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Abstract

Most real-world datasets consist of a natural hierarchy between classes or an in-
herent label structure that is either already available or can be constructed cheaply.
However, most existing representation learning methods ignore this hierarchy,
treating labels as permutation invariant. Recent work [104] proposes using this
structured information explicitly, but the use of Euclidean distance may distort the
underlying semantic context [8]. In this work, motivated by the advantage of hyper-
bolic spaces in modeling hierarchical relationships, we propose a novel approach
HypStructure: a Hyperbolic Structured regularization approach to accurately
embed the label hierarchy into the learned representations. HypStructure is a
simple-yet-effective regularizer that consists of a hyperbolic tree-based representa-
tion loss along with a centering loss. It can be combined with any standard task loss
to learn hierarchy-informed features. Extensive experiments on several large-scale
vision benchmarks demonstrate the efficacy of HypStructure in reducing distor-
tion and boosting generalization performance, especially under low-dimensional
scenarios. For a better understanding of structured representation, we perform
an eigenvalue analysis that links the representation geometry to improved Out-of-
Distribution (OOD) detection performance seen empirically. The code is available
at https://github.com/uiuctml/HypStructure.

1 Introduction

Real-world datasets, such as ImageNet [72] and CIFAR [45], often exhibit a natural hierarchy or
an inherent label structure that describes a structured relationship between different classes in the
data. In the absence of an existing hierarchy, it is often possible to cheaply construct or infer
this hierarchy from the label space directly [64]. However, the majority of existing representation
learning methods [43, 7, 95, 29, 87, 33, 27, 39] treat the labels as permutation invariant, ignoring
this semantically-rich hierarchical label information. Recently, Zeng et al. [104] offer a promising
approach to embed the tree-hierarchy explicitly in representation learning using a tree-metric-based
regularizer, leading to improvements in generalization performance. The approach uses a computation
of shortest paths between two classes in the tree hierarchy to enforce the same structure in the feature
space, by means of a Cophenetic Correlation Coefficient (CPCC) [79] based regularizer. However,
their approach uses the ω2 distance in the Euclidean space, distorting the parent-child representations
in the hierarchy [70, 50] owing to the bounded dimensionality of the Euclidean space [8].
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Hyperbolic geometry has recently gained growing interest in the field of representation learning
[66, 67]. Hyperbolic spaces can be viewed as the continuous analog of a tree, allowing for embedding
tree-like data in finite dimensions with minimal distortion [44, 73, 75, 24]. Unlike Euclidean spaces
with zero curvature and spherical spaces with positive curvature, the hyperbolic spaces have negative
curvature enabling the length to grow exponentially with its radius. Owing to these advantages,
hyperbolic geometry has been used for various applications such as natural language processing
[52, 73, 16], image classification [40, 103, 18], object detection [46, 21], action retrieval [55], and
hierarchical clustering [100]. However, the aim of using hyperbolic geometry in these approaches is
often to implicitly leverage the hierarchical nature of the data.

In this work, given a label hierarchy, we argue that accurately and explicitly embedding the hierarchical
information into the representation space has several benefits, and for this purpose, we propose
HypStructure, a hyperbolic label-structure based regularization approach that extends the proposed
methodology in [104] for semantically structured learning in the hyperbolic space. HypStructure
can be easily combined with any standard task loss for optimization, and enables the learning of
discriminative and hierarchy-informed features. In summary, our contributions are as follows:

• We propose HypStructure and demonstrate its effectiveness in the supervised hierarchical
classification tasks on three real-world vision benchmark datasets, and show that our pro-
posed approach is effective in both training from scratch, or fine-tuning if there are resource
constraints.

• We qualitatively and quantitatively assess the nature of the learned representations and
demonstrate that along with the performance gains, using HypStructure as a regularizer
leads to more interpretable as well as tree-like representations as a side benefit. The
low-dimensional representative capacity of hyperbolic geometry is well-known [6], and
interestingly, we observe that training with HypStructure allows for learning extremely
low-dimensional representations with distortion values lower than even their corresponding
high-dimensional Euclidean counterparts.

• We argue that representations learned with an underlying hierarchical structure are beneficial
not only for the in-distribution (ID) classification tasks but also for Out-of-distribution
(OOD) detection tasks. We empirically demonstrate that learning ID representations with
HypStructure leads to improved OOD detection on 9 real-world OOD datasets without
sacrificing ID accuracy [106].

• Inspired by the improvements in OOD detection, we provide a formal analysis of the
eigenspectrum of the in-distribution hierarchy-informed features learned with CPCC-style
structured regularization methods, thus leading to a better understanding of the behavior of
structured representations in general.

2 Preliminaries

In this section, we first provide a background of structured representation learning and then discuss
the limited representation capacity of the Euclidean space for hierarchical information, which serves
as the primary motivation for our work.

2.1 Background

Structured representation learning [104] breaks the permutation invariance of flat representation
learning by incorporating a hierarchical regularization term with a standard classification loss. The
regularization term is specifically designed to enforce class-conditioned grouping or partitioning in
the feature space, based on a given hierarchy.

More specifically, given a weighted tree T = (V,E, e) with vertices V , edges E and edge weights e,
let us compute a tree metric dT for any pair of nodes v, v↑ → V , as the weighted length of the shortest
path in T between v and v↑. For a real world dataset D = {(xi, yi)}Ni=1, we can specify a label tree

T where a node vi → V , vi corresponds to a subset of classes, and Di ↑ D denote the subset of data
points with class label vi. We denote dataset distance between Di and Dj as ε(vi, vj) = d (Di,Dj),
where d(·, ·) is any distance metric in the feature space, varied by design.
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With a collection of tree metric dT and dataset distances ε, we can use the Cophenetic Correlation
Coefficient (CPCC) [79], inherently a Pearson’s correlation coefficient, to evaluate the correspondence
between the nodes of the tree, and the features in the representation space. Let dT , ε denote the mean
of the collection of distances, then CPCC is defined as

CPCC(dT , ε) :=
∑

i<j
(dT (vi, vj)↓ dT )(ε(vi, vj)↓ ε)

(
∑

i<j
(dT (vi, vj)↓ dT )2)1/2(

∑
i<j

(ε(vi, vj)↓ ε)2)1/2
. (1)

For the supervised classification task, we consider the training set Din
tr = {(xi, yi)}Ni=1 and we aim

to learn the network parameter ϑ for a feature encoder fω : X ↔ Z , where Z ↑ Rd denotes the
representation/feature space. For structured representation learning, the feature encoder is usually
followed by a classifier gw, and the parameters ϑ, w are learnt by minimizing L along with a standard
flat (non-hierarchical) classification loss, for instance, Cross-Entropy (CE) or Supervised Contrastive
(SupCon) [39] loss, with the structured regularization term as:

L(D) =
∑

(x,y)↓D

ωFlat(x, y, ϑ, w)↓ ϖ · CPCC(dT , ε). (2)

Using a composite objective as defined in Equation (2), we can enforce the distance relationship
between a pair of representations in the feature space, to behave similarly to the tree metric between
the same vertices. For instance, consider a simple label tree with a root node, a coarse level, and a fine
level, where subsets of fine classes share the same coarse parent. For this hierarchy, we would expect
the fine classes of the same parents (e.g., apple and banana are fruits) to have closer representations
in the feature space, whereas fine classes with different coarse parents (e.g., an apple is a fruit and a
tulip is a flower) should be further apart. The learned structure-informed representations reflect these
hierarchical relationships and lead to interpretable features with better generalization [104].

2.2 ω2-CPCC

Equation (1) offers the flexibility of designing a metric to measure the similarity between two data
subsets, and [104] define the Euclidean dataset distance as εε2(Di,Dj) := ↗ 1

|Di|
∑

x↓Di
f(x) ↓

1
|Dj |

∑
x→↓Dj

f(x↑)↗2. The distance between datasets is thus the ω2 distance between two Euclidean
centroids of their class-conditioned representations, which is unsuitable for modeling tree-like data
[8]. Additionally, this regularization approach in [104] is applied only to the leaf nodes of T for
efficiency. However, this leaf-only formulation of the CPCC offers an approximation of the structured
information, since the distance between non-leaf nodes is not restricted explicitly by the regularization.
This approximation, therefore, leads to a loss of information contained in the original hierarchy T .
Actually, it is impossible to embed dT into ω2 exactly. Or more formally, there exists no bijection ϱ
such that dT (ϱ(zi),ϱ(zj)) = ↗zi ↓ zj↗2 irrespective of how large the feature dimension d is. We
provide two such examples for a toy label tree in Figure 1, below.

A B C D E

F G

H

C
D

E

A
B

O

Figure 1: (left) An unweighted label tree
with two coarse nodes: F , G. F contains
two fine classes A,B and G contains
three fine classes C,D,E. We cannot
embed this in ω2 exactly (right).

Example 1. We intend to embed all nodes in T , including
purple internal nodes. Notice that G,C,D,E is a star
graph centered at G. Since CG = DG = 1, CD = 2,
by triangle inequality C,D,G must be on the same line
where G is the center of CD. Similarly, G must be at the
center of DE. Hence, the location of E must be at C,
which contradicts the uniqueness of all nodes in T .

Example 2. As an easier problem, let us only embed
leaf nodes into the Euclidean space as shown in Figure 1.
Since CD = DE = CE = 2, they must be on a plane
with an equilateral triangle ↘CDE in Euclidean geometry.
Then all the green classes have the same distance 4 to
each yellow class. Therefore, A,B must be on the line

perpendicular to ↘CDE and intersecting the plane with O, which is the barycenter of ↘CDE . Due
to the uniqueness and symmetry of A,B, we must have AO = BO = 1 to satisfy AB = 2.
AO = 1, OE = 2

↔
3

3 , AE = 4 which contradicts the Pythagorean Theorem.

Since we cannot embed an arbitrary tree T into ω2 without distortion, it would also affect the
optimization of the ω2-CPCC in a classification problem, where the tree weights encode knowledge
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Figure 2: Using ω2-CPCC for structured representation on CIFAR10. CIFAR10 hierarchy (left) has a
three level structure with 13 vertices. For a 512-dimensional embedding, we apply ω2-CPCC either
for the full tree (middle) or the leaf nodes only (right) and plot the ground truth tree metric against
pairwise Euclidean centroid distances of the learnt representation. The optimal train CPCC is 1.

of class similarity. To verify our claims, we consider the optimization of 512-dimensional ω2-CPCC
structured representations for CIFAR10 [45]. The CIFAR10 dataset consists of a small label hierarchy
as shown in Figure 2 (left). The optimal CPCC is achieved when each tree metric value corresponds
to a single εε2 . However, in Figure 2 (right), even with an optimization of the ω2-CPCC loss for the
entire tree, we observe a sub-optimal train CPCC less than 1, where the distance between two coarse
nodes, transportation and animal, is far away from the desired solution. Furthermore, optimization
of the CPCC loss for only the leaf nodes, leads to an even larger distortion of the tree metrics.

3 Methodology

Hyperbolic spaces are more suitable for embedding hierarchical relationships with low distortion [75]
and low dimensions. Hence, motivated by the aforementioned challenges, we propose a Hyperbolic
Structured regularizer for hierarchy-informed representation learning. We begin with the basics of
hyperbolic geometry, followed by the detailed methodology of our proposed approach.

3.1 Hyperbolic Geometry

Hyperboloid

Klein

Poincare
A

B

C

B’

A’

C’

O’

O

Figure 3: Lines on different
models for 2-dimensional hy-
perbolic space.

Hyperbolic spaces are non-Euclidean spaces with negative curvature
where given a fixed point and a line, there exist infinitely many
parallel lines that can pass through this point. There are several
commonly used isometric hyperbolic models [4]. For this work, we
mainly use the Poincaré Ball model.
Definition 3.1 (Manifold). A manifold M is a set of points z that
are locally Euclidean. Every point z of the manifold M is attached
to a tangent space TzM, which is a vector space over the reals of the
same dimensionality as M that contain all the possible directions
that can tangentially pass through z.
Definition 3.2 (Poincaré Ball Model). Given c as a constant, the
Poincaré ball model (Bd

c
, gB) is defined by a manifold of an open

ball Bd

c
= {z → Rd : c↗z↗2 < 1} and metric tensor gB that defines

an inner product of TzBd

c
. The model is equipped with the distance [88] as

dBc(z1, z2) =
2≃
c
tanh↗1

(≃
c

∥∥∥∥
↓(1 + 2c ⇐↓z1, z2⇒+ c↗z2↗2)z1 + (1↓ c↗z1↗2)z2

1↓ 2c ⇐z1, z2⇒+ c2↗z1↗2↗z2↗2

∥∥∥∥

)
. (3)

For c ↔ 0, we can recover the properties of the Euclidean geometry since limc↘0 dBc(z1, z2) =
2↗z1 ↓ z2↗. Since TzBd

c
is isomorphic to Rd, we can connect vectors in Euclidean space and

hyperbolic space with the bijection between TzBd

c
and Bd

c
[88]. For z = 0, the exponential map

expc0 : TzBd

c
↔ Bd

c
and logarithm map logc0 : Bd

c
↔ TzBd

c
have the closed form of

expc0(v) = tanh
(≃

c↗v↗
) v≃

c↗v↗
, logc0(u) =

1≃
c
tanh↗1 (≃c↗u↗

) u

↗u↗ . (4)

Alternatively, to guarantee the correctness of Poincaré distance computation, we can also process any
Euclidean vector with a clipping module [66]

clipc(v) =

{
v, if ↗v↗ < 1/

≃
c(

1↔
c
↓ ς

)
v

≃v≃ , otherwise
, (5)

so the clipped vector is within the Poincare disk. We set ς as a small positive number in practice.
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Definition 3.3 (Klein Model). Klein model (Kd

c
, gK) consists of an 1/

≃
c-radius open ball Kd

c
=

{z → Rd : c↗z↗2 < 1} and a metric tensor gK different from gB . Similar to the mean computation
in Euclidean space, let φi = 1/

√
1↓ c↗zi↗2, the Einstein midpoint of a group of Klein vectors

z1, . . . zn → Kd

c
has a simple expression of a weighted average

HypAve
K
(z1, . . . zn) =

n∑

i=1

φizi

/ n∑

i=1

φi. (6)

We illustrate the relationship between the different hyperbolic models in Figure 3. The hyperboloid
space models d-dimensional hyperbolic geometry on a d+ 1-dimensional space. When d = 2, the
Klein model is the tangent plane of the hyperboloid model at (0, 0, 1), and the Poincaré disk shares
the same support as the Klein disk, although shifted downwards and centered at the origin. Given a
triangle on the hyperboloid model, its projection on the Klein model preserves the straight sides, but
the projection of a line on the Poincaré model is a part of a circular arc or the diameter of the disk.
Let zB, zK be coordinates of z under Poincaré and Klein model respectively, the prototype operations
on Bd

c
require transformations between Bd

c
and Kd

c
as

zB =
zK

1 +
√
1↓ c↗zK↗2

, zK =
2zB

1 + c↗zB↗2
. (7)

For example, in Figure 3, O↑ is the HypAveK of A↑, B↑, C ↑, and can be mapped back to the Poincaré
disk to get the Poincaré prototype (HypAveB) O of points A,B,C by a change of coordinates.

3.2 HypStructure: Hyperbolic Structured Regularization

At a high level, HypStructure uses a combination of two losses: a Hyperbolic Cophenetic Correla-
tion Coefficient Loss (HypCPCC)), and a Hyperbolic centering loss (HypCenter) for embedding the
hierarchy in the representation space. Below we describe the two components of HypStructure.
The pseudocode of HypStructure is shown in Algorithm 1 in Appendix B.2.

HypCPCC (Hyperbolic Cophenetic Correlation Coefficient): We extend the ω2-CPCC method-
ology in [104] to the hyperbolic space in HypCPCC. Three major steps of HypCPCC are (i) map
Euclidean vectors to Poincaré space (ii) compute class prototypes (iii) use Poincaré distance for
CPCC. Specifically, we first project each zi → Rd to Bd

c
, and compute the Poincaré centroid for each

vertex of T using hyperbolic averaging as shown in Equation (6) and Equation (7). Alternatively, we
can also compute Euclidean centroids z = 1

|Di|
∑

z↓Di
z for each vertex, and project each z → Rd

to Bd

c
either by expc0 or clipc. After the computation of hyperbolic centroids, we use the pairwise

distances between all vertex pairs in T in the Poincaré ball, to compute the HypCPCC loss using
Equation (1) by setting ε = dBc .

HypCenter (Hyperbolic Centering): Inspired by Sarkar’s low-distortion construction [75] that
places the root node of a tree at the origin, we propose a centering loss for this positioning, that
enforces the representation of the root node to be close to the center of the Poincaré disk, and
the representations of its children to be closer to the border of Poincaré disk. We enforce this
constraint by minimizing the norm of the hyperbolic representation of the root node as ωcenter =
↗HypAve

B
(expc0(z1), . . . , exp

c

0(zN ))↗. Alternatively, for centroids computed in the Euclidean
space and mapped to the Poincaré disk, we minimize ωcenter =

∥∥∥1/N
∑

N

i=1 fω(xi)
∥∥∥ directly due to

the monotonicity of tanh(·) in the exponential map.

Finally, for ϖ,↼ > 0, we can learn the hierarchy-informed representations by minimizing

L(D) =
∑

(x,y)↓D

ωFlat(x, y, ϑ)↓ ϖ · HypCPCC(dT , dBc) + ↼ · ωcenter(x, ϑ), (8)

where ωFlat is a standard classification loss, such as the CE loss or the SupCon loss.

Time Complexity: In a batch computation setting with a batch size b and the number of classes (leaf
nodes) as k, the computational complexity for a HypStructure computation to embed the full tree
will still be O(d ·min{b2, k2}), which is the same as the complexity of a Euclidean leaf-only CPCC.
The additional knowledge gained from internal nodes allows us to reason about the relationship
between higher-level concepts, and the hyperbolic representations help in achieving a low distortion
of hierarchical information for better performance in downstream tasks.
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4 Experiments

We conduct extensive experiments on several large-scale image benchmark datasets to evaluate
the performance of HypStructure as compared to the Flat and ω2-CPCC baselines for hierarchy
embedding, classification, and OOD detection tasks.

Datasets and Setup Following the common benchmarks in the literature, we consider three real-
world vision datasets, namely CIFAR10, CIFAR100 [45] and ImageNet100 [59] for training, which
vary in scale, number of classes, and number of images per class. We construct the ImageNet100
dataset by sampling 100 classes from the ImageNet-1k [72] dataset following [59]. For CIFAR100, a
three-level hierarchy is available with the dataset release [45]. Since no hierarchy is available for the
CIFAR10 and ImageNet100 datasets, we construct a hierarchy for CIFAR10 manually in Figure 2.
For ImageNet100, we create a subtree from the WordNet [19] given 100 classes as leaves. More
details regarding the datasets, network, training and setup are provided in the Appendix B.4.

4.1 Quality of Hierarchical Information

Table 1: Evaluation of hierarchical information distortion and
classification accuracy using SupCon [39] as ωFlat. All metrics are
reported as mean (standard deviation) over 3 seeds.

Dataset
(Backbone) Method Distortion of Hierarchy Classification Accuracy

↽rel (⇑) CPCC (⇓) Fine (⇓) Coarse (⇓)

CIFAR10
(ResNet-18)

Flat 0.232 (0.001) 0.573 (0.002) 94.64 (0.12) 99.16 (0.04)
ω2-CPCC 0.174 (0.002) 0.966 (0.001) 94.47 (0.13) 98.91 (0.02)

HypStructure 0.094 (0.003) 0.992 (0.001) 94.79 (0.14) 99.18 (0.04)

CIFAR100
(ResNet-34)

Flat 0.209 (0.002) 0.534 (0.119) 74.96 (0.14) 84.15 (0.19)
ω2-CPCC 0.213 (0.006) 0.779 (0.002) 76.07 (0.19) 85.28 (0.32)

HypStructure 0.127 (0.016) 0.766 (0.007) 76.68 (0.22) 86.01 (0.13)

ImageNet100
(ResNet-34)

Flat 0.168 (0.003) 0.429 (0.002) 90.01 (0.07) 90.77 (0.11)
ω2-CPCC 0.213 (0.009) 0.834 (0.002) 89.57 (0.38) 90.34 (0.28)

HypStructure 0.134 (0.001) 0.841 (0.001) 90.12 (0.01) 90.84 (0.02)

Figure 4: Evaluation of distor-
tion vs feature dimensions for
HypStructure.

First, to assess the tree-likeness of the learnt representations, we measure the Gromov’s hyperbolicity
↽rel [23, 1, 38, 40] of the features in Table 1. Lower ↽rel indicates higher tree-likeness and a perfect
tree metric space has ↽rel = 0 (more details in Appendix B.5). To also evaluate the correspondence
of the feature distances with ground truth tree metrics, we compute CPCC on test sets. We observe
that HypStructure reduces distortion of hierarchical information over Flat by upto 59.4% and over
ω2-CPCC by upto 45.4%, while also consistently improving the test CPCC for most datasets.

We also perform a qualitative analysis of the learnt representations from HypStructure on the
CIFAR10 dataset, and visualize them in a Poincaré disk using UMAP [57] in Figure 5a. We can
observe clearly that the samples for fine classes arrange themselves in the Poincaré disk based on the
hierarchy tree as seen in Figure 2, being closer to the classes which share a coarse class parent.

To examine the impact of feature dimension on the representative capacity of the hyperbolic space,
we vary the feature dimension for HypStructure and compute the ↽rel for each learnt feature.
Comparing the distortion of features with the Flat and ω2-CPCC settings in Figure 4, we observe that
↽rel decreases consistently with increasing dimensions, implying that high dimension features using
HypStructure are more tree-like, and better than Flat and ω2-CPCCs’ 512-dimension baselines.

4.2 Classification

Following [104], we treat leaf nodes in the hierarchy as fine classes and their parent nodes as
coarse classes. To evaluate the quality of the learnt representations, we perform a classification
task on the fine and coarse classes using a kNN-classifier following [27, 95, 5, 110] and report the
performance on the three datasets in Table 1. We observe that HypStructure leads to upto 2.2%
improvements over Flat and upto 0.8% improvements over ω2-CPCC on both fine and coarse accuracy.
We also visualize the learnt test features from Flat vs HypStructure on the CIFAR100 dataset using
Euclidean t-SNE [89] and show the visualizations in Figure 5b and Figure 5c respectively. We observe
that HypStructure leads to sharper and more discriminative representations in Euclidean space.
Additionally, we see that the fine classes belonging to a coarse class (the same shades of colors)
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(a) Hyperbolic UMAP:
HypStructure

(b) Euclidean t-SNE: Flat (c) Euclidean t-SNE:
HypStructure

Figure 6: Left: Hyperbolic UMAP visualization of CIFAR10’s HypStructure representation on
Poincaré disk. Middle and Right: t-SNE visualization of learnt representations on CIFAR100.

which are semantically closer in the label hierarchy, are grouped closer and more compactly in the
feature space as well, as compared to Flat. We also perform evaluations using the linear evaluation
protocol [39] and observe an identical trend in the accuracy, we report these results in Appendix C.1.

4.3 OOD Detection

In addition to leveraging the hierarchy explicitly for the purpose of learning tree-like ID represen-
tations, we argue that a structured separation of features in the hyperbolic space as enforced by
HypStructure is helpful for the OOD detection task as well. To verify our claim, we perform an
exhaustive evaluation on 9 real-world OOD datasets and demonstrate that HypStructure leads to
improvements in the OOD detection AUROC. We share more details below.

Method OOD Dataset AUROC (↑) Overall AUROC
SVHN Textures Places365 LSUN iSUN Avg.(↑) B.C.(↑)

ProxyAnchor [41] 82.43 84.99 79.84 91.68 84.96 84.78 51.42
CE + SimCLR [94] 94.45 82.01 71.48 89.00 83.82 84.15 31.42
CSI [85] 92.65 86.47 76.27 83.78 84.98 84.83 40.00
CIDER [61] 95.16 90.42 73.43 96.33 82.98 87.67 60.00

SSD+ (SupCon) [76] 94.19 86.18 79.90 85.18 84.08 85.90 54.28
KNN+ (SupCon) [83] 92.78 88.35 77.58 89.30 82.69 86.14 40.00
ω2-CPCC [104] 93.08 90.45 77.21 82.77 82.79 85.26 40.00
HypStructure 95.97 88.43 78.12 97.01 84.51 88.81 82.85

(a) OOD detection performance with CIFAR100 as ID dataset.
(b) CIFAR100 (ID) vs.
SVHN (OOD).

Figure 7: Left: OOD detection score across various datasets on the CIFAR100 ID dataset. Right: Hy-
perbolic UMAP of the CIFAR100 (ID) test vs SVHN (OOD) test features learnt from HypStructure

with a clear separation in the Poincaré disk.

4.3.1 Problem Setting

Out-of-distribution (OOD) data refers to samples that do not belong to the in-distribution (ID) and
whose label set is disjoint from Y in and therefore should not be predicted by the model. Therefore
the goal of the OOD detection task is to design a methodology that can solve a binary problem of
whether an incoming sample x → X is from PX i.e. y → Y in (ID) or y /→ Y in (OOD).

OOD datasets We evaluate on 5 OOD image datasets when CIFAR10 and CIFAR100 are used as
the ID datasets, namely SVHN [65], Places365 [109], Textures [9], LSUN [102], and iSUN [99],
and 4 large scale OOD test datasets, specifically SUN [102], Places365 [109], Textures [9] and
iNaturalist [90] when ImageNet100 is used as the ID dataset. This subset of datasets is prepared
by [59] and is created with overlapping classes from ImageNet-1k removed from these datasets to
ensure there is no overlap in the distributions.

OOD detection scores While several scores have been proposed for the task of OOD detection, we
evaluate our proposed method using the Mahalanobis score [76], computed by estimating the mean

7



Table 2: OOD detection AUROC with CIFAR10 and ImageNet100 as ID.
Method AUROC Method AUROC

CIFAR10 ImageNet100
SSD+ 97.38 SSD+ 92.46
KNN+ 97.22 KNN+ 92.74
ω2-CPCC 76.67 ω2-CPCC 91.33
HypStructure 97.75 HypStructure 93.83

and covariance of the in-distribution training features. The Mahalanobis score is defined as

s(x) = (f(x)↓ µ)⇐!↗1(f(x)↓ µ), (9)

where µ,! are the mean and covariance of in-distribution training features. [76] present the Maha-
lanobis score (eq. (9)) in a generalized version for multiple feature clusters. However, since they
empirically observe that the single-cluster version achieves the highest performance [76], we will
focus on this version. After computing the OOD detection scores, we measure the area under the
receiver operating characteristic curve (AUROC) as the primary evaluation metric following [47, 76].

4.3.2 Main Results and Discussion

We report the AUROC averaged over all the OOD datasets (5 datasets for CIFAR10 and CIFAR100,
4 datasets for ImageNet100) in Figure 7a and Table 2 In addition to the Flat (SupCon) and ω2-CPCC
baselines, we also compare our method with other state-of-the-art methods (see Appendix C.3.1 for
more details about existing OOD detection methods). We observe that HypStructure leads to a
consistent improvement in the OOD detection score, with upto 2% in average AUROC. We also
report the dataset-wise OOD detection results for the CIFAR100 ID dataset in Table 7a along with
Average AUROC. To remove the bias in the Average AUROC metric towards any single dataset, we
also evaluate the Borda Count (B.C.) [58] and report the same, along with a detailed comparison
with more OOD detection methods in Table 7a, and Tables 6 and 7 in the Appendix C.3. We observe
that HypStructure ranks in the highest performing methods consistently, thereby demonstrating a
higher Borda Count as well. We additionally visualize the CIFAR100 (ID) vs SVHN (OOD) features
learnt from HypStructure, using a hyperbolic UMAP visualization in Figure 7b. We observe that
training with HypStructure leads to an improvement in the separation of ID vs OOD features in the
Poincaré disk.

Additional Experiments, Ablations and Visualizations: More experiments using hyperbolic
contrastive losses and hyperbolic networks, ablation studies on each component of HypStructure
and additional visualizations can be found in Appendix C.

5 Eigenspectrum Analysis of Structured Representations

Figure 8: CIFAR100 as in-distribution dataset. Left (a): Hierarchical block pattern of K. Middle (b):
Top 100 eigenvalues of K for different representation. Right (c): OOD detection for CIFAR100 vs.
SVHN with the top k-th principal component.
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As seen in Figure 7a, we observe a significant improvement in the OOD detection performance using
HypStructure with the Mahalanobis score eq. (9). After training a composite loss with CPCC till
convergence, let us denote the matrix of the normalized in-distribution trained feature as Z → Rn⇒d.
Naturally, we inspect the eigenvalue properties of ! (i.e, Z), and observe that K = ZZ⇐ → Rn⇒n

exhibits a hierarchical block structure (Figure 8a) where the diagonal blocks have a significantly
higher correlation than other off-diagonal values, leading us to the following theorem.
Theorem 5.1 (Eigenspectrum of Structured Representation with Balanced Label Tree). Let T
be a balanced tree with height H , such that each level has Ch nodes, h → [0, H]. Let us denote each

entry of K as rh where h is the height of the lowest common ancestor of the row and the column

sample. If rh ⇔ 0, ↖h, then: (i) For h = 0, we have C0 ↓ C1 eigenvalues ⇀0 = 1 ↓ r1. (ii) For

0 < h ↙ H ↓ 1, we have Ch ↓ Ch+1 eigenvalues ⇀h = ⇀h↗1 + (rh ↓ rh+1)C0
Ch

. (iii) The last

eigenvalue is ⇀H = ⇀H↗1 + C0rH .

We defer the eigenspectrum analysis for an arbitrary label tree to Appendix A. Theorem 5.1 implies
a phase transition pattern in the eigenspectrum. There always exists a significant gap in the
eigenvalues representing each level of nodes in the hierarchy, and the eigenvalues corresponding
to the coarsest level are the highest in magnitude. CIFAR100 has a balanced three-level label
hierarchy where each coarse label has five fine labels as its children. In Figure 8b, we visualize the
eigenspectrum of CIFAR100 for HypStructure, ω2-CPCC and the Flat objective. We observe a
significant drop in the eigenvalues for features learnt from two hierarchical regularization approaches,
ω2-CPCC and HypStructure, at approximately the 20th largest eigenvector (which corresponds to
the number of coarse classes), whereas these phase transitions do not appear for standard flat features.
We also observe that the magnitude of coarse eigenvalues are approximately at the same scale.

In summary, Theorem 5.1 helps us to formally characterize the difference between flat and structured
representations. CPCC style (eq. (1)) regularization methods can also be treated as dimensionality
reduction techniques, where the structured features can be explained mostly by the coarser level
features. For the OOD detection setting, this property differentiates the ID and OOD samples at the
coarse level itself using a lower number of dimensions, and makes the OOD detection task easier.
We visualize the OOD detection AUROC on SVHN (OOD) corresponding to the CIFAR100 (ID)
features with the top↓k principal component for different methods, in Figure 8c. We observe that
for features learnt using HypStructure, accurately embedding the hierarchical information leads to
the top 20 eigenvectors (corresponding to the coarse classes) being the most informative for OOD
detection. Recall that CIDER [61] is a state-of-the-art method proposed specifically for improving
OOD detection by increasing inter-class dispersion and intra-class compactness. We note that CPCC
style (eq. (1)) methods can be seen as a generalization of CIDER on higher-level concepts, where the
same rules are applied for coarse labels as well, along with the fine classes. When the ID and OOD
distributions are far enough, using coarse level feature might be sufficient for OOD detection.

6 Related Work

Learning with Label Hierarchy. Several recent works have explored how to leverage hierarchical
information between classes for various purposes such as relational consistency [14], designing
specific hierarchical classification architectures [101, 25, 68], hierarchical conditioning of the logits
[13], learning order preserving embeddings [15], and improving classification accuracy [91, 86, 48,
49, 108, 34]. The proposed structural regularization framework in [104] offers an interesting approach
to embed a tree metric to learn structured representations through an explicit objective term, although
they rely on the ω2 distance, which is less than ideal for learning hierarchies.

Hyperbolic Geometry. [66] first proposed using the hyperbolic space to learn hierarchical represen-
tations of symbolic data such as text and graphs by embedding them into a Poincaré ball. Since then,
the use of hyperbolic geometry has been explored in several different applications. [40] proposed
a hyperbolic image embedding for few-shot learning and person re-identification. [20] proposed
hyperbolic neural network layers, enabling the development of hybrid architectures such as hyperbolic
convolutional neural networks [78], graph convolutional networks [12], hyperbolic variational au-
toencoders [56] and hyperbolic attention networks [24]. Additionally, these hybrid architectures have
also been explored for different tasks such as deep metric learning [18, 100], object detection [46]
and natural language processing [16]. There have also been several investigations into the properties
of hyperbolic spaces and models such as low distortion [75], small generalization error [84] and

9



representation capacity [62]. However, none of these works have leveraged hyperbolic geometry for
explicitly embedding a hierarchy in the representation space via structured regularization, and usually
attempt to leverage the underlying hierarchy implicitly using hyperbolic models.

7 Discussion and Future Work

In this work, we introduce HypStructure, a simple-yet-effective structural regularization framework
for incorporating the label hierarchy into the representation space using hyperbolic geometry. In
particular, we demonstrate that accurately embedding the hierarchical relationships leads to empirical
improvements in both classification as well as the OOD detection tasks, while also learning hierarchy-

informed features that are more interpretable and exhibit less distortion with respect to the label
hierarchy. We are also the first to formally characterize properties of hierarchy-informed features via
an eigenvalue analysis, and also relate it to the OOD detection task, to the best of our knowledge. We
acknowledge that our proposed method depends on the availability or construction of an external
hierarchy for computing the HypCPCC objective. If the hierarchy is unavailable or contains noise,
this could present challenges. Therefore, it is important to evaluate how injecting noisy hierarchies
into CPCC-based methods impacts downstream tasks. While the current work uses the Poincaré
ball model, exploring the representation trade-offs and empirical performances using other models
of hyperbolic geometry in HypStructure, such as the Lorentz model [67] is an interesting future
direction. Further theoretical investigation into establishing the error bounds of CPCC style structured
regularization objectives is of interest as well.
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Appendix

This appendix is segmented into the following key parts.

1. Section A continues the analysis of the eigenspectrum of CPCC-optimized representation
matrix and generalizes it for an arbitrary label tree.

2. Section B discusses additional details about our proposed method HypStructure, its
implementation and broader impact of our work. In particular, an overview of the method is
first provided, and then we describe hyperparameter settings of our method and the main
baselines, followed by extra dataset details and explanation of evaluation metrics.

3. Section C reports ablation studies, detailed results on OOD detection and provides additional
experimental results and visualizations not included in the main paper due to lack of space.

A Details of Eigenspectrum Analysis

In this section, we first introduce some notations, discuss the setup for our analysis, followed by pre-
liminary lemmas, and then characterize the eigenspectrum of CPCC-based structured representations
in Theorem A.2 for an arbitrary label tree and Theorem 5.1 for a balanced tree presented in the main
body.

Proof Sketch The proof of Theorem A.2 and Theorem 5.1 relies on the important observation
of a hierarchical block structure of the covariance matrix of CPCC-regularized features, as shown
in Figure 8a, which will also be supported by Lemma A.1 and Corollary A.1. Theorem A.1 [3]
and Lemma A.2 characterize the eigenvalues of a block correlation matrix induced from a basic
tree where the matrix only has three types of values: diagonal values of 1s, one for within group
entry, and another for across group entry. Larger within group entries lead to the larger eigenvalues.
Theorem A.1 [3] and Lemma A.2 are then used as the base case for the induction proof of Theorem 5.1.
For an arbitrary tree, in Theorem A.2, we use Weyl’s Theorem [93] to bound the gap between within
group entries and across group entries that leads to the phase transition of eigenvalues.

Setup details After training with the HypStructure loss till convergence, let us denote the feature
matrix as Z → Rn⇒d, where each row of Z is a d-dimensional vector of an in distribution training
sample, and the CPCC is maximized to 1. We let C0 = n,C1, C2, . . . , CH = 1 be the number
of class labels at height h of the tree T . Following the standard pre-processing steps in OOD
detection [76], we assume that the features are standardized and normalized so that E[Z] = 0 and
↗Zi↗2 = 1, ↖i. Besides, we assume that in T , the distance from root node to each leaf node is the
same. Otherwise, following [74], we can insert dummy parents or children into the tree to make sure
vertices at the same level have similar visual granularity. We then apply CPCC to each node in the
extended tree, where each leaf node is one sample. We note that although this is slightly different
from the implementation where the leaf nodes are fine class nodes, the distance for samples within
fine classes are automatically minimized by classification loss like cross-entropy and supervised
contrastive loss.

Given these assumptions, we want to analyze the eigenspectrum of the inverse sample covariance
matrix 1

n↗1Z
⇐Z, which is the same as investigating the eigenvalues of K = ZZ⇐ where Z is

ordered by classes at all levels, i.e., samples having the same fine-grained labels and coarse labels
should be placed together. This is because the matrix scaling and permutation will not change the
order of singular values.

Since CPCC (eq. (1)) is a correlation coefficient, when it is maximized, the n by n pairwise Poincaré
distance matrix is perfectly correlated with the ground truth pairwise tree-metric matrix, where each
entry is the tree distance between two samples on the tree, no matter we apply CPCC to leaves or all
vertices. This implies that in the similarity matrix K, the relative order of entries are the opposite of
tree matrix, and it is trivial to show it as follows
Lemma A.1. The relative order of entries in K will be the reverse of the order in tree distance.

Proof. When ↗u↗ = ↗v↗ = 1, ω2(u, v)2 = ↗u↓ v↗22 = ↗u↗2 + ↗v↗2 ↓ 2⇐u, v⇒ = 2↓ 2⇐u, v⇒. Now
considering the CPCC computation, if the CPCC is maximized, the pairwise Euclidean matrix is of

18



the scalar factor of the tree distance matrix. Since each entry of K is the dot product of two samples,
the relative order in K is the opposite. ↭

Corollary A.1. If we use the Poincaré distance (eq. (3) in CPCC and let the curvature constant c = 1,
the statement of cosine distance in Lemma A.1 still holds.

Proof. Since the Poincaré distance (eq. (3)) is only defined for vectors with magnitude less than 1, let
us consider the case where before the clipping operation, both u and v are outside the unit ball. After
applying clip1, ↗u↗ = ↗v↗ = 1 ↓ ς, where ς is a small constant (10↗5). Then ↗u↗2 = (1 ↓ ς)2 =
1↓ 2ς+ ς2. Define 2ς↓ ς2 as ⇁, making ↗u↗2 := 1↓ ⇁ where ⇁ is also a small constant such that
O(⇁2) is negligible.

Poincaré(u, v) = 2 ln
↗u↓ v↗+

√
↗u↗2 ↗v↗2 ↓ 2u · v + 1

√
(1↓ ↗u↗2)(1↓ ↗v↗2)

= 2 ln
↗u↓ v↗+

√
2↓ 2u · v ↓ 2⇁ + ⇁2

⇁

∝ 2 ln
↗u↓ v↗+

≃
2↓ 2u · v ↓ 2⇁

⇁

= 2 ln
↗u↓ v↗+

√
↗u↗2 + ↗v↗2 ↓ 2u · v

⇁

= 2 ln
2 ↗u↓ v↗

⇁

We can see that the Poincaré distance monotonically increases with Euclidean distances ↗u↓ v↗.
This property ensures the relative order of any two entries for Euclidean CPCC and Poincare CPCC
matrices in K to be the same. Then, we can argue about the structure of K, either Euclidean or
Poincare, to have the hierarchical diagonalized structure as in Figure 8a. So any statement applied for
a Poincaré version of CPCC will also hold for the Euclidean CPCC counterpart. ↭

For each level of the tree, due to the optimization of CPCC loss, the corresponding off diagonal
entries of K, which represent the intra-level-class similarities, are much smaller than inter-level-class
values. We thus have a symmetric similarity matrix that takes on the following structure, where the
red regions are greater than orange regions, which are further greater than the blue regions.

K =





1 r111 r212 r212 r313 r313 r314 r314 . . .
r111 1 r212 r212 r313 r313 r314 r314 . . .
r212 r212 1 r122 r323 r323 r324 r324 . . .
r212 r212 r122 1 r323 r323 r324 r324 . . .
r313 r313 r323 r323 1 r133 r234 r234 . . .
r313 r313 r323 r323 r133 1 r234 r234 . . .
r314 r314 r324 r324 r234 r234 1 r144 . . .
r314 r314 r324 r324 r234 r234 r144 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .





Each non-diagonal entry is called rh
ij

where i, j are the index of the diagonal block, or the finest label
id of one sample, and h is the height of the lowest common ancestor of the two samples in the row
and the column. Since every two leaves sharing the lowest common ancestor of the same height have
the same tree distance, each entry of K with the same superscript will be the same so we can drop
the i, j subscript in the notation. The size of each block is defined by the number of samples within
one label. Then, the shown submatrix of K corresponds to the following tree in Figure 9. Next, we
present several useful lemmas and theorems.
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Figure 9: Subtree corresponds to the shown submatrix of K.

Theorem A.1 ([3]). Let R be a p′ p full-rank correlation matrix that has a k-group block structure,

with groups of size pi (i = 1 : k,
k∑

i=1
pi = p). Let rii be the correlation for any pair of different

variables within group i. Let rij be the common correlation between any variable in group i and j.
Denote the mean of the i-th diagonal block of R by Ri = (1/pi)(1 + (pi ↓ 1)rii). Then:

1. R has pi ↓ 1 eigenvalues 1↓ rii (i = 1 : k).

2. The rest of the eigenvalues are those from k ′ k symmetric matrix A whose diagonal
elements are aii = piRi and whose off-diagonal elements are aij =

≃
pi · pjrij .

Lemma A.2. Given d by d matrix M where Mii = 1, ↖i → [d], and Mij = p otherwise, i.e.,

M =





1 p . . . . . . p

p
. . .

...
... 1

...
...

. . . p
p . . . . . . p 1





it has eigenvalues ⇀1 = 1 + p(d↓ 1) and ⇀2 = · · · = ⇀d = 1↓ p.

Proof. Using the definition of eigenvalues, we want to compute the determinant of matrix




1↓ ⇀ p . . . . . . p

p
. . .

...
... 1↓ ⇀

...
...

. . . p
p . . . . . . p 1↓ ⇀





Adding the second till the last row to the first row, we have




1↓ ⇀+ (d↓ 1)p 1↓ ⇀+ (d↓ 1)p . . . . . . 1↓ ⇀+ (d↓ 1)p

p
. . .

...
... 1↓ ⇀

...
...

. . . p
p . . . . . . p 1↓ ⇀





Dividing the first row by 1↓ ⇀+ (d↓ 1)p, we now have




1 1 . . . . . . 1

p
. . .

...
... 1↓ ⇀

...
...

. . . p
p . . . . . . p 1↓ ⇀




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Subtracting the second till the last row by p times the first row results in an upper triangular matrix




1 1 . . . . . . 1
0 1↓ ⇀↓ p 0
... 1↓ ⇀↓ p

...
...

. . . 0
0 . . . . . . 0 1↓ ⇀↓ p





Thus, det(M ↓ ⇀I) = (1↓ ⇀+ (d↓ 1)p)(1↓ ⇀↓ p)d↗1. ↭

Notice that Lemma A.2 is a special case of Theorem A.1 where the label tree is a two level basic tree
with the root node and d leaves in the second label all being the direct children of the root node. Now
we can leverage Theorem A.1 and Lemma A.2 to investigate the eigenspectrum of K by proving the
following theorem:
Theorem A.2 (Eigenspectrum of CPCC-based Structured Representation). If T is a tree whose
root node has height H where each level has Ch nodes, h → [0, H]. K = ZZ⇐ is a block structured
correlation matrix as a result of CPCC optimization, where each off-diagonal entry → [↓1, 1] can
be written as rh and h is the height of the lowest common ancestor of the i-th row and the 00j-th
column sample. Let ” = r1 ↓ rh, pi, i → [Ch] be the number of children for nodes at height h, and
pmax be the maximum. For any h ⇔ 1, if rh ⇔ M ⇔ 0, rh+1 ↙ m, then

(i) We have C0 ↓Ch eigenvalues, that come from the eigenvalues of a C0 ′C0 matrix sharing the
same Ch of pi ′ pi diagonal blocks from K subtracting rh, and off diagonal values are all zero.

(ii) The rest of Ch eigenvalues come from a Ch ′ Ch matrix, whose diagonal entries are the mean
of each pi ′ pi diagonal block from K, and the off diagonal entries are ≃

pipjrij where rij is
the correlation between node i and node j of height h.

(iii) If m ↙ M↗2!(pmax↗1)
pmax(Ch↗1) , C0 ↓ Ch eigenvalues are all smaller than Ch eigenvalues.

Proof. Part (i) and (ii) can be extended from the proof of Theorem A.1. Let G be the n′ Ch matrix
where Gij = 1 if the i-th sample is in group j, otherwise Gij = 0. For any n↓ Ch eigenvectors in
the orthogonal complement of the column space of G, the eigenvector of K is also the eigenvector of





K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kk





where due to the hierarchical structure of block matrix, Ki has the format of





1↓ rh r1 ↓ rh · · · rj ↓ rh 0 · · · 0
r1 ↓ rh 1↓ rh · · · 0 0 · · · 0

...
...

. . .
...

...
...

rj ↓ rh 0 · · · 1↓ rh 0 · · · 0
0 0 · · · 0 1↓ rh · · · 0
...

...
...

...
. . .

...
0 0 · · · 0 0 · · · 1↓ rh





The rest of Ch eigenvectors come from the symmetric Ch ′ Ch matrix A =
(G⇐G)↗1/2(G⇐KG)(G⇐G)↗1/2, by some basica algebra, we know aij = 1↔

pi
·

(sum of all rij entries in pi ′ pj block) · 1↔
pj

. For more details, we refer the reader to Theorem
3.1 in [3] where C1 = k using their notation.

Since the largest absolute value of K’s eigenvalues, is bounded above by the largest row sum of the
absolute values of K [35], first n ↓ Ch eigenvectors are bounded above by U = maxi(1 ↓ rh) +
(pi ↓ 1)(r1 ↓ rh) = (1↓ rh) + (pmax ↓ 1)”.
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On the other hand, for the rest of Ch eigenvalues, we analyze matrix A:

A ↙ A1 +A2

:=





1 + (p1 ↓ 1)rh 0 · · · 0
0 1 + (p2 ↓ 1)rh · · · 0
...

...
. . .

...
0 0 · · · 1 + (pk ↓ 1)rh





+





(pmax ↓ 1)(r1 ↓ rh) pmaxm · · · pmaxm
pmaxm (pmax ↓ 1)(r1 ↓ rh) · · · pmaxm

...
...

. . .
...

pmaxm pmaxm · · · (pmax ↓ 1)(r1 ↓ rh)





The inequality comes from the effect of the maximization of CPCC that r1 ⇔ · · · rh ⇔ rh+1 ⇔ · · · rH
and rh ↙ m. The eigenvalues of A1, A2 have the analytical form, where A1’s eigenvalues have the
form of 1 + (pi ↓ 1)rh and A2’s eigenvalues can be derived by Lemma A.2. By Weyl’s inequality
[93], the minimum of these Ch eigenvalues is at least L = (1 + (pmin ↓ 1)rh) ↓ [(pmax ↓ 1)” ↓
pmaxm+ kpmaxm] ⇔ (1 + (1↓ 1)rh)↓ [(pmax ↓ 1)”↓ pmaxm+ kpmaxm].

To guarantee eigenvalues from Part (ii) are larger, we want L ⇔ U . We solve this inequality with m,
and we will get the desired range of m. ↭

When rh = r1 in Theorem A.2, we have ” = 0. Therefore, for a three level basic tree with
only r1, r2, if m ↙ M/(pmax(C1 ↓ 1)), C0 ↓ C1 eigenvalues are all smaller than C1 eigenvalues.
In general, we have shown that when m, i.e., the across group similarity is sufficiently small, the
eigenvalue gap always exists. When the label tree T is balanced, we can further specify the expression
of each eigenvalue and the amount of eigenvalue gaps.

We now formally restate the Theorem 4.1 from the main paper and give its proof.

Theorem 5.1 (Eigenspectrum of Structured Representation with Balanced Label Tree). Let T
be a balanced tree with height H , such that each level has Ch nodes, h → [0, H]. Let us denote each

entry of K as rh where h is the height of the lowest common ancestor of the row and the column

sample. If rh ⇔ 0, ↖h, then: (i) For h = 0, we have C0 ↓ C1 eigenvalues ⇀0 = 1 ↓ r1. (ii) For

0 < h ↙ H ↓ 1, we have Ch ↓ Ch+1 eigenvalues ⇀h = ⇀h↗1 + (rh ↓ rh+1)C0
Ch

. (iii) The last

eigenvalue is ⇀H = ⇀H↗1 + C0rH .

Proof. From Corollary A.1, we know that K → RC0⇒C0 has a block-wise structure.

Since all statements are presented recursively, we prove the theorem by structural induction on the
height of the tree.

The base case is Lemma A.2 with a two level hierarchy tree where only (i) and (iii) are applicable,
and p = r1, C0 = d, C1 = 1. By Lemma A.2, K has C0 ↓ 1 eigenvalues as ⇀0 = 1↓ r1, and one
eigenvalue as ⇀1 = 1 + (C0 ↓ 1)r1 = (1↓ r1) + r1/C↗1

0 .

Let us now assume that the theorem is true for the balanced tree whose root node is at height H ↓ 1.
Then if we have a tree with height H . We call the resulting matrix KH .

By the first bullet point of Theorem A.1 we directly get ⇀0 from (i). Then by the second bullet point
of Theorem A.1, the rest of the eigenvalues are from the symmetric matrix AH↗1 → RC1⇒C1 whose
diagonal elements are φ = 1 + (C0/C1 ↓ 1)r1 and whose off diagonal elements are C0/C1 · rj for
j ⇔ 2.

The key is to observe that AH↗1 is still a block structured matrix. After AH↗1 is scaled by φ, the
resulting matrix can be also seen as a result of maximizing CPCC where the off diagonal blocks have
smaller values.

Applying the hypothesis induction, we then know the expression of eigenvalues for AH↗1 as
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(i) we have C1 ↓ C2 eigenvalues of the form

⇀1 = φ(1↓ r2C0/C1

φ
)

= φ ↓ C0

C1
r2

= 1 + (
C0

C1
↓ 1)r1 ↓ C0

C1
r2

= 1↓ r1 +
C0

C1
(r1 ↓ r2)

= ⇀0 +
C0

C1
(r1 ↓ r2)

(ii) For 0 < h ↙ H ↓ 2, we have Ch+1 ↓ Ch+2 eigenvalues of the form

⇀h+1 ↓ ⇀h = φ
C0

C1

(
rh+1

φ
↓ rh+2

φ

)
C1

Ch+1

⇀h+1 = ⇀h + (rh+1 ↓ rh+2)
C0

Ch+1

(iii) The last eigenvalue is

⇀H ↓ ⇀H↗1 = C1r
H/φ · C0

C1
φ

= C0r
H

Therefore, we proved the theorem by showing the induction step from KH↗1 to KH holds. ↭

Note that the true symmetric covariance matrix K ↑ might not be having the exact format as K, but it
can be seen as a perturbation of K where ↗K ↑ ↓K↗ ↙ ς, ς is a small constant. By Weyl’s inequality
[93], the approximation error of each eigenvalue is bounded by [⇀i ↓ ς,⇀i + ς].

B Additional Algorithm and Experimental Details

In this section, we first provide an overview of our algorithm, followed by a discussion on the choice
of the flat loss and additional experimental details about the training and evaluation metrics.

B.1 Broader Impact Statement

Our work proposes HypStructure, a structured hyperbolic regularization approach to embed hi-
erarchical information into the learnt representations. This provides significant advancements in
understanding and utilizing hierarchical real-world data, particularly for tasks such as representation
learning, classification and OOD detection, and we recognize both positive societal impacts and po-
tential risks of this work. The ability to better model hierarchical data in a structured and interpretable
fashion is particularly helpful for domains such as AI for science and healthcare, where the learnt rep-
resentations will be more reflective of the underlying relationships in the domain space. Additionally,
the low-dimensional capabilities of hyperbolic geometry can lead to gains in computational efficiency
and reduce the carbon footprint in large scale machine learning. However, real-world hierarchical
data often incorporates existing biases which may be amplified by structured representation learning,
and hence it is important to incorporate fairness constraints to mitigate this risk.

B.2 Pseudocode for HypStructure

The training scheme for our HypStructure based structured regularization framework is provided
in Algorithm 1. At a high level, in HypStructure, we optimize a combination of the following
two losses: (1) a hyperbolic CPCC loss to encourage the representations in the hyperbolic space to
correspond with the label hierarchy, (2) a hyperbolic centering loss to position the representation
corresponding to the root of the node at the centre of the Poincaré ball and the children nodes around
it.
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Algorithm 1 HypStructure: Hyperbolic Structured Representation Learning

Input: Batch size B, Label tree T = (V,E, e), Number of epochs K, Task Loss formulation ωFlat,
Encoder fω, Classifier Head gw, Learning Rate η, Hyperparameters ϖ,↼

1: Initialize model parameters: ϑ, w
2: for epoch = 1, 2, . . .K do
3: for batch = 1, 2, . . . , B do
4: Get image-label pairs: {(xi, yi)}Bi=1
5: Forward pass to compute the representations: (z1 . . . zB) ∞ (fω(x1) . . . (fω(xB))
6: Compute the Task loss: ωFlat(gw(zi), yi)
7: Get hyperbolic representations using exp. map (eq. (4)): z̃i ∞ expc0(zi)
8: Calculate class prototypes using hyp. Averaging (eq. (6)): ωi ∞ HypAve

K
(z̃v

1 , . . . z̃
v

j
)

9: Compute pairwise hyp. distances (eq. (3)) ↖vi, vj → V : ε(vi, vj) ∞ dBc(ωi,ωj)
10: Get hyp. CPCC loss (eq. (1): HypCPCC(dT , ε)
11: Compute hyp. centering loss using (Equation (6)): ωcenter = ↗HypAve

B
(z̃1, . . . , z̃B↗)

12: Get total loss using Equation (8): L(DB)
13: Compute Gradients for learnable parameters at time t: ut(ϑ, w) ∞ ∈ω,wL(DB)
14: Refresh the parameters: (ϑ, w)t+1 ∞ (ϑ, w)t ↓ ϑ

B
ut(ϑ, w)

Output: (z1, . . . zN ); ϑ, w

B.3 Choice of Flat loss

We use the Supervised Contrastive [39] (SupCon) loss as the first choice for a flat loss in our experi-
mentation. Let qy be the one-hot vector with the y-th index as 1. The Cross Entropy (CE) loss, defined
between the predictions g ∋ fω(x) and the labels y, as ωCE(g ∋ f(x), y) := ↓

∑
i↓[k] qi log(g(f(x))i)

has been used quite extensively in large-scale classification problems in the literature [10, 11, 43, 98].
However, several shortcoming of the CE loss, such as lack of robustness [81, 107] and poor gener-
alization [17, 54] have been discovered in recent research. Contrastive learning has emerged as a
viable alternative to the CE loss, to address these shortcomings [7, 95, 29, 87, 33, 27]. The underlying
principle for these methods is to pull together embeddings for positive pairs and push apart the
embeddings for negative samples, in the feature space. In the absence of labels, positive samples
are created by data augmentations of images and negative samples are randomly chosen from the
minibatch. However, when the labels are available, the class information can be leveraged to extend
this methodology as a Supervised Contrastive loss (SupCon) by pulling together embeddings from
the same class, and pushing apart the embeddings from different classes. This offers a more stable
solution for a variety of tasks [39, 76, 83].
Definition B.1 (SupCon Loss). Given a training sample xi, feature encoder fω(·) and a projection
head h(·), we denote the normalized feature representations from the projection head as:

ui =
h (fω(xi))

↗h(fω(xi))↗2
, (10)

For the N training samples {(xi, yi)}Ni=1, we denote the training batch of 2N (augmented) pairs as
{(x̃i, ỹi)}2Ni=1 and define the SupCon loss as:

ωSupCon =
1

2N

2N∑

i=1

↓ log

1
2Nyi↗1

∑2N
k=1 (k △= i) (ỹk = ỹi)eu

T
i ·uk/ϖ

∑2N
k=1 (k △= i)eu

T
i ·uk/ϖ

, (11)

where Nyi refers to the number of images with label yi in the batch, ▷ is the temperature param-
eter, · refers to the inner product, and ui and uk are the normalized feature representations using
Equation (10) for x̃i and x̃k respectively.

While the numerator in the formulation in Equation (11) only considers the samples (and its augmen-
tations) belonging to the same class, the denominator sums over all the negatives as well. Overall,
this encourages the network to closely align the feature representations for all the samples belonging
to the same class, while pushing apart the representations of samples across different classes.

We note that our proposed method HypStructure is not limited to the choice of euclidean classifica-
tion losses as ωFlat and we report additional results with hyperbolic classification losses in Sections
C.8 and C.9 respectively, demonstrating the wide applicability of our approach.
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B.4 Implementation Details

B.4.1 Software and Hardware

We implement our method in PyTorch 2.2.2 and run all experiments on a single NVIDIA GeForce
RTX-A6000 GPU. The code for our methodology will be open sourced for a wider audience upon
acceptance, in the spirit of reproducible research.

B.4.2 Architecture, Hyperparameters and Training

We use the ResNet-18 [28] network as the backbone for CIFAR10, and ResNet-34 as the backbone
for CIFAR100 and ImageNet100 datasets. We use a ReLU activated multi layer perceptron with
one hidden layer as the projection head h(.) where its hidden layer dimension is the same as input
dimension size and the output dimension is 128. We follow the original hyperparameter settings
from [39] for training the CIFAR10 and CIFAR100 models from scratch with a temperature ▷ = 0.1,
feature dimension 512, and training for 500 epochs with an initial learning rate of 0.5 with cosine
annealing, optimizing using SGD with momentum 0.9 and weight decay 10↗4, and a batch size of
512 for all the experiments. For ImageNet100, we finetune the ResNet-34 for 20 epochs following
[61] with an initial learning rate of 0.01 and update the weights of the last residual block and the
nonlinear projection head, while freezing the parameters in the first three residual blocks. We use the
same ϖ values as the regularization parameters for the CPCC loss in Equation (2) (ω2-CPCC) and in
Equation (8) (our proposed method HypStructure) for a fair comparison and find that the default
regularization hyperparameter for the CPCC loss ϖ = 1.0 for both ω2-CPCC and HypStructure

performs well for the experiments on the CIFAR10 and CIFAR100 datasets. We observe that the
experiments on the IMAGENET100 dataset benefit from a lower ϖ = 0.5. Additionally, we set the
hyperparameter for the centering loss in our methodology as ↼ = 0.01 for all the experiments. We
use the default curvature value of c = 1.0 for the mapping and distance computations in the Poincaré
ball.

B.4.3 Datasets and Hierarchy

We use the following three datasets for our primary experimentation and training in this work

1. CIFAR10 ([45]). It consists of 50,000 training images and 10,000 test images from 10
different classes.

2. CIFAR100([45]). It also consists of 50,000 training images and 10,000 test images, however
the images belong to 100 classes. Note that the classes are not identical to the CIFAR10
dataset.

3. ImageNet100([72]). This dataset is created as a subset of the large-scale ImageNet dataset
following [59]. The original ImageNet dataset consists of 1,000 classes and 1.2 million
training images and 50,000 validation images. We construct the ImageNet100 dataset from
this original dataset by sampling 100 classes, which results in 128,241 training images and
5000 validation images. We mention the specific classes used for sampling below.

Following [59], we use the below 100 class id’s for creating the ImageNet100 subset: n03877845,
n03000684, n03110669, n03710721, n02825657, n02113186, n01817953, n04239074, n02002556,
n04356056, n03187595, n03355925, n03125729, n02058221, n01580077, n03016953, n02843684,
n04371430, n01944390, n03887697, n04037443, n02493793, n01518878, n03840681, n04179913,
n01871265, n03866082, n03180011, n01910747, n03388549, n03908714, n01855032, n02134084,
n03400231, n04483307, n03721384, n02033041, n01775062, n02808304, n13052670, n01601694,
n04136333, n03272562, n03895866, n03995372, n06785654, n02111889, n03447721, n03666591,
n04376876, n03929855, n02128757, n02326432, n07614500, n01695060, n02484975, n02105412,
n04090263, n03127925, n04550184, n04606251, n02488702, n03404251, n03633091, n02091635,
n03457902, n02233338, n02483362, n04461696, n02871525, n01689811, n01498041, n02107312,
n01632458, n03394916, n04147183, n04418357, n03218198, n01917289, n02102318, n02088364,
n09835506, n02095570, n03982430, n04041544, n04562935, n03933933, n01843065, n02128925,
n02480495, n03425413, n03935335, n02971356, n02124075, n07714571, n03133878, n02097130,
n02113799, n09399592, n03594945.
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In addition to the training and validation images, we also require the label hierarchy for each of these
datasets for the CPCC computation in ω2-CPCC and HypStructure approaches. For CIFAR100, we
use the three-level hierarchy provided with the dataset release3. We show this hierarchy in Table 3,
where the top-level is the root of the tree.

Table 3: Class Hierarchy of the CIFAR100 Dataset
Coarse Classes Fine Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout

flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates

fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Since no hierarchy is available for the CIFAR10 and ImageNet100 datasets, we construct a hierarchy
for CIFAR10 manually, as seen in Figure 2. For ImageNet100, we create a subtree from the WordNet
4 hierarchy, given the 100 aforementioned classes as leaves. We consider the classes which are one
level above the leaf nodes in the hierarchy as the coarse classes, following [104].

For the task of OOD detection, we use the following five diverse OOD datasets for CIFAR10 and
CIFAR100 as ID datasets, following the literature [83]: SVHN [65], Textures [9], Places365 [109],
LSUN [102] and iSUN [99]. When ImageNet100 is used as the ID dataset, we use 4 diverse OOD
datasets as the ones in [37], namely subsets of iNaturalist [90], SUN [96], Places [109] and
Textures [9]. These datasets have been processed so that there is no overlap with the ImageNet
classes.

B.5 Delta Hyperbolicity Metrics

We use Gromov’s ↽rel to evaluate the tree-likeness of the data in Section 4.1, following [40]. For an
arbitrary metric space X with metric d, for any three points x,y, z → X , we can define the Gromov
product as

(y, z)x =
1

2
(d(x,y) + d(x, z)↓ d(y, z))

Then, ↽-hyperbolicity can be defined as the minimum value of ↽ such that for any four points
x,y, z,w → X , the following condition holds:

(x, z)w ⇔ min((x,y)w, (y, z)w)↓ ↽

It can be shown that equivalently, there exists a geometric definition of ↽-hyperbolicity. A geodesic
triangle in X is ↽-slim if each of its side is contained in the ↽-neighbourhood of the union of the other
two sides. We define ↽-hyperbolicity as the minimum ↽ that guarantees any triangle in X is ↽-slim.
From Figure 10, when the curvature of the surface increases, the geodesic triangle converges to a
tree/star graph, and ↽ gradually reduces to 0.

Following [40], we use the scale-invariant metric ↽rel =
2ϱ

diam(X ) for evaluation, so that the ↽rel is
normalized in [0, 1], and the diam(·) is the set diameter or the maximal pairwise distance.

3https://www.cs.toronto.edu/ kriz/cifar.html
4https://www.nltk.org/howto/wordnet.html
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Figure 10: Example of a ↽-slim triangle, where each side of ↘ABC is the geodesic distance of two
points in the metric space.

Table 4: Linear classification accuracy using SupCon [39] as ωFlat.

Dataset Method (SupCon) Fine Accuracy (⇓)

CIFAR10
Flat 94.53

ω2-CPCC 95.08
HypStructure (Ours) 95.18

CIFAR100
Flat 75.11

ω2-CPCC 75.66
HypStructure (Ours) 77.66

C Additional Experimental Results

C.1 Results using Linear Evaluation

We also perform an evaluation of the fine classification accuracy following the common linear
evaluation protocol [39] where a linear classifier is trained on top of the normalized penultimate
layer features. We report these accuracies for the models trained on the CIFAR10 and CIFAR100
datasets in Table 4 for the leaf-only variants of the models. We observe that the relative trend of
accuracies is identical to the ones reported using the kNN evaluation in Table 1 and our proposed
method HypStructure outperforms the flat and ω2-CPCC methods on both the datasets.

C.2 Component-wise Ablation Study of HypStructure

To understand the role of each component in our proposed methodology HypStructure, we perform
a detailed ablation study with the different components and measure the fine and the coarse accuracies
on the CIFAR100 dataset. Specifically, we examine

1. the role of embedding all internal nodes in the label hierarchy (eq. (8) and line 10 in
Algorithm 1), as opposed to only using leaf nodes as in [104]. We refer to the inclusion of
internal nodes as Tint.

2. the role of hyperbolic class centroids computation using hyperbolic averaging (eq. (6) and
line 8 in Algorithm 1), as opposed to the Euclidean computation of class prototypes as in
[104]. We refer to the hyperbolic class centroid computation as ωhyp.

3. the role of the hyperbolic centering loss in our proposed methodology (eq. (8) and line 11
in Algorithm 1), as opposed to not using a centering loss. We refer to the inclusion of the
centering loss as ωcenter.

We ablate over the aforementioned settings, where a ↫ denotes the inclusion of that setting, and report
the results on the CIFAR100 dataset in Table 5. Firstly, we observe that while the centering loss ωcenter
improves the coarse accuracy only by a small increment, it leads to a significant improvement in the
fine accuracy (rows 1 ↔ 2 and 4 ↔ 5), indicating that the centering of the root in the poincare disk
allows for a better relative positioning of the fine classes within the coarse class groups. Secondly,
we observe that both the inclusion of internal nodes Tint, and the hyperbolic computation of the
class centroids ωhyp is critical for accurately embedding the hierarchy, and removing either of these
components (i.e. rows 5 ↔ 3 for Tint and rows 5 ↔ 2 for ωhyp), leads to a degradation in both the
fine as well as the coarse accuracies. The best overall performance is observed when all three of the
components are included (row 5).

27



Table 5: Ablation study on the components of HypStructure. We report the Classification accuracies
based on the CIFAR100 model trained with ResNet-34.

HypStructure Components Classification Acc.⇓
Internal Nodes (Tint) Hyp. Class Centroids (ωhyp) Hyp. Centering (ωcenter) Fine Coarse

↫ 75.03 84.77
↫ ↫ 75.61 84.81

↫ ↫ 76.22 85.70
↫ ↫ 76.59 86.23
↫ ↫ ↫ 76.91 86.22

C.3 OOD detection

C.3.1 Related Work and Methods

The goal of prior works in the OOD literature is the supervised setting of learning an accurate classifier
for ID data, along with an ID-OOD detection methodology and this task has been explored in the
generative model setting [42, 63, 71, 77, 97], and more extensively in the supervised discriminative
model setting [2, 30, 36, 37, 51, 53, 82, 60]. The methods in this setting can be categorized into four
sub-categories following [106], primarily:

Post-Hoc Inference These methods design post-processing/scoring mechanisms on base classifiers
such as MSP [30], ODIN [51], ReAct [82], SSD+ [76], KNN+ [83] and RankFeat [80].

Training without outlier data These methods involve training-time regularization or different
objective functions for improving OOD detection capabilities such as G-ODIN [36], CSI [85],
LogitNorm [92] and CIDER [61].

Training with outlier data These methods assume access to auxiliary OOD training samples such
as OE [31] and MixOE [105].

Data Augmentation These methods improve the generalization ability of image classifiers such as
StyleAugment [22], AugMix [32] and RegMixup [69].

Our proposed work can be considered primarily in the Training without outlier data category, and
we note that none of the prior works use any additional structural regularization term in the objective
functions.

C.3.2 Dataset-wise OOD Detection Results

Table 6: Results on CIFAR10. OOD detection performance for ResNet-18 trained on CIFAR10.
Training with HypStructure achieves strong OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SVHN Textures Places365 LSUN iSUN

ProxyAnchor 94.55 93.16 92.06 97.02 96.56 94.67
CE + SimCLR 99.22 96.56 86.70 85.60 86.78 90.97
CSI 94.69 94.87 93.04 97.93 98.01 95.71
CIDER 99.72 96.85 94.09 99.01 96.64 97.26

SSD+ 99.51 98.35 95.57 97.83 95.67 97.38
KNN+ 99.61 97.43 94.88 98.01 96.21 97.22
ω2-CPCC 93.27 94.76 60.15 75.29 59.87 76.67
HypStructure (Ours) 99.75 98.89 94.80 99.67 95.64 97.75

We report the dataset-wise OOD detection results in Tables 7a, 6 and 7 for CIFAR100, CIFAR10 and
ImageNet100 respectively. We compare with several other state-of-the-art baseline OOD detection
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Table 7: Results on ImageNet100. OOD detection performance for ResNet-34 trained on Ima-
geNet100. Training with HypStructure achieves strong OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SUN Places365 Textures iNaturalist

CIDER 91.63 89.29 97.98 96.35 93.81

SSD+ 88.97 85.98 98.49 96.42 92.46
KNN+ 89.48 86.64 98.38 96.46 92.74
ω2-CPCC 90.95 86.87 97.41 90.08 91.33
HypStructure (Ours) 92.21 90.12 97.33 95.61 93.83

methods for CIFAR10 and CIFAR100, namely ProxyAnchor [41], SimCLR [7] CSI [85], and CIDER
[61] respectively. Results for these methods are taken from CIDER [61] where contrastive learning
based OOD detection methods typically outperforms non-contrastive learning ones. For ImageNet100,
in the absence of the available class ids used to train the original models in CIDER [61], we finetune
the ResNet34 models on the created ImageNet100 dataset. For CIDER and SupCon, we use the
official implementations and hyperparameters provided by the authors.

We observe that our proposed method leads to an improvement in the average OOD detection
AUROC over all the ID datasets. In practice, we find that the Euclidean-centroid computational
variant (first compute the Euclidean centroids and then apply the exponential map) of our proposed
method performs slightly better than the hyperbolic-centroid computational variant (first apply the
exponential map and then compute the hyperbolic average), for the specific task of OOD detection,
while having equivalent performance on the ID classification task. Hence, we report the OOD
detection accuracy corresponding to the first version.

C.4 Visualization of Learned Features

We provide additional visualizations of the learnt features from our proposed method HypStructure

on the CIFAR10, CIFAR100 and ImageNet100 datasets in Figures 11, 12 and 13 respectively.

(a) (b)

Figure 11: Euclidean t-SNE Visualizations on CIFAR10.

(a) (b)

Figure 12: Hyperbolic UMAP Visualizations on CIFAR100 and ImageNet100.
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(a) (b)

Figure 13: Hyperbolic UMAP Visualizations of ID-OOD separation on CIFAR10 and ImageNet100.

C.5 Effect of Centering Loss and Embedding Internal Node

Embedding the internal tree nodes in HypStructure Tint (as compared to only leaf nodes in prior
work CPCC) and placing the root node at the center of the Poincaré disk with ωcenter loss, helps in
embedding the hierarchy more accurately. To understand the impact of these components, we first
visualize the learnt representations from HypStructure, with and without these components - i.e.
embedding internal nodes and a centering loss vs leaf only nodes, via UMAP in Figure 14 (CIFAR100)
and Figure 15 (ImageNet100). We also provide a performance comparison (fine accuracy) in Table 8.

Method CIFAR10 CIFAR100 ImageNet100
HypStructure (leaf only) 94.54 76.22 89.85
HypStructure (with internal nodes and centering) 94.79 76.68 90.12

Table 8: Fine accuracy comparison of HypStructure with vs. without internal nodes and centering
on CIFAR10, CIFAR100, and ImageNet100 datasets.

First, based on Figures Figure 14 and Figure 15, one can note that in the leaf-only setting without
embedding internal nodes and centering loss (figures on the left), the samples belonging to the fine
classes which share the same parent (same color) are in close proximity reflecting the hierarchy
accurately, however the samples are not spread evenly. With the embedding of internal nodes and
a centering loss (right), we note that the representations are spread between the center (root) to the
boundary as well as across the Poincaré disk, which is more representative of the original hierarchy.
This also leads to performance improvements as can be seen in Table 8.

(a) (b)

Figure 14: Hyperbolic UMAP Visualizations on CIFAR100 using HypStructure without embedding
the internal nodes and a hyperbolic centering loss (left), and with embedding the internal nodes along
with a centering loss (right).
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(a) (b)

Figure 15: Hyperbolic UMAP Visualizations on ImageNet100 using HypStructure without embed-
ding the internal nodes and a hyperbolic centering loss (left), and with embedding the internal nodes
along with a centering loss (right).

C.6 Effect of Label Hierarchy Weights

Compared to ranking-based hyperbolic losses [66], our HypCPCC factors in absolute values of the
node-to-node distances. The learned hierarchy with HypCPCC will not only implicitly encode the
correct parent-child relations, but can also learn more complex and weighted hierarchical relationships
more accurately. To demonstrate this, we modify the CIFAR10 tree hierarchy, and gradually increase
the weight for the left transportation branch to 2′ and 4′ and use new weighted trees for the CPCC
tree distance computation. We visualize the learnt representations in Figure 16 and we can observe
that in the learned representations from left to right, the distance between the transportation classes
(blue) are larger as compared to other classes, as expected.

(a) (b) (c)

Figure 16: HypStructure can learn more nuanced representations with weighted hierarchy trees.
Hyperbolic UMAP visualizations on CIFAR10 using HypStructure with differently weighted left-
subtrees.

C.7 Effect of Klein Averaging

We experiment with the two HypCPCC variants, using Klein Averaging or Euclidean mean for
centroid computation, as mentioned in Section 3.2 and report the results in Table 9. We empirically
observe that using the Klein averaging leads to performance improvements across datasets.

Method CIFAR10 CIFAR100 ImageNet100
Euclidean 94.56 75.64 90.08
Klein 94.79 76.68 90.12

Table 9: Fine accuracy comparison between Euclidean and Klein centroid computation methods in
HypCPCC on CIFAR10, CIFAR100, and ImageNet100 datasets.
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C.8 Experiments with the Hyperbolic Supervised Contrastive Loss

We experiment with the Hyperbolic Supervised Contrastive Loss as proposed in [21] as the choice
of the ωFlat loss and refer to this loss as ωHypSupCon. We follow the original setup as described by
the authors for the measurement of the ωHypSupCon, where the representations from the encoders
are not normalized directly, instead an exponential map is used to project these features from the
Euclidean space to the Poincaré ball first. Then, the inner product measurement in the ωSupCon is
replaced with the negative hyperbolic distances in the Poincaré ball to compute the ωHypSupCon loss.
We also experiment with our proposed methodology HypStructure along with the ωHypSupCon loss
and report the classification accuracies and hierarchy embedding metrics for both these settings
in Table 10. We further report the OOD detection performance on CIFAR10, CIFAR100 and
ImageNet100 as in-distribution datasets for both of these settings in Tables 11, 12 and 13 respectively.
We observe that using HypStructure with a hyperbolic loss such as ωHypSupCon as the Flat loss leads
to improvements in accuracy across classification and OOD detection tasks while also improving
the quality of embedding the hierarchy. This demonstrates the wide applicability of our proposed
method HypStructure which can be used in conjunction with both euclidean and non-euclidean
classification losses.

Table 10: Evaluation of hierarchical information distortion and classification accuracy using
HypSupCon [21] as ωFlat. All metrics are reported as mean (standard deviation) over 3 seeds.

Dataset
(Backbone) Method Distortion of Hierarchy Classification Accuracy

↽rel (⇑) CPCC (⇓) Fine (⇓) Coarse (⇓)
CIFAR10

(ResNet-18)
Flat 0.128 (0.007) 0.745 (0.017) 94.58 (0.04) 98.96 (0.01)

HypStructure 0.017 (0.001) 0.989 (0.001) 95.04 (0.02) 99.36 (0.02)
CIFAR100

(ResNet-34)
Flat 0.168 (0.002) 0.664 (0.012) 75.81 (0.06) 85.26 (0.07)

HypStructure 0.112 (0.005) 0.773 (0.008) 76.22 (0.14) 85.83 (0.06)
ImageNet100
(ResNet-34)

Flat 0.157 (0.004) 0.473 (0.004) 89.87 (0.01) 90.41 (0.01)
HypStructure 0.126 (0.002) 0.714 (0.003) 90.26 (0.01) 90.95 (0.01)

Table 11: Results on CIFAR10 when using the HypSupCon[21] as ωFlat using ResNet-18 as the
backbone. Training with HypStructure achieves improvements in OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SVHN Textures Places365 LSUN iSUN

ωHypSupCon 89.45 93.39 90.18 98.18 91.31 92.51

ωHypSupCon + HypStructure (Ours) 91.11 94.45 93.52 99.05 95.24 94.68

Table 12: Results on CIFAR100 when using the HypSupCon[21] as ωFlat using ResNet-34 as the
backbone. Training with HypStructure achieves improvements in OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SVHN Textures Places365 LSUN iSUN

ωHypSupCon 80.16 79.61 74.02 70.22 82.35 77.27

ωHypSupCon + HypStructure (Ours) 82.28 83.51 77.95 86.64 69.86 80.05

C.9 Experiments with a Hyperbolic Backbone

We experiment with Clipped Hyperbolic Neural Networks (HNNs) [26] as a hyperbolic backbone
and use our proposed methodology HypStructure in conjunction with the hyperbolic Multinomial
Logistic Regression (MLR) loss. We report the classification accuracies and hierarchy embedding
metrics on the CIFAR10 and CIFAR100 datasets in Table 14, and the OOD detection performances
using CIFAR10 and CIFAR100 as in-distribution datasets in Tables 15 and 16 respectively. We observe
that using HypStructure along with a hyperbolic backbone leads to improvements in classification
accuracies, reduced distortion in embedding the hierarchy, and improved OOD detection performance
overall, demonstrating the wide applicability of HypStructure with hyperbolic networks.
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Table 13: Results on ImageNet100 when using the HypSupCon[21] as ωFlat using ResNet-34 as the
backbone. Training with HypStructure achieves improvements in OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SUN Places365 Textures iNaturalist

ωHypSupCon 91.96 90.74 97.42 94.04 93.54

ωHypSupCon + HypStructure (Ours) 93.87 91.56 97.04 95.16 94.41

Table 14: Evaluation of hierarchical information distortion and classification accuracy using Clipped
Hyperbolic Neural Networks [26] as the backbone. All metrics are reported as mean (standard
deviation) over 3 seeds.

Dataset
(Backbone) Method Distortion of Hierarchy Classification Accuracy

↽rel (⇑) CPCC (⇓) Fine (⇓) Coarse (⇓)
CIFAR10

(Clipped HNN [26])
Flat 0.084 (0.008) 0.604 (0.004) 94.81 (0.23) 89.71 (2.04)

HypStructure 0.013 (0.002) 0.988 (0.001) 94.97 (0.12) 98.35 (0.22)
CIFAR100

(Clipped HNN [26])
Flat 0.098 (0.001) 0.528 (0.009) 76.46 (0.26) 49.26 (0.73)

HypStructure 0.064 (0.006) 0.624 (0.005) 77.96 (0.14) 55.46 (0.61)

Table 15: Results on CIFAR10 when using the Clipped Hyperbolic Neural Networks [26] as the
backbone. Training with HypStructure achieves improvements in OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SVHN Textures Places365 LSUN iSUN

Clipped HNN [26] 92.63 90.74 88.46 95.66 92.41 91.98

Clipped HNN [26] + HypStructure (Ours) 95.41 93.91 92.31 96.87 94.92 94.68

Table 16: Results on CIFAR100 when using the Clipped Hyperbolic Neural Networks [26] as the
backbone. Training with HypStructure achieves improvements in OOD detection performance.

Method OOD Dataset AUROC (↑) Avg. (↑)
SVHN Textures Places365 LSUN iSUN

Clipped HNN [26] 89.94 83.77 77.26 82.87 82.35 83.23

Clipped HNN [26] + HypStructure (Ours) 91.56 84.31 78.45 87.53 83.44 85.06
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction both clearly state the claims made by the
paper, along with a clear description of the contributions, assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the limitations of the current work as well as the avenues for future
improvements to the current work can be found in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Yes, for all the main results of the paper in Section 5, a full set of assumptions
and a complete proof is provided in Section A in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper discloses all the necessary details about the implemented
architectures used, hyperparameters for each setting, algorithm pseudocode and other
experimental details to reproduce all the experiments in the paper. These details can be
found in Section B in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper includes the specific instructions to access the datasets used for all
the experimentation. These can be found in Section B in the Appendix. The code for this
project is released to the public.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, the paper uses standard data splits from publicly available benchmark
sources and provides details regarding the choice of hyperparameters, optimizer and other
decisions necessary for understanding the results. These details can be found in Section B
in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, the paper reports the error bars and other information about the statistical
significance of the results in the Section 4 in the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, the paper provides details about the compute resources, hardware and
software needed to reproduce the experiments in Section B of the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in this paper conforms in every respect, with the
NeurIPS code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We discuss the potential positive and negative societal impacts of our work in
Section B.1 of the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper uses publicly available datasets, and does not release any data or
code that have a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have appropriately cited the original owners of data and code which is
used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing, nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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