A Single-Step, Sharpness-Aware Minimization is All
You Need to Achieve Efficient and Accurate Sparse
Training

Jie Ji, Gen Li, Jingjing Fu, Fatemeh Afghah, Linke Guo, Xiaoyong Yuan, Xiaolong Ma

Clemson University
jji@g.clemson.edu

Abstract

Sparse training stands as a landmark approach in addressing the considerable
training resource demands imposed by the continuously expanding size of Deep
Neural Networks (DNNs). However, the training of a sparse DNN encounters
great challenges in achieving optimal generalization ability despite the efforts
from the state-of-the-art sparse training methodologies. To unravel the mysteri-
ous reason behind the difficulty of sparse training, we connect network sparsity
with the structure of neural loss functions and identify that the cause of such
difficulty lies in a chaotic loss surface. In light of such revelation, we propose
S2-SAM, characterized by a Single-step Sharpness-Aware Minimization that is
tailored for Sparse training. For the first time, S2>-SAM innovates the traditional
SAM-style optimization by approximating sharpness perturbation through prior
gradient information, incurring zero extra cost. Therefore, S2-SAM not only ex-
hibits the capacity to improve generalization but also aligns with the efficiency
goal of sparse training. Additionally, we study the generalization result of S%-
SAM and provide theoretical proof for convergence. Through extensive experi-
ments, S2-SAM demonstrates its universally applicable plug-and-play functionality,
enhancing accuracy across various sparse training methods. Code available at
https://github.com/jjsrf/SSAM-NEURIPS2024.

1 Introduction

The arrival of the Artificial General Intelligence (AGI) [1] era has urged an ever-expanding realm of
artificial intelligence, bringing significant growth in deep neural networks (DNNs) depth and intricacy.
The efficient training of DNN has thus emerged as an uttermost imperative, demanding immediate
and concerted efforts.

To train an overparameterized, large-scale DNN efficiently while preserving its high accuracy, state-
of-the-art literature has introduced sparse training [2—6] as a straightforward solution that reduces both
parameter footprint and computation cost. With the presence of a large portion of zeros in the network,
both forward and backward computation for training can be saved by skipping those zeros, as well as
reducing the memory consumption since the zeros are not necessary to be stored. However, training
a sparse neural network is difficult since the optimization under sparse regime readily converges
to stationary points with a sub-optimal generalization accuracy (i.e., saddle points) [7]. Due to the
difficulty of directly (i.e., without the time-consuming linear interpolation) assessing if the sparse
solution is in the saddle point, finding workaround approaches for training a better sparse neural
network is critical, especially for the practical usage in efficient learning [8—17].

To address the above difficulty, many efforts have been made. For instance, the Static Sparse Training
(SST) such as the Lottery Ticket Hypothesis (LTH) [20], SNIP [21], GraSP [18] and SynFlow [22]

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/jjsrf/SSAM-NEURIPS2024

GraSP

Dense Ra=0311 Sparsity = 0.8 “Ra=1724 Sparsity=0.9 Ra=1924 Sparsity =0.95 Ra=2215 Sparsity=0.98 Ra=2.587

Del:se“ Ra=0.311 Sparsity =0.8 ﬂ;hz: 1115 Sparsity:ﬂ(.; R:; 1.561 Sparsity ::];; Ra“: 1.639 S]mrsityn=Z 0“98 an; =2.487
Figure 1: The loss surface visualization for training a sparse neural network using ResNet-32 on
CIFAR-10. We select two representative sparse training methods [18, 3] and incorporate different
levels of sparsity. We also quantify the loss surface behavior using coefficient Ra [19] to evaluate
sharpness. With increased sparsity, Ra becomes larger, indicating sharper and steeper surface.

determine a static sparse pattern at training initialization. On the other hand, Dynamic Sparse
Training (DST) such as SET [2], RigL [23], and MEST [3] iteratively updates the sparse topology
during training to find a better sparse model. However, those methods either suffer from suboptimal
generalization ability due to heuristic nature of their methodology or metric settings, or experience
difficulties in parameter setting and dynamic sparsity scheduling. With the increase of the sparsity,
these phenomenon become more severe.

We identify that the cause of the sparse network learning difficulties lies in the variable learning
dynamics, which is closely related to the network topology. When incorporating sparsity into a neural
network, the effective structure of the original network becomes narrower. According to the study
of neural loss function structure [24], a wide network resulted in flat minima and wide regions of
apparent convexity, which helps prevent the chaotic behavior that occurs during training. Evidently,
higher sparsity indicates a narrower structure, which suggests more chaotic behavior is expected
during training, thus degrading the accuracy. We perform different types of sparse training with
different levels of sparsity and plot the loss surface in Figure 1 to demonstrate the convexity of the
training behavior. According to the sharpness of the loss basin, we observe a transition from a smooth
and close-to-convex surface to a steep one as sparsity is introduced and increased. Since higher
sparsity levels lead to more chaotic behavior, in landscapes that are narrow and sharp with a large
Ra value, we might expect to encounter more chaotic training behavior that degrades generalization
ability.

It seems that achieving coexistence of sparsity and good generalization ability during training is
challenging. Therefore, we raise the following question: is there a simple, effective method that can
improve generalization ability of training a sparse neural network, without sacrificing efficiency
(sparsity) and incurring zero extra cost? We believe the answer to the above question lies in the
sharpness of the loss surface. Inspired by the Sharpness-Aware Minimization (SAM) [25] technique
that finds flatter minima that have uniformly low loss in nearby regions, we argue that such technique
is especially suitable for sparse training since the steep loss surface induced by sparsity can be directly
mitigated. However, to leverage sharpness for better generalization, SAM uses an additional full
training step (i.e., forward and backward propagation) to quantify and evaluate loss on the summation
of current weights and a constrained perturbation, which roughly doubles the computation of training.
Such extra costs contradict the goal of sparse training. Although some literature [26, 27] have been
proposed to reduce the computation cost for SAM, the computation is still significant, posing a
roadblock to the wide application of SAM to the realm of sparse training.

In this paper, we propose a novel approach to achieve sharpness-aware minimization with zero extra
cost, tailored for the sparse training regime to maintain efficiency while improving generalization
ability. It is the first time that a Single-step Sharpness-Aware Minimization is proposed for Sparse
training (S2-SAM). Different from the traditional two-step computation regime of SAM, S2-SAM
uses a unique single-step approach that leverages sharpness and trains weights with one training step.
Specifically, S2-SAM uses the weight gradients from the prior step to approximate the perturbation
to the weights, thus solving the sharpness evaluation without performing an extra full training step.
Therefore, S2.-SAM incurs zero extra cost to achieve sharpness-aware training, which aligns with the

efficiency goal of sparse training. We also study the generalization result of S>-SAM and provide
theoretical proof for convergence. We demonstrate that S2-SAM provides a straightforward plug-and-
play functionality on variety of sparse training methods, significantly boosting their accuracy. Our
contributions are summarized as follows:

* We identify that the difficulty of training a sparse neural network lies in the increasingly chaotic
and steep loss surface when sparsity is introduced and increased.

* We develop a novel Single-step Sharpness-Aware Minimization technique tailored for Sparse train-
ing (S2-SAM), and it is the first time that a SAM-style optimization with zero extra computation
cost has been proposed.

» We study the generalization result of S>-SAM and provide theoretical proof to demonstrate that
the S2-SAM is guaranteed for convergence.

« Through systematic evaluations, we show that S2-SAM provides a plug-and-play functionality
applied to a variety of sparse training methods, and consistently improves accuracy on different
networks and datasets.

2 Proposed Method

2.1 Preliminary of Sharpness-Aware Minimization

SAM is an optimization technique designed to enhance
neural network generalization and mitigate overfitting. It
minimizes the maximum loss in a neighborhood around
the current parameters, as opposed to solely focusing on
the loss at the current point. This approach identifies flatter
minima that have uniformly low loss in nearby regions,
ultimately contributing to improved generalization perfor-
mance.

Specifically, consider a family of models parameterized
bywe W C R<; L is the loss function, and S denotes
the training dataset. SAM aims to minimize the following
upper bound of the PAC-Bayesian generalization error: for
any p > 0,

W, (Original update)
Wiy
(]

R
19l
Wi

-
u’

N (9 F AWr)

oW, (S-SAM)

Figure 2: Ilustration of the optimization
mechanism of S2-SAM. The perturba-
tion on the current weights is approxi-
mated by the weight gradients from prior
step. Please see Section 2.2 for detailed
discussion.

A
L(w) < max Ls(w 4+ ¢) + = ||w]%. e
lellp<p 2
To solve the above minimax problem, at each iteration ¢, SAM updates the following steps:
€& = psign(VLs(we—1))|VLs(we—1)|?""
(IVLs(we_1)l12)"? ’)
wy =wi_1 — 10 (VLs (W1 +6) + Awy_1),

where 1/p+ 1/q = 1,p > 0 is a hyperparameter, A > 0 is the parameter for weight decay, and
n: > 0 is the learning rate. By setting p = ¢ = 2 and introducing an intermediate variable u;, we

have:

pVLs (Wi_1)
IVLs (we-1)|’
wy=wi_1 — 1 (VLs (wg) + Awy_q) .

U = wy1 +

2.2 The Proposed S?-SAM Method

3
“

As shown in Equation (2), SAM needs to compute the gradient twice at each iteration, involving
additional computation costs. Further, the two-step gradient computation is not parallelizable, which
presents challenges for deployment in large-scale training scenarios. Thus, we propose a new
algorithm that only needs to compute the gradient once in each iteration. Different from prior efficient
SAM works [26-28] aiming to reduce the computation by introducing periodically SAM steps or data

selection, our proposed framework S2-SAM achieves zero extra computation cost while maintaining
the improved generalization ability of sparse network training.

In Figure 2, we demonstrate that the perturbation on the current weights is approximated by the weight
gradients g;_1 from the prior step. The rational behind such design is that the gradient direction (i.e.,
w_o to w;_1) from prior step is optimizing the prior loss to a considerable extent, thus it can be
used to represent a sharp direction among all perturbation directions at ¢ — 1. Since the loss surface of
a sparse network is too chaotic, a perturbation with relatively high degree of sharpness (i.e., the prior
gradient) can still find a neighborhood with near-maximum loss. The following equations specifying
g¢—1 information are used to substitute the V Ls (w;_1) step in Equation (2). Thus, we only need to
compute the gradient once in each iteration:

W= w_q + PEt—1 ’ (5)
g1l

g: = VLis (u), (6)

Wy = W1 — N (8 + AWy_1). @)

Remark 1. The parameter p can vary in terms of iteration ¢ : p, = /c¢/t, where ¢ > 0 is a constant.

2.3 Generalization Analysis

In this section, we study the generalization result of S2-SAM. First, we give some notations, where
most of them are followed by [29, 30]. Let ws = A(S) be a solution that generated by a random
algorithm A based on dataset S. Recall that problem (8)

1 n
Inin Fis(w) n; (yir f (w3 xi)) ®
is called empirical risk minimization in the literature, and the true risk minimization is given by
vrvr.1€i1r/1v F(w) := Ex [y, f(w;x))]. 9)

We define its optimal solution: w, € argminyeyy F(w). Then the excess risk bound (ERB) is
defined as

Eas[F(ws)] = F(w.). (10)

It has been shown that the ERB can be upper bounded by optimization error and generalization
error [29, 30]. We notice that there are several works [29, 30] studying the generalization result
of SGD for non-convex setting under different conditions, such as bounded stochastic gradient
[Vwl(y, f(w;x))|| < G and decaying learning rate ; < ¢ with a constant ¢ > 0, where ¢t is the
optimization iteration. In this paper, we are not interested in establishing a fast rate in ERB under
different conditions, but we want to explore the generalization ability of S2-SAM with the fewest
possible modifications when building a bridge between theory and practice. For example, weight
decay is a widely used trick when training deep neural networks. With the use of weight decay, the

empirical risk minimization in practice becomes minyeyy {ﬁg (w) := Fs(w) + %HWHQ} Then,

we define some notations as follows. Specifically, let

. A 1 A
Fs(w) = Fs(w) + SlIwll* = = 3 £ (yi, f (wix)) + S,
i=1

By, f (wixs) (11

Plw) = Flw) + 5 |wl?

Followed by [30], we use the following decomposition of testing error:

Eas[F(ws)] — Es[Fs (ws)] < Es [Ea[Fs (ws) — Fs (w3)]] + Eas[F (ws) — Fs (ws))]
(12)
where the upper bound is the optimization error plus the generalization error.

Next, we present some notations and assumptions that will be used in the convergence analysis.
Throughout this paper, we also make the following assumptions for solving the problem (8).

Assumption 1. Assume the following conditions hold: (i) The stochastic gradient of Fis(w) is unbi-
ased, i.e., E(xy)[VU(y, f(w;X))] = VFs(w), and the variance of stochastic gradient is bounded,

i.e., there exists a constant o > 0, such that
2
Eiy) [IVE(y, f(wix)) = VEs(w)] } 3

(ii) Fis(w) is smooth with an L-Lipchitz continuous gradient, i.e., it is differentiable and there exists
a constant L > 0 such that ||VFs(w) — VEs(u)|| < L||w — u|,Vw,u e W.

Assumption 2. There exists a constant g > 0 such that 24 (Fs(w) — Fs(w3)) <
|V Fs(w)||*,Yw € W, where w35 € minwew Fs(w) is a optimal solution (PL condition [31]).

Now consider that A = S2-SAM. We define the gradient update rule gzn as follows

PV wl(y, f(w,x))
[Vwl(y, f(w,x))|’
gzn(w) =w-=7 (Vu‘g(ya f(ua X)) +)‘W)a (14)

Vul(y, f(u,x))

u=w+ (13)

Then we have the following lemma, which is similar to Lemma 2.5 and Lemma 4.2 in [29] that use
recursive definition through variable G’ and w;.

Lemma 1. Assume that {(y, f(w, X)) is L-smooth and B-Lipschitz. Let wi11 = G (W) and another
sequence Wi, = G' (W), then

Wi — W ||{(1+77L—77A)||wt—w;+znp, G—g
+ t4+1 (1 =nA) ||we — wi|| + 2nB, G#G

Please see the proof of Lemma 1 in Appendix B.

Theorem 1. Under Assumption 1, assume that {(y, f(w,x)) is L-smooth and B-Lipschitz, suppose
Fs(w) satisfies Assumption 2 and minyew Fs(w) < Fs (W%) + 3 lwel|? with A\ = 2L, where wy
is the intermediate solution of A, then

Fs (wo) L+ A)o? L 6B +1

ER,A,S [F (WR)] - ES [F (W*)] /M7T 2N n

IN

where A is SGD.

The w§ € minwew Fs(w) is an optimal solution, and we show that the generalization error is
bounded. Based on Lemma 1, the proof of Theorem 1 is derived in Appendix C.

3 Experimental Results

In this section, we carry out comprehensive experiments to demonstrate how S2-SAM improves
sparse training performance. We test S>-SAM on CIFAR-10/100 [34] with ResNet-32 [32] and
VGG-19 [35], and we also perform experiments on ImageNet-1K [36] and ImageNet-C [37] based
on ResNet-50 [38].

Following the recent developments in sparse training techniques, we apply S2-SAM on static sparse
training such as LTH [20], SNIP [21], GraSP [18], as well as dynamic sparse training methods such
as SET [2], DSR [33], RigL [23], MEST [3], CHEX [10] and Chase [39]. We apply S2-SAM to the
official codes or published implementations to show performance gains. All of our experiments are
performed on NVIDIA 4x A6000 GPUs. We repeat training experiments for 3 times and report
the mean and standard deviation of the accuracy. For training throughput evaluation, we adopt the
original settings of each baseline method and record the throughput on 4 x A6000 GPUs.

Table 1: Test accuracy (%) of pruned ResNet-32 on CIFAR-10/100.

Datasets CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%
ResNet-32 94.58 (Dense) 74.89 (Dense)

LT [20] 92.31 91.06 88.78 68.99 65.02 57.37

LT+ S*>-SAM (ours) 92.58+0.07 (0.271) 91.47+0.10 (0.417) 89.35+0.11 (0.571) 69.34+0.09 (0.351) 65.45+0.11 (0.431) 57.76+0.13 (0.391)
SNIP [21] 92.59+0.10 91.0140.21 87.5140.31 68.89+0.45 65.02+0.69 57.37+1.43
SNIP+ S2-SAM (ours) 93.174+0.16 (0.581) 91.59+0.22 (0.581) 88.08+0.29 (0.571) 69.33+£0.28 (0.441) 65.661-0.49 (0.641) 58.25+0.77 (0.881)
GraSP [32] 92.38+0.21 91.394+0.25 88.81+0.14 69.241+0.24 66.50+0.11 58.43+0.43
GraSP+ $?-SAM (ours) 92.8740.14 (0.497) 91.98+0.22 (0.597) 89.66£0.29 (0.851) 69.98+0.22 (0.741) 67.12+0.18 (0.621) 59.45+0.19 (1.027)
SET [2] 92.30 90.76 88.29 69.66 67.41 62.25

SET+ S$2-SAM (ours) 92.924+0.23 (0.621) 91.50+0.19 (0.741) 88.78+0.20 (0.491) 70.23+0.20 (0.571) 68.2840.15 (0.871) 63.56+0.19 (1.311)
DSR [33] 92.97 91.61 88.46 69.63 68.20 61.24

DSR+ S?-SAM (ours) 93.49+0.21 (0.521) 92.08+0.22 (0.477) 89.11+0.17 (0.65T) 70.11£0.16 (0.481) 68.8740.16 (0.671) 62.00+0.17 (0.761)
RigL [23] 93.07 91.83 89.00 70.34 68.22 64.07
RigL+ S%-SAM (ours) 93.554+0.14 (0.481) 92.11+0.21(0.287) 90.40+0.17 (1.401) 72.38+0.11 (2.041) 70.2940.14 (2.071) 64.98+0.06 (0.911)
RigL (ERK) [23] 93.55 92.39 90.22 70.62 68.47 64.14

RigL (ERK)+ S%-SAM (ours) 93.754+0.19 (0.201) 92.81+0.08 (0.421) 91.16+0.11 (0.941) 72.56+0.07 (1.941) 70.334+0.10 (1.861) 65.15+0.12 (1.011)
MEST (EM) [3] 92.56+0.07 91.154+0.29 89.2240.11 70.4410.26 68.431+0.32 64.59+0.27
MEST (EM) + S-SAM (ours) 93.43+0.12 (0.871) 91.58+0.07 (0.431) 91.22+0.14 (2.001) 71.95+0.13 (1.51x1) 70.0440.10 (1.611) 65.69+0.34 (1.101)
MEST (EM&S) [3] 93.27+0.14 92.4440.13 90.5140.11 71.3040.31 70.36+0.05 67.161+0.25

MEST (EM&S) + S?-SAM (ours) ~ 93.39:£0.17 (0.121) 92.97+0.17 (0.531) 91.3240.18 (0.817) 72.74+£0.08 (1.441) 71.85:0.09 (1.491) 69.13+0.20 (1.971)

3.1 Accuracy Enhancement for State-of-the-art Sparse Training Methods

CIFAR-10 and CIFAR-100. We show S2-SAM is universally applicable on various sparse training
methods. The results on ResNet-32 is shown in Table 1. Due to limited space, we demonstrate
results of VGG-19 on CIFAR-10 in Table A.1 in the appendix. For each baseline method, we perform
training with S2-SAM at 90%, 95% and 98% sparsity, and compare the accuracy with the original
accuracy. We set hyper-parameter p = 0.05 for all experiments. From the comparison results, we
can notice that all sparse training methods trained with S2-SAM obtain consistent and significant
improvements, not only for static sparse training but also for dynamic sparse training. We stress that
for all experiments, we only use one setting for S>-SAM, which indicates an easy implementation
that has the potential for wide applicability. We also find that S>-SAM works better on high sparsity.
For all sparse training with a 98% sparsity ratio, S2-SAM improves the original baseline accuracy by
an average of 0.77% on CIFAR-10 and 1.12% on CIFAR-100, which shows S2-SAM is especially
suitable for challenging tasks.

ImageNet-1K. We evaluate S2-SAM on ImageNet-1K dataset. The results are shown in Table 2. We
report the top-1 accuracy of the sparse training results, as well the overall training cost with FLOPs.
We set hyper-parameter p = 1.0 for all experiments. Compared to the baseline methods, our result
shows higher test accuracy at the same computational cost. Similarly, S2-SAM also shows better gain
on a higher sparsity ratio for most of the sparse training baselines, which indicates the consistency of
using our methods on different scales of datasets. To make a fair comparison with different training
recipes, we slightly scale up our training epochs to have the same or less overall training FLOPs to
compare with longer training baselines, and we find out that S2-SAM shows stable improvement on
those methods.

3.2 Sparse Training with Structured Sparsity

In this section, we evaluate how S2-SAM performs on structured sparse training methods. Note that
all previous baselines use unstructured sparsity where the zeros are scattered in the network. Such
unstructured sparse training shows the potential of training a sparse model, but cannot fully represent
training acceleration ability. Therefore, we apply S2-SAM to two representative structured sparse
trainings, CHEX [10] and Chase [39] which dynamically train sparse networks with channel-level
sparsity. The results are shown in Table 3. From the results, we can see that the average accuracy
improvement is around 0.5%. Considering structured (channel-wise) sparsity is one challenging
sparsity type to achieve good accuracy, these results indicate S2-SAM works very well on structured
sparse training methods.

3.3 Improvement on the Roughness of the Loss Surface

In this part, we plot the loss surface of the sparse training with and without S-SAM. The comparisons
are demonstrated in Figure 3, where we perform our experiments with three representative sparse
training methods SNIP [21], GraSP [18] and MEST [3] at 90%, 95% and 98% sparsity ratios on

Table 2: Results of ResNet-50 on ImageNet-1K.

Method Sparsity Top-1 Training Inference Top-1 Training Inference
Distribution Accuracy (%) FLOPs FLOPs Accuary (%) FLOPs FLOPs
ResNet-50 dense 76.9 (xel8) (xe9) \ 76.9 (xel8) (xe9)
Sparsity 80% 90%
LT [20] 72.6 n/a 2.7 70.1 n/a 1.7
LT + S2-SAM (ours) 73.11£0.08 (0.511) n/a 2.7 70.78-0.05 (0.681) n/a 1.7
SNIP [21] non-uniform 69.7 1.67 2.8 62.0 091 1.9
SNIP + S2-SAM (ours) 70.55+0.05 (0.851) 1.67 2.8 62.62+0.07 (0.621) 091 19
GraSP [32] 72.1 1.67 2.8 68.1 0.91 1.9
GraSP + S2-SAM (ours) 72.66-0.10 (0.561) 1.67 2.8 68.78+0.12 (0.681) 0.91 1.9
SET [2] 72.9 0.74 1.7 ‘ 69.6 0.10 0.1
2
SET + S*-SAM (ours) non-uniform 73.660.11 (0.761) 0.74 1.7 70.41£0.08 (0.811) 0.10 0.1
DSR [33] 733 1.28 33 71.6 0.96 2.5
DSR + S2-SAM (ours) 74.08-+0.17 (0.781) 1.28 33 72.32+0.13 (0.721) 0.96 2.5
RigL [23] 74.6 0.74 1.7 72.0 0.39 0.9
RigL + S2-SAM (ours) 75.39+0.12 (0.791) 0.74 1.7 72.44+0.06 (0.441) 0.39 0.9
MEST (EM) [3] 75.7 1.10 1.7 73.6 0.48 0.9
MEST (EM) + S2-SAM (ours) uniform 76.35+0.02 (0.651) 1.10 1.7 74.58+0.03 (0.981) 0.48 0.9
MEST (EM&S) [3] 75.7 1.27 1.7 75.0 0.65 0.9
MEST (EM&S) + S2-SAM (ours) 76.44-0.06 (0.741) 1.27 1.7 75.36£0.04 (0.361) 0.65 0.9
Top-KAST [40] - - - 73.0 0.63 0.9
Top-KAST + S2-SAM (ours) - - - 73.82+0.17 (0.821) 0.63 0.9
MEST; 7 [3] 76.7 1.84 1.7 759 0.80 0.9
MEST; 7« + S%-SAM (ours) uniform 77.73£0.11 (1.031) 1.84 1.7 76.82+0.12 (0.921) 0.80 0.9
RigLsx [23] 76.6 3.71 1.7 75.7 1.95 0.9
RigLsx + S2-SAM (ours) 77.72£0.05 (1.121) 3.71 1.7 76.88£0.13 (1.181) 1.95 0.9
Original Original Original SLSAM
SNIP
Sparsity = 0.9 Sparsity = 0.95 B Sparsity = 0.98
Original S-SAM Original Original S-SAM
GraSP
Sparsity = 0.9 Sparsity = 0.95 Sparsity = 0.98
Original S-SAM Original S-SAM Original S-SAM
MEST E;
et
Sparsity = 0.9) Sparsity = 0.95 Sparsity = 0.98

Figure 3: Loss surface sharpness comparison of different sparse training methods with original
training and with S2-SAM. We also quantitatively evaluate the coefficient Ra. Using S?-SAM
compared to the original method results in a smaller Ra, indicating a wider and smoother loss surface,
which suggests improved generalization ability.

CIFAR-10 dataset with ResNet-32. We observe that as sparsity increases, suggesting more chaotic
training behavior, the coefficient Ra also increases, indicating a steeper loss surface and a narrower
basin. While with S2-SAM, we can see that under the same sparsity, the basin of the loss surface
widens and enlarges as Ra values decrease, suggesting a smoother loss trajectory during training of a
sparse network.

3.4 Training Speed Comparison on GPU

S2-SAM is a highly efficient approach to optimizing the sharpness of the loss surface, which incurs
zero extra cost for achieving its functionality. Compared to the traditional SAM, S2-SAM uses fewer
computations and has better training performance on GPUs. In Table 4, we obtain the computation
cost as well as the training speed in terms of throughput (i.e., imgs/sec) on 4x NVIDIA A6000 GPUs

using ResNet-50 on the ImageNet-1K dataset. We record the throughput for different sparse training
methods with their original training, with SAM [25], and with S2-SAM. From the results, we can
see that S2-SAM achieves the same training throughput (with only negligible < 20 imgs/s decrease
due to processing) as the baseline methods, where no sharpness optimization is involved. Compared
to original SAM, we can see that training throughput with SAM is less than half of the ones that
train with S2-SAM, which aligns with the observation that SAM uses twice the computation cost of
S2-SAM or original training. Although SAM yields slightly better accuracy, the associated training
cost outweighs the benefits, rendering it impractical.

Table 3: Accuracy of S?2-SAM on structured
sparse training CHEX [10] and Chase [39].

Table 4: Training speed of SAM [25] and S?-SAM
for different sparse training at 90% sparsity.

Methods ‘ Networks ‘ Training FLOPs Accuracy (%) Methods ‘ Training Accuracy (%) Throughput (1)
| ResNet3a | Original 2.0G 73.50 Original 68.10 2148 imgs/s
p— | S>-SAM 20G 73.94 (0.441) GraSP SAM 68.95 1021 imgs/s
| Original 106 76.00 S2-SAM 68.78 2132 imgs/s
ResNet-50 : :
o | $>-SAM 1.0G 7651 (0511) . Original 72.00 3133 imgs/s
— RigL SAM 72.75 1508 imgs/s
‘ ‘ Original™* 2.1G 72.34 2 .
ResNet-34 £ : : S“-SAM 72.44 3098 imgs/s
S2-SAM 21G 7277 (0.43
Chase | — i Original 73.60 2981 imgs/s
ResNetso | Original 13G 75.62 MEST (EM) | SAM 74.88 1398 imgs/s
| $2-SAM 13G 7617 (0.551) S2-SAM 74.58 2977 imgs/s

* ResNet-34 original result of Chase is our own implementation.

3.5 Robustness Improvement by S2-SAM

Since sparse training approaches have potentially high usage in practical scenarios, the system’s
robustness against perturbation (e.g., inclement weather conditions for image/video tasks) is usually
critical. We perform experiments to evaluate the sparse model (80% sparsity) robustness against
perturbations in Table 5. Our intuition is that the model trained with its sharpness optimized has a
wider loss basin, which indicates higher endurance on perturbations since the loss won’t change much
when it is located in a wide and flat region. We adopt ImageNet-C [37] which contains a test set with
the same images as ImageNet-1K but with nineteen types of corruptions applied with five different
levels of severity. We train the sparse networks using different methods on ImageNet-1K, and then
test their accuracy on ImageNet-C. We report test accuracy for both datasets. We can see that when
the sparse model is trained using the original method, the accuracy of ImageNet-C is significantly
lower than the accuracy of the original ImageNet-1K test set (around 35% lower). With S2-SAM, the
test accuracy on ImageNet-C shows promising improvement. The robust accuracy improves by an
average of 3.23%.

Table 5: Testing accuracy on ImageNet-C test set. Table 6: Testing accuracy on dense model training.
We compare the results with and without S2>-SAM We compare original training with S2-SAM in
using 80% sparsity. same settings.

ImageNet-1K ImageNet-C . Params. Original S2-SAM
Methods ‘ Accuracy (%) Accuracy (%) Networks Count Accuracy (%) Accuracy (%)
SNIP ‘ 69.70 31.12 CIFAR-10
2
SNIP + S°-SAM 70.55 (0.851) 34.87 (3.757) ResNet-32 1.86M 0458 94.99 (0.411)
GraSP) 72.10 32.24 MobileNet-V2 2.30M 94.13 94.55 (0.4271)
GraSP + S?-SAM 72.66 (0.561) 35.17 (2.931) VGG-19 20.03M 94.21 94.48 (0.271)
MEST (EM) ‘ 75.70 33.87 ImageNet-1K
2

MEST (EM) + S™-SAM | 7635 (0.65D) 3698 B.111) EfficientNet-B0 | 5.30M 76.54 77.10 (0.567)
RigL 74.60 33.68 ResNet-34 21.80M 74.09 74.58 (0.491)
RigL + S2-SAM 75.39 (0.791) 36.80 (3.127) ResNet-50 25.50M 76.90 77.32 (0.4271)

3.6 Applying S>-SAM to Dense Model Training

We also apply S2-SAM to the dense model training. The results are shown in Table 6. We test on
two datasets CIFAR-10 and ImageNet-1K with two additional networks MobileNet-V2 [41] and
EfficientNet-BO [42]. For ResNet-32 and VGG-19 on CIFAR-10, we follow the settings in [3] and
train for 160 epochs, and for MobileNet-V2, we use the 1.0 width version and train for 350 epochs

for better convergence [43]. For ResNet family on ImageNet-1K, we follow the setting in [3] and
train for 150 epochs, and we train EfficientNet-BO for 350 epochs for better convergence [44]. From
the results, we can see that S2-SAM still improves the accuracy of the dense networks. We find
out that the less the parameter count of the network, the better effectiveness of S2-SAM it achieves.
This phenomenon proves our finding that a narrower network is harder to train, and S>-SAM is an
effective solution for better generalization. We must also stress that S2-SAM is focusing on sparse
neural network training, and we will leave the study of S2-SAM on dense model training for our
future research.

4 Related Works

Static Sparse Training Static sparse training determines the structure of the sparse network through
the application of a pruning algorithm in the early stages of training. The lottery ticket hypothesis
(LTH) [20, 45, 46] uses iterative magnitude-based pruning (IMP) to find a subnetwork that can be
trained from scratch without losing accuracy. SNIP [21], GraSP [18], SynFlow [22] determine a
static sparse pattern at training initialization by obtaining gradient information with a few iterations
of dense training. FISH [47] acquires fixed subnetwork by pre-computing a sparse mask using Fisher
information.

Dynamic Sparse Training Dynamic sparse training starts with a randomly selected sparse network
structure and adapts it throughout the training process in an effort to find a better sparse structure.
Sparse Evolutionary Training (SET) [2] prunes small magnitude weights and grows back randomly
at the end of each training epoch. Deep R [48] uses a combination of stochastic parameter updates
and dynamic sparse parameterization for training. Dynamic Sparse Reparameterization (DSR) [33]
proposes to redistribute parameters between layers during training. Sparse Networks from Scratch
(SNEFES) [49] creates the sparse momentum algorithm, which finds the layers and weights that
effectively reduce the error by using exponentially smoothed gradients (momentum). In RigL [23],
the gradients of all the weights are computed when the model needs to be updated to grow new
connections. Top-KAST [40] proposes a scalable and performant sparse-to-spars DST framework for
maximum efficacy. Powerpropagation [50] suggests a novel neural network weight parameterization
that largely preserves low-magnitude parameters from learning. ITOP [51] investigates the underlying
DST mechanism and finds that the advantages of DST result from a time-based search for all potential
factors. MEST [3] designs a memory-economic sparse training framework targeting accurate and fast
execution on edge devices. By co-training dense and sparse models, AD/AC [52] suggests a technique
that, at the conclusion of training, produces precise sparse—dense model pairings. Chase [39]
dynamically translates the unstructured sparsity into channel-level sparsity to achieve direct speedup
on GPU.

Sharpness-Aware Minimization Sharpness-Aware Minimization was first introduced in [25]. This
optimization technique is designed to identify flatter minima characterized by consistently low
loss in neighboring regions, aiming to enhance the model generalization capability during training.
Nevertheless, the computational cost of Sharpness-Aware Minimization is doubled due to its two-step
gradient computation regime, presenting challenges for deployment in large-scale training scenarios.
To reconcile such, ESAM [26] introduces two novel and efficient training strategies: stochastic weight
perturbation and sharpness-sensitive data selection, enhancing the efficiency of the SAM process
without compromising its generalization performance. LookSAM [27] only periodically calculates
the inner gradient ascent to significantly reduce the additional training cost of SAM. SAF [28]
introduces a novel trajectory loss based on KL-divergence to measure the rate of change in training
loss along the model update trajectory and replace the SAM sharpness measure. CrAM [53] optimizes
over the compression projection applied to the intermediate model at every training step, which
results in a compressible models that can be pruned in an on-shot manner after training. However, all
those methods need extra computation cost, and not target on sparse training method.

5 Conclusion

In this paper, we propose a novel Single-step Sharpness-Aware Minimization that is tailored for
Sparse training (S2-SAM), which revolutionizes the originally computation-intensive sharpness-aware
optimization into a highly efficient tool with zero extra cost. In light of the improved optimization
trajectory in the loss surface, S2-SAM successfully enhances the accuracy of the sparse network

training, as well as the robustness of the sparse model in practical scenarios. S2-SAM offers seamless
plug-and-play functionality, showcasing its potential for widespread applicability in the evolving
landscape of efficient training. The research is inherently scientific, and we anticipate no adverse
societal impact stemming from its findings.

Acknowledgments

This work is partly supported by the National Science Foundation CCF-2427875, CCF-2312616,
CNS-2232048, CNS-2008049, CNS-2431440, National Aeronautics and Space Administration
(NASA) 8ONSSC23K1393, and the Army Research Office W911NF-24-1-0044. The views and
conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of NSF, NASA, the Army Research
Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation herein.

References
[1] Ben Goertzel and Cassio Pennachin. Artificial general intelligence, volume 2. Springer, 2007.

[2] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature Communications, 9(1):1-12, 2018.

[3] Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong,
Zheng Zhan, Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia
Liu, and Xue Lin. Mest: Accurate and fast memory-economic sparse training framework on the
edge. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

[4] Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski,
Xiaolong Ma, Mykola Pechenizkiy, Shiwei Liu, et al. Dynamic sparsity is channel-level sparsity
learner. Advances in Neural Information Processing Systems, 36, 2024.

[5] Gen Li, Lu Yin, Jie Ji, Wei Niu, Minghai Qin, Bin Ren, Linke Guo, Shiwei Liu, and Xiaolong
Ma. Neurrev: Train better sparse neural network practically via neuron revitalization. In The
Twelfth International Conference on Learning Representations, 2024.

[6] Jie Ji, Gen Li, Lu Yin, Minghai Qin, Geng Yuan, Linke Guo, Shiwei Liu, and Xiaolong Ma.
Advancing dynamic sparse training by exploring optimization opportunities. In Forty-first
International Conference on Machine Learning, 2024.

[7] Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse
neural networks. ICML Workshop Deep Phenomena, 2019.

[8] Alex Bronstein, Pablo Sprechmann, and Guillermo Sapiro. Learning efficient structured sparse
models. In International Conference on Machine Learning, 2012.

[9] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1-124, 2021.

[10] Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun Yuan, Yi Xu, Yen-Kuang Chen, Rong
Jin, Yuan Xie, and Sun-Yuan Kung. Chex: Channel exploration for cnn model compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12287-12298, 2022.

[11] Xiaolong Ma, Minghai Qin, Fei Sun, Zejiang Hou, Kun Yuan, Yi Xu, Yanzhi Wang, Yen-Kuang
Chen, Rong Jin, and Yuan Xie. Effective model sparsification by scheduled grow-and-prune
methods. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

[12] Bo Hui, Da Yan, Xiaolong Ma, and Wei-Shinn Ku. Rethinking graph lottery tickets: Graph
sparsity matters. In The Twelfth International Conference on Learning Representations, 2023.

10

[13] Haoyu Ma, Chengming Zhang, Xiaolong Ma, Geng Yuan, Wenkai Zhang, Shiwei Liu, Tianlong
Chen, Dingwen Tao, Yanzhi Wang, Zhangyang Wang, et al. Hrbp: Hardware-friendly regrouping
towards block-based pruning for sparse cnn training. In Conference on Parsimony and Learning,
pages 282-301. PMLR, 2024.

[14] Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, PRANAY SHARMA, Sijia
Liu, et al. Model sparsity can simplify machine unlearning. Advances in Neural Information
Processing Systems, 36, 2024.

[15] Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar
Jaiswal, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu.
Outlier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high
sparsity. In Proceedings of the 41st International Conference on Machine Learning, volume
235, pages 57101-57115. PMLR, 2024.

[16] Shuyao Wang, Yongduo Sui, Jiancan Wu, Zhi Zheng, and Hui Xiong. Dynamic sparse learning:
A novel paradigm for efficient recommendation. In Proceedings of the 17th ACM International
Conference on Web Search and Data Mining, pages 740-749, 2024.

[17] Haizhong Zheng, Xiaoyan Bai, Beidi Chen, Fan Lai, and Atul Prakash. Learn to be efficient:
Build structured sparsity in large language models. arXiv preprint arXiv:2402.06126, 2024.

[18] Chaogi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations (ICLR),
2020.

[19] NO Myers. Characterization of surface roughness. Wear, 5(3):182—189, 1962.

[20] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. ICLR, 2018.

[21] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International Conference on Learning Representations
(ICLR), 2019.

[22] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Proceedings of the Advances in
Neural Information Processing Systems (NeurIPS), volume 33, 2020.

[23] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. In International Conference on Machine Learning (ICML),
pages 2943-2952. PMLR, 2020.

[24] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[25] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[26] Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh,
and Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural
networks. arXiv preprint arXiv:2110.03141, 2021.

[27] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and
scalable sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12360-12370, 2022.

[28] Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware
training for free. Advances in Neural Information Processing Systems, 35:23439-23451, 2022.

[29] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In International conference on machine learning, pages 1225-1234.
PMLR, 2016.

11

[30] Zhuoning Yuan, Yan Yan, Rong Jin, and Tianbao Yang. Stagewise training accelerates con-
vergence of testing error over sgd. Advances in Neural Information Processing Systems, 32,
2019.

[31] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-tojasiewicz condition. In Machine Learning and Knowledge
Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pages 795-811. Springer, 2016.

[32] Chaogi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[33] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural
networks by dynamic sparse reparameterization. In International Conference on Machine
Learning (ICML), pages 4646-4655. PMLR, 2019.

[34] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

[35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

[37] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[39] Lu Yin, Gen Li, Meng Fang, Li Shen, Tianjin Huang, Zhangyang Wang, Vlado Menkovski,
Xiaolong Ma, Mykola Pechenizkiy, and Shiwei Liu. Dynamic sparsity is channel-level sparsity
learner. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[40] Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast:
Top-k always sparse training. Advances in Neural Information Processing Systems, 33:20744—
20754, 2020.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510-4520, 2018.

[42] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97, pages 6105-6114. PMLR, 2019.

[43] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou
Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks.
Advances in neural information processing systems, 31, 2018.

[44] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934-12949, 2022.

[45] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning
in neural network pruning. In International Conference on Learning Representations, 2020.
arXiv:2003.02389.

[46] Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu.
Earlybert: Efficient bert training via early-bird lottery tickets. ACL-IJCNLP, 2021.

[47] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse masks.
Advances in Neural Information Processing Systems, 34:24193-24205, 2021.

12

[48] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring:
Training very sparse deep net-works. In International Conference on Learning Representations
(ICLR), 2018.

[49] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without
losing performance. arXiv preprint arXiv:1907.04840, 2019.

[50] Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Power-
propagation: A sparsity inducing weight reparameterisation. Advances in neural information
processing systems, 34:28889-28903, 2021.

[51] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pages 6989—7000. PMLR, 2021.

[52] Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan Alistarh. Ac/dc: Alternating
compressed/decompressed training of deep neural networks. Advances in neural information
processing systems, 34:8557-8570, 2021.

[53] Alexandra Peste, Adrian Vladu, Eldar Kurtic, Christoph H Lampert, and Dan Alistarh. Cram:
A compression-aware minimizer. arXiv preprint arXiv:2207.14200, 2022.

13

Appendix

A Results of VGG-19 on CIFAR-10/100

We test S2-SAM on VGG-19 using CIFAR-10 and CIFAR-100. The results are shown in Table A.1.
We demonstrate results on both uniform and ERK distributions, and achieve SOTA results on CIFAR-
10/100.

Table A.1: Test accuracy (%) of pruned VGG-19 on CIFAR-10/100.

Datasets CIFAR-10 CIFAR-100

Pruning ratio 90% 95% 98% 90% 95% 98%
VGG-19 94.20 74.17

LT [20] 93.51 92.92 9234 7278 71.44 68.95

LT+ S2-SAM (ours) 93.82+0.12 (0.311) 93.4140.11 (0.491) 92.92+0.14 (0.581) 73.08+0.08 (0.301) 71.69+0.10 (0.25T) 69.78+0.17 (0.831)
SNIP [21] 93.63+0.06 93.43+0.20 92.05+0.28 72.8440.22 71.83+0.23 58.46+1.10
SNIP+ S?-SAM (ours) 93.91+0.11 (0.281) 93.91+£0.21 (0.487) 92.86+0.28 (0.811) 73.33+0.21 (0.497) 72.4140.35 (0.581) 60.12+0.42 (1.667)
GraSP [32] 93.30+0.14 93.43+0.18 92.1940.12 71.954+0.18 71.2340.12 68.9040.41
GraSP+ S2-SAM (ours) 93.88+0.11 (0.581) 93.754+0.21 (0.321) 92.95+0.23 (0.761) 72.44+0.27 (0.491) 72.914+0.25 (1.681) 69.98+0.31 (1.081)
SET [2] 92.46 91.73 89.18 72.36 69.81 65.94

SET+ S2-SAM (ours) 92.97+0.22 (0.511) 92.55+0.20 (0.821) 90.184+0.19 (1.001) 72.65+0.14 (0.291) 70.11+0.14 (0.301) 66.76+0.17 (0.821)
DSR [33] 93.75 93.86 93.13 72.31 71.98 70.70
DSR+ S?-SAM (ours) 94.24+0.13 (0.491) 94.274+0.15 (0.417) 93.81+0.27 (0.681) 72.78+0.20 (0.471) 72.554+0.22 (0.571) 71.69+0.24 (0.991)
RigL [23] 93.12 9243 90.65 71.14 69.02 64.87
RigL+ S?-SAM (ours) 93.61+0.16 (0.491) 92.874+0.21 (0.447) 91.88+0.21 (1.231) 71.98+0.18 (0.841) 70.1610.18 (1.141) 66.01:£0.25 (1.141)
RigL (ERK) [23] 93.77 92.75 90.87 71.34 69.21 K

RigL (ERK)+ S?-SAM (ours) 94.07+0.21 (0.301) 93.33+0.12 (0.581) 91.79+0.12 (0.921) 72.12+0.20 (0.781) 69.95+0.18 (0.741) 66.13+0.19 (1.111)
MEST (EM) [3] 93.07+0.36 92.59+0.41 90.55+0.44 71.23+0.37 69.0840.41 64.9240.34
MEST (EM) + S%-SAM (ours) 93.76+0.13 (0.691) 93.18+0.12 (0.591) 91.86+0.23 (1.311) 71.93+0.11 (0.701) 69.9840.10 (0.907) 66.08£0.16 (1.161)
MEST (EM&S) [3] 93.61+0.36 93.46+0.41 92.30+0.44 72.5240.37 71.21+0.41 69.0240.34

MEST (EM&S) + S%-SAM (ours) ~ 94.51£0.11 (0.907) 93.9840.11 (0.521) 91.55+0.14 (0.751) 72.90+£0.17 (0.381) 72.4240.09 (1.211) 71.01+0.13 (1.991)

B Proof of Lemma 1

Proof. We consider two cases.
(1) When G = G’ and (-, f(w;-)) is L-smooth, then
(Wit = Wi || < (L =n0) [we = will + 0 [Vl (ve, £ (aex0)) = Val (ye, f (05 x0)) |
< (L=nA) [[we = will + nL [uy — uy]
(14 nL = nA) [[we = will + 2np.
(2) When G # G’ and (-, f(w;+)) is B-Lipschitz, then
[Werr = Wi || < (=) [Iwe = will + 2 Vol (ve, f (wex0)) = Vil (g, £ (W x;)]|

IN

IA

< (1 =nA) [lwe — wi|| +2nB.
O]
C Proof of Theorem 1
Proof. By Theorem 3.2 of [29], we have
Appr =B [[[wipr = wip]
(a) 1 1 1
< (1=)AL=)A+ (1=) 200+ — (1= n\)A, +27B)
1 2nB
_ [14— (1—>nL n/\} A+ 22
(b) 2nB +2(n —1
g s 2B 57 w
(C) 2nB+2 nflnp ;@D 2B+2(n—1)p
< - 7 15
; < 7 : (15)

14

where (a) uses Lemma 1; (b) uses A = 2L; (c) uses Ay, = 0; (d) uses nL < 1. Then, by Lemma 3.11
of [29] and ¢ is (L + \)-smooth, we have
to 2B+ (n—1)p)(L—i—)\) 6(B+(n—1)p)+1

E [0 (wi;2) - e(wt,z>] <2+ 7 (16)
n n
where the last inequality holds by selectmg to = 1 and A = 2L. Then, by Theorem 2.2 of [29]
6(B+(n—1)p)+1
Bas [(w) — B (wy)] < CEH D7) (a7)

which is the generalization error. Next, we will bound the optimization error. Since Fsis (L+ N)-
smooth and satisfies -PL condition, then follow the standard analysis, we have

Since F is (L + A)-smooth, we have
Fs (wy) — F\S (Wi-1)
= L+X
< <VFS (We—1), Wy — Wt71> + ——||w — Wt71||2

2
(Vs (wer) Ful 5 £ a0 + PN 9,y o)

<=0 (VEs (wier), Vul (v, f (wio1,%))) =1 <VFS (Wi1), Val (v, f (w0,%)) = Vol (3. f (Wi-1,5)))

(18)
n*(L + \)B?
2
R N _ 2 pp? (L + \)B?
< (Vs (wi) . Vully. £ (wir0)) + [V (w4 22 4 TEEZAE
(19)
where the last inequality is due to £(y, f(w,x)) is B-Lipschitz. Therefore, we get
1 =1 ~ 2 Qﬁs (W(]) 2
~SE HVFg(wt) < 280 4 (L + N)B2. (20)
T3 K
Since f/—*‘\g satisfies -PL condition, then
e R R ;] Tl
_ — wE < -
T ;ES [EA [FS (we) = Fs (WS)H = QMT 2 [HVFS (we) }
L+ \)B?

W)T 2u
Then by (12), (17) and (21), we get

% Z_: Eas [ﬁ (wt)} —Es {ﬁs (VAVTS)} < Fs (wo) n p+n(L+ \)B? N 6(B+(n—1)p)+1
t=0

unT 20 n

(22)
2, definitions (11), we get

By using the conditions that minweyy Fis (w) < Fs(w§)+ 5
F(wi) = Fs (w5) < F(w,) = Fs (w§) (23)
Therefore we have the following inequality by (22) and (23):
Fs(wo) p+nL+AB? 6B+ (n—1)p) +1
+ +
unT 20 n

*ZEAS - BEs [Fs (ws)] <
(24)
By Lemma 5.1 of [29], (24) implies the ERB is
Fs(w +(L+XNB2 6(B+(n—1)p)+1
Ep s [F (wr)] — Es [F (w.)] < s(wo) | p -+)B° | 6B+ (n—1)p)
unT 2u n

By setting) = O(1/y/n) and T = O(n) then Eg 4 s [F (Wgr)] — F (ws) < O(1/y/n), where A is
S2-SAM. O

(25)

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose S?-SAM which is tailored for sparse training. The proposed
method is efficient with zero extra cost and achieves better accuracy on sparse training
methods. We also demonstrate theoretical and experimental results in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The research is inherently scientific, and we anticipate no adverse societal
impact stemming from its findings. We discuss the limitations in the experiments that our
method is focusing on sparse training. But we also include dense training results to show
potentials of our method. We will leave the dense model training of S2-SAM in our future
research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

16

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We provide theoretical results in Section 2.3 and appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of our results can be reproduced and we will release our code after the

paper is accepted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

17

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in the paper are publicly accessible. We will also release our
code after the paper is accepted.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All important settings can be found in our paper and the papers we referenced.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform our experiments for 3 times as shown in our experimental settings.
We report mean and standard deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the training resources we use in the experimental settings.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in the conclusion. The research is inherently
scientific, and we anticipate no adverse societal impact stemming from its findings.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our method doesn’t have high risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit every referenced assets with citations.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

20

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces new code for sharpness-aware minimization, and we
will release the code after the paper is accepted.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper doesn’t perform crowdsourcing and research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper doesn’t perform research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

21

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Proposed Method
	Preliminary of Sharpness-Aware Minimization
	The Proposed S2-SAM Method
	Generalization Analysis

	Experimental Results
	Accuracy Enhancement for State-of-the-art Sparse Training Methods
	Sparse Training with Structured Sparsity
	Improvement on the Roughness of the Loss Surface
	Training Speed Comparison on GPU
	Robustness Improvement by S2-SAM
	Applying S2-SAM to Dense Model Training

	Related Works
	Conclusion
	Results of VGG-19 on CIFAR-10/100
	Proof of Lemma 1
	Proof of Theorem 1

