To remedy this challenge, we provide
a memory-efficient alternative for computing the Hessian
Frobenius norm, albeit at the cost of longer computation
time. Future work could explore Hessian approximations to
further balance efficiency and accuracy.

The primary focus of this work is on a unifying theory
for DG using gradient and Hessian matching. Our theory
suggests that aligning higher-order derivatives improves



Table 4: Wall-clock time across datasets (in seconds). Algorithms are grouped by the type of moment matching. For each
dataset, we bold the most time-efficient algorithm within each category.

Algorithm ColoredMNIST (2) RotatedMNIST (10) VLCS (5) PACS (7) TerraIncognita (10) OfficeHome (65)

No Moment Matching
ERM 0.0278 0.0403 0.4019 0.3620 0.4216 0.4064

Approximate Second-Order
CORAL 0.0457 0.1003 0.6241 0.5244 0.7697 0.5279
Fishr 0.0925 0.1331 0.7472 0.6757 0.6057 0.6600
HGP 0.0657 0.1292 0.6048 0.6729 0.6045 0.4977

Exact Second-Order
Hutchinson 4.1663 9.7935 7.7604 7.3284 7.7270 7.8446
CMA (Speed) 0.0676 0.1326 0.7354 0.7266 0.7421 –
CMA (Memory) 0.1226 0.4723 0.8874 1.1699 1.0685 0.8495

Table 5: Memory usage across datasets (in GB). For each dataset, we bold the most memory-efficient algorithm within each
category.

Algorithm ColoredMNIST (2) RotatedMNIST (10) VLCS (5) PACS (7) TerraIncognita (10) OfficeHome (65)

No Moment Matching
ERM 0.1550 0.3728 6.8865 6.8865 6.8865 6.8868

Approximate Second-Order
CORAL 0.1391 0.3190 6.7093 6.7093 6.7093 6.7097
Fishr 0.3192 0.7936 14.1433 14.1436 14.1441 14.1522
HGP 0.1477 0.3099 5.6835 5.6835 5.6836 5.6843

Exact Second-Order
Hutchinson 0.1502 0.3496 5.7047 5.7125 5.7284 6.0029
CMA (Speed) 0.2867 1.4537 13.9511 14.8391 16.7272 ~75
CMA (Memory) 0.3914 0.7776 13.6447 13.6448 13.6448 13.6474

generalization, but in practice, even second-order alignment
is computationally demanding. The feasibility and potential
benefits of higher-order alignments remain open questions,
presenting intriguing directions for future research.

8 CONCLUSIONS
We introduced a unified theory of moment alignment for
DG, providing upper bounds by examining differences in
derivatives. The moment alignment framework reinterprets
IRM, gradient matching, and Hessian matching, explaining
the success of algorithms that match both gradients and
Hessians across domains. Additionally, we established the
duality between moments of features and derivatives of
classifier heads, a novel perspective that we believe will
open new research avenues.

Inspired by our theory, we proposed Closed-Form Moment
Alignment (CMA), a DG algorithm that aligns gradients
and Hessians analytically, avoiding the computational in-
efficiencies of previous methods that relied on repeated
backpropagation or sampling-based Hessian estimations.
We validated the efficacy of CMA through both quantita-
tive and qualitative experiments. The results demonstrated
that CMA achieves performance on par with state-of-the-
art methods (e.g., Fishr). These findings not only confirm

our theoretical predictions but also underscore the practical
benefits of our moment alignment framework.
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A PROOF OF PROPOSITIONS

Proposition 2 (upper bound on transfer measure). Given S = {µi}Ki=1 and some ! ↓ H. Define L↑

µi
:= infh↓! Lµi(h)

for all i ↑ [K], LT
↑ := infh↓! LT (h), µ↑ := argminµ maxi↓[K] T! (µi↔µ), and LS (h) := Lµ→ (h). Under Assumption 2,

we have:

T!(S↔T ) ↘ 1

2
max
i ↔=j

T! (µj↔µi) (3)

Proof.
T!(S↔T ) = T! (µ

↑↔T )

= T!

(
µ
↑

∥∥∥∥∥

K∑

i=1

wiµi

)

= sup
h↓!

K∑

i=1

wiLµi(h)↗ L↑

T
↗
(
Lµ→(h)↗ L↑

µ→
)

↘ sup
h↓!

K∑

i=1

wi

[
Lµi(h)↗ L↑

T
↗

(
Lµ→(h)↗ L↑

µ→
)]

↘ sup
h↓!

K∑

i=1

wi

[
Lµi(h)↗ L↑

µi
↗

(
Lµ→(h)↗ L↑

µ→
)]

↘
K∑

i=1

wi sup
h↓!

[
Lµi(h)↗ Lµ→

i
↗

(
Lµ→(h)↗ L↑

µ→
)]

=
K∑

i=1

wiT! (µ
↑↔µi)

↘ max
i↓[k]

T! (µ
↑↔µi)

(12)

On the other hand, let jmax := argmaxj↓[K] T! (µj↔µ↑) and for any fixed i, let µmid be such that T! (µjmax↔µi) =
T! (µjmax↔µmid) + T! (µmid↔µi). By the definition µ

↑ we have:

1

2
max
i ↔=j

T! (µj↔µi) ⇐
1

2
T! (µjmax↔µi) ⇒i ↑ [K]

=T! (µmid↔µi) ⇒i ↑ [K], ≃µmid

⇐T! (µ
↑↔µi) ⇒i ↑ [K]

(13)



Combine Eq. (12) and Eq. (13), we have:

T!(S↔T ) ↘ max
i↓[k]

T! (µ
↑↔µi) ↘

1

2
max
i ↔=j

T! (µj↔µi) (14)

Proposition 3 (target error bound – multiple source domains). Given ! ↓ H, for any h ↑ !, the target error is bounded
by:

LT (h) ↘ LS(h) + L↑

T
↗ L↑

S
+

1

2
max
i ↔=j

T! (µj↔µi) (4)

Proof. Apply Proposition 1 on µ
↑ and T , we have:

LT (h) ↘Lµ→(h) + L↑

T
↗ L↑

µ→ +T!(µ
↑↔T )

=LS(h) + L↑

T
↗ L↑

S
+T!(S↔T )

↘LS(h) + L↑

T
↗ L↑

S
+

1

2
max
i ↔=j

T! (µj↔µi)

(15)

The second line follows from the definition of µ↑ and the last line follows from Proposition 2.

B PROOF OF THEOREMS

Theorem 1 (moment alignment under IRM). Given K source domains S = {µi}Ki=1 and a target domain T ↑
conv(µ1, . . . , µk), assume the losses Lµi ⇒i ↑ [K] are ε-strongly convex w.r.t. the classifier head and M -times differen-
tiable. Under the IRM assumption (Assumption 1), let ω↑ be the optimal invariant predictor, ! = argmin(LS , ϑS)H :={
ω | hω↓H : maxi↓[K] (Lµi (ω)↗ Lµi (ω

↑)) ↘ ϑS

}
, and ϑ = 2ωS

ε , we have:

T!(S↔T ) ↘ max
i ↔=j

( N∑

n=2

1

n!
ϑ

n
2 ↔⇑n

ωLµj (ω
↑)

↗ ⇑n
ωLµi (ω

↑) ↔nF
)
+ o(ϑ

N
2 )

(5)

for any integer 2 ↘ N ↘ M . ⇑n
ωL(ω) is an n

th order tensor with dimension d⇓ · · ·⇓d (n times) where ⇑n
ωL(ω)(k1,··· ,kn)

=
ϑn

L(ω)
ϑωk1 ...ϑωkn

.

Proof. From the ε-strong convexity of Lµi (ω), we can write for all i

Lµi (ω) ⇐ Lµi (ω
↑) + (ω ↗ ω↑)↗⇑ωLµi (ω

↑)
︸ ︷ 

=0

+
ε

2
↔ω ↗ ω↑↔22

=↖ Lµi (ω)↗ Lµi (ω
↑) ⇐ ε

2
↔ω ↗ ω↑↔22

(16)

So for any ω ↑ !
ε

2
↔ω ↗ ω↑↔22 ↘ max

i↓[n]
(Lµi (ω)↗ Lµi (ω

↑)) ↘ ϑS (17)

If we define set F2 as
F2 =


ω :

ε

2
↔ω ↗ ω↑↔22 ↘ ϑS


(18)

then Eq. (17) implies ! ↙ F2.

From Proposition 2, we have

T!(S↔T ) ↘1

2
max
i ↔=j

T! (µj↔µi)

=
1

2
max
i ↔=j

sup
ω↓!

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

=
1

2
max
i ↔=j

sup
≃ω⇐ω→

≃
2
2⇒ω

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)
(19)



To bound the terms inside the supremum, which is the difference in excess risk of µj and µi, we write the Taylor expansion
of Lµi (ω) around ω↑:

Lµi (ω) = Lµi (ω
↑) + (ω ↗ ω↑)↗⇑ωLµi (ω

↑)
︸ ︷ 

=0

+
N∑

n=2

1

n!
⇑n

ωLµi
(ω↑)(ω ↗ ω↑)⇑n + o(↔ω ↗ ω↑↔N2 )

=↖ Lµi (ω)↗ Lµi (ω
↑) =

N∑

n=2

1

n!
⇑n

ωLµi
(ω↑)(ω ↗ ω↑)⇑n + o(↔ω ↗ ω↑↔N2 )

(20)

Here ⇔n denote the nth-order tensor product, where (ω ↗ ω↑)⇑n
(k1,··· ,kn)

is the product of
(
ωk1 ↗ ω↑

k1

)
, . . . ,

(
ωkn ↗ ω↑

kn

)
.

Similarly, expanding Lµj (ω) around ω↑, we have:

Lµj (ω)↗ Lµj (ω
↑) =

N∑

n=2

1

n!
⇑n

ωLµj
(ω↑)(ω ↗ ω↑)⇑n + o(↔ω ↗ ω↑↔N2 ) (21)

These two equations together give an upper bound on the difference in excess risk of domain j and i:

Lµj (ω)↗ Lµj (ω
↑)↗ (Lµi (ω)↗ Lµi (ω

↑))

=
N∑

n=2

1

n!

(
⇑n

ωLµj
(ω↑)↗⇑n

ωLµi
(ω↑)

)
(ω ↗ ω↑)⇑n + o(↔ω ↗ ω↑↔N2 )

↘
N∑

n=2

1

n!

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F

∥∥∥(ω ↗ ω↑)⇑n
∥∥∥
F
+ o(↔ω ↗ ω↑↔N2 )

↘
N∑

n=2

1

n!

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
↔ω ↗ ω↑↔n2 + o(↔ω ↗ ω↑↔N2 )

(22)

Taking the supremum over ω ↑ F2 on both sides, for any i ∝= j, we have:

sup
≃ω⇐ω→

≃
2
2⇒ω

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

↘
N∑

n=2

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
+ o(ϑ

N
2 )

(23)

Finally, by taking the maximum over i and j, i ∝= j, on both sides, we can bound the transfer measure as follows:

T!(S↔T ) ↘1

2
max
i ↔=j

sup
≃ω⇐ω→

≃
2
2⇒ω

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

↘max
i ↔=j

N∑

n=2

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
+ o(ϑ

N
2 )

(24)

Theorem 3 (moment alignment). Given K source domains S = {µi}Ki=1 and target domain T ↑ conv(µ1, . . . , µk).
Assume loss Lµi , ⇒i ↑ [K] are ε-strongly convex and M -times differentiable w.r.t. the classifier head. Let P({Lµi}Ki=1) :=
{ω : maxi↓[K](ω

→ ↗ ω)↗⇑ωLµi(ω) ⇐ 0, ⇒ω→ ↑ !} (a set of weakly Pareto optimal points for the objectives {Lµi}Ki=1),
and let ω↑ ↑ argminω↓P

maxi↓[K] ↔⇑Lµi (ω) ↔2, ! :=
{
ω ↑ H : maxi↓[K] (Lµi (ω)↗ Lµi (ω

↑)) ↘ ϑS

}
, and ϑ = 2ωS

ε ,
we have:

T!(S↔T ) ↘1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj (ω
↑

j )

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+
N∑

n=1

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F

)

+o(ϑ
N
2 )

(7)



where ω↑

i is the minimizer of Lµi (ω). Furthermore, suppose Assumption 3 holds with g > 0:

T!(S↔T ) ↘ϑ
1
2 g +

1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj

(
ω↑

j

)

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+
N∑

n=2

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F

)

+o(ϑ
N
2 )

(8)

Proof. From the ε-strong convexity of Lµi (ω), we can write for all i

Lµi (ω) ⇐ Lµi (ω
↑) + (ω ↗ ω↑)↗⇑ωLµi (ω

↑) +
ε

2
↔ω ↗ ω↑↔22

=↖ ϑS ⇐ max
i↓[K]

Lµi (ω)↗ Lµi (ω
↑) ⇐ max

i↓[K]
(ω ↗ ω↑)↗⇑ωLµi (ω

↑)

︸ ︷ 
⇓0 since ω→ is weak Pareto Optimal

+
ε

2
↔ω ↗ ω↑↔22 ⇐ ε

2
↔ω ↗ ω↑↔22 (25)

Now define F2 as

F2 =


ω : max

i↓[K]

ε

2
↔ω ↗ ω↑↔22 ↘ ϑS


=


ω : max

i↓[K]
↔ω ↗ ω↑↔22 ↘ 2ϑS

ε
= ϑ


(26)

From Eq. (25), we have ! ↓ F2, and thus T!(S↔T ) ↘ TF2(S↔T ).

TF2(S↔T ) ↘1

2
max
i ↔=j

TF2 (µj↔µi)

=
1

2
max
i ↔=j

sup
ω↓F2

(
Lµj (ω)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω)↗ Lµi (ω

↑

i ))
) (27)

We write the Taylor expansion of Lµi (ω) and Lµj (ω) around ω↑ as done in the proof of Theorem 1:

Lµi (ω) = Lµi (ω
↑) + (ω ↗ ω↑)↗⇑ωLµi (ω

↑) +
N∑

n=2

1

n!
⇑n

ωLµi
(ω↑)(ω ↗ ω↑)⇑n + o(↔ω ↗ ω↑↔N2 )

Lµj (ω) = Lµj (ω
↑) + (ω ↗ ω↑)↗⇑ωLµj (ω

↑) +
N∑

n=2

1

n!
⇑n

ωLµj
(ω↑)(ω ↗ ω↑)⇑n + o(↔ω ↗ ω↑↔N2 )

Combining the two equations above, we have:

Lµj (ω)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω)↗ Lµi (ω

↑

i ))

↘Lµj (ω
↑) + (ω ↗ ω↑)↗⇑ωLµj (ω

↑) +
N∑

n=2

1

n!
⇑n

ωLµj
(ω↑)(ω ↗ ω↑)⇑n ↗ Lµi

(
ω↑

j

)

↗
(
Lµi (ω

↑) + (ω ↗ ω↑)↗⇑ωLµi (ω
↑) +

N∑

n=2

1

n!
⇑n

ωLµi
(ω↑)(ω ↗ ω↑)⇑n ↗ Lµi (ω

↑

i )

)
+ o(↔ω ↗ ω↑↔N2 )

↘Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω

↑)↗ Lµi (ω
↑

i ))

+
N∑

n=1

1

n!

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
↔ω ↗ ω↑↔n2 + o(↔ω ↗ ω↑↔N2 )

Taking the supremum over ω ↑ F2 on both sides, for any i ∝= j, we have:

sup
ω↓F2

Lµj (ω)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω)↗ Lµi (ω

↑

i )) +
N∑

n=1

1

n!

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
↔ω ↗ ω↑↔n2 + o(↔ω ↗ ω↑↔N2 )

↘Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i ) +
N∑

n=1

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
+ o(ϑ

N
2 )



Finally, maximizing over i ∝= j on both sides, the transfer measure is bounded by:

T!(S↔T ) ↘1

2
max
i ↔=j

sup
ω↓F2

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

↘1

2
max
i ↔=j

Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i )

+
N∑

n=2

1

n!
ϑ

n
2

∥∥⇑n
ωLµj

(ω↑)↗⇑n
ωLµi

(ω↑)
∥∥
F
+ o(ϑ

N
2 )

(28)

We have proved the first part of the theorem. Now suppose there exists a constant g such that
minω↓H maxi↓[K] ↔⇑ωLµi (ω) ↔2 ↘ g, we can further upper bound the first-order term (n = 1) by g:

ϑ
1
2

∥∥⇑ωLµj (ω
↑)↗⇑ωLµi (ω

↑)
∥∥
F
=ϑ

1
2

∥∥⇑ωLµj (ω
↑)↗⇑ωLµi (ω

↑)
∥∥
2

↘ϑ
1
2

∥∥⇑ωLµj (ω
↑)
∥∥
2
+ ↔⇑ωLµi (ω

↑)↔2
↘2ϑ

1
2 g

(29)

Replacing the first-order term in Eq. (28) with this upper bound completes the proof.

Definition 4 (weakly Pareto optimal (Chang, 2015)). A point ω ↑ ! is weakly Pareto optimal iff ⊋ another point ω⇔ ↑ !
such that Lµi(ω

⇔) < Lµi (ω) ⇒i.

Lemma 1. For convex {Lµi}Ki=1, ω ↑ P({Lµi}Ki=1) iff ω is weakly Pareto optimal.

Proof. ( =↖ ) Let ω ↑ P({Lµi}Ki=1), by convexity, we have for all ω⇔ ↑ ! and i ↑ [K],

Lµi(ω
⇔) ⇐ Lµi(ω) + (ω⇔ ↗ ω)↗⇑ωLµi(ω) ⇐ Lµi(ω),

where the gradient term is non-negative by ω ↑ P({Lµi}Ki=1). Thus, ω is weakly Pareto optimal as for all ω⇔ ↑ ! there is
some i ↑ [K] such that Lµi(ω

⇔) ⇐ Lµi(ω).
( ′= ) Suppose for contradiction that ω /↑ P({Lµi}Ki=1), Then there exists some ω⇔ such that (ω⇔ ↗ ω)↗⇑ωLµi(ω) < 0 for
all i ↑ [K]. Using the Taylor expansion,

Lµi(ω
⇔) = Lµi(ω) + (ω⇔ ↗ ω)↗⇑ωLµi(ω) +O

(
↔ω⇔ ↗ ω↔22

)
.

Choosing a scaled step ω↑ = ω+ϑ(ω⇔↗ω) to still satisfy (ω↑↗ω)↗⇑ωLµi(ω) < 0. For small enough ϑ → 0, O
(
↔ω↑ ↗ ω↔22

)

becomes negligible and
Lµi(ω

↑) → Lµi(ω) + (ω↑ ↗ ω)↗⇑ωLµi(ω) < Lµi(ω),

and ω is not weakly Pareto optimal. By contrapositive, we have shown that if ω is weakly Pareto optimal, ω ↑ P({Lµi}Ki=1).

Note that the convexity assumption is necessary, as we can construct a simple one-dimensional counterexample where
φ ↑ P({Lµi}Ki=1) but not weakly Pareto optimal. We consider two functions L1(φ) and L2(φ) given by:

L1(φ) = sin φ, L2(φ) = φ
3
, ! = R.

At φ = 0, we compute the gradients:

L⇔

1(0) = cos(0) = 1,

L⇔

2(0) = 0.

Thus, for any φ
⇔ ↑ R:

(φ⇔ ↗ 0)L⇔

1(0) = φ
⇔
,

(φ⇔ ↗ 0)L⇔

2(0) = 0.



Taking the maximum, we have:
max{φ⇔, 0} ⇐ 0, ⇒φ⇔.

therefore φ = 0 ↑ P(L1,L2).

However, φ = 0 is not weakly Pareto optimal. Consider φ↑ = ↗0.5. The function values at φ↑ are:

L1(φ
↑) = sin(↗0.5) = ↗

∞
2

2
< L1(0) = 0,

L2(φ
↑) = (↗0.5)3 = ↗0.125 < L2(0) = 0.

Since there exists φ↑ such that both Li(φ↑) < Li(φ) for all i, φ = 0 is not weakly Pareto optimal.

C PROOF OF COROLLARIES

Corollary 2 (hessian alignment under IRM). Under the same setup as in Theorem 1, we have:

T!(S↔T ) ↘ 1

2
ϑmax

i ↔=j
↔Hµj (ω

↑)↗Hµi (ω
↑) ↔F + o(ϑ) (6)

where H(ω) denotes the Hessian matrix of L(ω).

Proof. We use the same F2 as in the proof of Theorem 1 and have ! ↙ F2.

From Proposition 2, we have

T!(S↔T ) ↘1

2
max
i ↔=j

T! (µj↔µi)

=
1

2
max
i ↔=j

sup
ω↓!

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

=
1

2
max
i ↔=j

sup
≃ω⇐ω→

≃
2
2⇒ω

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)
(30)

To bound the terms inside the supremum, which is the difference in excess risk of µj and µi, we write the Taylor expansion
of Lµi (ω) around ω↑:

Lµi (ω) = Lµi (ω
↑) + (ω ↗ ω↑)↗⇑ωLµi (ω

↑)
︸ ︷ 

=0

+
1

2
(ω ↗ ω↑)↗Hµi (ω

↑) (ω ↗ ω↑) + o(↔ω ↗ ω↑↔22)

=↖ Lµi (ω)↗ Lµi (ω
↑) =

1

2
(ω ↗ ω↑)↗Hµi (ω

↑) (ω ↗ ω↑) + o(↔ω ↗ ω↑↔22)

(31)

Similarly, expand Lµj (ω) around ω↑, we have:

Lµj (ω)↗ Lµj (ω
↑) =

1

2
(ω ↗ ω↑)↗Hµj (ω

↑) (ω ↗ ω↑) + o(↔ω ↗ ω↑↔22) (32)

These two equations together give an upper bound on the difference in excess risk of domain j and i:

Lµj (ω)↗ Lµj (ω
↑)↗ (Lµi (ω)↗ Lµi (ω

↑))

=
1

2
(ω ↗ ω↑)↗Hµj (ω

↑) (ω ↗ ω↑)↗ 1

2
(ω ↗ ω↑)↗Hµi (ω

↑) (ω ↗ ω↑) + o(↔ω ↗ ω↑↔22)

=
1

2
(ω ↗ ω↑)↗

(
Hµj (ω

↑)↗Hµi (ω
↑)
)
(ω ↗ ω↑) + o(↔ω ↗ ω↑↔22)

↘1

2
↔ω ↗ ω↑↔22↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(↔ω ↗ ω↑↔22)

(33)

Taking the supremum over ω ↑ F2 on both sides, for any i ∝= j, we have:

sup
≃ω⇐ω→

≃
2
2⇒ω

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)
↘ 1

2
ϑ↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(ϑ)



Finally, by taking the maximum over i and j, i ∝= j, on both sides, we can bound the transfer measure as follows:

T!(S↔T ) ↘1

2
max
i ↔=j

sup
≃ω⇐ω→

≃
2
2⇒ω

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

↘1

2
ϑmax

i ↔=j
↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(ϑ)

(34)

Corollary 4 (hessian alignment). Under the same setup as in Theorem 3, we have:

T!(S↔T ) ↘1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj

(
ω↑

j

)

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+ϑ
1
2

∥∥⇑ωLµj (ω
↑)↗⇑ωLµj (ω

↑)
∥∥
2

+
1

2
ϑ
∥∥Hµj (ω

↑)↗Hµi (ω
↑)
∥∥
F

)
+ o(ϑ)

(9)

where ω↑

i is the minimizer of Lµi (ω).

Furthermore, suppose Assumption 3 holds with g > 0:

T!(S↔T ) ↘ϑ
1
2 g +

1

2
max
i ↔=j

(
Lµj (ω

↑)↗ Lµj

(
ω↑

j

)

↗ (Lµi (ω
↑)↗ Lµi (ω

↑

i ))

+
1

2
ϑ
∥∥Hµj (ω

↑)↗Hµi (ω
↑)
∥∥
F

)
+ o(ϑ)

(10)

Proof. Use the same F2 as in the proof of Theorem 3, we have ! ↓ F2, and T!(S↔T ) ↘ TF2(S↔T ).

TF2(S↔T ) ↘1

2
max
i ↔=j

TF2 (µj↔µi)

=
1

2
max
i ↔=j

sup
ω↓F2

(
Lµj (ω)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω)↗ Lµi (ω

↑

i ))
) (35)

We write the Taylor expansion of Lµi (ω) and Lµj (ω) around ω↑:

Lµi (ω) = Lµi (ω
↑) + (ω ↗ ω↑)↗⇑ωLµi (ω

↑) +
1

2
(ω ↗ ω↑)↗Hµi(ω ↗ ω↑) + o(↔ω ↗ ω↑↔22) (36)

Lµj (ω) = Lµj (ω
↑) + (ω ↗ ω↑)↗⇑ωLµj (ω

↑) +
1

2
(ω ↗ ω↑)↗Hµj (ω ↗ ω↑) + o(↔ω ↗ ω↑↔22) (37)

Combining the two equations above, we have:

Lµj (ω)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω)↗ Lµi (ω

↑

i ))

=Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i ) + (ω ↗ ω↑)↗
(
⇑ωLµj (ω

↑)↗⇑ωLµi (ω
↑)
)

+
1

2
(ω ↗ ω↑)↗

(
Hµj (ω

↑)↗Hµi (ω
↑)
)
(ω ↗ ω↑) + o(↔ω ↗ ω↑↔22)

↘Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i ) + ↔ω ↗ ω↑↔2↔⇑ωLµj (ω
↑)↗⇑ωLµi (ω

↑) ↔2

+
1

2
↔ω ↗ ω↑↔22

(
Hµj (ω

↑)↗Hµi (ω
↑)
)
+ o(↔ω ↗ ω↑↔22)



Taking the supremum over ω ↑ F2 on both sides, for any i ∝= j, we have:

sup
ω↓F2

Lµj (ω)↗ Lµj

(
ω↑

j

)
↗ (Lµi (ω)↗ Lµi (ω

↑

i ))

= sup
ω↓F2

Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i ) + ↔ω ↗ ω↑↔2↔⇑ωLµj (ω
↑)↗⇑ωLµi (ω

↑) ↔2

+
1

2
↔ω ↗ ω↑↔22↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(↔ω ↗ ω↑↔22)

↘Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i ) + ϑ
1
2 ↔⇑ωLµj (ω

↑)↗⇑ωLµi (ω
↑) ↔2

+
1

2
ϑ↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(ϑ)

Finally, maximizing over i ∝= j on both sides, the transfer measure is bounded by:

T!(S↔T ) ↘1

2
max
i ↔=j

sup
ω↓F2

(
Lµj (ω)↗ Lµj (ω

↑)↗ (Lµi (ω)↗ Lµi (ω
↑))

)

↘1

2
max
i ↔=j

Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i )

+ ϑ
1
2 ↔⇑ωLµj (ω

↑)↗⇑ωLµi (ω
↑) ↔2 +

1

2
ϑ↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(ϑ)

(38)

Suppose a constant upper bound g on the maximum gradient norm exists, replacing the first-order term with 2ϑ
1
2 g, we get:

T!(S↔T ) ↘1

2
max
i ↔=j

Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i ) + 2ϑ
1
2 g

+
1

2
ϑ↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(ϑ)

↘ ϑ
1
2 g +

1

2
max
i ↔=j

Lµj (ω
↑)↗ Lµj

(
ω↑

j

)
+ Lµi (ω

↑)↗ Lµi (ω
↑

i )

+
1

2
ϑ↔Hµj (ω

↑)↗Hµi (ω
↑) ↔2 + o(ϑ)

(39)

D OTHER TRANSFER MEASURES

Proposition 4 (upper bounds on symmetric and realizable transfer measures). Given S = {µi}Ki=1 and some ! ↓
H. Define L↑

µi
:= infh↓! Lµi(h) for all i ↑ [K], LT

↑ := infh↓! LT (h), µ↑ := argminµ maxi↓[K] T! (µi↔µ), and
LS (h) := Lµ→ (h). Under Assumption 2, we have:

T!(S, T ) ↘ 1

2
max
i ↔=j

T! (µj↔µi)

Tr
!(S, T ) ↘ 1

2
max
i ↔=j

Tr
! (µj , µi)

(40)

Proof. We first prove an upper bound on symmetric transfer measure T!(S, T ).

From Definition 3 and Eq. (3), we have:

T!(S, T ) := max {T!(S↔T ),T!(T ↔S)}

↘ max


1

2
max
i ↔=j

T! (µj↔µi) ,
1

2
max
i ↔=j

T! (µi↔µj)



=
1

2
max
i ↔=j

T! (µj↔µi)

(41)

Now we prove an upper bound on realizable transfer measure Tr
!(S, T )



First, define µ
↑ := argminε maxi↓[K] T! (µi, µ), and since T is a convex combination of distribution in S:

Tr
!(S, T ) = sup

h↓!
|LT (h)↗ LS(h)|

= sup
h↓!



K∑

i=1

wiLµi(h)↗ Lµ→(h)



= sup
h↓!



K∑

i=1

wi [Lµi(h)↗ Lµ→(h)]



↘
K∑

i=1

wi sup
h↓!

|Lµi(h)↗ Lµ→(h)|

=
K∑

i=1

wiT
r
! (µi, µ

↑)

↘ max
i↓[k]

Tr
! (µi, µ

↑)

(42)

Similar to one-sided transfer measure, let jmax := argmaxj↓[K] T
r
! (µj , µ

↑), and for any fixed , let µmid be such that
Tr

! (µjmax , µi) = Tr
! (µjmax , µmid) + Tr

! (µmid, µi). By the definition µ
↑ we have:

1

2
max
i ↔=j

Tr
! (µj , µi) ⇐

1

2
Tr

! (µjmax , µi) ⇒i ↑ [K]

=Tr
! (µmid, µi) ⇒i ↑ [K], ≃µmid

⇐Tr
! (µ

↑
, µi) ⇒i ↑ [K]

(43)

Finally, combining Eq. (42) and Eq. (43), we have:

Tr
!(S, T ) ↘ 1

2
max
i ↔=j

Tr
! (µj , µi) (44)

E MORE RELATED WORK

Domain Generalization. The goal of domain generalization is to learn a predictor using labeled data from multiple source
domains that generalize well to related but unseen target domains (Blanchard et al., 2011; Muandet et al., 2013). The
standard baseline for DG is Empirical Risk Minimization (ERM) (Vapnik, 1999), which minimizes the average loss across
training domains. However, ERM does not generalize well under distribution shifts in the presence of spurious correlation
in data (Arjovsky et al., 2020). Various approaches have been proposed to address the shortcomings of ERM. Below we
discuss some approaches relevant to this work, Invariant Risk Minimization, gradient matching, and hessian matching.

Invariant Risk Minimization. The Invariant Risk Minimization (IRM) principle (Arjovsky et al., 2020) proposes jointly
learning a feature extractor and a classifier such that the optimal classifier remains consistent across different training
environments. The IRM objective, by definition, is non-convex and bi-level, so the authors proposed IRMv1, a regularized
objective in place of the bi-level one. Later, we make the connection between our proposed loss objective and IRMv1.
Followup works (Rosenfeld et al., 2021; Ahuja et al., 2022b; Wang et al., 2022, 2023; Krueger et al., 2021; Ahuja et al.,
2022a, 2020; Kamath et al., 2021) showed that IRM and its variants do not improve over ERM unless the test domain are
similar enough to the training domains.

Gradient Matching. Gradient matching methods seek alignment between domain-level gradients. For instance,
IGA (Koyama and Yamaguchi, 2020) penalizes large Euclidean distances between gradients, Fish (Shi et al., 2021)
increases the gradient inner products, and AND-Mask (Parascandolo et al., 2020) only updates the parameters whose
gradients are of the same sign across all environments. Despite their good performance, Hemati et al. (2023) showed that
aligning domain-level gradients does not guarantee small generalization loss to the test domain.

Hessian Matching. Most relevant to our approach, a recent line of DG works align the domain level Hessians w.r.t. the
classifier head to promote consistency (Parascandolo et al., 2020) across domains. Due to the complexity of computing
the Hessian matrices, prior works find Hessian approximations instead. CORAL Sun and Saenko (2016) minimizes the



difference in feature covariance matrices between source and target domains, which is approximately Hessian matching.
Fishr (Rame et al., 2022) uses domain-level gradient variance as its hessian approximation. The idea of aligning gradients
and Hessian simultaneously was first proposed by Hemati et al. (2023), who also discussed what attributes are aligned by
gradients and Hessian matching.

Domain-Invariant Feature Learning. Initially proposed by Ben-David et al. (2010), invariant representation learning seeks
various types of invariance across domains. For instance, Ganin et al. (2016); Li et al. (2018); Tzeng et al. (2017); Hoffman
et al. (2017) employ adversarial training, whereas Muandet et al. (2013); Long et al. (2015) uses kernel method, Huang et al.
(2025) seeks invariant parameters, and Peng et al. (2019); Zellinger et al. (2019); Sun and Saenko (2016) match the feature
moments for domain adaptation. In particular, Sun and Saenko (2016) introduces CORAL, which matches the covariance
between features in the source and target domains and achieves state-of-the-art performance as evaluated by Gulrajani
and Lopez-Paz (2020) and Hemati et al. (2023). Most of the invariant representation learning methods are originally for
domain adaptation, where one has access to unlabelled data from the test domain. In the case of multi-domain generalization,
these methods can be adopted by finding invariance across training domains. Nevertheless, Zhao et al. (2019) shows that
matching the features is insufficient for DG.

F CONNECTION BETWEEN CMA AND EXISTING METHODS

By alignment of both gradient and Hessians in closed form, CMA implicitly integrates multiple existing algorithms. Below
we build such connections.

F.1 CMA AS INVARIANT RISK MINIMIZATION

We draw connections between IRM and CMA objectives. Fixing a feature extractor and letting the classifier head be
parameterized by φ, the IRMv1 objective in Arjovsky et al. (2020) is:

LIRM := LERM + ϖ
1

K

K∑

i=1

↔⇑ωLµi (ω) ↔22 (IRMv1)

On the other hand, we can rewrite the gradient variance regularization in Eq. (CMA) as

1

K

K∑

i=1

↔⇑ωLµi (ω)↗⇑ωL (ω)↔22 =
1

K

K∑

i=1

↔⇑ωLµi (ω) ↔22 ↗ ↔ 1

K

K∑

j=1

⇑ωLµj (ω) ↔22 (45)

The second term on the right-hand side, the norm of the average gradients, is small for a classifier ω↑ well-trained on LERM,
and the first term resembles the regularization in Eq. (IRMv1). Therefore, penalizing large gradient variance can be seen as
enforcing the learned classier ω to be invariant across domains. Under the same assumptions as in Theorem 1, at the optimal
invariant predictor ω↑, the norm of the average of gradients is zero, making the gradient variance term in Eq. (CMA) exactly
the gradient penalty in Eq. (IRMv1). By setting ς = 0 in Eq. (CMA), we recover Eq. (IRMv1).

F.2 CMA AS GRADIENT MATCHING

While multiple version of gradient matching losses have been proposed (Shi et al., 2021; Koyama and Yamaguchi, 2020;
Parascandolo et al., 2020), we focus on the most recent one proposed by Shi et al. (2021), defined as:

LGM := LERM + ϖ
1

K




K∑

i=1

↔⇑ωLµi (ω)↔
2
2 ↗

∥∥∥∥∥∥

K∑

j=1

⇑ωLµj (ω)

∥∥∥∥∥∥

2

2



 (GM)

Comparing the second term with Eq. (45), and ignoring the constant factor ϖ, the difference is K⇐1
K2 ↔

∑K
j=1 ⇑ωLµj (ω) ↔22.

When an invariant optimal predictor ω↑ exists, this difference vanishes, and setting ς = 0 in Eq. (CMA) recovers Eq. (GM).



F.3 CMA AS HESSIAN MATCHING

We first compare CMA with Fishr (Rame et al., 2022), a state-of-the-art DG algorithm based on Hessian matching. The
principle behind Hessian matching is to match the domain-level Hessian matrices by minimizing the objective:

LHM := LERM + ϖ
1

K

K∑

i=1

↔Hµi ↗H↔2F (HM)

Rame et al. (2022) achieves this by approximating the Hessian matrices with their diagonals. In contrast, we proposed to
compute the Hessian matrices analytically. Thus, by setting ϱ = 0, Eq. (CMA) is the closed-form of the Fishr objective.

Next, we compare CMA with the two objectives proposed in Hemati et al. (2023), namely HGP and Hutchinson’s method
(eq. (18) and eq. (23) in Hemati et al. (2023)):

LHGP = LERM +
1

K

K∑

i=1

ϱ↔⇑ωLµi ↗⇑ωL↔22 + ς↔Hµi⇑ωLµi ↗H⇑ωL↔22 (HGP)

where H⇑ωL = 1
K

∑K
i=1 Hµi⇑ωLµi is the average Hessian-gradient product.

LHutchinson = LERM +
1

K

K∑

i=1

ϱ↔⇑ωLµi ↗⇑ωL↔22 + ς↔Dµi ↗D↔22 (Hutchinson)

where Dµi is the Hessian diagonal estimated by Hutchinson’s method (Bekas et al., 2007). Like CMA, HGP, and Hutchinson
match the first and second moment across domains. Unlike CMA, HGP approximates the second-order penalties with
Hessian-gradient products, while Hutchinson’s method estimates them with Hessian diagonals which themselves are
estimated by sampling. In other words, Eq. (CMA) is the closed form of Eq. (HGP) and Eq. (Hutchinson).

G GRADIENT AND HESSIAN DERIVATIONS

G.1 CROSS-ENTROPY LOSS

G.1.1 Gradient

Given the logistic regression model without a bias term, parameterized by ω = {w1, . . . ,wC}, where wc ↑ Rd for all

c ↑ [C], and the prediction pc =
ew

↑
c x

∑C
j=1 e

w↑
j x

, the cross-entropy loss for a single example (x, y) is defined as:

ω (ω) = ↗
C∑

c=1

yc log (pc)

To find the gradient of the loss w.r.t. wk, we compute:

⇑wkω(ω) = ↗
C∑

c=1

yc⇑wk log (pc)

= ↗
C∑

c ↔=k

yc⇑wk log (pc)↗ yk⇑wk log (pk)

=
C∑

c ↔=k

ycpkx↗ ykx (1↗ pk)

= (1↗ yk)pkx↗ ykx (1↗ pk)

= (pk ↗ yk)x

From the second to the third equality, we use the facts that



⇑wkpc =


pk (1↗ pk)x, if c = k

↗pcpkx, if c ∝= k

⇑wk log (pc) =


(1↗ pk)x, if c = k

↗pkx, if c ∝= k

G.1.2 Hessian

To find the Hessian matrix, we compute the second-order partial derivatives. We consider two cases:

Case 1: k = c:
⇑wk⇑wkω(ω) = ⇑wk ((pk ↗ yk)x)

= ⇑wkpkx

= pk (1↗ pk)xx
↗

Case 2: k ∝= c:
⇑wk⇑wcω(ω) = ⇑wk ((pc ↗ yc)x)

= ⇑wkpcx

= ↗pcpkxx
↗

Combining these results, we write the Hessian matrix as:

H =
(
diag(p)↗ pp

↗
)
⇔
(
xx

↗
)

Where:

• diag(p) ↑ RC↘C is the diagonal matrix with elements of p, p1, . . . , pC , on the diagonal.

• xx
↗ ↑ Rd↘d.

• ⇔ denotes the Kronecker product.

G.1.3 Higher Order Derivatives of Logistic Regression Classifier

We show by induction that the n
th order derivative of the cross-entropy loss w.r.t. the weight vector w of a binary-logistic

regression classifier is:

⇑n
wω(ω) = Qn(p)x

⇑n (46)

where Qn(p) is some scalar-valued polynomial function of p.

Proof. By induction.

Base Case (n = 1):

For n = 1, the gradient of the cross-entropy loss ω w.r.t. w is:

⇑1
wω(ω) = (p↗ y)x

This matches the form Q1(p)x⇑1 for Q1(p) = p↗ y. We have that the base case holds.

Inductive Step: Assume Eq. (46) holds for some n

⇑n
wω(ω) = Qn(p)x

⇑n



we need to show that it also holds for (n+ 1):

⇑n+1
w ω(ω) = Qn (p)x

⇑(n+1)

By the product rule:
⇑n+1

w ω(ω) =⇑wQn (p)x
⇑n

= [⇑wQn (p)]x
⇑n

And by chain rule:
⇑wQn (p) = [⇑pQn (p)]⇑wp

The first gradient is the derivative of a polynomial function of p, which is again a polynomial function of p. The second
term, as we have seen in Appendix G.1.2, is p(1↗ p)x. Now putting everything together, we have

⇑n+1
w ω(ω) = [⇑wQn (p)]x

⇑n

= [⇑wQn (p)] p(1↗ p)xx⇑n

=Qn+1 (p)x
⇑n+1

which completes the induction.

G.1.4 Memory-Efficient Hessian Frobenius Norm

Note that to obtain the Frobenius of the hessian, we do not need to compute the Kroncker product explicitly:

↔H↔2F =tr
(
diag(p)↗ pp

↗
)
tr
(
xx

↗
)

To compute the Hessian regularization
1

K

K∑

i=1

↔Hµi (ω)↗H (ω)↔2F

without saving the dC ⇓ dC Kroncker product, we first expand the Frobenius norm:

↔Hµi(ω)↗H(ω)↔2F = ↔Hµi(ω)↔2F +

∥∥∥∥∥∥
1

K

K∑

j=1

Hµj (ω)

∥∥∥∥∥∥

2

F

↗ 2


Hµi(ω),

1

K

K∑

j=1

Hµj (ω)



F

= ↔Hµi(ω)↔2F +
1

K2

∥∥∥∥∥∥

K∑

j=1

Hµj (ω)

∥∥∥∥∥∥

2

F

↗ 2

K2

K∑

j=1


Hµi(ω),Hµj (ω)


F

= ↔Hµi(ω)↔2F +
1

K2

K∑

j,l=1

∈Hµj (ω),Hµl(ω)∋F ↗ 2

K2

K∑

j=1

∈Hµi(ω)Hµj (ω)∋F

We need

Hµi(ω),Hµj (ω)


F

for all i, j ↑ [K]. For the ease of notation, we denote the two environmental Hessians as
H

e1 ,He2 , Ee as the indices of points in environment e, and Hi as the Hessian of the sample i.

∈He1 , H
e2∋F =

1

|Ee1 ||Ee2 |
∑

i↓Ee1

∑

j↓Ee2

∈Hi,Hj∋F

=
1

|Ee1 ||Ee2 |
∑

i↓Ee1

∑

j↓Ee2

tr(HiHj)

=
1

|Ee1 ||Ee2 |
∑

i↓Ee1

∑

j↓Ee2

tr

(diag(p(i))↗ p

(i)
p
(i)↗)⇔ x

(i)
x
(i)↗((diag(p(j))↗ p

(j)
p
(j)↗)⇔ x

(j)
x
(j)↗)



=
1

|Ee1 ||Ee2 |
∑

i↓Ee1

∑

j↓Ee2

tr

diag(p(i) ↗ p

(i)
p
(i)↗) diag(p(j) ↗ p

(j)
p
(j)↗)


tr

x
(i)
x
(i)↗)(x(j)

x
(j)↗)





The last expression only involves matrices of dimensions C ⇓ C and d⇓ d.

However, this memory-efficient method requires computing the trace for all pairs of Hessians, Hi and Hj , where (i, j) ↑
(Ee1 , Ee2) for each combination of environments e1, e2 ↑ [K].

G.2 MEAN-SQUARED ERROR LOSS

We derive the gradient and Hessian of the mean-squared error (MSE) loss. Given a linear regression model parameterized by
w ↑ Rd, where the prediction is ŷ = w

↗
x, the mean-squared error loss for a single example (x, y) is defined as:

ω(w) =
1

2
(ŷ ↗ y)2 =

1

2
(w↗

x↗ y)2

G.2.1 Gradient

To find the gradient of the loss w.r.t. w, we compute:

⇑wω(ω) = ⇑w
1

2
(w↗

x↗ y)2

= (w↗
x↗ y)⇑w(w↗

x↗ y)

= (w↗
x↗ y)x

= (ŷ ↗ y)x

G.2.2 Hessian

To find the Hessian matrix, we compute the second-order partial derivatives:

H (x) = ⇑w⇑wω(ω) = ⇑w(ŷ ↗ y)x

= ⇑w(w↗
x↗ y)x

= xx
↗

Note that the second-order derivative of MSE loss is a constant matrix w.r.t. w, so higher-order derivatives are tensors with
all zeros.

H EXPERIMENTAL DETAILS

H.1 LINEAR PROBING

For the linear probing experiments in Section 6, we conduct a grid search for both ϱ and ς in Eq. (CMA) over the set {1,
10, 100, 1000, 2000, 5000, 10000}. We also implement penalty annealing, wherein the gradient and Hessian penalties are
initially set to zero and activated only after a predetermined number of updates. This approach ensures that the classifier,
to which further regularization is subsequently applied, already achieves a small ERM loss. For Fishr, we perform a grid
search over the suggested hyperparameter ranges by Rame et al. (2022). The grid search is first conducted using a single
random seed. From this, the top five performing sets of hyperparameters are chosen. These sets are then evaluated using four
additional random seeds. Lastly, we report the test performance of the hyperparameter set that demonstrates the highest
worst-group validation accuracy over five runs. Here we summarize the best hyperparameters found for Fishr and CMA. We
train on Waterbirds for 300 epochs, CelebA for 50 epochs, and MultiNLI for 3 epochs. Since ISR projected features have
small dimensions (we follow the implementation in Wang et al. (2022) and choose 100), the experiment is computationally
efficient to run, taking five days on four RTX 6000 GPUs.

H.1.1 Datasets

Waterbirds Sagawa et al. (2020): This is an image dataset, where each image is a combination of a bird image from the
CUB (Wah et al., 2011) and a background image from the Place dataset (Zhou et al., 2018). Each combined image is labelled



Table 6: Best hyperparameters for Fishr and CMA on each dataset.

Algorithm Parameter Waterbirds CelebA MultiNLI

Fishr regularization strength ϖ 100 10 10000
ema ↼ 0.945 0.9225 0.99
annealing iterations 2800 12000 600

CORAL regularization strength ↼ 0.256 0.16 0.45

CMA gradient regularization strength ϱ 10 5000 5000
hessian regularization strength ς 1000 100 1
annealing iterations 2100 4000 0

with class y ↑ Y = {waterbird, landbird} and environment e ↑ E = {water_background, land_background}. Each (y, e)
pair forms a group, for a total of 4 groups G = Y ⇓ E . There are 4795 training samples, and the smallest group has 56.

CelebA Liu et al. (2015): This is an image dataset composed of celebrity faces. Following Sagawa et al. (2020) and Wang
et al. (2022, 2023), we consider a hair color classification task (Y = {blond, dark}) with gender as spurious feature
(E = {male, female}). The four groups are formed by G = Y ⇓ E . There are 162k training samples, and the smallest group,
males with blond hair, has 1387 samples.

MultiNLI (Williams et al., 2018): This is a text dataset for natural language inference. Each sample is composed of one
hypothesis and one premise, and the task is to determine whether the given premise entails, is neutral with, or contradicted
by the hypothesis (Y = {contradiction, neutral, entailment}). The spurious attribute is the presence of negation words,
for example, “no”, “nobody”, “never”, and “nothing” (E = {no_negation, negation}). The presence of negation words
spuriously correlated with y = contradiction (Gururangan et al., 2018). There are six groups formed by G = Y ⇓ E , for a
total of 206175 samples in the training set. The smallest group, entailment with negations, contains 1521 examples.

H.2 FINE-TUNING

For the fine-tuning experiments in Section 6, we employ two model selection strategies from DomainBed (Gulrajani and
Lopez-Paz, 2020): test-domain model selection and training-domain model selection. In test-domain model selection, we
select the best hyperparameters based on a validation set that follows the same distribution as the test data. On the other
hand, for training-domain model selection, the best hyperparameters are chosen based on performance across holdout sets
from the training domains. Contrary to the original DomainBed setup, which randomizes batch sizes, we standardize the
batch size to 64 for ColoredMNIST and RotatedMNIST, and to 32 for real image datasets. For each algorithm, we randomly
search for 5 sets of hyperparameters and 3 runs each. The experiments take around 10 days on 4 RTX 6000 GPUs.

Despite the original DomainBed codebase recommending a search over 20 sets of hyperparameters per algorithm, per
dataset, and per test domain, we restricted our search to only 5 sets due to time and resource constraints. Even with this
limitation, our approach required running 1260 experiments. While this reduced number of searches means the algorithms
might not have achieved their full potential, this limitation applies equally to all algorithms, ensuring a fair comparison. As
our experiments are intended as proof-of-concept rather than comprehensive evaluations, we argue that the results in this
section are sufficient to validate the effectiveness of our algorithm.

In the main text, we follow Rame et al. (2022) and report the test-domain validation performance. In practice, test-domain
model selection is more realistic compared to training-domain model selection, as practitioners are unlikely to deploy a
model without validating it with at least some small-scale data from the target domain. Additionally, as discussed in Rame
et al. (2022) and Teney et al. (2022), by the definition of distribution shift, one cannot expect a model selected on a validation
set sampled from the same distribution as the training set to generalize to an unseen test distribution. For completeness, we
also present the training-domain validation performance in Appendix H.3.

H.2.1 Datasets

Colored MNIST (Arjovsky et al., 2020): This is an image dataset derived from the MNIST handwritten digit classification
dataset (LeCun et al., 2010). The task is to identify whether a digit is in 0-4 or 5-9 (Y = {0 ↗ 4, 5 ↗ 9}). The digits are



colored red or blue. The environments contain colored digits correlated differently (E = {+90%,+80%,↗90%}) with the
target label. In the first environment, the green color has a 90% correlation with class 5-9; similar correlations apply in the
other two environments. Additionally, there is a 25% chance of label flipping. The dataset contains 70,000 examples of
dimensions (2, 28, 28) categorized into 2 classes.

Rotated MNIST (Ghifary et al., 2015): This is another variant of MNIST, where each environment e ↑ E =
{0, 15, 30, 45, 60, 75} is composed of digits rotated by e degrees. The dataset contains 70,000 examples of dimensions (1,
28, 28) and 10 classes.

PACS (Li et al., 2017): This is a 7-class classification dataset, where each image is either photo, art painting, cartoon, or
sketch (E = {photo, art_painting, cartoon, sketch}). There are 9,991 samples, each with dimensions (3, 224, 224).

VLCS (Fang et al., 2013): This is a 5 class images dataset with images from environments E =
{Caltech101, LabelMe, SUN09,VOC2007}. There are 10,729 samples of dimension (3, 224, 224).

Terra Incognita (Beery et al., 2018): This is a dataset of photographs taken from various locations, each corresponds to one
environment (E = {L100, L38, L43, L46}). The DomainBed benchmark includes a subset of Terra Incognita, comprising
24,788 samples with dimensions (3, 224, 224) across 10 classes.

H.3 DOMAINBED RESULTS

H.3.1 Model selection: training-domain validation set

ColoredMNIST

Algorithm +90% +80% -90% Avg

ERM 72.2 ± 0.2 72.9 ± 0.2 10.1 ± 0.1 51.7
CORAL 71.7 ± 0.4 73.2 ± 0.1 10.2 ± 0.1 51.7
Fishr 72.6 ± 0.3 73.3 ± 0.1 10.6 ± 0.2 52.2
CMA 71.4 ± 0.3 72.8 ± 0.1 10.0 ± 0.2 51.4

RotatedMNIST

Algorithm 0 15 30 45 60 75 Avg

ERM 95.3 ± 0.2 98.6 ± 0.1 99.1 ± 0.1 98.9 ± 0.0 98.9 ± 0.0 96.1 ± 0.2 97.8
CORAL 95.7 ± 0.2 98.7 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 99.0 ± 0.0 96.5 ± 0.0 98.0
Fishr 95.6 ± 0.3 98.5 ± 0.1 99.1 ± 0.1 99.0 ± 0.1 99.0 ± 0.1 96.4 ± 0.0 97.9
CMA 95.2 ± 0.2 98.4 ± 0.2 98.9 ± 0.0 98.9 ± 0.0 98.9 ± 0.1 96.5 ± 0.2 97.8

VLCS

Algorithm C L S V Avg

ERM 97.1 ± 0.1 62.3 ± 0.3 71.9 ± 0.7 77.2 ± 0.4 77.2
CORAL 96.3 ± 0.1 64.5 ± 0.4 72.4 ± 0.3 72.4 ± 1.7 76.4
Fishr 96.4 ± 0.6 63.3 ± 0.9 74.8 ± 0.6 76.2 ± 0.4 77.7
CMA 96.1 ± 0.6 63.2 ± 0.4 73.5 ± 0.4 78.9 ± 0.3 77.9

PACS

Algorithm A C P S Avg

ERM 80.2 ± 0.6 75.4 ± 0.2 95.9 ± 0.8 66.6 ± 0.3 79.5
CORAL 81.6 ± 0.6 74.9 ± 0.8 95.4 ± 0.6 64.9 ± 0.6 79.2
Fishr 83.1 ± 1.0 74.8 ± 0.5 97.2 ± 0.2 68.7 ± 0.8 81.0
CMA 83.3 ± 0.3 76.4 ± 0.2 96.1 ± 0.1 66.3 ± 0.7 80.5



TerraIncognita

Algorithm L100 L38 L43 L46 Avg

ERM 48.2 ± 2.1 17.8 ± 2.3 37.8 ± 1.0 34.2 ± 0.5 34.5
CORAL 39.1 ± 2.1 12.4 ± 2.1 36.0 ± 1.4 30.6 ± 0.9 29.5
Fishr 47.2 ± 2.1 16.5 ± 1.6 39.9 ± 1.9 33.2 ± 0.7 34.2
CMA 45.8 ± 3.3 19.0 ± 1.2 37.7 ± 0.3 33.4 ± 1.0 34.0

Averages

Algorithm ColoredMNIST RotatedMNIST VLCS PACS TerraIncognita Avg

ERM 51.7 ± 0.1 97.8 ± 0.1 77.2 ± 0.2 79.5 ± 0.3 34.5 ± 0.4 68.1
CORAL 51.7 ± 0.1 98.0 ± 0.0 76.4 ± 0.5 79.2 ± 0.1 29.5 ± 1.1 67.0
Fishr 52.2 ± 0.1 97.9 ± 0.1 77.7 ± 0.4 81.0 ± 0.3 34.2 ± 0.9 68.6
CMA 51.4 ± 0.0 97.8 ± 0.0 77.9 ± 0.1 80.5 ± 0.2 34.0 ± 0.7 68.3

H.3.2 Model selection: test-domain validation set (oracle)

ColoredMNIST

Algorithm +90% +80% -90% Avg

ERM 68.1 ± 1.1 70.5 ± 0.7 25.0 ± 1.9 54.5
CORAL 68.2 ± 0.9 72.0 ± 0.8 26.9 ± 0.1 55.7
Fishr 73.9 ± 0.3 73.5 ± 0.2 38.5 ± 5.2 62.0
CMA 70.9 ± 0.6 72.2 ± 0.2 44.3 ± 2.9 62.5

RotatedMNIST

Algorithm 0 15 30 45 60 75 Avg

ERM 95.2 ± 0.3 98.5 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.1 96.2 ± 0.2 97.8
CORAL 95.8 ± 0.1 98.7 ± 0.1 98.9 ± 0.0 99.2 ± 0.1 99.1 ± 0.0 96.5 ± 0.1 98.0
Fishr 95.7 ± 0.2 98.7 ± 0.0 99.0 ± 0.1 99.1 ± 0.1 98.8 ± 0.2 96.4 ± 0.0 97.9
CMA 95.7 ± 0.2 98.8 ± 0.1 98.9 ± 0.1 98.9 ± 0.0 98.9 ± 0.1 95.9 ± 0.6 97.9

VLCS

Algorithm C L S V Avg

ERM 96.4 ± 0.1 62.3 ± 1.0 72.1 ± 0.6 76.7 ± 0.3 76.9
CORAL 95.8 ± 0.3 63.1 ± 0.3 71.2 ± 0.3 73.5 ± 0.2 75.9
Fishr 96.0 ± 0.8 64.0 ± 0.1 73.5 ± 0.7 76.4 ± 0.6 77.5
CMA 95.8 ± 0.4 65.0 ± 0.5 70.6 ± 2.4 78.1 ± 0.3 77.4

PACS

TerraIncognita

H.3.3 Additional Baselines

We compare CMA against additional baselines on ColoredMNIST and RotatedMNIST datasets and discuss the results using
test-domain model selection. From Table 7, we observe that CMA has the second-highest average accuracy. Note that VREx
surpasses CMA on ColoredMNIST but has a substantially larger variance (4.6) compared to CMA (0.9).



Algorithm A C P S Avg

ERM 81.2 ± 0.9 73.4 ± 0.9 96.1 ± 0.6 70.3 ± 0.5 80.2
CORAL 80.6 ± 0.6 74.9 ± 0.2 95.9 ± 0.4 69.4 ± 0.2 80.2
Fishr 83.6 ± 0.6 74.9 ± 1.0 97.4 ± 0.3 70.1 ± 0.5 81.5
CMA 82.8 ± 0.7 76.7 ± 1.3 97.3 ± 0.2 69.5 ± 0.7 81.6

Algorithm L100 L38 L43 L46 Avg

ERM 50.2 ± 0.4 25.0 ± 1.9 36.3 ± 1.6 34.5 ± 0.1 36.5
CORAL 43.1 ± 3.2 21.4 ± 2.7 37.5 ± 0.6 32.1 ± 0.5 33.6
Fishr 49.9 ± 2.1 23.2 ± 1.8 41.4 ± 1.2 34.7 ± 0.7 37.3
CMA 47.5 ± 3.4 44.7 ± 2.4 29.0 ± 3.2 32.4 ± 0.9 38.4

Table 7: Model selection: test-domain validation set

Algorithm ColoredMNIST RotatedMNIST Avg

ERM 54.5 ± 0.2 97.8 ± 0.1 76.2
CORAL 55.7 ± 0.5 98.0 ± 0.0 76.9
Fishr 62.0 ± 1.7 97.9 ± 0.0 80.0
GroupDRO 59.6 ± 0.3 98.0 ± 0.1 78.8
DANN 53.5 ± 0.7 97.4 ± 0.0 75.5
CDANN 53.6 ± 0.4 97.6 ± 0.0 75.6
VREx 66.1 ± 4.6 97.8 ± 0.0 82.0
SelfReg 53.8 ± 0.8 98.0 ± 0.1 75.9
CMA 62.5 ± 0.9 97.9 ± 0.1 80.2

Table 8: Model selection: Training-domain validation set

Algorithm ColoredMNIST RotatedMNIST Avg

ERM 51.7 ± 0.1 97.8 ± 0.1 75.8
CORAL 51.7 ± 0.1 98.0 ± 0.0 74.9
Fishr 52.2 ± 0.1 97.9 ± 0.1 75.1
GroupDRO 51.9 ± 0.1 97.9 ± 0.1 74.9
DANN 51.7 ± 0.0 97.6 ± 0.2 74.6
CDANN 51.9 ± 0.2 97.8 ± 0.0 74.8
VREx 51.7 ± 0.1 97.7 ± 0.1 74.7
SelfReg 51.7 ± 0.0 98.1 ± 0.1 74.9
CMA 51.4 ± 0.0 97.8 ± 0.0 74.6

H.4 COMPARISON TO HGP

We compare CMA with the HGP algorithm (Hemati et al., 2023). Both algorithms align the gradients and Hessians, so we
expect their performances to be similar. We do not compare CMA with Hutchinson’s in (Hemati et al., 2023) due to the
time costs incurred by sampling-based Hessian estimation.



H.4.1 Linear Probing

As shown in Appendix H.4.1, the two algorithms have comparable performance overall, except for the CelebA dataset.
A potential explanation for this discrepancy is the differences in Hessian computations. Note that the original HGP does
not apply penalty annealing. We added penalty annealing to both methods to eliminate differences caused by this factor,
allowing us to focus on differences in the loss objectives.

Table 9: Test accuracy (%) with standard error. Each experiment is repeated over 5 random seeds.

Method Waterbirds (CLIP ViT-B/32) CelebA (CLIP ViT-B/32) MultiNLI (BERT)
Average Worst-Group Average Worst-Group Average Worst-Group

HGP 90.47 ± 0.06 86.48 ± 0.12 75.14 ± 0.12 71.68 ± 0.18 80.72 ± 0.62 69.35 ± 0.68
CMA 90.11 ± 0.17 86.16 ± 0.29 77.87 ± 0.04 74.16 ± 0.10 81.30 ± 0.25 69.72 ± 0.66

H.4.2 Fine-tuning

We also run fine-tuning experiments on HGP, strictly following the implementation in the code released by Hemati et al.
(2023). The hyperparameter search scheme in DomainBed leads to more uncertainty and the implementation of HGP in
Hemati et al. (2023) does not employ penalty annealing. Together with the differences in the Hessian computation, all of
these factors potentially lead to the differences in the performance of CMA and HGP.

Table 10: Model selection: test-domain validation set

Algorithm ColoredMNIST RotatedMNIST VLCS PACS TerraIncognita Avg

HGP 55.8 ± 0.2 97.8 ± 0.1 76.5 ± 1.2 79.8 ± 0.2 29.6 ± 0.9 67.9
CMA 62.5 ± 0.9 97.9 ± 0.1 77.4 ± 0.8 81.6 ± 0.3 38.4 ± 1.2 71.5

Table 11: Model selection: training-domain validation set

Algorithm ColoredMNIST RotatedMNIST VLCS PACS TerraIncognita Avg

HGP 51.8 ± 0.0 97.9 ± 0.1 75.8 ± 1.0 77.5 ± 1.0 28.6 ± 0.8 66.3
CMA 51.4 ± 0.0 97.8 ± 0.0 77.9 ± 0.1 80.5 ± 0.2 34.0 ± 0.7 68.3
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