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Abstract

Typical contextual bandit algorithms assume that
the rewards at each round lie in some fixed range
[0, R], and their regret scales polynomially with
this reward range R. However, many practical
scenarios naturally involve heavy-tailed rewards
or rewards where the worst-case range can be
substantially larger than the variance. In this pa-
per, we develop an algorithmic approach building
on Catoni’s estimator from robust statistics, and
apply it to contextual bandits with general func-
tion approximation. When the variance of the
reward at each round is known, we use a variance-
weighted regression approach and establish a re-
gret bound that depends only on the cumulative
reward variance and logarithmically on the re-
ward range R as well as the number of rounds
T'. For the unknown-variance case, we further
propose a careful peeling-based algorithm and
remove the need for cumbersome variance esti-
mation. With additional dependence on the fourth
moment, our algorithm also enjoys a variance-
based bound with logarithmic reward-range de-
pendence. Moreover, we demonstrate the optimal-
ity of the leading-order term in our regret bound
through a matching lower bound.

1. Introduction

Minimax optimal regret bounds in the worst-case over prob-
lem instances for contextual bandit learning are relatively
well-understood in the literature, both using policy-based
approaches in the agnostic case, and regression-based ap-
proaches in the realizable case. A variety of algorithms
attain these bounds in both settings, and the minimax opti-
mality implies that the bounds are unimprovable in general.
When the expected reward of each action is realizable using
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some function class F available to the learner, this optimal
regret scales as O(R+/T'dr log Nr), where R is the range
of the rewards, 7" is the number of rounds, dr is a complex-
ity notion for F, such as the eluder dimension (Russo &
Van Roy, 2013), and N £ is the covering number of F.

However, this worst-case behavior arises only when the
rewards span their entire range [0, R] with a significant
probability, a phenomenon not typical in practice. Even for
a common case of binary rewards in {0, R} for instance,
the expected reward is often relatively close to 0 in com-
mon click/no-click style recommendation settings with low
clickthrough rates. Consequently, the expectation, variance
and even higher moments of the reward are much smaller
than the worst-case range. More generally, rewards with
heavier tails naturally arise when considering waiting times
in wireless communication networks (Nair et al., 2013),
stock prices in financial markets (Cont, 2001; Hull, 2012),
or value returns for online advertising (Choi et al., 2020;
Jebarajakirthy et al., 2021). In this paper, we study the de-
sign of contextual bandit algorithms that can leverage such
structures to have regret guarantees dependent polynomially
on the reward variance, with only a mild logarithmic scaling
with the range parameter R.

Such variance-based regret bounds have received significant
attention recently, under the topic of robustness to heavy-
tailed rewards. Huang et al. (2024); Li & Sun (2024) study
Huber regression and design variance-weighted regression-
based approaches for linear contextual bandits with known
variance, and show that their algorithms achieve a variance-

based O(dy /3", c(r) 07) regret bound, where d is the di-

mension for the linear function, thus avoiding a dependence
on range R. They also study Markov Decision Processes

"Huang et al. (2024) consider a more general setting, where
the 1 + e-th moment of the reward is upper bounded for some
€ € (0, 1], and incur a dependence in terms of this moment along
with additional poly(T') terms. Since our work only considers
bounded variance, we present their result with (Li & Sun, 2024)
together, as the two results are identical for the case of ¢ = 1.

2DistUCB relies on a stonger assumption: estimating the full
reward distribution rather than just the mean, and hence relies
on a stronger realizability on the function class to capture this
distribution. In contrast, we only assume realizability of the reward
mean R. Moreover, dr measures the complexity of a class of
distributions, while d» measures the complexity of a class of mean
functions, thus the two notions are generally incomparable.
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Table 1. Comparison between different algorithms for stochastic contextual bandits, where d denotes the dimension for linear function
approximation, dr, dr capture the complexity of the function space F used for reward estimation, 7" is the number of rounds, o is the
variance of the observed reward at round ¢, o is a uniform bound on reward variance (o, < o for all ¢ € [T]), R is the range of rewards,

and NN is the covering number for function class F. O omits terms logarithmic in 7" and R.

Algorithm Function Type Known Variances Regret Bound
Weighted OFUL+ . ~ 2
(Zhou & Gu, 2022) Linear 4 O(d\/Xerr) 0f + dR)
Heavy-OFUL (Huang et al., 2024) ! . ~ 2
AdaOFUL (Li & Sun, 2024) Linear v o (d\/ Yieir) oF)
OLS (Pacchiano, 2024) Non-linear v O (m/ drlog Nr + Rdrlog N ;)
Catoni-OFUL (Theorem 3.4) Non-linear v 5(\/ Yie (] 07 -drlog Nr + drlog Nr)
SAVE (Zhao et al., 2023b) Linear X O(dy /S peir 0% + dR)
DistUCB (Wang et al., 2024b) > Non-linear X O \/ > ieiry 0% - d log N + Rdrlog Nr)
Unknown-Variance OLS . ~
(Pacchiano, 2024) Non-linear X 0] (d]: \/Zte (7] 02 -log Nr + Rdr log N].-)
VACB (Theorem 4.2) Non-linear X O(dr \/ >ieir 9% - log NF + dx(log Nz)3/%)
(MDPs) with linear function approximation under heavy-  to Appendix A.2.

tailed rewards with unknown variance, and use the linearity
of both expected rewards and variances in linear MDPs to
design a weighted regression algorithm relying on variance
estimation. To the best of our knowledge, these works heav-
ily rely on the linear function structure and are hard to extend
to the non-linear setting. The general question of designing
a robust contextual bandit algorithm under the heavy-tailed
reward (or a reward with a large range) for general function
approximation is still lacking in the literature.

A different line of work called distributional RL estimates
the full reward distribution (Wang et al., 2024b;a;c) under
the unknown variance case to achieve variance-based re-
gret bounds with general function approximation. However,
their focus is on replacing the T-based scaling with the cu-
mulative variance and still incurs a polynomial dependence
on R. Additionally, the distributional approach requires the
stronger modeling assumption that the full reward distribu-
tion, rather than just the expected reward is realizable.

There are some works considering the unknown variance
case for contextual bandits without realizability conditions
for the noise (Zhang et al., 2021; Kim et al., 2021; Zhao
et al., 2023b; Pacchiano, 2024). Particularly, the most rele-
vant ones to our work for the unknown-variance setting are
Zhao et al. (2023b); Pacchiano (2024). Zhao et al. (2023b)
develop a peeling approach for the unknown variance case
without variance estimation in linear settings, and Pacchiano
(2024) extend this technique to general function approxima-
tion. Nevertheless, all of these algorithms have an O(dR) or
O(Rdr log Nr) term in the regret bound. We summarize
the key results from the prior literature in Table 1 to better
contextualize our results, and defer additional related works

1.1. Additional Related Works

There is another line of literature targeting on standard
multi-armed bandit (MAB) setting with heavy-tailed re-
wards (Huang et al., 2022; Chen et al., 2024; Genalti et al.,
2024), where they obtain sharper gap-dependent bounds in
the MAB setting. In the contextual setting with general func-
tion approximation, however, one has lower bounds even
in the linear setting with large action spaces (Lattimore,
2017). Consequently, the results are not directly compara-
ble with ours. Regarding algorithms, we adopt the OFUL
framework combined with weighted Catoni estimators and
peeling techniques. In contrast, Huang et al. (2022) uses a
skipping method based on Follow-the-Regularized-Leader,
and Genalti et al. (2024); Chen et al. (2024) design adaptive
algorithms capable of handling unknown and unknown mo-
ment bounds. The remaining related works are deferred to
Appendix A.2.

1.2. Our contributions

This work considers a different route for robustness to heavy-
tailed rewards, building on the well-studied Catoni’s mean
estimator from the robust statistics literature. We design
a contextual bandit (CB) algorithm that uses the Catoni
mean as a robust device for constructing a regression error
estimator for the excess loss, given some function class
F for predicting the expected reward. Using the variance-
dependent concentration of the Catoni estimator, we conduct
a careful analysis of our algorithm and show that its regret

scales as 6(\/Zt€m 02 -drlog Nr+dzlog N]—'), when
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the reward variance o; is known at each round ¢.

Since reward variance information is seldom available in
practice, we refine our approach for cases with unknown
variances by employing a multi-level uncertainty estimation
for the expected rewards of a carefully chosen subset of
actions. For this approach, we obtain regret guarantees
dependent on the fourth moment of the reward, while still
maintaining a logarithmic scaling in R. Formally, the regret
scales as 6(df\/zte[T] o2 -log Nx + dx(log NF)3/4).
Notably, our method does not rely on some other function
class to help predict the per-round variance as a function.
Instead, we estimate a robust averaged variance quantity,
and show that it approximates the averaged true variance up
to logarithmic factors in R.

Overall, our results significantly improve the state-of-the-
art in variance-aware regret guarantees, that are amenable
to practical reward structures. We summarize our results
relative to the most relevant prior literature in Table 1.

2. Preliminary

Notations. For any integer n, we use the short-hand nota-
tion [n] = {1,...,n}, and define x},,) = {z1,...,2,}. We
use O to omit terms logarithmic in 7" and R. The compre-
hensive table of notations is provided in Appendix A.1.

We consider a contextual bandit problem over T' rounds
of interactions between an agent and the environment. At
each round ¢ € [T, the environment generates a decision
set X; € X, where each element x € X is a candidate
action for the agent. After observing X}, the agent plays an
action x; € X; and observes the reward y; = f*(x;) + n;.
Particularly, this setting subsumes classic contextual bandit
where an action a; € A is chosen upon observing a context
2z at round ¢, since we can always set X3 = {z; x A}. We
make the standard boundedness assumptions that

Ine| < R, By =0, Enj < o7.

We assume access to a function class F : X — [—R, R]
such that f* € F. For a function class F, we recall the
standard definitions of e-cover and covering number (see
e.g., Wainwright (2019); Zhang (2023a)) as follows.

Definition 2.1 (v-cover and covering number). Given a
function class F, for each v > 0, a v-cover of F with
respect to ||-|| ., denoted by C(F,v), satisfies that for any
f e F,wecanfind f’ € C(F,v) suchthat | f — f'|| .  <wv
The v-covering number, denoted as N (v, F), is the smallest
cardinality of such a C(F,v).

We assume that the function class JF consists of bounded
functions, that is, |f(x)| < Ly forall f € Fandz € X.
The variances o, at each time step ¢ are not necessarily

known. The (pseudo-) regret is defined as

Rr=E Z {maxf f*(mt)}

rEX:
te(T]

To describe the structure of the general function class, we
define the following (eluder dimension) quantities (Gentile
et al., 2022; Russo & Van Roy, 2013) as

Definition 2.2 (FEluder dimension (Gentile et al.,
2022)). Given a sequence of ordered actions X =
(21,29, -+ ,x7) € X} X Xy X -+ X X and a function
class F, let the eluder coefficients be

D%(z,5; %41, F(e—1))
= sup (fi(z) = fo(x))* /522 ’
N026F Yiepon) (fu(@) — falxi))” /07 + A
Dr(x;xp—_1),01-11) = Dr(x, L;20-1),01-1))-

Then we define the eluder dimension as:
T

Zmln 1D]—‘(:I:170—17x[7, 1]70[1 1]))

=1

dln’l(]: X O'[T]

dima’T (_7'—) =

max
X6 | X|=T,51,...,60 >

dim(]—', X, 5[T])~

The weighted eluder coefficient D% describes at each time
step ¢, how much the in-sample error can bound the out-of-
sample error. We can illustrate the eluder quantities with
linear function approximation. If the function class F is
embedded into a linear mapping F = {07 ¢(-,-) : 0 €
R% |0l < B}, and we define the covariance matrix
=2 ey z;x; /52, the weighted eluder coefficient can
be simplified as

D;(wvﬁ;x[t—l]v(j‘[t—l])

. (01 — 02) T 6(a) /o)
S S (O )T o)1) <11%

Hzt o

ey
where the inequality applies Cauchy—Schwarz inequality.
Hence, the eluder coefficient reduces to how much a direc-
tion is explored in the linear case.

The summation of eluder coefficients over 7' time steps is
the eluder dimension. The (weighted) eluder coefficients
and the eluder dimension are broadly used in general func-
tion approximation (Zhang, 2023b; Ye et al., 2023; Agarwal
et al., 2023; Zhao et al., 2023a). For the linear case in
d-dimensions, when all the , 5,1 are 1, the dim; 7 (F)
can be bounded in terms of d log d (Zhang, 2023b; Agarwal
et al., 2023). When the weights are larger than «, we can
regard ¢'(z) = ¢(x)/5 as the new feature representation
and bound the dim,, 7(F) via the elliptical potential lemma
(Abbasi-Yadkori & Neu, 2014).

3. Bandits with Known Variance

In this section, we present upper and lower bounds, when the
per-round variance of each action is known to the learner.
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3.1. Lower Bound

We start with a minimax lower bound for the class of multi-
armed bandit problems where the variance of each action’s
reward is known to the learner.

Theorem 3.1. For any integer T > 0, there exists a
contextual bandit problem such that any = = {m;}1_;

will incur regret at least Q(y/E Zthl 02), where {o; =

Vary, o, [y:]}£_, and the expectation is jointly over any
randomness in the environment as well as the algorithm.

In other words, the theorem states that the regret of any
contextual bandit algorithm scales with the square root of
the sum of the variances of the rewards for its chosen actions.
That is, it rules out a regret bound which scales solely as the
variance of the reward of the optimal policy’s actions.

The detailed proof is deferred to Appendix B.1. The in-
tuition is to construct two bandit instances, each with two
arms {z1,x2}. In the first instance, the arm x; has a de-
terministic reward while x5 has a higher expected reward,
but with a large variance. In the second instance, x5 has
a smaller mean reward. Clearly, the optimal action x; has
a variance of zero in the first instance, but any algorithm
needs sufficiently many draws of x5 as well to distinguish
between the two instances. In the sequel, we will present a
matching upper bound for our robust estimator.

3.2. Upper Bound for Known Variance

Catoni Estimator We first introduce Catoni estimator.
This is a robust estimator proposed by Audibert & Catoni
(2011)(see also (Lugosi & Mendelson, 2019)) to estimate
random variables with bounded variance and unbounded
range. Following Lugosi & Mendelson (2019, section 2.2),
to estimate ¢! Zie[t] EZ;, we first define a function

if x > 0,

ifx <0.

) log(1 4z +22/2)
(@) = {— log(1 — = + 22/2)

Then for some parameter 6 > 0, Catonig({Z; }ic[) is the
unique zero of the antisymmetric increasing function

f(90§ {Zi}ie[t]v 9) = Z \I!(&(Zi - 95)) )
i€[t]

We first provide the following result about the concentration
properties of the Catoni estimator, which we use in various
places to prove why our design of confidence sets in the
sequel algorithms.

Lemma 3.2 (Informal). Let Z; be a random variable
adapted to filtration the Hy, with a uniform bound | Z;| < R,

ElZi|Hi—1] = pio 2ien E [(Zi — i)’ ‘,Hifl} <V for
some fixed V. Let [i :==t~! Zie[t] ;. Let 0 € [a, A] be a

Algorithm 1 Catoni-OFUL

Input: Parameter o > 0, & and 3; for each ¢ € [T].
fort=1,2,...,T do
Pick action z; = argmax, », maxyser, , f(x);
Observe the reward v
Let 5y = max (a, o, \/4L(6)LfD]—'t71 (s Tre—11s 6[1_1]));
Estimate f; in (3);
Construct confidence set

Fii= {f €Fii: Y % (f(an) - ft(wi))2 < Bf};

ielt] ¢

end for

parameter, for some constants a, A independent of Z;. For
an appropriate € and any large enough t, with probability
at least 1 — 2§ we have uniformly for all 0 € [a, A]:

‘Catonig({Zi}ie[t]) - ﬂ| <

where 1o contains log terms and is given in Appendix E. 1.

This inequality differs from the prior concentration results
for the Catoni estimator as it is uniform for all § € [a, A].
In the sequel, we use this flexibility to choose 6 based on
the samples. The formal version of the lemma and the proof
are deferred to Appendix E.1.

Algorithm By incorporating the Catoni estimator into
the Optimism in the Face of Uncertainty Learning
(OFUL)(Abbasi-Yadkori et al., 2011), we propose the
Catoni-OFUL approach in Algorithm 1. Given failure prob-
abilities § and confidence parameters Bt, the algorithm
chooses the action x; with the highest optimistic reward
by maximizing across all functions in a confidence set F,
as in the standard OFUL approach.

The key difference lies in the construction of a robust confi-
dence set based on Catoni’s mean estimator. We first define
a per-sample weight 7; as the maximum of a parameter o,
the variance o of the reward of x;, and an uncertainty term
based on the eluder coefficient Dz, | (x¢; 1], 0r—1))-

Then, we define a robust estimator of f*, given the data, as
the solution to the following saddle-point problem:

~ ~ 1 ~
fe =argminmax Li(f, f') = > —(f'(z:) = f(2:))*
t fer I'€7 ‘ g:[t] a;
+ 2tcat0ni0,,(f7f/)({zi(f7 }Yiew)s (3)
where we use the notation Z;(f, f') = &; 2(f(z;) —

F (@) (' (i) — i), ¢(0) scales as O(1/log(1/0)) and is
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specified in Table 2, and the parameter 6, ( £ f ) is also
specified in Table 2.

To understand this definition, we observe that L;(f, f') is a
robust sample-based estimator of the true excess risk:

Rulf ) = 3 o [Bal(F ) = 90)?] = Bl (@) — w0)?]

i€t ¢
> 2B () - (@)?

ieft] ¢

L2 () — f (@) (f () — yi>]7

Z;

“
where the expectation [; is taken with respect to the noise ;.
Since Z; is the only term that depends on the heavy-tailed
noise, it is approximated by the #-robust Catoni estimator
Catonig({Zi(f, f') }ier) in Le(f, f'). Then, we include
all the f € F,_1 that have a small weighted squared loss to
ft in the confidence set F;.

Remark 3.3. Since the min-max optimization in (3) can
be hard to solve, we provide an alternative (Algorithm 3
in Appendix D), where we construct a candidate set first
similar to the confidence set, and then choose an estimator
from the candidates randomly. This approach can improve
the optimization efficiency and ensure the same regret bound
as Theorem 3.4. Similar results also apply to the unknown
variance case in the next section.

Theorem 3.4 (Informal). Under Algorithm 1 with appropri-
ate choices of the parameters o, \, v and (3, with probability
1 — 26, we can bound the regret by

Ry =0 (Lf > oF-dim 1 (F) - log N(F,v)
]

T
te[T

+ Ly log N(F,v) - dim T(]—")).

1
VT’

The formal version of the theorem and appropriate choices
of the hyperparameters are provided in Appendix B.2. The
variance dependence in our theorem matches the lower
bound in Theorem 3.1. Specifically, for the determinis-
tic case where o, = 0 for all ¢ € [T, the bound is re-
duced to O(log N'(F, v) - dim%_’T(}")), and in the worst
case where o, = ©(1) for all ¢ € [T], the bound be-
comes 5(\/Tdim#7T(}") log N'(F,v)). We note that

the bound depends only polylogarithmically on R, improv-
ing upon most prior results as observed in Table 1.

3.3. Proof Sketch

To illustrate the intuition clearly, we ignore the covering
number in this subsection, and assume that the function
space F is finite. The detailed proof considers an infinite

function space and uses the uniform covering number. The
novelty of the proof lies in the following two parts.

Part I: Concentration of excess loss Recall that for
any f,f’ € F, we formulate the excess loss L:(f, f’)
to estimate the excess loss R:(f, f') in (4) under heavy-
tailed noise. Here the conditional expectation of the vari-
able Zi(f, f') is E[Zilvi] = (f(z) — f/(w:)(f'(:) —
f*(x;))/52%. Since the standard Hoeffding’s inequality leads
to the error dependent on the uniform noise bound R, which
can be extremely large in our setting, we can utilize the
robustness of the Catoni estimator via Lemma 3.2 to obtain
the following lemma.

Lemma 3.5. For all large enough time steps t and two fixed
f. f' € Fi_1, with a proper choice of parameters o, 3; and
€, we have with probability at least 1 — § /N2,

Li(f, f') = Re(f, ')

—Z‘tCatomgt(ff y{Zi(f, 1) )}ien)

ZE[Z f7 |$1
i€[t]

1 150

5 Vi(f, f) + g/Bt:
where Vi(f, ') = Zie[t](f(xi) — ['(x1)))? /7.

The values of the parameters are shown in Lemma B.2, and
the proof is deferred to Appendix B.2. Importantly, 32 in
the lemma above only has log R dependence.

Part II: Sharpness of the confidence set Next, we show
that for our choice of Bt, the true function f* € F; with a
high probability for ¢ € [T'] that are appropriately large. To
prove this, we define L;(f) := maxper L(f, '), apply
Lemma 3.5 with f = ft, and take a minimum over f € F
on both sides of the inequality to get the following result.

Lemma 3.6. Under the conditions of Lemma 3.5, we have
Sor all large enough t € [T with probability at least 1 — 6,

I ek 1 £oopl 152
Lo(f1) >§Pa" {Vith ) =vir's 1 = QVitde 1) - 58
_ 7 *x\ A2
—g‘/;t(fﬁf) 3575’
where the maximizer for " is f .. = %f* + %ft

The proof is deferred to Appendix B.2. An analogous argu-
ment also yields an upper bound L, (f*) < 32/3, as shown
in Appendix B.2. Furthermore, since ft is the minimizer of
Ly(-), we have

0> Li(f) ~ () = 2Vilho £*) -
which leads to f* € F;.

2 5
gﬁ

Ultimately, if the event f* € F; for a large enough ¢ hap-
pens, the regret can be bounded by using the definition of Bt
and the definition of the eluder dimension. Since this part is
standard, we defer the details to Appendix B.2.
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Algorithm 2 Variance-Agnostic Catoni Bandit
1: Input: Parameter v > 0, L = [log,(1/7)], l. =
[log, (1076 (6))].

2: Tnitialize the estimators for all layers: \' « 272, Bé —
27wl « G foralll € [, L].

3: for t=1,...,T do

4 Observe X;, and initialize X' < X, | < I,.

5 while z; is not specified do

6 if D!(x) < forall z € X} then

7: Choose ¢, fi_1 + argmax, ¢yt perl f(x)

8 Observe y:.

9 Break.

10: else if D! (x) < 27" forall z € X} then

11: Update X/ « {z ¢ &l | flioi(zx) >
max, ¢ y! ftl_l(a:) - 24“5%_1}.

12: else

13: Choose x+ € th such that D,lg (z¢) > 27" and observe
Yt.

14: Update wy <— 21Di(mt).

15: Update the index sets: W! « W!_, U {t} and Tl
T forl #1.

16: OPtimize ftl as in (7), and choose the confidence set
Fi defined in (9).

17: end if

18: Update [ <— 1 + 1.

19:  end while R )
20:  Forle [L]st. Wl =Ul_,, fl« fl_\, Fl « Fl_,.
21: end for

4. Bandits with Unknown Variance

In this section, we generalize to the case where the noise
variance En? for any ¢ € [T is unknown. In addition to
the assumption that for any f € F, || fllcc < Ly, and
[I/*llo € [0, 1], the following condition for the noise vari-
ance is required.

Assumption 4.1. For each time step ¢ € [T, the noise n;
satisfies that there exist positive constants o, and ¢, such
that E[ne|F;] = 0, En} = o7 < o7 and Var[nf|F;] <
e Var[ng | Fi].

4.1. Algorithm

Since variances o; are unknown, traditional variance weight-
ing techniques necessitate an accurate estimation for the
noise variance at each time step (Huang et al., 2024; Li &
Sun, 2024). To circumvent the complicated variance esti-
mation, we adapt the SupLinUCB-type (Chu et al., 2011)
algorithm with adaptive variance-aware exploration from
Zhao et al. (2023b) to propose Variance-Agnostic Catoni
Bandit (VACB) in Algorithm 2, where we split the contexts
{1 }1er) into L subsets according to their uncertainty. For
each level [ € [L], let W! denote the set of time indexes
within [¢] when the estimator update happens. Specifically,
we use the following short-hand notation of uncertainty with

respect to history information in W!: for any = € X,

Dia)—  sup [f(2) — /@) .
r0erl g\ (F@) = F@)2/w? + N

©)

At each time step t, starting from [ = [, if there ex-

ists a decision z € X} with sufficiently large uncertainty
Di(x;) > 27!, this decision will be chosen; otherwise,
all the actions = € X} that are far from the optimal reward
max, ¢ y! f1_,(x) are eliminated, and the remaining actions

compose the decision set XtZH at the next level. The pro-
cess does not stop until (a) there exists an action with large
uncertainty; (b) or the uncertainty of all the remaining de-
cisions is small (D!(x;) < ~ for all X; € &}). If case (a)
happens, we will construct the estimation for the current
layer. Specifically, for each level [, the variance estimator

—

Var, uses plug-in:

Var. — i 1 £l 2 7l
Var, '_tcat0n|9§/’ir ({w—g(yl — fi_q(z0)) } ) + b},

. (6)
where the detailed choice of bonus bi, the parameter Gi}lar

and ¢/(§) are provided in Table 3. Then, the function esti-
mation follows Algorithm 1:

iew!

£l . Leg g 1 ’ R 2
fi argmin max Ly(f.f") - i;@é 2 (@e) = J(@)
+ 2tCat0ni9;(fA’f/)({Zi(f, f/)}ie\pg):

(N
where Zi(f, 1) := (f(w:) — f/(@))(f/(@:) — i) /w? the
parameter 0;(f, f’) is given in Table 3. Essentially, the
weight w; can substitute the per-round variance in nor-
malizing the loss Lff, as we will show in Lemma 4.5 that

1

Var, can be upper and lower bounded by the true variance
D icwt o2 /w? up to additive and multiplicative constants.
t

—I

Furthermore, since Var, appears in the Catoni-mean’s con-
centration (Lemma 3.2) for ¢! Zz‘ewi Zi(f, "), we see
that normalizing the losses with w; results in variance-aware
concentration just like the known variance case.

For the two parameters require knowledge of the cumula-
tive variance, we substitute the true summation with the

1
optimistic variance estimator Var,: one is 6'(f, f’) defined
above, and the other is Bé, which is iteratively computed:

~ —1
(B2 = ©((¢(8)2272Var, + /(8)272 + A, + '),

X (®)
where the specific value of ﬁé and A, is provided in Table
3, and A, is a small term depending on the parameter v for
the v-cover in Definition 2.1.

In summary, our algorithm needs to estimate only an ag-
gregate variance instead of estimating the per-round vari-
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ance exactly, as we would require for applying a variance-
weighted directly in the agnostic setting. This requires
access to another function class that can model variances,
which we cleanly avoid. Finally, we define the confidence
set

F={reri Y o () - flw)) + 2 < (82},

Wy
IS4

€))

4.2. Analysis

Theorem 4.2 (Informal). Suppose that Assumption 4.1
holds. With appropriate choices of v, ' (8), v and Bé if T
is large enough, with probability at least 1 — 39, we can
bound the regret of Algorithm 2 by

Ry =0 <Lf( > i '1<>g/\/(7",’u)>1/2 - dimy 1 (F)

te[T)

+ Lydimy 7(F)(log N (F,v))** (/e + on)>.

This theorem provides a variance-dependent upper bound
when variances are unknown, which matches the upper
bound when variances are observed (Theorem 3.4) up to a
slightly worse dependence on the eluder dimension. The
higher order dimension term arises in the analysis of the
peeling technique.

When compared to the upper bound O(d, [ ter 0F +

d35T'/*) (Li & Sun, 2024) for the linear setting with di-
mension d and unknown variance, our bound gets rid of the
dependence on T/ 4 which means that our bound is still
optimal up to the dimension when the sum of variances is
small: >, ¢ 0? = o(v/T). We give more intuition on
why our algorithm admits this sharper bound in the proof
sketch below, with details deferred to Appendix C.

Remark 4.3. We compare our results here with a con-
temporary work (Jia et al., 2024). The main difference
is that they assume that the noise is bounded such that
ry € [0, 1], and we consider heavy-tailed rewards. Besides,
although we both get variance-dependent bounds, the fo-
cuses are distinct: they aim to obtain better regret bounds
when the eluder dimension is larger than the number of
actions, while we aim to obtain logarithmic dependence
on the reward range. Hence, we develop algorithms based
on the OFUL structure, while Jia et al. (2024) build on
the SquareCB approach. Regardless of the dependence on
reward range, for the weak adversary with revealed vari-
ance, our upper bound O~(\/ A - drlog N) is incomparable
to theirs O(y/AATog N + dr log N). For the strong adver-
sary, we both use the peeling technique and thus, our bound
is superior on the dependence of reward range.

Proof Sketch The main challenges for the variance-
agnostic algorithm are: (I) how to obtain the concentration
inequalities when the weights are not based on the noise
variance; (I) how to make accurate substitutions for the sum
of variance 3,y 07 /w7 in the parameters; and (III) how
to deal with the regret of each level [. The insight of solv-
ing challenges (I) and (III) basically follows previous work
(Zhao et al., 2023b; Pacchiano, 2024), but for (II), because
of the heavy-tailed setting, our contribution is designing the
robust Catoni variance estimator, and demonstrating the esti-
mator almost has the same order as the true average-variance
Do o2 /w2 up to constants with logarithmic dependence on
the reward range R. We address these challenges in the
following three parts, respectively.

Part I: Average variance bound for concentration In
this part, we study the concentration of the excess loss for
each level. For clearer illustration, we omit level { when
there is no confusion and denote D; = D!(x;) for short.
Distinct from the known variance case where one directly
takes the variance o, as weights to derive an upper bound for
the variance of Z;(f, '), we start with an alternate bound
in terms of the weights w;:

Sy = Z Var[Z;(f, )]

ieWy
= SB[ () — £ @ )~ 9)? | ]
€W, v
< Z (f(fvi);éf (z:)) %
iev, v ¢

When the variance is known, and w; = o; as in Algorithm 1,
the second term in the final inequality is uniformly equal to
1.

When the variance is unknown, we can no longer weight the
variances, instead, we uniformly bound the first term and
aggregate the second term as shown below:

(f(zi) = ['(2:))® D ai

S: <max 5 5
i€, w? 5 wi
D (f(zr) = f'(xr))? o}
sy (X L) 2 0
v reli—1] T iewy i

Uniform bound < 272 A4/3’t2_1

where the first inequality uses the definition of D;, and the
uniform bound holds because D; /w; < 2t at level [ from
Algorithm 2. Also f, ' € F;_, implies that

Ul = FE)?

w2

Z (f(zr) = froa(@r))?

w?

(f'(@r) = fror(xr))®

TE[i—1] TE[t—1]

+2 >

TE[t—1]

<4B7 .

w?
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Here the first inequality applies the Cauchy-Schwarz in-
equality, and the second inequality follows from the defini-
tion of F;_1.

Therefore, by not requiring a uniform bound on the close-
ness of the variances and the weights, we can successfully
derive the concentration inequality for L;(f, f')— R:(f, f').

Lemma 4.4. Under Assumption 4.1 and Algorithm 2, we
have sup; g, D;/w; < 2-l.—= p, w; > 1. Then, for alarge
enought € [T| and for any f, f’ € Fi_1, with probability
atleast1 —§/TL,

LS, 0 = R, 00| £ 5Vilh ) + 562

ro(wwrp(Zenr M Gy s

The more involved version of this lemma and the proof is
presented in Appendix C.1. Note that the variance estima-
tor \//z;t appears on the right-hand side of the inequality
above because the parameter 6 ( ff ) cannot be directly
set in terms of ),y 07 /w?, and we instead use the sur-
rogate \//zﬁrt. The @t dependence will be eliminated af-
ter demonstrating the close relationship between \Et and
Y icw, 07 /w; in the next part.

Part II: Accuracy of variance estimation. Forany ¢ €
[t], let Vi(fi—1) = (yi — fi—1(x;))?/w?. The conditional
expectation of this term is

EVi(fim1)lwi] = (07 + (f*(2:) = foo1(@0)?) /0.

Then, by using Lemma 3.2 and using an argument similar
to Part I, we can control the concentration error

[tCatonigg, ({Vi(fim1)},y,) = D ElVilfim)lad]

€Wy

Hence, it suffices to bound the gap between the variance
and the expectation:

‘ > EWVi(feor)la] = D %

€Wy ieWy

-3 (f" (i) = fi-1(x))

where the first inequality uses f* € F;_1, the definition of
D; and Dl/wl =921

Recalling the definition (6) of \//'ﬁt, we derive the following
accuracy guarantee of this estimate compared with the true
aggregated weighted variance:

Lemma 4.5. Under Algorithm 2 and the condition that f* €
Fl_,, when 2\ is large enough, we have with probability at
least 1 — 26 for all large enough t € [T,

2
o2 —
Z —+ < 2Vary,

Lt ?
€Wy , , (10)
7 g ’ 2
Var; < 3 ,LGZ\I, w? + O(L (0)(o5 +cn) + Ay + A).
Part III: Bounding the regret for each level [. Con-

ditioning on the high-probability events, we can show
that for any time step t € W, the true optimal decision
x} = argmax,. y, f*(z) remains in the candidate set X/
during the level-wise elimination in Algorithm 2, where
l is the level from which x; arises. By the definition of
th, we know that z; cannot be far from z}, thus we can

demonstrate the following lemma.

Lemma 4.6. Under Assumption 4.1 and Algorithm 2, if
f* € Fl_, and (10) hold for all large enough t,, then, for
all large enough | and t € VY., we have:

zr e X,
and the regret at the l-th level is bounded by

ST () - ) < 27w,

tevh.:t>0(1)

The details and the proof of the lemma are deferred to Ap-
pendix C.1. Hence, it suffices to bound the size of \I/lT We
get via D! (z;)/w; = 27! that

Dl i 2
Wl =22 Y (Dulag))” tij; ) < 2%dimy 1 (F).

ieWr i

Ultimately, by combining the results above the choice of
i_l in (8), we can obtain the bound for each [. The
final regret is obtained by summing the regret for level

l=1.,..., L.

5. Conclusion

In this work, we consider contextual bandits under heavy-
tailed rewards (rewards with a large range ) with general
function approximation. The key novelty of our approach
is the application of Catoni’s mean estimator for non-linear
settings based on the observation that excess loss estimation
is the correct object to robustify. For the known-variance
case, the Catoni-OFUL algorithm combines the adaptive
Catoni estimator and the variance-weighted optimization.
The algorithm enjoys a variance-based regret bound with
only polynomial dependence on R. When the per-round
variance is unknown, our proposed variance-agnostic Catoni
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bandit algorithm carefully peels the samples based on their
uncertainty and utilizes a plug-in estimator for the sum
of variances. The algorithm also obtains a variance-based
bound depending on R logarithmically, but has a worse
dependence on the eluder dimension. Improving this is left
as a future direction. We also provide a lower bound to show
that our regret bounds are optimal in the leading-order term.

For the future work, since the Catoni estimator is a gen-
eral device from robust statistics, it might also be useful to
investigate if it enables us to handle other forms of noise,
such as adversarial corruption (He et al., 2022; Ye et al.,
2023; 2024b). Additionally, while we obtain information-
theoretic results in this paper, the algorithms are not easy to
implement, both because OFUL-style algorithms are always
tricky due to the version space structure, and the function-
dependent choice of 6 in the way we invoke the Catoni
estimator makes things even harder. It would also be inter-
esting to extend the results to general MDPs.
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A. Notation Table and Additional Related Works
A.1. Notation Table

To improve the readability of this paper, we provide Tables 2 and 3 for the notations used in this paper.

Notation Description
[n] {1,...,n}
R The range for the noise 7;, Vt € [T]
o The variance for the noise 7,
Ly The range for any function f € F
N The v-covering number for the reward function class F

Dz(x, 05 Z[t—1]» U[tﬂ]),

3 The eluder coefficients in Definition 2.2
D3 (z; 2311, 01 -17)

dn.n(]-", X, ), The eluder dimension in Definition 2.2
dimg, 7y (F)
Catonig({Zi}icy) Catoni estimator defined in (2)
2 4log (% log(A/a)>
1(6) O(\/1og(RL; TN (F,v)/5))
0:(,1") =
\/Eie[t] (f(zs)=f"(2:))?/57 (1+(2L(5))71 \/ éffl‘i‘)\) +e?
B The confidence radius, ©(y/log(RL ;N (F,v)T/5))
a 1/\/T
A o(1)
v O(1/LPR'T')

Table 2. The Table of Notations for the Known Variance Case.

A.2. Additional Related Works

Variance-weighted regression. Variance-weighted regression has been studied for light-tailed noises for both contextual
bandits and Markov Decision Processes (MDPs) with linear and general function approximation. Specifically, Zhou et al.
(2021); Zhou & Gu (2022) apply variance-weighted regression to obtain second-order bounds for linear contextual bandits
under the known variance case. They also use the weighting technique for linear mixture MDPs under unknown variance
case, where they assume that the variance can be realized by a linear function class. Similar weighted regression also appears
in MDPs with linear and general function approximation to achieve the optimal regret bound (Agarwal et al., 2023; He et al.,
2023; Zhao et al., 2023a), and in the adversarial corruption settings to make the algorithm robust to adversarial attacks (He
etal., 2022; Ye et al., 2023; 2024b;a).

Heavy-tailed rewards in bandits and RL. The topic of robustness to heavy-tailed rewards has received a considerable
amount of attention recently. Bubeck et al. (2013) are the first to study heavy-tailed rewards in multi-armed bandits. More
generally, robust mean estimators (Lugosi & Mendelson, 2019) such as median-of-means, truncated mean and Catoni’s
mean have been applied to linear contextual bandits (Medina & Yang, 2016; Shao et al., 2018; Xue et al., 2020; Huang et al.,
2024; Li & Sun, 2024).

B. Proofs for the Known Variance Setting
B.1. Proof for the Lower Bound
Proof of Theorem 3.1. Forany 0 <o <1/2,0<e<o/2and R > /3, define three distributions

20, w.p. ";;6, 20, W.p. 52257
P,=o(1+R™"), Pf.={ 20R, W.p. s, . P, ={ 20R, wp. 2o, .
0, wp.1l-— %, 0, wp.1l— %’

12
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Notation Description
o The union bound for o7,V t € [T]
Cy The union bound of the ratio: Var[n?|F;] < ¢, Var[n:|F]
vl The set of time steps when the update happens for level [ in Algorithm 2
M The parameter in the uncertainty 22 for [ € [L]
le [log,(1076:/(6))]
l Lf (2) = f()]
Dt(x) SUPf’f/e]-‘f_l \/Zie\pé71(f(Ii)*f/(Ii))Z/w?+)‘l
b 140/ (6)(202 + ¢) + 434, + 268\
O (4207 + ey + L3 + 272044 (B1_1)%)
A, ©(Poly(LsRuT))
/(6) ) (\/ log (RL J(02+cp+ Ay + )J)NLT/zS))
oL f /(%)
f(f f ) \/2721(B£,1)2(W1+‘GZ(fvf/))+274l
. —1
(Bh)? The confidence radius, 2880(:/(6))227 2 Var, + 600/(5)272! + 12A,, 2 + 2!
A, O(LsuT? + L‘}RQL'(5)UO‘5T3‘5 + L?RLSUO'QSTIQS + RSLi’cUT + /RL;vT)

Table 3. The Table of Notations for the Unknown Variance Case.

We have the means

po=0(l+R1Y), pl =@+ )(1+R"), py.=(—-e)1+R),

and variance
Ve =0,
Vi =(o+edo—(1+R )20 —(1+R")%) <60, (11)
Vio.=(0c—€)(o—(1+R "o+ (14+R")%) < 20>

Thus, the rewards induced by the last two distributions P;f ¢ Py have large L1 norm (20 R) and bounded variances.

Furthermore, we have

_ o—¢ oc—€ o0—¢ o—€ (c—€e)(1+R72) c+e—
KL(P, |P).) = 1 (1_ )1 R
(Poc ) 20 Og0+e+20R2 Oga—I—e+ 2 OgJ_E_aRte
g—¢ og—¢ o+e o+te
<A+R?)——1log—— +(1+R?%)——1
s+ ) 20 Oga+e+( + ) 20 Oga—e
2
_o\ €
<4(14+ R )ﬁ'

Fix a policy 7. Now, we construct two 2-armed bandits and let the context space X' = . For the first bandit By, the reward
of the first arm Ry (aq) ~ P,, and the reward of the second arm Ry (az) ~ P .. Thus, the first arm a; is the optimal arm
for B;. For the second bandit, we have Rs(a;1) ~ P,, and Ry(as) ~ ng .» and the second arm is the optimal arm for Bs
but with a large variance. For ¢ = 1, 2, let IP; denote the distribution generated by the bandit environment B;, and let E;
denote the expectations under IP;. Then, we have

Ei[Rr] > Py(Np(1) <T/2)- %, Es[R7] > Po(Np(1) > T/2) - %

Then, by Bretagnolle-Huber inequality, we have

ExlRe] + EalRr] > 5 (Fy(Ne(1) < T/2) + Pa(Nr(1) > T/2) 2 - exp(—KL(P1[[P2)).

We also have
4(1 + R™2)E{[Nr(2)]€?

KL(Py ||P2) = E{[N7(2)]KL(P, | P),) < 3

o,€

a
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Thus, we have

4(1 + R_Q)]E]_ [NT(Q)]EQ)

g

Te
Er[Rr] + ExlRr] > — exp ( -

By choosing € = /02 /4(1 + R2)E{[N7(2)], we have

o2

4(1+ R7?)E1[Nr(2)]

Ei[Rr] + Eso[Rr] > Z;\/

Since the variance accumulates only when the arm x5 is pulled,

(]~
=~
8
I
&
N
vV
!
S
‘T’ﬂ
L
Q
s
I
=
Q
[\v]
s
5
2

T >E [Nr(2)] = E {

which implies that

Symetrically, we can also get

max{E;[Rr]} > Q (Eg ET: af).

t=1
O
B.2. Proof for Theorem 3.4
Theorem B.1 (Formal version of Theorem 3.4). Under Algorithm 1 with the parameter o = 1/v/T, A = (1), v =
O(l/L}2R4T10) and
B = O\ log(RLN (F, 0)T/3)), (12)

with probability 1 — 20, we can bound the regret by

Ry =0 (Lf > o7 dim o (F) - log N (F,v)
!

T
te[T

+ Ly -log N (F,v) - dlm%,T(}-))'

Notations In the following analysis, we use the short-hand notation for any f, f’ € F

Vilf, f)) =Y =5

i€t] v

Recall that we define the excess loss and expected loss: for any f, f/' € F

Li(f, f') = Z ?(f/(l“i) — f(x))? + 2tCatoni, 1,11y ({ Zi(f, ) }icp)
Ri(f, f) = Z ?Ez’ [(f(2s) = f/(a))® + 2(f (@) — /() (f (25) — wi)]

=3 S [U) = F@) 20 @) = P @) @) — £ @),

14
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where we define

(f(s) = () (f (2s) — wi),
2.(0)

\/V;(f, (14 200D ~1/B + ) + e

720R2L?N2T5
1(0) = , |log — |

We also use the short-hand notation for the covering number N := N(F,v).

Zl(fvf/) =

Syl =

9t(f7f/) =

Part I: Concentration of excess loss To begin with, we focus on proving the concentration between L.(f, f') and
R (f, f'). We first consider two fixed functions f, f' € F.

Lemma B.2 (Formal Version of Lemma 3.5). For each time step t > 3.%(8) and two fixed f, f' € Fi_1, if we take
o= 1/\/T and € = 1, we have with probability at least 1 — § /N2,

:2’tcat0ni0t(f,f’)({Zi(fv MYiew) = > i(f(ﬂiz‘) = (@) (f' () = f* (1))

iem 7
IV 4160000+ ) +32%0) 4 500+ L7

Lt(fvf/) _Rt(fmf/)

Proof. We first compute the expectation of Z;(f, f') as

wi(f, f1) = = (Flzi) = (@) (f (@) = (),

fl',‘ —

and bound the sum of variance by

SO VarlZi(f. 1) = 0B S () — /@) ) — )]
i€[t] g

PG ()

€’ ,/8L?t/a2+62.

Hence, given choice of = 1/ VT and € = 1, we have

48R(1 + 2AR)t? T20R213T* )
<min(1,(a):; . (5/1)\72T) log(4/ “)> < log ((5/]\72if“> < 0)

Thus, for any time step

48R(1 + 2AR)#?
min(l,a)52 . (5/N2T) log(A/a)> s

t > 60%(6) > 42(8) + 2log (

15
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by using Lemma 3.2 with o« = 1/ VT and € = 1, we have with probability at least 1 — & /N?T,

1

tCatonin, 1. ({Z:(f. ) Yietw) - ZH () = £ @) (@) = £ (@)
OO+ 30 0w = )~ ) Al
<0 W 1) (14 jlg(f'(m - P E)?) T e
<OV (1% g VB +) + D e (13)

where the last inequality uses the definition of the weight 67 > 4¢(0) L D (z;, xp_q),0p—1))and f, f' € F1 C Fi_qto
get for any i € [t]

(f"(zr) = f*(2x))? + A

Lo . L ) = ()
— (f(z) — f(23))* <=5 - su ) -
i RYES VDo 72 (k) = Fran)? + A J[Z] T

< 2 Y L) - ha@P 2 Y S - ) + A
44(6) Ok Tk

keli—1]

where the second inequality uses the Cauchy-Schwartz inequality, and the last inequality uses the definition of F;_;. Via the
choice of

2.(9)
U2 (1+ ooy B ) e

we get the right-hand side of (13) is upper-bounded by

4L(6)\/V}(f, (14 0B +A) + et e
<du(3)[1+ ? VT + 2/200) -\ Vil s ) Beer + 50(8)e

Ve(f, f') +160(0)(1 + @) + ivt(f, f) +9602(5) + éﬂ?_l + 50(8)

Vilf, f/) +160(0)(1 + ?) + 96.%(8) + 50(6) + %Bf_l,

et(faf/) =

)

L\JM— »MH

which concludes the proof by taking the union bound over ¢ € [T]. O

Lemma B.3. Forany f, f' € F, there exist two f,, f,, € F, such that ||f — fullcc < v, || [/ = fl|lco < v. Then, we have

|Catonig, (7, 7 ({Zi(f, f) }icry) — Catonig, (s, 11y ({ Zi(fo, [1) }ier)]
360L% R2.(0)V/vt  90LFRY?(vt)!/4
<

alte2 NOEEE

16
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Proof. From the definitions of Z;(f, '), we have Z;(f, f') < 2Ls(2Ls + R)/a?, and

S U@) = £ @D @) = ) = 5 (folen) = L) (fow) — v2)
%(f(fﬂi) — folas) = [/ (i) + fo (@) (f () — ys) — %(fv(xi) — folw:)) (f) (i) — f(:vi))‘
< 6LfU

|Zz(f7 f/) - Zz(fv,fqu)‘ S

<

a?
From the definitions 6;(f, f), we get 0(f, f) < ¢(6)/e and
4(6) _ 1(9)
@Ze — @) /oR i (Folws) = f(@))? /0?4

|9t(f7f ) - 9t fv7

<2 J 2 % [(f() = fr(@i)? = (folws) = £y ()]

Combining the two inequalities above, we have

A== th LIDNZi(f, f) - ZAJ%JL)HW

0:(f, f1) = 0u(fo, £1)

ze[t]
t(8) 6Lgv 6Lf(2Lf+R) t(6)
<19 1) /RL
G a? a? eQ SLyvt
60L2 5Ri(5)\ﬁ

Then, by invoking Lemma E.2, we deduce that
|Catonig, (5,51 ({ Zi(f, f') Yiep) — Catonig, (s, 1y ({ Zi( fu, [1) Yic)|

L+20,(f,f') - 2Ly (2Ls + R)/0? 2A

= 6.7, 1) MRCADE
360L3R%u(6)v/vt  90LIRY2(vt)!/4

= ade2 L(8)ad/261/2

Then, it follows the analysis for any f, f* € F which uses the uniform cover.

Lemma B.4. [fwe take v = O(1/L?R'T"), a = 1/VT, e =1, and 3, = ©((8)(1 + A\'/4)). Forany f, f' € F and
any t > 31%(8), with probability at least 1 — 6,

Lif 1) — Ri(f, f') !

=2tCatoniy, (1,1 ({Zi(f: £V hietn) = Y =3 (F(ai) = /@) (f (@) = £*(@.)

ielt] *

1 1.
Sivt(fa )+ 56152

Proof. Forany f, f' € F, there exist two f,, f,, € F, suchthat || f — fullec < v, ||f' = f]|loc < v. by invoking Lemma
B.3 witha = 1/\/?, e =1, we have

|Catonig, (7, 1 ({Zi(f, ) }icry) — Catonig, (s, r1)({ Zi(fo, [1) }ier)]
90L?R0'5U0'25T1'5

< 4 p2 0.5712.5
< 360LFR7(0)v" T + )

=A..

17
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Additionally, we get
R/ 1) = RulFor 11)
= Z % [E[(f () = 1:)°] = Bl (f (2s) — 9:)%] = Eil(fol@s) — i)?] + Bl (f (i) — w3)?]|
iclt] *

< 12L0T?.
Thus, by using Lemma 3.5 with a union bound over f,,, f/, € F,, we have with probability at least 1 — 0,
Li(f, f') = R(f, f)
= [LoF 1) = LelFor £1) + Lol £1) = Belfus £2) + Relfor £1) = Re(f. )

<|Li(fo, £3) = Refo, F)| + 18Ls0T? + TA,
1 A 1.
< 5vf(ﬁ,, fh)+ 1&(5)(1 + g) + 964%(8) + 50(8) + 653_1 +18LvT? + TA,

1 A 1.
< 5v;(f, f)) +4L 0T + 160(6) (1 + g) +9602(8) + 50(8) + Eﬂf,l + 18LjvT? + TA,

1 1.

where the last inequality holds since Bt_l satisfies that

B2, >6 <16L(5) (1 + @) +960%(0) + 5u(8) + 24L T2 + TAC> )

Part II: Sharpness of the confidence set
Lemma B.5 (Formal version of Lemma 3.6). If we take v = O(l/L}czR‘lTlo)7 a = 1/VT, e = 1, and under Algorithm 1
with B; = ©(u(8)(1 + AY/4)), we have for all large enough t € [T with probability at least 1 — 6,

22
/Btv

where the maximizer for f'is f} .. = %f* + %ft

Proof of Lemma 3.6. By invoking Lemma B.4 with taking minimum over f " € F on the both sides of the inequality and
f = ft, we have with probability at least 1 — §

. A 1. 1,
o Li(fo f) 2 max {Ru(fi ) = 5Vilhn f) = 382},
which implies that

L) > max {Vilfo ) = Vil 7))~ gVildoo 1)~ 587

freFi-a

3 (o) =3 @) = 3fi@)? 2 oo 1
:f/rg%f(l{_% T e 1)~ 58

2 A 1.
:gvt(ft,f*) — gﬂfa

18



Catoni Contextual Bandits are Robust to Heavy-tailed Rewards

where the minimizer is f},. = % f+ % f

Additionally, by using Lemma 3.5 with taking minimum over f’ € F on the both sides of the inequality and f = f*, we
have with probability at least 1 — §

L) < max {RUFF) 4 GVilr ) + 587

T fEFa
1 14
— _ / * = / * ~ Q2
= max { V(s 1)+ GVl 1) + 55
1~
Sgﬁ?a
where the minimizer of f/ = f*. O

Lemma B.6. If we take v = O(l/L}?R‘lTlO), o = 1/VT, € = 1, and under Algorithm I with B; = ©(c(5)(1 + A\/4)),
with probability at least 1 — §, we have f* € F;.

Proof. We use the notation L;(f) := maxycr L:(f, f’), and recall that

Ri(f, )= %Ei [(F(a) = £* (@) + f* (@) = 90)* = (F (@3) = f*(@0) + F* (@) = 9:)°]

iclt] ¢

=) %E [(f() = 9a)® + (F (@) = wi)® = (F (@) = 9i)* = (F*(23) — 93)?]
iclt] *

= Z %Ei [(f(2i) = i) = (F' () — wi)?]
ie[t]

:‘/t(f7 f*) - ‘/t(f/a f*)

Since f; = argmin rer,_, Li(f), we invoke Lemma B.5 to get

0> Lf) ~ Llf) = SVilfo )~ 282,
which means that
Vi(fe, £*) = Z ;Q(ft(xl) — (@) < B7
ielt] *
O

Part II1: Bounding the regret conditioning on good events. We now recall the definition that 7 := {t € [T] : ¢ >
7.%(6n.1)}, we further denote the good events & = {f* € Nye7Fi}-

Proof of Theorem 3.4. Conditioning on both good events £y, we use the notation f(z) = argmax ;. z, | f() can bound
the regret of t € T by

max f*(a) = ()

<max fy(x) — f*(x¢) < fewe) — [ (24)

TEX}

< 0iDF,_ (T4, 0401, Op—1]) - Z

~ 2 ~ 2
<0tDr, (@4, 0052-1),01-1)) © |2 Z %(ft(iﬂi)*ftq(zi)) +2 Z %(ft—l(xi)*f*(zi)) +A

i€t—1]

< 20¢DF, (24,08 1], O[t—1) - Be—1,

19
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where the second inequality follows from X; = argmax, . y, fi(x), the second inequality uses the definition of uncertainty
Dy, ., and the last inequality holds due to f*, ft—l e Fi_1.

Combining this with the range bound that || f*||o < Ly, the cumulative regret is bounded by

< 2Lf . 7L2(6) + 2Lf Z min (175'th,£71(1',5,5};(E[tfl],a'[tfl])étfl) . (14)
t—1eT

To finally bound the regret, we bound the second term in RHS of Rr expression in (14) respectively. These steps
mainly follow Lemma 4.4 in (Zhou & Gu, 2022). We can decompose the terms by considering 7; = {t — 1 €
T|D]-‘t71($t, 6t;x[t_1], 6’[25_1]) > 1} and IQ = {t —1e€ T,t ¢ Il}

For the first set, we bound its size naively by

Tl < 3 min (1,D%,, (v0, 0vi w1y, 031 ) < dima,r(F).
teZ,

For the second set, we bound the summation of terms of interest contraining on Z, by

Z O/ Bt{l + A Dx,_, (24,06 2-1], 0—1))
teZs
< Z 5t\/3t271+)\'D}‘t,l(xta5t;x[t—1]75[t—1])

tELy,01=0¢ OF

+ Z 6-15\/ 6152_1+A'D.7:t,1(xta6t7 Tt—1]5 [t 1])

t€T2,6t=1/4t(dn,t,1) Ly Dr, | (Tt;2[i—1],07—1])

< Z or+a) Bro1 - Dz, (4,06 2—1),07—1)) + Z 32L 50 (0n1.0)Be—1 D%, (4,04 2-1),0pe—1))
te[T] te[T]

(u) .
2" B2 (07 + a?)y/dima 1 (F) + 16Lfb(5n,tvl)gf%ﬂt_l - dimg, 7 (F).

te[T]

Here for (i) we use the condition for each distinct set and for (i7) we use Cauchy-Schwarz inequality for the first term and
the definition of dim,, for both terms.

Consequently plugging these back in (14) and take supremum over z : || = T, we conclude that with probability at least
1— 24,

RT = O <Lf - Lz((smT) + Lfdima)T(]:) —|— Lf L((Sn t l) maxﬁt 1 dlma T(]:)

Li+ |3 B2y (07 +a2) - y/dimg 7 (F)

te[T]
=0 | Ly logN (F,v)-d m_r F)+ Ly / Ut \/dunﬁ )-log N (F,v) |,
te[T)
where for the last inequality we pick A = ©(1), @ = 1/vT and v = O(1/ L R*T"?). O
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C. Proofs for Unknown Variance
C.1. Proof of Theorem 4.2

Theorem C.1 (Formal Version of Theorem 4.2). Suppose that Assumption 4.1 holds. Under Algorithm 2 with v =
1/(0,T%/%) and /' (5) = @(\/log (RLf(J,QI +ep+ A+ )\l)NLT/§> ), if T > 14(//(8))? with probability at least

1 — 39, we can bound the regret by
- 1/2
Rr =0 <Lf( Z o? ~log/\/(]~',v)> ~dimy, 7 (F)
te[T)

+ Lydimy 7 (F)(log N (F,v))¥*( /ey + on)>.

Notations In the following analysis, we use the short-hand notation for any f, f' € F

th(f, f') — Z (f(fﬂi) —2f (fﬂi)) .

W
iew!

7

Recall that we define the excess loss and expected loss: for each t € [T, | € [L], and any f, f' € F

LU 1) = 3 (/) = Fi))? + 2tCatoni, 1y ({2 ) i)

%

iew!
RGT) = Y0 Eal(F() — £/ @) + 27 ) — 7/ @) () — o)
iewl *
=3 L) — F@a)? + 20 (@) — £ @) (F () — 1 (@),
iewl *
where we define
20 ) = g (Fla) = F @) () — ),
oL(f. f) ‘)

G - N Va1 VA ) b

J(6) = ®<\/log (RLf(ag + ey + Ay + /\l)NLT/(S)).

The proof is decomposed into four main parts.

In the following parts, we will show that the following two events both hold with a high probability:

i)

=1 > 24 < 2Var,, forl € [L], 2" > 1076/(5) ¢ ,

icut Vi (15)
Elowe = {f* € Fl, forl € [L], 2" > 1076./(5)} .
We will prove the events hold conditioned on each other sequentially for ¢t = ©(1),...,T. We also use the short-hand

notation for the covering number N := N (F,v).

Part I: Concentration of excess loss First of all, we also need to prove the concentration of excess loss for each [ € [L].

In the following lemma, for conciseness, we neglect level / in the concentration analysis. Later, we will apply the result for
eachl € [L].
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Lemma C.2 (Formal version of 4.4). Under Assumption 4.1, given {x;,y;, w;}ic[s], we deﬁne foriet—1], F; =
{f € Fit: Sueg () = filw)?/wf + X < B2} and Dy = supy e, ~—enth LM Suppose that

(f(@)—f(22))2/wi+A
SUP; (] % <p w; >1, ()% > @(log (RLf(ag +ep+ A, +/\l)NLT/(5-ﬁt_1>) and p < min{1,1/(16v/3./(5))}.

of jw?
Then, for the time step t such that the following event happens £ = {t > 4(L’(5))2% +6(./(6))2 }7 and for any
f, f' € Fi_1, if we take € = p?, with probability at least 1 — §/TL,

LT ) = R 0| SVl )+ 5 | 5+ 645000 (OELAL I R PP Bz
Var,

where Var; = tCatonig; ({wi(y _ ftfl(xi))Q} [ ]) + 140/(6) (202 + ) + 434, + 268X, and A, 5 = O(LpuT? +
ar i i€t
LAR2/ (8)005T35 + LIR0OTI2), 08 = (4(202 + ¢, + L3 +16p% - B_1)?) L.

Proof. At each time step ¢ € [T, for two fixed f, f' € F;_1, we first compute the expectation of Z;(f, f') as

pilfo ) = S5 (Fla) = F @) (@) — F* ()

i

Additionally, we deduce that

(f(xg) = f'@a))* _ 1 |f () = f'(@s)]? . (fe) = f'@)?* |
w? S0 SR S e () — P el A [Z] w? "
D? (f (@) = froa (@) i1 (1))
<—-|2 +2 +A
w? lG%;H wlz lezv:l] wl
§4p2615271a

where the first inequality uses f, f' € F;_1 C JF;_1, the second inequality uses the definition of D; and the Cauchy-Schwarz
inequality, and the last inequality follows from D, /w; < p and f, f’ € F;_1. Thus, we bound the sum of variance by

> Vel =5 E[ — F @) (@)~ )? | ]
i€[t]
( o2
<Z ) Sl o)
2
<4P25t 1 Z Z)Zg
ie[t] ¢

Similarly, we can bound the sum of ;2 by

Z p )<Y L (F@) — P @) @) — F(@0)?

ielt]
") — £ (2;))2
<Vi(f, f’)%?g]( (f'(zi) wzf (z:))
. D? / o
Vlh fmax | D (Fle) = £ @) i + A
¢ \ieft-1]

<Vi(f, [') - 4p*BE 1.
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We can also get the upper and lower bound of 6;(f, f'):

01, ) = 40
V2B, (Var, + Vi(f. ) + €

Besides, by using Claim A.14 from Wagenmaker et al. (2022), we know that

. 1 2 1 A .
Catonig, ({E(yz - ftfl(wi))2}ie[t]) < max — (y; — fi(w:))? < Ygé%’f (207 + (f*(wi) = fu(w:))?) < 2R? + 4L7,

5 igt] wj
which indicates the lower bound of 6 (f, f/):

0t ) > A0 : —a
\/ (T(2R? + 8L2) + 17/(8)(202 + ¢;) + 434, + 268\)p2 2, + p

Hence, given choice of € = p2, we have

48R(1 4+ 2AR)t?
& (mmu, 5)62 : (5/]\;2TL) log(4/ “))
g (2T (1)
- p28/N2TL \a
< log< 144R?*T? '
- p26/N2TL
< (/(9))%,

((T(2R2 +8L3) + 170(6) (202 + ) + 434, + 268X)p? 37 + p4)>

where the last inequality holds since
()2 > 9(10g (RLf(a?7 + ey + Ay + ANYNLT/S - BH)).

Thus, since the following condition holds for time step

E=qt= 4(0’(5))225@ w 6(4'(6))% ¢,
Vart
we have
2iely) L Vif, ) 48R(1 + 2AR)t?
40/ (8)) —== ( _ log(A ) ,
t > 4(:/(0)) Var: + Vi(f, /') min(1,a)e? - (§/N2TL) og(A/a)

by combining the results above and using Lemma 3.2 with € = p? and the choice of 0;(f, f’), we have with probability at
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least 1 — §/N?TL,

tCatoni, 1,0 (L Zi(F, £V hete) = 3 g (Fla) = £ (@) (i) = 1)

1€ [t]

4(¢/(9) ? 2
< Ou(f, [ Var[Z;(f, f')] + /‘l’z (f, f T e TP
(s = i) + o

SR A3 | LAY
V2B (Var + Vilf, ) + € e
/() 0202 (Var, + Vi(f.S) + € 41
Diep 01/ w}

<4/®nﬁt1< Sy V5t+2kuﬁfﬁ>—+mwap2+p2

1 2 / 2 9 (ZiG[t] af/w§)2 U / / 2
< —Bf +48( () | —————"—+ Var; +4Vi(f, f') | +5./(0)p
12 Vart
2
1 4 > U?/“’? —
< Vilf. f) + 5515271 +48(1/(9))%p? (e[;]//\) + Var, | +5/(8)p%, (16)
art

where the fourth inequality uses the Cauchy-Schwarz inequality and A = O(1), and the last inequality holds due to the
condition that p < 1/16+/3:/(6).

Then, for any f, f’ € F;_1, there exist two f,,, f,, € F,, suchthat |f — fullcc < v, || — fl|lcc < v. Similar to Lemma
B.3, we have

|Catonig, (7, 1 ({Zi(f, [) }icry) — Catonig, (s, 11y ({ Zi(fo, [1) }ier)]
< 360LF R (6)v"°T"® + 90LF RO P01 := A, 5.

Additionally, we get
R, ) —Rt<fu,f’>
= Z P [E[(f (i) — 90)*] = Bl (f (@:) — 9:)®) = Eil(fo (i) — 90)°] + Bl (f] (2:) — ws)?)]

< 12LfUT2.

Thus, by using (16) with a union bound over f,,, f!, € F,,, we have with probability at least 1 — §/T'L,

Lu(f.F) = R £, )
= Lol ) = Lo 82) + LalFor F1) = Relfo ) + Relfun £) = Re(f. )
< Lt(fv;fq/))_Rt(fv7f1/))

+24Lp0T? + TA, 4

2
1 1. Sicr 02 /w? _
<o Lo, v aswene [ Z ) e st 4 A
4 12 Var;
1 1
< 7V ! - 2
< V) + 582
where we define A, o = 24L fUT2 + T'A, ;1 the last inequality holds due to the definition of /3;. O
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Lemma C.3. Under the conditions of Lemma 4.4, assume that f* € F,_1, and the estimator ft is
fe = argmin max Ly(f,f") := Z i(f’(x) — f(x:)? + 2tCatoni, ;. ({Z:(f, ) }icw)
LTS e T ) 2 ' ’ 0.(f.r)\ Vil ] ielt]):
feFt-1 icft] °
Then, for the time step t such that the following event happens

a3
Zie[t] w2

£ =t >4(/(9) T =4 6(4(6)% s

and all | € [L), if we take ¢ = 272, with probability at least 1 — §/TL,

* ) — Fo(p))2 . 02 jw?)? —
Z (/" () 2]%(361)) ) +A< 15,5271 + 6(48(L’(5))2p2 —( ZZEH/]\Z/ ) + Vary | +5/(0)p* + AU,2> + X = B2
i€(t] Wi 2 Var,

Proof. Let Ly(f) := maxycr L(f, f') and

2
1, Diel 01/ wi =
(W—253_1+6<48(L’<6))2p2 (L ot/ = L +5u(5>p2+Av,2>
arg

Thus, by invoking Lemma 4.4 with taking minimum over f’ € F;_1 on the both sides of the inequality and f = ft, we have
with probability at least 1 — §

Lif) = e {Rulfin ) = GVlFud) - 5507
> s {Vilho £ = Vil ) = SVl 8 - 5 (507

"x5) — 2 f*(23) — L fe(x4))? ; 2
= s {3 VOGP TS HEIE By gy - L)

freFi— 2 W
i€[t] v

2 A 1

:*V *\ /2,

2Vl )~ 380

where we take ' = 2 f* + 1 f,.

Additionally, by using Lemma 3.5 with taking minimum over f’ € F on the both sides of the inequality and f = f*, we
have with probability at least 1 — ¢

L) < max (R0 + V) + 5607

T fE€F
1 1
= max { = Vi(f £+ VI ) + 5080
Lo
Sg(ﬁt)2,
where we take f' = f*.

Since f; = argmin . 7, | L(f), we have

0> Li(fy) — Le(f*) > g%(ftvf*) - %(52)2,

which means that

Vil F) 4 A= 30 5 (fula) — F (@) + A < (507 + A = 52

ie[t] ?
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Part II: Event £ holds with high probability. In this part, we focus on the relationship between the sum of true
variance ), el 0?2 /w? and the estimation Var; conditioned on £/ ! . Recall that we define the events £¢,, and £ in

conv* conv
(15). First, we will show that event £!, . conditioned on ;.1 holds with high probability.

var conv
First of all, we provide a lemma for the v-cover.
Lemma C4. Forany f € F, there exist f,, € F, such that || f — fu|lcoc < v. Then, we have

1 1
Catonig — (i — f(z))? ) — Catonig/ ( —5 (i — fol(2:))? )’
’ <{wz Y }ie[t] ’ {wi Y }ie[t]
<4(R+2Lys)%0 + 24/ (R + 2Lj)v.

Proof. We have

i~ F))? < 2R 4813,
and l
1 2 1 2
—5 (yi — f(z3))” — E(yi — folzy))

w; i

< N(folzs) = f(2)2ys — f(@i) — folzi))]
< U(?R + 4Lf).

From the definitions 6%, , we get
O = (2(36LspBe1 + ¢y +202) + €)' < 1/e

Combining the two inequalities above, we have

1 t
g Z 9Var
i€ [t]

L P — (i ()’

Q %

S ’U(2R+4Lf)

| =

Then, by invoking Lemma E.2 with A = % -v(2R + 4Ly) and taking € = p?, we deduce that

Catonig:  ({Zi(f, ') }iey) — Catonig, (s, 71y ({Zi(fo, f{;)}ie[t})‘
1+ 264, - 2R* +8L7% 20(2R+4Ly)

(5var)®

(2R +4Ly) +

t
HVar

<A4(R+2Ls)%0 +24/(R+2L¢)v.

Lemma C.5. Under the same condition as Lemma 4.4, and assuming that f* € F;_1, we use the Catoni estimator

. _ 1 .
Var,(fy) = tCatonlgtV {Q(yi - ft_l(xi))z} ,
ALY ict]
where 03, = (12207 + ¢, + L} + 16p> - B2 )Y, and suppose that p < 1/(1076/(6)) and B2, <
4320(/(8))2p S12) Z}Z + 16 x 5660(:/(0))272 (202 + cy) + 1200/(8)p? + 26A, + 4\, where A, is defined in Ta-
ble 3.

i

Then, for the time step t such that the following event happens

2

Dier o

220wl 6/ (5))2
Vart

&=t >4(/(5))
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we have with probability 1 — 26 /TL

t
. 1 2
Var(fi) = 5 T | < 140(5) (207 + ¢) + 43D, + 268).

where A, = O(LsvT? + L‘]%RQL’((S)UO'E’TS‘E’ + L§R1'5U0'25T1'25 + R?’L?UT + /RLT).
Proof. For afixed f € F;_1, let
1 1 N .
‘Q(f)::;zg(yi—-f(xﬂ)Q *‘5( n A+ (f* (i) = f(@0)? + 20 (f* () — f(23))) -

We know that
Vi(f)] < R* + 8L} 4+ 20° :== R'.

‘We can calculate the conditional mean of Z;:

and the sum of variance of Z;:

> Var[Vi(f)] =)
=1 3

LR [0~ o2 4 4n2 (7 () — F()]
<3 107 eq + 47 (@) — F(@)?)

i=1
¢
SZ 2 . (cn + 16p -Bf_l) ,
i=1 ¢
where the second inequality holds since
1 * 2 1 |f(zz) — f/(I1)|2 1 * 2
— (f"(zi) — f(x3))” <— - sup . — (flzr) — f(z +A
o2 (@) = f@))? <o sup S & ) — P A ke{;ﬂ 52 (@) = 1 ()

1
<2 )] o (Flaw) = feaa@))®+2 ) 7 — fia(@)* + A

ke[t—1] Ok kefi-1) 7k
<4p®- B} 4, (17)

where the second inequality uses the Cauchy-Schwartz inequality, and the last inequality uses the definition of F;_;.

Then, we have

t t
S sZ%(a (@)~ f@))
i=1 =1
~ o} I (@) = f(x)?
A PO

o’. ~
SQU% Z wig + V;ﬁ(fa f*) : 4p2 . Btzfla

=1 7

where the first inequality uses the Cauchy-Schwarz inequality, the last inequality holds due to Assumption 4.1 and (17).
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Then, since from 65, = (12(207 + ¢, + L} + 16p° - B2 1))~* we have
t
9Var (Z Var Z(Ml - /1’)2>
¢
< (o, (z

(04u0)? (102 (202 + ¢y + 169252, ) + ¢ 4L3 - 49?82, )
4

5’

by the choice of ¢/(9) and the condition &; holds, we get

(20727 +en+ 16P23t2_1) +Vi(f f) - 40%?—1)

ﬁm \ S

IN

<

t= +%2 (64, (ZVar Z(M_,@)Q) + 2log(NTL/5).

Therefore, we can apply Lemma E.1 and with a union bound over the covering set of F;_1, which is denoted as F;_1 ,,, to
obtain with probability at least 1 — §/T'L, for any f € Fy_1 ,,

[Varu(£) = > w(F)] <Ol (3 VarlVi(h)] + 32 (5) + 5 l08(NTL/6)

t
HVar

|+

to .2

o; - N - log(NTL/§

<«9tvm<§ wz'(20327+%+16p26t21)+V2(f,f)~4p2531)+2(% O g
=1 7 ar

Then, for the estimator fAt,l, there exists a f,, € F;_1 ,, such that || ft, 1 — fulloo < v. By invoking Lemma C.4, we have

Catonige ({132(3/2 - ft1(33i))2} ) — Catonigy, ({;(yi - fv(xi))Q} > '
i iclt] i i€lt]

<A4(R+2Lg)%0 +2y/(R+2Ls)v.

Also, we can get

t

t
> wilfeer) = > milfo)] SALsT.
=1

i=1

Combining the results above and by the choice of 6%, , we obtain that with probability at least 1 — 6,

Varu(fi-1) - Z'm(ft_n

~+

< [Var(fo) =) pilfo)| + T(4(R + 2Lg)*v + 24/ (R + 2Ly)v) + 4L goT
i=1
t 2 /
0; . R )

< O (Zw; (2024, +160°87 1) + Vilfon £) 4[,2531) Qé)wus

=1 ? ar

t
<o ZU—E (2 +en + 1602821 ) + (Vi(fio1, f*) +4Lsv) - 4p°62 | +2 AN
= Uyar w2 g Cn P Pi_q t ft—17f fv P Pi—1 0{[ v,3

i=1 ? ar

where A, 5 = 4(R + 2Ls)*vT + 21/(R + 2Ly)vT + AL yuT. Further, we have
to52

> nilfica) Z% Vi(fio1, ),
i=1

i=1 7
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and

; i1 (i) = f*(2:))? foo1(ze) = [*(20))?
‘/t(ft—l, f*) _ Z (.ft—l( z),w-2 f ( z)) + (f ( )w2 f ( ))
i€t—1] ¢ t

. D2 .
<Bi,+ ﬁ Bi4
t

S(1 + pg)ﬂ?fh

where the first inequality uses the definition of D; and f* € F;_1. Combining the results above and the value of
04ne = (12(202 + ¢, + 16p°57_,)) " leads to

R 0'2
’Vart(ft Z 722
i=1 ¢
t : a7 2 242 2\ A2 242 V'(9) 2\ A2
< Ovar Z w2 (2077 + ¢y 4 16p ﬂt—l) + (L +p7) By +4LyuT) - 4p" By | + 29t +Aus+ (1+07)8
i=1 ! Var
I =02 1 —|— p - .
<3 ; el Bia+ 4LfvT +81/(8) (205 + ¢4) + 64p° 571 + Avs + (L4 ") 574
1 < 02
<12 s 67(4320 )2p? Z + 16 x 5660(¢'(6))*2p° (207 + ¢y) + 1200 (8)p® + 264, 2 + 4/\)
=1
1
+ ZLf’UT + Avyg
t
1 o?
<52 bt 67(16 X 5660(/(6))%p%(202 + ¢y) + 2645 + 4)\) +8/(8)(202 + ¢y) + A,

@
Il
-

< + 140/ (6) (207 + ¢) + 434, + 268),

1

| —
M .
5[0\3.0

K2

where the second inequality uses p < 1, and the third inequality uses the value of Bt{l, the last second inequalities
holds since we know from p < 1/(1076:/(8)) that 67 x 4320(¢/(5))?p? < 1/4, and the last inequality also holds due to
67 x 4 x 123(/(8))?p? < 2, and we define A, = 67 x 262, 5 + Ay 3 + LT = O(LpoT? + LiR?/(6)00°T35 +
LiRY5003T125 4 R¥L30T 4 \/RLguT), which concludes the proof. There is a fixable error. Now, I change the plug-in

in Var; from ft to ft,l, and change the analysis above, so now the upper and lower bound is reasonable. O

Lemma C.6 (Formal version of Lemma 4.5). Recall the definition of the variance estimation from (6):
— —_—
Var, =Var, + 14//(5)(202 + ¢,) + 43A,, + 268X,

where 92,’5“ = (4207 + ¢y + L5 + 27 A+4. 32 V) land A, = O(LuT? + LR/ (0)v*5T35 + LRV P025T125 4
R3L3 VT + \/RLVT). Then, condlnoned on ELSL, when 28 > 10761/ (8) we have with probability at least 1 — 26 for all
t> 14( "(6))3,

1 Jf 3 J?
5> o <Van <5y T+t 2(14/(5)(205 +ey) + 430, + 268Al),
v iewl *t

which implies that Uy 71.¢>14(.(5))2 Ebar hOIdS.

Proof of Lemma 4.5. If we suppose that & happens, since ;.1 holds true, we can apply Lemma C.5 to each | € [L]

conv

satisfying that 2! > 1076:/(§) with p = 2~! and obtain with probability 1 — 26,

ag;

[N ™

t
Var,(f, 5| < 140(5) (207 + ¢y) + 43A, + 268X\,
U)
=1

(3
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—1
which indicates the desired result according to the definition of Var,.

Furthermore, we show that when ¢ > 14(:/(8))2, & holds true.

t > 14((0))% = 4(4(6))? x 2+ 6(/(6))?
2
icwt ¥
> 4(/(9) T2 4 6(00))?,
Vam1t
—1
where the second inequality uses % Do el Z; < Var,. O

i

Part II1: Sharpness of the confidence set

Lemma C.7. Conditioned on E.,,, if we take v = O(l/L}2R6(L’(5))2T7), € = 272 and take the confidence parameter as
8):

~ —I
(B2 = 2880(4/(8))?27 2 Var, + 604/ (6)27% + 124, 5 + 22\,

where A, = ©(LyvT? + L4R2L’(6)U0'5T3'5 + LRYPu025T125  RIL30T + \/RLsuT). We have

()% < 4320(//(8))%27% Z + 16 x 5660(.(6))°27* (207 + ¢;) + 1204/ (5)27* + 264, + 4)'.
icw! w

Additionally, with probability at least 1 — 6, the following event occurs:

Ute[T):t23(0 (8))2Eeony = {f* € FL, forle|L], 2" > 1076.'(0) } -

Proof. By invoking Lemma C.3 for [ with p = 27!, we get with probability at least 1 — §,

> P i@
iewl g
o2 /w2)?
< %(/5'5_1)2 +6<48(L'(5))222l((2i€‘”j\§ ) +\7a\ri) +5/(8)272 +AU,2> AL (19)

Var,

Then, since Corollary C.6 implies that with probability at least 1 — 26,

2 3 2
- Z 0—2 < Var, < D % + 2(14/(5)(203 +ey) + 430, + 268Al), (20)
ZG\I!l Wi iewl
we get with probability at least 1 — 26,
(Licwt oF/w})”

— —1
— + Var, < 5Var,.

Var,

Hence, we deduce that

3 (f*(2:) w2f (@) |y

iew!

—
< (ﬁt D2+ (48( '(6))22725Var, + 5/ (6)27% + AU,2> + A

\ /\

5(3,{,1)2 + 1440(2/(8))222Var, + 30//(8)272 + 6A 5 + A
(82,

IN
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where the last inequality uses the definition of Bé

Moreover, we define
Bjy =16 x 5660(¢/(5))*27% (207 + ¢5) + 1200/(8)27% + 26A,, + 4\,
and deduce from (20) that

~ —1
(8?2 =2880(//(0))?2 % Var, + 60/(5)2*21 + 124,50 +2)\

<4320(/(5))%2~% Z —2 +5660(./(5))22~% (14/(5)(203, +¢p) + 434, + 268)\l) + 600 (8)272 + 124, 5 + 2\
zellll Wi

<4320(/(8))%27% o Lpt 4 Lpi
> - w2 TaPs T 5bs
ZG\IJZ Wi

=4320(./(6))%2~% Z —2 + 16 x 5660(¢' ()27 2 (202 + ¢,) + 1200/(8)27 % + 264, + 4\,
iew! Wi

where the last inequality holds since 2! > 1076:/(6). O

Part I'V: Bounding the regret conditioning on good events. Recall the notation for the eluder coefficient for each layer

P (@)~ J'(@) |
. Ve, ) — P+ N

Lemma C.8. Let [, = [log,(1076:/(8))]. Under Assumption 4.1 and Algorithm 2, if Ups14(,(5))2EL oy happens, then, for
alll € [l,, L], t € VY, and X} = argmax ¢, [*(x) € X/, and the regret at the I-th level is bounded by

> (f*(af) = (@) < 2712 B0 W

teWwl . t>14(1/(6))2

Proof of Lemma 4.6. First according to Algorithm 2, we will prove that for all t € ¥}, X; € X/ by induction from I, to I,
where [ is the level from which z; arises, and note that Algorithm 2 starts from level /,.

<Bi_1>2®(<u<6>>2221 3 af/w?+<u<6>>322l<o,%+cn>+Au).

iewl |

Assume that X} € tho for some Iy € [I,,!— 1] and th"'H exists. Since \I!ff’“ exists only if Di" (z) <27l foralla € th“.
Then, we denote X! = argmax__ i flo () and deduce that

7l il * lo il !
0y @f) = floa (@) 27 @) = 7 (@l) = [ = 17 (@) = |floa (@l = 17 (@l)
lo(, )7 lo (.
> — D (7)Bi-1 — D (=} )5t—1
> g l+igl
where the second inequality uses X; = argmax,cy f*(7), and the last inequality holds by using Dlo(zr) <

1 l l —1 .o lo+1 __ l £l £l
27 Dy (%) < 27'. Therefore, from the definition of X" = {z € X,° | f,°,(z) > max, o fi%q(x) —
2’10“61@71}, we obtain that X} € th0+1. Hence, via induction, we can prove that X; € A}

Next, for the [y + 1 < [ since X, X; € X}, we know that

izt (x7) = fii () < 271728070, 1)
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and
Dy ap) <27 Dy w) <27 (22)
Thus, we derive that
FHap) = ) <fi@d) = i) + | @) = izt @)
<2 2R 4 DI )B4 D () B

§271+25A£—1 + 27#%18\%—1 + 27l+16/\é—1

—1+3 301
:2 + ﬁt 9

+ | £ @) = fizh (@)

which implies that

> (a - fa) < 3 2

teWh.:t>14(/(8))? tewl,

<2 B,

Now, we provide the proof for the main theorem.

Proof of Theorem 4.2. Recall the definition of two good events

Y

—1
EL = Z Z) < 2Var,, forl € [L], 2! > 1076.(8) ¢ ,

iew!
= {f* e F, forl e [L], 2" > 1076//(5)} .

=)

gt

conv

By invoking Lemma C.7 and C.6, we have

P (Urerrpez3(0(5)) (Ebony N Etar)) > 1= 38,

In the remaining proof, we suppose that Uyc[7)u>3(./(5))2 (Eony N Evar) holds. Let I, be the minimum [ € [L] such that
2! > max{18¢3(//(6))?,6 x 48°Ly(/'(6))?}.

We can decompose the regret into three parts

L
Rr=3 Y (f@) = @)+ D D (@) -+ Y (@)= @)

=1y tewl, I=li+1tewl, te[TN\Uier ¥4

I Iz I3
where we use the short notation X; = argmax,. y, f*(z). For the term I;, we have
I <21, Ly|Wk|

Dl* 2
SQI*Lf22l* A Z ( t (f,;'t))

w
teWr g, t

<L;1,2°H dimy ¢ (F) = O(Lylog(N) - dim; 7(F)),

where the second inequality holds due to 2=+ = D' () /w, from Algorithm 2, and the last inequality follows from the
fact that 2+ = O(L(//(0))?).

32



Catoni Contextual Bandits are Robust to Heavy-tailed Rewards

For the term I, we invoke Lemma 4.6 to get

~ N Dl i 2
s 30 Azt <sty 3 faot 3 min {1, (PHE0Y
tzhtl =1, i€¥r, w;

<8Ly > Br2'dimy r(F)
1>1,+1

=0 | Ly | > o?-logN - dimy 1 (F) + Ly(log N)*/*dimy 1 (F) (/e + o) | ,
te[T]

where the last inequality holds since we know from Lemma C.7 that //(J) =

G)<\/10g (RL; (03 + ¢y + Ay + X)NLT/5) ) and

B -2 \/W O o+ v + VAL ),
iew!

For the term I3, we have

L< Y (f@) = (@)

te[TN\Uier ¥h

< > By

te[T\Uiern) ¥

=6<T-an\/f~ 1 )

o, T3/2
where the first inequality follows from the peeling rule that D}jl(mt) < yfort € [T]\ Uier) ¥4, and the second inequality
uses the upper bound of 3!* and the v = 1/, T?/2.

Combining all three terms leads us to the eventual result. O

D. Another Algorithm: Construct Two Confidence Sets

In this section, we develop a substitution for the Catoni estimator by constructing another candidate set and picking one
estimator out of the set instead of solving the min-max optimization as (3). Additionally, for simplicity, we consider the
finite function space F with cardinality /N in this section. By standard analysis for the union bound over the cover set, we
can extend the analysis to infinite function space with finite covering number as in Appendix B.2 and C.1.

D.1. Known Variance

Notations. Recall the probability parameter as follows:

5 )
Ot = NI 5 = g{;ﬂ Ont = T (23)

Note again we have 3,y 1e(7] On,t = Dsepry 0t < 0.

We also define the following logarithmic factor throughout the analysis that

>

V21288 - L2R2T35
t(0pt) = 4 |log ( !

2
5 log ( 96R(1 + 2R /)T >
n,t

min(1, a2/v/ 2OTL?)62 Ot

where for the last inequality we choose o = 1/ VT, e = 1 and use the assumption that R > 1, Ly > 1 without loss of
generality.
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Algorithm 3 Catoni-OFUL with Candidate Set
Input: Parameter §,, ; and 3, for each t € [T].
fort=1,2,....,T do
Pick action x; according to maxyscr, , zep, f(2);
Observe the reward y;;
Let the weight &, = max (o, o, 41/2.(5,, t)Lf Df(act, Ti—1],01t—1]))
Construct .7-} as defined in (24) and pick any ft S ]-'t,

Construct confidence set ) )
Fom{fer: Y o (i) - fua)) <82}

loae
ielt] *

end for

Suppose that for each ¢ € [T, the upper bound of the noise variance o2 is known. We now consider the following VOFUL
algorithm tailored to this nonlinear function class setup. After specifying parameters d,, ; and 5 for ¢t € [T'], and the weight

0t = max (O’t,O[74\/2L((5nyt)Lf . D]:(xt;x[t_l], 6—[1‘,—1]))

depending on the variance o, and eluder coefficient D, we define the candidate set for the estimator as

~ 2 1.
{fe]—' mmz ( — flx )) +2t-Catoni0(f,f)(Z1,--- ,Zt)2—4ﬁf}, (24)

whereZi(f,fA):&i?(f(xi) [z ))(f( i) — i) and

L2 (5n,t) ‘
Sietn & (£ = F@0) + Sy & (£ - fla)) + 2

This candidate set selects robust estimations for the true function f*, and we will prove in the sequel that the f* belongs to
]:'t. Then, we choose any function ft from f't and further construct the confidence set F; with a small weighted square error.
We will demonstrate that f* € F;. Based on the principle of optimism in the face of uncertainty, we choose the greedy
function ft € F; and the greedy action X; € D;.

Theorem D.1. Under Algorithm 3 with the parameter 6,y = 6 /N(T + 1), ¢ (§,1) = \/log (\/21 - 288 - L%R2T3-5/6n7t),

and

By = [(8 (8 131 12132 + 13))1/2 + 13\/§A1/4}L(5n,t)7 (25)

with probability 1 — 25, we can bound the regret by

Ry = 6(Lf og N - dim_y_ 7 (F) + Lf( ) \/dlmﬁ 1ogN)

We now divide the argument into the following three parts. In the analysis, we omit (f, f') in Z; and § when there is no
confusion.

Part I: With high probability 1 — 4, all the sets F; are non-empty for each ¢ € [O(1), 7).

Lemma D.2. For any iterationt € [T],t > 7.%(6,, ) and the set F, as constructed in (24), we have with probability at
least 1 — 9, th[T],t27L2(5n,T)]:t 7é 0.

34



Catoni Contextual Bandits are Robust to Heavy-tailed Rewards

Proof. 1t suffices to show that for each ¢, we have P(f* ¢ ﬁt) < &;. When f* ¢ F,, there exists some f™ € F such that

| —

(f" () = () (f* () — yz)} []) < —iétz,

[ V)

@ql

o
1€[t]

Z i2 (f" (@) = f*(ﬂci))2 + 2t - Catonig ({

which implies that

t - Catoniy ({

Now we bound the probability that the above inequality happens. We use the notation for any f, f' € F

—1B7 = Ve 2 (@) = f* (@)
(fn(xi)_f*(xi))(f*(xi)—yi)} []) - — 3 :
i€t

| —

Qi

2
i

200 = =5 () = 1) () = w0),

which is short-notated as Z; when no confusion arises.
We apply Lemma E.1 to Z;(f™, f*). The variable Z; has conditional mean p; = EZ; = 0, and sum of conditional variance

B () — ) () - i)
ieft] *

where the inequality uses the fact that E (f*(z;) — y;)* = 0?2 < 52. We can also bound 6 by definition 6 € [a, A] where

L((Sn,t,l)

A=1(6p4,)/€ and a = .
\/20L5t/at 4 €2

g(A/a)) < 31%(8p.1,1) given choice of a = 1/+/T and € = 1, and thus for any iteration

Thus, we have log (% lo

48R(1 + 2AR)t?
> 7.2 > 2 2 > 2 2log [ ——————-"—log(A
2 T 0000) 2 b0 + 62 Gnaa) > A0ner) + 2108 (S bog(aa) )

. _ 1J2((5nY ,l) . .
by choice of § = \/Zie[t] %(f“(xi)—f*(xi))erEZe[t] ;—?(f"(xi)—f*(;ci))‘l—&-ez’ with probability at least 1 — 6, ;, we have from
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Lemma 3.2 that

i |Catoni9({Zi}i€[t])|

V —\2
< UOn.1) ¥ el Vi — 19 +120(0n,t0) V+Z — (@)t + €
VV A+ Sic s () = (@)t + € =kl

+e+ti

i€(t] cr

(%) 13\/V (1 + max — (f"(xz) f*(%‘))2> “t(Ont1) +12¢(0pt1)e + €

(7) 4Ly 1
B3|V 1+1%?§7DF(%33[1 1:0-1) | D ;(f"(ﬂ?k)—f*(:ﬁk))2+/\ L(Ont,0)
! i keli—1] k

(i) VA 13 1/4
< 134(6,, 14+ —= V34 (25,
~ 3L( ,t,l) ( + 8 > V+ 2\/§V (L ( ,t,l))

(i33) A v
< 169 (1 + \8F> P (Gney) + T 1342 (8,,0.)

(i) 4& + Y 7 (@) = f*(20)
2 )

where we use (o) that vVa+b < +/a + Vb, and the inequality that log (M log(A/a)) < 3%(0pt1)s

min(1,a)e2d,,¢

32Ly D (w45 2-1),00-11)t(0n,e,1) and Va+b < Va + Vb; (iii) triangle inequality that vab < & + < where we
leta=V,b=1692(0,1), c = 2 and similarly a®/4p!/* < 2+ *bwhere weleta =V, b =12(d,4,), and ¢ = 13v/2;
and finally (iv) the definition of j3; in (25) so that 32 > 8 (13% +13%) 2 (6,1) + 132V N2 (80.0).

(7) the range assumption that | f()| < Ly, choice of ¢ = 1 and definition of D,; (ii) the ch01ce of 02 >

This implies that

() — (@) (F (i) — yn}

-

P Z %2 (f™(x;) — f*(:ci))2 + 2t - Catonig <{

i€[t]

Thus taking a union bound on all f = f™ € Fandt € [T],t > 7:2(5,, 1), we can conclude that with probability at least 1 —§
(where & = 37, (n1 ) On.t) for all iteration 7 (0p,r) <t <T,onehas f* € Fy,ie. Nier)sri2(s, ) Ft # 0. O

Part II: With high probability 1 — 6, f* € F, forall t € [O(1),T]. We first provide the following lemma.
Lemma D.3. For any function f™ € F, let Z; = 2 (f*(x:) — f™(x:)) (f™(x:) — i) and 0 as defined in (24), we have
for any t > T.%(68,, 1) with probability 1 — §,, 4,

22
| Catonio(Z, - 20+ 1 37— (7 () — @R | < 130 (P ) — ) +
ielt] * ic[t]

Proof. In order to apply the concentration inequality in Lemma E.1, we first bound the following

V= L E(( - ] = 3 = (@) = @),

i€[t] ¢
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and further

n n 2 * n
S (=t < = 3 () — M) () - ) < Y 2 () — f )
1€[t] 1€[t] 1€[t] i iet] *
Now by choice of § = \/Z B _))Ljfit”) e Ve will have with probability 1 — 6, ¢, for
1t] 52 Ti Ti i€[t] 54 Zi € ’

any t > 7.2 (0n,7), it holds that

b |Catonia({Zidictu) = 3 O =5 (F* () = £ ) (" 1) = £*(2)

iclt] *

<13 [ ) | (1m0 = £ )b + 1300010,

ie[t] ¢

We now proceed to bound max; ey 2 (f™(x;) — fH(a:))?, we assume | /7 (z)— f*(x)| < 2L forany x € X, consequently

we have

4L
Smax%Df(xz,x[z 115 0i—1)) E %(fn(xk) ~ (@) A
i€lt] Oy = 52
< ; Z i (f7z($k) _ f*(«rk))Q + A
>~ 8L(5n,t,l) iet] 5’?
A
< Y L e - e+ 2
( n,t,l) i)

where for the last inequality we use the fact that 57 > 32L £1(0p, 11) D% (i T[i_1),0[i—1)) by the choice of 7.

Plugging this back we can conclude that

t- Catonig({Zi}ie[t]) + % Z % (f*(q;l) _ fn(;r;l))Q — 13[,(671}15,1)
ic[t] *
3/4
<13 (1 + ?) A D w0 = @) G + 2% L) - | 6w
i€t] i ielt] i
= % > al (F"(xe) = F*(@0)* + 2 1323 (Sn.0) (1 i §> " éiem ol (F"(20) = f*(2:)* + 8- 13%3(8,01)

1€[t]

1 1 1 1 1.
= t-|Catonig({Zi}icpy) + n ;ﬂ ;Z_g (f*(zs) — fn(ﬂfi))z < 1 2 672 (f"(x¢) — f*(fﬂi))2 + §6t27

where for the last inequality we use the definition of (3, so that 32 > 8(8-13% +2-132 +13)12(6,,.1.1) + 2 - 132V A2 (6,.0.0).-
This concludes the proof of lemma. O

Corollary D.4. With high probability 1 — § where § = ZnE[N],tE[T] On.t, we have f* € Fy forallt € [T — 1] satisfying
t > 7%(0n.1)
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Proof. We bound the probability by a union bound argument. Let 7 := {t € [T — 1] : t > 7,2 (5n,T)} and Zz{ _
a%’f’(f*(xz) fn( )) (fn(xl) ) we have

P(3t,73(bnr) <t < T, f* ¢ft)f o Plfi= f”Z,Q (f* (i) — f(x))* > B

E[N]teT i€(t] i
< Y B Zeewar @) =S (@) 42 Catoniy ({20 icr) = - 452
- ne[N]teT Zie[t]%? (f* (i) = fn(zi))Q > p?

Z P Eie[t];?lg (f*(zi) = (= )) < %B + 2t - ‘Catonlg ({Z }ze ) +1 Zze[t] % (f* () — f"(.ﬁl))Q
ne[N),teT Zie[t]a%? (f*(zi) = (= )) ﬁ

< S Pt |Catonig (1Z0hieyy) + 1 30 2 (P — @] > 1 30 2 (P(e0) — £ (@) + 5B

ne[N],teT i€[t] i€[t]
S Z 6n,t S Z 5n,t S J.
ne€[N]teT n€[N],te[T)

O

Part I1I: Bounding the regret conditioning on good events. We now recall the definition that 7 := {te[T]:t>
7.%(8n, 1)}, we further denote the good events € = {Mie7F; # 0} and &' = {f* € Me7Fi}-

Proof of Theorem D.1. Conditioning on both good events £ N &', we let f™ be the function maximizer in set F;_; we pick
at step ¢ and can bound the regret by

Rr=Y rn=Y (s £)) 2Ly (T20nr) +2) + 3 (7w — (@)
te[T) te[T) t—1€T
< 2Ly (7L (On, 1) + 2) + Z ( fr(xe) — ftfl(l't) + ftq(xt) — [ (x¢) )
t—1eT
0 ) ) ) ) 1 i 2
SO(Ly-20un) + Y. |0 Dr(enosap . opy)- | | Y 25 (@) = forl@) +A
t—1eT ift—1]
1 . 2
+ | Y = (@) = fal@)) + A
i€t—1] *
(i) "
< O(Ly-*(Opyr)) + Z 20D r(xt,0¢; T [—1], O[t—1]) - (\/ B+ A) ;
t—1€T

where we use (4) the definition of D,, for each ¢ € [T] and (i7) the definition of F;_; and that f™*, f* € F;_; conditioning
on& and &'

Combining this with the range bound that [0, 1] of each individual reward one may receive by assumption, one can conclude

that
Rr <O (Lf . 52(5,” T)) + 2Ly Z min <1 dtDx(xy, 045 T[t—1]> Oft— 1])\/ Bt 1+ )\) (26)

t—1€T

To finally bound the regret, we bound the second term in RHS of Ry expression in (26) respectively. These steps
mainly follow Lemma 4.4 in (Zhou & Gu, 2022). We can decompose the terms by considering Z; = {t — 1 €
T|D]-'(-rt75't§w[t—1]75[t—1]> >1tand Lo ={t—-1€T,t ¢ 11}
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For the first set, we bound its size naively by

|Il| < Z min (1, D%_—(.Z‘t, 5’t;$[t_1], 5’[75_1])) < dim%T(]:).
tel;

For the second set, we bound the summation of terms of interest contraining on Z, by

Z O/ Bt271 + X+ Dx(xt, 005 T—1), O[t—1))
tels
< Z 5t\/3t{1 + A Dp(we, 045 24-1), 0ft—1))

t€Lly,61=0¢ OFr

+ Z 5t\/3t2_1 + X Dx(xt, 045 Tp—1), 0[e—1))

t€T5,50=41/21(6n1,1) Ly Dr(x1;w1e_1],07—1))

(1) - =
< Z (ot +a)\/BE + X Dr(xy, 045 x—1), 01—1)) + Z 32Lpu(0na0)\/ B2 + A D3(24, 045 2—1), Op—1))

te[T] te[T)

23" (B2, + N (07 + a2)Jdimg r(F) + 16LfL(5ntl)maX\/m dimg (F).

te(T]

Here for (7) we use the condition for each distinct set and for (i7) we use Cauchy-Schwarz inequality for the first term and
the definition of dim,, for both terms.

Consequently plugging these back in (26) and take supremum over z : || = T, we conclude that with probability at least
1—26,

Rr=0 (Lf 2 (0pr) + dimg 7 (F) + Ly - t(6n01) - {Ielflx \/ B2 4 - dimg 7 (F)

Ly [ D7 (B +2) (07 + a2) - fdime,r (F)

te(T)

=0 Lf.logN~dim%)T(]:)+Lf - o?- \/dlm\% )-logN |,
\/ te

where for the last inequality we pick A = (1), a = 1/V/T.

D.2. Unknown Variance

We first choose the probability parameter as follows:

6
5n,t,l = m = Z Z 5ntl = 71 (27)

le[L] nE[N

Note again we have 3,7 0¢ < 0.
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Algorithm 4 Variance-Agnostic Catoni Bandit with Candidate Set
1: Input: Parameter v > 0, L = [log,(1/7)], . = [log,(1076./(9))].
2: Initialize the estimators for all layers: Al <= 272 3L « 27141 Wl « @ forall I € [I,, L).
3: for t=1,...,T do

4:  Observe X}, and initialize X} < X, [ < [,.

5:  while z; is not specified do

6: if Di(x) < v forall z € X/ then

7: Choose @y, f{_y < argmax et rert  f(2)

8: Observe y;.

9: Break.

10: else if D!(x) < 27! forall z € X} then

S els[ejpdate X e {re X! | flLi(z) > max,c y! fioi(a) =271 )
13: Choose x; € X} such that D!(z;) > 27! and observe y;.

14: Update w; < 2! D!(x;).

15: Update the index sets: ¥} < Wl | U {t} and U} « W'  forl’ #1.

16: Pick any ftl S .7:"tl as in (28), and choose the confidence set ! defined in (32).
17: end if

18: Update [ <1 + 1.

19:  end while X A
20 Forle[L]st Ul =Wl | fl« fl . Fle Fl L.
21: end for

For each layer | € [L], define Z; = %(f(xz) — fla))(f(zi) —y:) and

[N~}

N A 1 A 2 1 -
l = . ] . — . . i ~ DY _—— l 2
Fl= {fef.fefng:@i oz (F@0) = flao)) 20 Catonig gy (1, 20) 2 = 4(51) } ©8)

; ( (0nt)?
where 0(f, f) = .
- St 2o (F) = @)+ Sicwy 2 (£l — fle) +e

s (29)

and Catoniy is the f-robust mean estimator for % ZiE\I’lt ﬁ (f(a:l) — f(xz)> (f(xz) - f*(a:l)) The confidence radius is
specified as

(312 = ©(((6))22!Var, + /()27 + W), (30)

—
where Var, should satisfy event £%,%

holds with high probability:

—1 1 N
Var, :=tCatoniy: ({E(% - f;_l(xi)f}m ) + 140 (5)(202 + ¢,) + 268\ 31)

l
Then, we can define the confidence set
1 A 2 A
Fl=Srer: Y = (fw) - fix)) < @)% (32)
icwl *t

The result is provided in the following theorem, where the bound is basically the same as the one-confidence set case in
Theorem 4.2.
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Theorem D.5. Suppose that Assumption 4.1 holds. Under Algorithm 4 with v = 1/(LT%?), if T > 1442 (8p.7.1), with
probability at least 1 — 39, we can bound the regret by

Ry :6(Lf >~ of-dimy_7(F)-log N + Ly -log N - dim%)T(]—')).
te[T]

For the analysis, we now divide the argument into the following parts. For conciseness, we will omit the proofs similar to
the previous analysis.

— , |f (i) —f ()] I
SUP S e F T fon) T e feEn

SUp;e(y] % <pand ELL = {3, et wr < 2\//a\rt} holds true, then, for the time step t such that
Zie[t] o} jw}
Vary
there exists some [ = f™ € F such that with probability at least 1 — 6,

48— Cicg e (f(@) = £ (@)
¢+ Catoni ({;U(xi)—f*(xm <f*<xi>—yi>}v H) > e .

%

Lemma D.6. Under Assumption 4.1, given {X;, yi, w; }icy), we define D?

&= {1240/ (6nr1))? +6((0n00))%},

Proof. Now we bound the probability that the above inequality happens. We apply Lemma E.1 to
1 * *
Zi = w2 (f(i) = f(4)) (fF (i) — i),

which has conditional mean p; = 0, and sum of conditional variance bounded by

S VarlZi(7, )] = 3 [ (F() — @) ) — 91)? | ]
i€t] L

1€[t]
(f(zi) = f'(@:)* oF
<> w2 w?
i€[t] 4 v
2 42 ; 2
<4p~Bi_4 —5 < 8p° B, Vary
ielt]

Then, follow the proof steps of Lemma C.2, we can obtain that with probability at least 1 — 6,, ;, we have from Corollary 3.2
that

t - |Catonig, (7, iy ({Zi(f, f') Yiep)| < 5

Thus taking a union bound on all f = f™ € F, we can conclude that with probability at least 1 — d¢,

1B+ Valf, 1)

t- ‘Catonie({Zi}ie[t])’ < 2

O

Lemma D.7. Conditioned on EL}., for any iteration t € [T),t satisfying &, and any layer | € [L] and the set Fl as

constructed in (28), we have with probability at least 1 — 6, ﬂtg[T],tgh?(én,T)]:tl £ .

Proof. Tt suffices to show that for each ¢ and I, we have P(f* ¢ F!) < §,. When f* ¢ F, there exists some f = [ € F
such that with probability at least 1 — ¢

3 < () = £*(@i))? + 2¢ - Catoni ({uf () = £ @) () =)} W) <032,

%
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which implies that

—1BD? = Vet = (Flwi) — £*(2:))°
t - Catoni <{uf2<f<m> — (@) (f*(x2) —yi)} ) < i - .
i iew!
Lemma D.6 implies that
P (30 L () 7)) + 21 - Catony ({U; (7o) = @) (@) = )} H) <2 <o
i) ¢ i i€t

Thus taking a union bound on all f = f" € Fand¢ € [T, ¢ satisfying &, we can conclude that with probability at least 1 — 4
(Where & = 3, v} repr] On.t) for all iteration 702 (8, 7,1) <t < T, one has f* € F{, ie. Nieir)t72(5, )5t 7 0. O

With probability at least 1 — 6, f* € F! forallt ¢ [O(1),T], | € [L].
Corollary D.8. Suppose that Assumption 4.1 holds. With high probability 1 — 6 where § =, €[L],n€e[N],te[T] On,+, we have

UtE[T]:tZB(L’(J))zgéonv = {f* S ]:tl, fOl’l S [L}7 2l Z 1076L/(6)} .

Proof. Conditioned on £%;!

V'),l" 4

we can follow the proof for the known-variance setting and get
e F.

For each [ € [L], so it remains to prove that £%}

var holds true. Following similar analysis of Lemma C.6, we can show that
conditioned on

{freFL,vie|L],s € [T*Onry),t —1]},

the event £%;!. holds with probability at least 1 — 6. O

var

Recall the value of Bé

. — A
(BH2 = 392(/(6n.0.1)) 2272 Var, 4 522( (60.00)) 2272V + 8 x 5244(8, 4.0)274 + T

~ 2
We can also demonstrate the relation between j3} and the sum of variance Y,y Z; in the following lemma via similar
t W

proofs with Lemma C.7.
Lemma D.9. Conditioned on E!

var’

if we take the conﬁdence parameter as (8), We have

(5) @( 2—2l Z 2 2l(0_ Ye ) Ll(5)2—2l_’_)\l>.

iewl 1

Additionally, with probability at least 1 — 9§, the following event occurs:
Ure[m)453( (6))2Ebony 1= {f* € T}, forL € [L], 2" > 10764/ (5) } .

Finally, following the proofs of Theorem D.1 and 4.2, we can obtain the result of Theorem D.5.

E. Auxiliary Proofs
E.1. Concentration Inequality for Catoni Estimator

Lemma E.1 (Concentration for Catoni estimator, cf. Lemma 13 in (Wei et al., 2020)). Let Z; be random variable adapted
to filtration Hy, suppose B[Z;|H;—1] = p;, Zie[t] E {(Zl — ,ul-)2 \7—[1—71} <V for some fixed V. Let i := % Zz’e[t] i, for

some fixed parameter 0 > 0, we have for any t > 0 (V + Zz‘e[t] (hi = ﬂ)2> + 2log(1/9), with probability at least 1 — 26,

0 (V + Dieq (i — ﬂ)z) 2log(1/6)
t + ot '

|Catoni9({Zi}7;e[t]) — ,l_/,‘ <
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We provide the following lemma used in proving Lemma 3.2

Lemma E.2 (Sgnsitivi}y of Catoni estimator, cf. I:emma A.13 of (Wagenmaker et al., 2022)).~ Consider some fixed
Z ={Zi}ie), Z = {Zi}iew satisfying |Z;| < R, | Z;| < R for alli € [t], and some fixed 0 > 0, 6 > 0. Then, assuming
that

1 =~ 5 1 . 2 2
A= t%9|zi—zi|+33|e—9| < g min{L, 67 R},

we will have

. .5 14 20R 2A
|Catonio({Zi}ieyy) — Catonig({Zikiew)| < —5—A+1/ 55
Lemma E.3 (Formal version of Lemma 3.2). Let Z; be a random variable adapted to filtration H; with a uniform bound
1Zi| < R E[Zi|Hi1] = pi 2oy B [(Zi —5)? |’H¢_1] < V for some fixed V. Let i := %Zie[t] wi. For any parameter

0 € [a,A] and given ¢ < 24R(1 + 2AR)%, ift > 6%(V + Dier (i — 7)?) + 210g(% log(A/a)), with
probability at least 1 — 26,

9 (v + 2 e (i — ﬂ)2) . 43 e

t ot t

|Catoni9({Zi}iem) — ,l_l,| <

where

48R(1 + 2AR)t?
12 = 4log ((—1')

- min(1,a)e2§

log(A/a)) .

Proof of Lemma 3.2. For any € > 0, set k = m_% <1, weconsideraset A={0=(1+k)-a|(l+k) -ac

ABR(L+2AR) log(A/a). Now for any 6 € A, we have by Lemma E.1 that with

min(1,a)e?

probability 1 — 25/|.A|, we have for any t > 62 (V + 2 iepy (i — ﬂ)Q) + 2log(|.A]/9),

[a, A], 7 > 0}, it is immediate to see |.A| <

0 (V+ Sicp (s — )’
| Catonig ({Zi}iep) — 1| < ( E;t] ) - 210%';4‘/5).

Thus by taking a union bound over § € A, we have with probability 1 — 24, for all § € A, it holds that for any
£2 6% (V + Cie (s — 0)?) + 2log(|AI/),

0 (V4 ey (i — i) , 2log(|Al/9)

ig(1Zi}i —Rl =
|Catonig({Z;}ie) — it t ot

Thus, for any ¢’ € [a, A], we have there exists some 6 € A such that the above bound holds true and w < kg <

min (2_3 ROTZAR 2252 ) Now by triangle inequality we can conclude that for any 6 € [a, 4],

|Catonip — fi| < |Catonig, — 1| + |Catoniyp — Catonip, |

b (V4 Sy (0 = ) | 2log(l4/0) | €

= t 0ot Ty
_\2
O(V+ Sicta 1= ") a10g(4)/5) e
< + + -,
t ot t
where for the second inequality we use Lemma E.2. [
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