
Catoni Contextual Bandits are Robust to Heavy-tailed Rewards

Chenlu Ye 1 Yujia Jin 2 Alekh Agarwal 3 Tong Zhang 4

Abstract
Typical contextual bandit algorithms assume that
the rewards at each round lie in some fixed range
[0, R], and their regret scales polynomially with
this reward range R. However, many practical
scenarios naturally involve heavy-tailed rewards
or rewards where the worst-case range can be
substantially larger than the variance. In this pa-
per, we develop an algorithmic approach building
on Catoni’s estimator from robust statistics, and
apply it to contextual bandits with general func-
tion approximation. When the variance of the
reward at each round is known, we use a variance-
weighted regression approach and establish a re-
gret bound that depends only on the cumulative
reward variance and logarithmically on the re-
ward range R as well as the number of rounds
T . For the unknown-variance case, we further
propose a careful peeling-based algorithm and
remove the need for cumbersome variance esti-
mation. With additional dependence on the fourth
moment, our algorithm also enjoys a variance-
based bound with logarithmic reward-range de-
pendence. Moreover, we demonstrate the optimal-
ity of the leading-order term in our regret bound
through a matching lower bound.

1. Introduction
Minimax optimal regret bounds in the worst-case over prob-
lem instances for contextual bandit learning are relatively
well-understood in the literature, both using policy-based
approaches in the agnostic case, and regression-based ap-
proaches in the realizable case. A variety of algorithms
attain these bounds in both settings, and the minimax opti-
mality implies that the bounds are unimprovable in general.
When the expected reward of each action is realizable using
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some function class F available to the learner, this optimal
regret scales as O(R

→
TdF logNF ), where R is the range

of the rewards, T is the number of rounds, dF is a complex-
ity notion for F , such as the eluder dimension (Russo &
Van Roy, 2013), and NF is the covering number of F .

However, this worst-case behavior arises only when the
rewards span their entire range [0, R] with a significant
probability, a phenomenon not typical in practice. Even for
a common case of binary rewards in {0, R} for instance,
the expected reward is often relatively close to 0 in com-
mon click/no-click style recommendation settings with low
clickthrough rates. Consequently, the expectation, variance
and even higher moments of the reward are much smaller
than the worst-case range. More generally, rewards with
heavier tails naturally arise when considering waiting times
in wireless communication networks (Nair et al., 2013),
stock prices in financial markets (Cont, 2001; Hull, 2012),
or value returns for online advertising (Choi et al., 2020;
Jebarajakirthy et al., 2021). In this paper, we study the de-
sign of contextual bandit algorithms that can leverage such
structures to have regret guarantees dependent polynomially
on the reward variance, with only a mild logarithmic scaling
with the range parameter R.

Such variance-based regret bounds have received significant
attention recently, under the topic of robustness to heavy-

tailed rewards. Huang et al. (2024); Li & Sun (2024) study
Huber regression and design variance-weighted regression-
based approaches for linear contextual bandits with known
variance, and show that their algorithms achieve a variance-
based Õ

(
d

√∑
t→[T ] ω

2
t

)
regret bound, where d is the di-

mension for the linear function, thus avoiding a dependence
on range R. They also study Markov Decision Processes

1Huang et al. (2024) consider a more general setting, where
the 1 + ω-th moment of the reward is upper bounded for some
ω → (0, 1], and incur a dependence in terms of this moment along
with additional poly(T ) terms. Since our work only considers
bounded variance, we present their result with (Li & Sun, 2024)
together, as the two results are identical for the case of ω = 1.

2DistUCB relies on a stonger assumption: estimating the full
reward distribution rather than just the mean, and hence relies
on a stronger realizability on the function class to capture this
distribution. In contrast, we only assume realizability of the reward
mean R. Moreover, d̃F measures the complexity of a class of
distributions, while dF measures the complexity of a class of mean
functions, thus the two notions are generally incomparable.
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Table 1. Comparison between different algorithms for stochastic contextual bandits, where d denotes the dimension for linear function
approximation, dF , d̃F capture the complexity of the function space F used for reward estimation, T is the number of rounds, εt is the
variance of the observed reward at round t, ε is a uniform bound on reward variance (εt ↑ ε for all t → [T ]), R is the range of rewards,
and NF is the covering number for function class F . Õ omits terms logarithmic in T and R.

Algorithm Function Type Known Variances Regret Bound
Weighted OFUL+
(Zhou & Gu, 2022) Linear ✁ Õ

(
d

√∑
t→[T ] ε

2
t + dR

)

Heavy-OFUL (Huang et al., 2024) 1

AdaOFUL (Li & Sun, 2024) Linear ✁ Õ
(
d

√∑
t→[T ] ε

2
t

)

OLS (Pacchiano, 2024) Non-linear ✁ Õ
(
ε
↓
dF logNF +RdF logNF

)

Catoni-OFUL (Theorem 3.4) Non-linear ✁ Õ
(√∑

t→[T ] ε
2
t · dF logNF + dF logNF

)

SAVE (Zhao et al., 2023b) Linear ✂ Õ
(
d

√∑
t→[T ] ε

2
t + dR

)

DistUCB (Wang et al., 2024b) 2 Non-linear ✂ Õ
(√∑

t→[T ] ε
2
t · d̃F logNF +Rd̃F logNF

)

Unknown-Variance OLS
(Pacchiano, 2024) Non-linear ✂ Õ

(
dF

√∑
t→[T ] ε

2
t · logNF +RdF logNF

)

VACB (Theorem 4.2) Non-linear ✂ Õ
(
dF

√∑
t→[T ] ε

2
t · logNF + dF (logNF )3/4

)

(MDPs) with linear function approximation under heavy-
tailed rewards with unknown variance, and use the linearity
of both expected rewards and variances in linear MDPs to
design a weighted regression algorithm relying on variance
estimation. To the best of our knowledge, these works heav-
ily rely on the linear function structure and are hard to extend
to the non-linear setting. The general question of designing
a robust contextual bandit algorithm under the heavy-tailed
reward (or a reward with a large range) for general function
approximation is still lacking in the literature.

A different line of work called distributional RL estimates
the full reward distribution (Wang et al., 2024b;a;c) under
the unknown variance case to achieve variance-based re-
gret bounds with general function approximation. However,
their focus is on replacing the T -based scaling with the cu-
mulative variance and still incurs a polynomial dependence
on R. Additionally, the distributional approach requires the
stronger modeling assumption that the full reward distribu-
tion, rather than just the expected reward is realizable.

There are some works considering the unknown variance
case for contextual bandits without realizability conditions
for the noise (Zhang et al., 2021; Kim et al., 2021; Zhao
et al., 2023b; Pacchiano, 2024). Particularly, the most rele-
vant ones to our work for the unknown-variance setting are
Zhao et al. (2023b); Pacchiano (2024). Zhao et al. (2023b)
develop a peeling approach for the unknown variance case
without variance estimation in linear settings, and Pacchiano
(2024) extend this technique to general function approxima-
tion. Nevertheless, all of these algorithms have an O(dR) or
O(RdF logNF ) term in the regret bound. We summarize
the key results from the prior literature in Table 1 to better
contextualize our results, and defer additional related works

to Appendix A.2.

1.1. Additional Related Works

There is another line of literature targeting on standard
multi-armed bandit (MAB) setting with heavy-tailed re-
wards (Huang et al., 2022; Chen et al., 2024; Genalti et al.,
2024), where they obtain sharper gap-dependent bounds in
the MAB setting. In the contextual setting with general func-
tion approximation, however, one has lower bounds even
in the linear setting with large action spaces (Lattimore,
2017). Consequently, the results are not directly compara-
ble with ours. Regarding algorithms, we adopt the OFUL
framework combined with weighted Catoni estimators and
peeling techniques. In contrast, Huang et al. (2022) uses a
skipping method based on Follow-the-Regularized-Leader,
and Genalti et al. (2024); Chen et al. (2024) design adaptive
algorithms capable of handling unknown and unknown mo-
ment bounds. The remaining related works are deferred to
Appendix A.2.

1.2. Our contributions

This work considers a different route for robustness to heavy-
tailed rewards, building on the well-studied Catoni’s mean
estimator from the robust statistics literature. We design
a contextual bandit (CB) algorithm that uses the Catoni
mean as a robust device for constructing a regression error
estimator for the excess loss, given some function class
F for predicting the expected reward. Using the variance-
dependent concentration of the Catoni estimator, we conduct
a careful analysis of our algorithm and show that its regret
scales as Õ

(√∑
t→[T ] ω

2
t · dF logNF +dF logNF

)
, when
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the reward variance ωt is known at each round t.

Since reward variance information is seldom available in
practice, we refine our approach for cases with unknown
variances by employing a multi-level uncertainty estimation
for the expected rewards of a carefully chosen subset of
actions. For this approach, we obtain regret guarantees
dependent on the fourth moment of the reward, while still
maintaining a logarithmic scaling in R. Formally, the regret
scales as Õ

(
dF

√∑
t→[T ] ω

2
t · logNF + dF (logNF )3/4

)
.

Notably, our method does not rely on some other function
class to help predict the per-round variance as a function.
Instead, we estimate a robust averaged variance quantity,
and show that it approximates the averaged true variance up
to logarithmic factors in R.

Overall, our results significantly improve the state-of-the-
art in variance-aware regret guarantees, that are amenable
to practical reward structures. We summarize our results
relative to the most relevant prior literature in Table 1.

2. Preliminary
Notations. For any integer n, we use the short-hand nota-
tion [n] = {1, . . . , n}, and define x[n] = {x1, . . . , xn}. We
use Õ to omit terms logarithmic in T and R. The compre-
hensive table of notations is provided in Appendix A.1.

We consider a contextual bandit problem over T rounds
of interactions between an agent and the environment. At
each round t ↑ [T ], the environment generates a decision
set Xt ↑ X , where each element x ↑ Xt is a candidate
action for the agent. After observing Xt, the agent plays an
action xt ↑ Xt and observes the reward yt = f

ω(xt) + εt.
Particularly, this setting subsumes classic contextual bandit
where an action at ↑ A is chosen upon observing a context
zt at round t, since we can always set Xt = {zt ↓A}. We
make the standard boundedness assumptions that

|εt| ↔ R, Eεt = 0, Eε2t ↔ ω
2
t .

We assume access to a function class F : X ↗ [↘R,R]
such that fω

↑ F . For a function class F , we recall the
standard definitions of ϑ-cover and covering number (see
e.g., Wainwright (2019); Zhang (2023a)) as follows.

Definition 2.1 (ϖ-cover and covering number). Given a
function class F , for each ϖ > 0, a ϖ-cover of F with
respect to ≃·≃↑, denoted by C(F , ϖ), satisfies that for any
f ↑ F , we can find f

↓
↑ C(F , ϖ) such that ≃f ↘ f

↓
≃↑ ↔ ϖ.

The ϖ-covering number, denoted as N(ϖ,F), is the smallest
cardinality of such a C(F , ϖ).

We assume that the function class F consists of bounded
functions, that is, |f(x)| ↔ Lf for all f ↑ F and x ↑ X .
The variances ωt at each time step t are not necessarily

known. The (pseudo-) regret is defined as

RT = E
∑

t→[T ]

[
max
x→Xt

f
ω(x)↘ f

ω(xt)
]
.

To describe the structure of the general function class, we
define the following (eluder dimension) quantities (Gentile
et al., 2022; Russo & Van Roy, 2013) as
Definition 2.2 (Eluder dimension (Gentile et al.,
2022)). Given a sequence of ordered actions X =
(x1, x2, · · · , xT ) ↑ X1 ↓ X2 ↓ · · · ↓ XT and a function
class F , let the eluder coefficients be

D
2
F (x, ε̄;x[t↑1], ε̄[t↑1])

:= sup
f1,f2→F

(f1(x)↔ f2(x))
2
/ε̄

2

∑
i→[t↑1] (f1(xi)↔ f2(xi))

2
/ε̄2

i + ϑ
,

DF (x;x[t↑1], ε̄[t↑1]) := DF (x, 1;x[t↑1], ε̄[t↑1]).

Then we define the eluder dimension as:

dim(F , X, ε̄[T ]) :=
T∑

i=1

min
(
1, D2

F (xi, ε̄i;x[i↑1], ε̄[i↑1])
)
,

dimω,T (F) := max
X,ε̄[T ]:|X|=T,ε̄1,...,ε̄t↓ω

dim(F , X, ε̄[T ]).

The weighted eluder coefficient D2
F describes at each time

step t, how much the in-sample error can bound the out-of-
sample error. We can illustrate the eluder quantities with
linear function approximation. If the function class F is
embedded into a linear mapping F = {ϱ

↔
ς(·, ·) : ϱ ↑

Rd
, ≃ϱ≃2 ↔ B}, and we define the covariance matrix

!t =
∑

i→[t] xix
↔
i /ω̄

2
i , the weighted eluder coefficient can

be simplified as

D
2
F (x, ε̄;x[t↑1], ε̄[t↑1])

= sup
ϑ1,ϑ2→Rd

((ϖ1 ↔ ϖ2)
↔
ϱ(x)/ε̄)2∑

i→[t↑1]((ϖ1 ↔ ϖ2)↔ϱ(xi)/ε̄i)2
↑

∥∥ϱ(x)
ε̄

∥∥2

!t→1
,

(1)
where the inequality applies Cauchy–Schwarz inequality.
Hence, the eluder coefficient reduces to how much a direc-
tion is explored in the linear case.

The summation of eluder coefficients over T time steps is
the eluder dimension. The (weighted) eluder coefficients
and the eluder dimension are broadly used in general func-
tion approximation (Zhang, 2023b; Ye et al., 2023; Agarwal
et al., 2023; Zhao et al., 2023a). For the linear case in
d-dimensions, when all the ω̄, ω̄[t↗1] are 1, the dim1,T (F)
can be bounded in terms of d log d (Zhang, 2023b; Agarwal
et al., 2023). When the weights are larger than φ, we can
regard ς

↓(x) = ς(x)/ω̄ as the new feature representation
and bound the dimε,T (F) via the elliptical potential lemma
(Abbasi-Yadkori & Neu, 2014).

3. Bandits with Known Variance
In this section, we present upper and lower bounds, when the
per-round variance of each action is known to the learner.
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3.1. Lower Bound

We start with a minimax lower bound for the class of multi-
armed bandit problems where the variance of each action’s
reward is known to the learner.
Theorem 3.1. For any integer T > 0, there exists a

contextual bandit problem such that any ↼ = {↼t}
T
t=1

will incur regret at least ”(
√
E
∑T

t=1 ω
2
t ), where {ωt =

Varxt↘ϑt [yt]}
T
t=1 and the expectation is jointly over any

randomness in the environment as well as the algorithm.

In other words, the theorem states that the regret of any
contextual bandit algorithm scales with the square root of
the sum of the variances of the rewards for its chosen actions.
That is, it rules out a regret bound which scales solely as the
variance of the reward of the optimal policy’s actions.

The detailed proof is deferred to Appendix B.1. The in-
tuition is to construct two bandit instances, each with two
arms {x1, x2}. In the first instance, the arm x1 has a de-
terministic reward while x2 has a higher expected reward,
but with a large variance. In the second instance, x2 has
a smaller mean reward. Clearly, the optimal action x1 has
a variance of zero in the first instance, but any algorithm
needs sufficiently many draws of x2 as well to distinguish
between the two instances. In the sequel, we will present a
matching upper bound for our robust estimator.

3.2. Upper Bound for Known Variance

Catoni Estimator We first introduce Catoni estimator.
This is a robust estimator proposed by Audibert & Catoni
(2011)(see also (Lugosi & Mendelson, 2019)) to estimate
random variables with bounded variance and unbounded
range. Following Lugosi & Mendelson (2019, section 2.2),
to estimate t

↗1
∑

i→[t] EZi, we first define a function

#(x) =

{
log(1 + x+ x

2
/2) if x ⇐ 0,

↘ log(1↘ x+ x
2
/2) if x < 0.

Then for some parameter ϱ > 0, Catoniϖ({Zi}i→[t]) is the
unique zero of the antisymmetric increasing function

f(x; {Zi}i→[t], ϱ) :=
∑

i→[t]

#(ϱ(Zi ↘ x)). (2)

We first provide the following result about the concentration
properties of the Catoni estimator, which we use in various
places to prove why our design of confidence sets in the
sequel algorithms.
Lemma 3.2 (Informal). Let Zt be a random variable

adapted to filtration the Ht, with a uniform bound |Zt| ↔ R,

E[Zi|Hi↗1] = µi,
∑

i→[t] E
[
(Zi ↘ µi)

2
|Hi↗1

]
↔ V for

some fixed V . Let µ̄ := t
↗1

∑
i→[t] µi. Let ϱ ↑ [a,A] be a

Algorithm 1 Catoni-OFUL
Input: Parameter ς > 0, φ and ↼̂t for each t → [T ].
for t=1,2,. . . ,T do

Pick action xt = argmaxx→Xt
maxf→Ft→1 f(x);

Observe the reward yt;
Let ε̄t = max

(
ς,εt,

√
4↽(φ)LfDFt→1(xt;x[t↑1], ε̄[t↑1])

)
;

Estimate f̂t in (3);
Construct confidence set

Ft :=
{
f → Ft↑1 :

∑

i→[t]

1
ε̄2
i

(
f(xi)↔ f̂t(xi)

)2
↑ ↼̂

2
t

}
;

end for

parameter, for some constants a,A independent of Zi. For

an appropriate ϑ and any large enough t, with probability

at least 1↘ 2↽ we have uniformly for all ϱ ↑ [a,A]:

∣∣Catoniϖ({Zi}i→[t])↘ µ̄
∣∣ ↔

ϱ

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t

+
4⇀20
ϱt

+
ϑ

t
,

where ⇀0 contains log terms and is given in Appendix E.1.

This inequality differs from the prior concentration results
for the Catoni estimator as it is uniform for all ϱ ↑ [a,A].
In the sequel, we use this flexibility to choose ϱ based on
the samples. The formal version of the lemma and the proof
are deferred to Appendix E.1.

Algorithm By incorporating the Catoni estimator into
the Optimism in the Face of Uncertainty Learning
(OFUL)(Abbasi-Yadkori et al., 2011), we propose the
Catoni-OFUL approach in Algorithm 1. Given failure prob-
abilities ↽ and confidence parameters ⇁̂t, the algorithm
chooses the action xt with the highest optimistic reward
by maximizing across all functions in a confidence set Ft,
as in the standard OFUL approach.

The key difference lies in the construction of a robust confi-
dence set based on Catoni’s mean estimator. We first define
a per-sample weight ω̄t as the maximum of a parameter φ,
the variance ωt of the reward of xt, and an uncertainty term
based on the eluder coefficient DFt→1(xt;x[t↗1], ω̄[t↗1]).

Then, we define a robust estimator of fω, given the data, as
the solution to the following saddle-point problem:

f̂t = argmin
f̂→F

max
f ↑→F

Lt(f̂ , f
↓) :=

∑

i→[t]

1

ω̄2
i

(f ↓(xi)↘ f̂(xi))
2

+ 2tCatoniϖt(f̂ ,f ↑)({Zi(f̂ , f
↓)}i→[t]), (3)

where we use the notation Zi(f, f ↓) := ω̄
↗2
i (f(xi) ↘

f
↓(xi))(f ↓(xi) ↘ yi), ⇀(↽) scales as Õ(

√
log(1/↽)) and is
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specified in Table 2, and the parameter ϱt(f̂ , f ↓) is also
specified in Table 2.

To understand this definition, we observe that Lt(f, f ↓) is a
robust sample-based estimator of the true excess risk:

Rt(f, f
↗) :=

∑

i→[t]

1
ε̄2
i

[
Ei[(f(xi)↔ yi)

2]↔ Ei[(f
↗(xi)↔ yi)

2]
]

=
∑

i→[t]

1
ε̄2
i

Ei

[
(f(xi)↔ f

↗(xi))
2

+ 2 (f(xi)↔ f
↗(xi))(f

↗(xi)↔ yi)  
Ii


,

(4)
where the expectation Ei is taken with respect to the noise εi.
Since Ii is the only term that depends on the heavy-tailed
noise, it is approximated by the ϱ-robust Catoni estimator
Catoniϖ({Zi(f, f ↓)}i→[t]) in Lt(f, f ↓). Then, we include
all the f ↑ Ft↗1 that have a small weighted squared loss to
f̂t in the confidence set Ft.
Remark 3.3. Since the min-max optimization in (3) can
be hard to solve, we provide an alternative (Algorithm 3
in Appendix D), where we construct a candidate set first
similar to the confidence set, and then choose an estimator
from the candidates randomly. This approach can improve
the optimization efficiency and ensure the same regret bound
as Theorem 3.4. Similar results also apply to the unknown
variance case in the next section.

Theorem 3.4 (Informal). Under Algorithm 1 with appropri-

ate choices of the parameters φ,λ, ϖ and ⇁̂, with probability

1↘ 2↽, we can bound the regret by

RT =Õ

(
Lf

√∑

t→[T ]

ω2
t · dim 1↓

T
,T (F) · logN (F , ϖ)

+ Lf · logN (F , ϖ) · dim 1↓
T
,T (F)

)
.

The formal version of the theorem and appropriate choices
of the hyperparameters are provided in Appendix B.2. The
variance dependence in our theorem matches the lower
bound in Theorem 3.1. Specifically, for the determinis-
tic case where ωt = 0 for all t ↑ [T ], the bound is re-
duced to Õ(logN (F , ϖ) · dim 1↓

T
,T (F)), and in the worst

case where ωt = $(1) for all t ↑ [T ], the bound be-
comes Õ(

√
Tdim 1↓

T
,T (F) · logN (F , ϖ)). We note that

the bound depends only polylogarithmically on R, improv-
ing upon most prior results as observed in Table 1.

3.3. Proof Sketch

To illustrate the intuition clearly, we ignore the covering
number in this subsection, and assume that the function
space F is finite. The detailed proof considers an infinite

function space and uses the uniform covering number. The
novelty of the proof lies in the following two parts.

Part I: Concentration of excess loss Recall that for
any f, f

↓
↑ F , we formulate the excess loss Lt(f, f ↓)

to estimate the excess loss Rt(f, f ↓) in (4) under heavy-
tailed noise. Here the conditional expectation of the vari-
able Zi(f, f ↓) is E[Zi|xi] = (f(xi) ↘ f

↓(xi))(f ↓(xi) ↘
f
ω(xi))/ω̄2

i . Since the standard Hoeffding’s inequality leads
to the error dependent on the uniform noise bound R, which
can be extremely large in our setting, we can utilize the
robustness of the Catoni estimator via Lemma 3.2 to obtain
the following lemma.
Lemma 3.5. For all large enough time steps t and two fixed

f, f
↓
↑ Ft↗1, with a proper choice of parameters φ, ⇁̂t and

ϑ, we have with probability at least 1↘ ↽/N
2
,

Lt(f, f
↗)↔Rt(f, f

↗)


= 2
tCatoniϑt(f,f ↑)({Zi(f, f

↗)}i→[t])↔
∑

i→[t]

E[Zi(f, f
↗)|xi]



↑ 1
2
Vt(f, f

↗) +
1
3
↼̂
2
t ,

where Vt(f, f ↓) =
∑

i→[t](f(xi)↘ f
↓(xi)))2/ω̄2

i .

The values of the parameters are shown in Lemma B.2, and
the proof is deferred to Appendix B.2. Importantly, ⇁̂2

t in
the lemma above only has logR dependence.

Part II: Sharpness of the confidence set Next, we show
that for our choice of ⇁̂t, the true function f

ω
↑ Ft with a

high probability for t ↑ [T ] that are appropriately large. To
prove this, we define Lt(f) := maxf ↑→F Lt(f, f ↓), apply
Lemma 3.5 with f = f̂t, and take a minimum over f ↑ F

on both sides of the inequality to get the following result.
Lemma 3.6. Under the conditions of Lemma 3.5, we have

for all large enough t ↑ [T ] with probability at least 1↘ ↽,

Lt(f̂t) ↗max
f ↑→F

{
Vt(f̂t, f

ϖ)↔ Vt(f
↗
, f

ϖ)↔ 1
2
Vt(f̂t, f

↗)↔ 1
3
↼̂
2
t

}

=
2
3
Vt(f̂t, f

ϖ)↔ 1
3
↼̂
2
t ,

where the maximizer for f
↓

is f
↓
max = 2

3f
ω + 1

3 f̂t.

The proof is deferred to Appendix B.2. An analogous argu-
ment also yields an upper bound Lt(fω) ↔ ⇁̂

2
t /3, as shown

in Appendix B.2. Furthermore, since f̂t is the minimizer of
Lt(·), we have

0 ⇐ Lt(f̂t)↘ Lt(f
ω) ⇐

2

3
Vt(f̂t, f

ω)↘
2

3
⇁̂
2
t ,

which leads to f
ω
↑ Ft.

Ultimately, if the event fω
↑ Ft for a large enough t hap-

pens, the regret can be bounded by using the definition of ⇁̂t

and the definition of the eluder dimension. Since this part is
standard, we defer the details to Appendix B.2.
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Algorithm 2 Variance-Agnostic Catoni Bandit
1: Input: Parameter ⇀ > 0, L = ↘log2(1/⇀)≃, lϖ =

↘log2(1076↽↗(φ))≃.
2: Initialize the estimators for all layers: ϑ

l ⇐ 2↑2l
, ↼̂

l
0 ⇐

2↑l+1
, !l

0 ⇐ ⇒ for all l → [lϖ, L].
3: for t=1,. . . ,T do
4: Observe Xt, and initialize X 1

t ⇐ Xt, l ⇐ lϖ.
5: while xt is not specified do
6: if Dl

t(x) ↑ ⇀ for all x → X l
t then

7: Choose xt, f
l
t↑1 ⇐ argmaxx→X l

t ,f→Fl
t→1

f(x)

8: Observe yt.
9: Break.

10: else if Dl
t(x) ↑ 2↑l for all x → X l

t then
11: Update X l+1

t ⇐ {x → X l
t | f̂

l
t↑1(x) ↗

maxx→X l
t
f̂
l
t↑1(x)↔ 2↑l+1

↼̂
l
t↑1}.

12: else
13: Choose xt → X l

t such that Dl
t(xt) > 2↑l and observe

yt.
14: Update wt ⇐ 2lDl

t(xt).
15: Update the index sets: !l

t ⇐ !l
t↑1 ⇑ {t} and !l↑

t ⇐
!l↑

t↑1 for l↗ ⇓= l.
16: Optimize f̂

l
t as in (7), and choose the confidence set

F l
t defined in (9).

17: end if
18: Update l ⇐ l + 1.
19: end while
20: For l → [L] s.t. !l

t = !l
t↑1, f̂ l

t ⇐ f̂
l
t↑1, F l

t ⇐ F l
t↑1.

21: end for

4. Bandits with Unknown Variance
In this section, we generalize to the case where the noise
variance Eε2t for any t ↑ [T ] is unknown. In addition to
the assumption that for any f ↑ F , ≃f≃↑ ↔ Lf , and
≃f

ω
≃↑ ↑ [0, 1], the following condition for the noise vari-

ance is required.

Assumption 4.1. For each time step t ↑ [T ], the noise εt

satisfies that there exist positive constants ωϱ and cϱ such
that E[εt|Ft] = 0, Eε2t = ω

2
t ↔ ω

2
ϱ and Var[ε2t |Ft] ↔

cϱVar[εt|Ft].

4.1. Algorithm

Since variances ωt are unknown, traditional variance weight-
ing techniques necessitate an accurate estimation for the
noise variance at each time step (Huang et al., 2024; Li &
Sun, 2024). To circumvent the complicated variance esti-
mation, we adapt the SupLinUCB-type (Chu et al., 2011)
algorithm with adaptive variance-aware exploration from
Zhao et al. (2023b) to propose Variance-Agnostic Catoni
Bandit (VACB) in Algorithm 2, where we split the contexts
{xt}t→[T ] into L subsets according to their uncertainty. For
each level l ↑ [L], let #l

t denote the set of time indexes
within [t] when the estimator update happens. Specifically,
we use the following short-hand notation of uncertainty with

respect to history information in #l
t: for any x ↑ X ,

D
l
t(x) = sup

f,f ↑→Fl
t→1

|f(x)↔ f
↗(x)|√∑

i→”l
t→1

(f(xi)↔ f ↗(xi))2/w2
i + ϑl

.

(5)
At each time step t, starting from l = lω, if there ex-
ists a decision x ↑ X

l
t with sufficiently large uncertainty

D
l
t(xt) > 2↗l, this decision will be chosen; otherwise,

all the actions x ↑ X
l
t that are far from the optimal reward

maxx→X l
t
f̂
l
t↗1(x) are eliminated, and the remaining actions

compose the decision set X l+1
t at the next level. The pro-

cess does not stop until (a) there exists an action with large
uncertainty; (b) or the uncertainty of all the remaining de-
cisions is small (Dl

t(xt) ↔ γ for all Xt ↑ X
l
t ). If case (a)

happens, we will construct the estimation for the current
layer. Specifically, for each level l, the variance estimator
V̂ar

l

t uses plug-in:

V̂ar
l

t :=tCatoniϖt,l
Var

( 1

w2
i

(yi ↘ f̂
l
t↗1(xi))

2


i→!l
t

)
+ b̂

l
t,

(6)
where the detailed choice of bonus b̂lt, the parameter ϱt,lVar
and ⇀

↓(↽) are provided in Table 3. Then, the function esti-
mation follows Algorithm 1:

f̂
l
t = argmin

f̂→Fl
t→1

max
f ↑→Fl

t→1

L
l
t(f̂ , f

↗) :=
∑

i→”l
t

1
w2

i

(f ↗(xi)↔ f̂(xi))
2

+ 2tCatoniϑ↑t(f̂ ,f ↑)({Zi(f̂ , f
↗)}i→”l

t
),

(7)
where Zi(f, f ↓) := (f(xi)↘ f

↓(xi))(f ↓(xi)↘ yi)/w2
i , the

parameter ϱ
↓
t(f, f

↓) is given in Table 3. Essentially, the
weight wi can substitute the per-round variance in nor-
malizing the loss L

l
t, as we will show in Lemma 4.5 that

V̂ar
l

t can be upper and lower bounded by the true variance∑
i→!l

t
ω
2
i /w

2
i up to additive and multiplicative constants.

Furthermore, since V̂ar
l

t appears in the Catoni-mean’s con-
centration (Lemma 3.2) for t↗1

∑
i→!l

t
Zi(f, f ↓), we see

that normalizing the losses with wi results in variance-aware
concentration just like the known variance case.

For the two parameters require knowledge of the cumula-
tive variance, we substitute the true summation with the
optimistic variance estimator V̂ar

l

t: one is ϱ↓(f, f ↓) defined
above, and the other is ⇁̂l

t, which is iteratively computed:

(⇁̂l
t)

2 = $
(
(⇀↓(↽))22↗2lV̂ar

l

t + ⇀
↓(↽)2↗2l +%ς + λ

l
)
,

(8)
where the specific value of ⇁̂l

t and %ς is provided in Table
3, and %ς is a small term depending on the parameter ϖ for
the ϖ-cover in Definition 2.1.

In summary, our algorithm needs to estimate only an ag-
gregate variance instead of estimating the per-round vari-
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ance exactly, as we would require for applying a variance-
weighted directly in the agnostic setting. This requires
access to another function class that can model variances,
which we cleanly avoid. Finally, we define the confidence
set

F l
t :=

{
f → F l

t↑1 :
∑

i→”l
t

1
w2

i

(
f(xi)↔ f̂

l
t(xi)

)2
+ ϑ

l ↑ (↼̂l
t)

2
}
.

(9)

4.2. Analysis

Theorem 4.2 (Informal). Suppose that Assumption 4.1

holds. With appropriate choices of γ, ⇀
↓(↽), ϖ and ⇁̂

l
t, if T

is large enough, with probability at least 1 ↘ 3↽, we can

bound the regret of Algorithm 2 by

RT =Õ


Lf

( ∑

t→[T ]

ω
2
t · logN (F , ϖ)

)1/2
· dim1,T (F)

+ Lfdim1,T (F)(logN (F , ϖ))3/4(
→
cϱ + ωϱ)


.

This theorem provides a variance-dependent upper bound
when variances are unknown, which matches the upper
bound when variances are observed (Theorem 3.4) up to a
slightly worse dependence on the eluder dimension. The
higher order dimension term arises in the analysis of the
peeling technique.

When compared to the upper bound Õ(d
√∑

t→[T ] ω
2
t +

d
3.5

T
1/4) (Li & Sun, 2024) for the linear setting with di-

mension d and unknown variance, our bound gets rid of the
dependence on T

1/4, which means that our bound is still
optimal up to the dimension when the sum of variances is
small:

∑
t→[T ] ω

2
t = o(

→
T ). We give more intuition on

why our algorithm admits this sharper bound in the proof
sketch below, with details deferred to Appendix C.
Remark 4.3. We compare our results here with a con-
temporary work (Jia et al., 2024). The main difference
is that they assume that the noise is bounded such that
rt ↑ [0, 1], and we consider heavy-tailed rewards. Besides,
although we both get variance-dependent bounds, the fo-
cuses are distinct: they aim to obtain better regret bounds
when the eluder dimension is larger than the number of
actions, while we aim to obtain logarithmic dependence
on the reward range. Hence, we develop algorithms based
on the OFUL structure, while Jia et al. (2024) build on
the SquareCB approach. Regardless of the dependence on
reward range, for the weak adversary with revealed vari-
ance, our upper bound Õ(

→
& · dF logN) is incomparable

to theirs Õ(
→
A& logN + dF logN). For the strong adver-

sary, we both use the peeling technique and thus, our bound
is superior on the dependence of reward range.

Proof Sketch The main challenges for the variance-
agnostic algorithm are: (I) how to obtain the concentration
inequalities when the weights are not based on the noise
variance; (II) how to make accurate substitutions for the sum
of variance

∑
i→[t] ω

2
i /w

2
i in the parameters; and (III) how

to deal with the regret of each level l. The insight of solv-
ing challenges (I) and (III) basically follows previous work
(Zhao et al., 2023b; Pacchiano, 2024), but for (II), because
of the heavy-tailed setting, our contribution is designing the
robust Catoni variance estimator, and demonstrating the esti-
mator almost has the same order as the true average-variance∑

i ω
2
i /w

2
i up to constants with logarithmic dependence on

the reward range R. We address these challenges in the
following three parts, respectively.

Part I: Average variance bound for concentration In
this part, we study the concentration of the excess loss for
each level. For clearer illustration, we omit level l when
there is no confusion and denote Di = D

l
i(xi) for short.

Distinct from the known variance case where one directly
takes the variance ωt as weights to derive an upper bound for
the variance of Zi(f, f ↓), we start with an alternate bound
in terms of the weights wi:

St :=
∑

i→!t

Var[Zi(f, f
↓)]

=
∑

i→!t

E
[ 1

w2
i

(f(xi)↘ f
↓(xi))

2(fω(xi)↘ yi)
2
∣∣∣xi

]

↔

∑

i→!t

(f(xi)↘ f
↓(xi))2

w2
i

·
ω
2
i

w2
i

.

When the variance is known, and wi = ωi as in Algorithm 1,
the second term in the final inequality is uniformly equal to
1.

When the variance is unknown, we can no longer weight the
variances, instead, we uniformly bound the first term and
aggregate the second term as shown below:

St ↑max
i→”t

(f(xi)↔ f
↗(xi))

2

w2
i

·
∑

i→”t

ε
2
i

w2
i

↑max
i→”t

D
2
i

w2
i

·
( ∑

ϱ→[i↑1]

(f(xϱ )↔ f
↗(xϱ ))

2

w2
ϱ

+ ϑ

)

  
Uniform bound ↑ 2↑2l · 4↼̂2

t↑1

·
∑

i→”t

ε
2
i

w2
i

,

where the first inequality uses the definition of Di, and the
uniform bound holds because Di/wi ↔ 2↗l at level l from
Algorithm 2. Also f, f

↓
↑ Ft↗1 implies that

∑

ϱ→[i↑1]

(f(xϱ )↔ f
↗(xϱ ))

2

w2
ϱ

↑2
∑

ϱ→[t↑1]

(f(xϱ )↔ f̂t↑1(xϱ ))
2

w2
ϱ

+ 2
∑

ϱ→[t↑1]

(f ↗(xϱ )↔ f̂t↑1(xϱ ))
2

w2
ϱ

↑4↼̂2
t↑1.
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Here the first inequality applies the Cauchy-Schwarz in-
equality, and the second inequality follows from the defini-
tion of Ft↗1.

Therefore, by not requiring a uniform bound on the close-
ness of the variances and the weights, we can successfully
derive the concentration inequality for Lt(f, f ↓)↘Rt(f, f ↓).
Lemma 4.4. Under Assumption 4.1 and Algorithm 2, we

have supi→!t
Di/wi ↔ 2↗l := ▷, wi ⇐ 1. Then, for a large

enough t ↑ [T ] and for any f, f
↓
↑ Ft↗1, with probability

at least 1↘ ↽/TL,

Lt(f, f
↗)↔Rt(f, f

↗)
 ↑

1
2
Vt(f, f

↗) +
1
2
↼̂
2
t↑1

+O


(↽↗(φ))2⇁2

((∑
i→”t

ε
2
i /w

2
i

)2

Vart
+ Vart

)
+”ς


.

The more involved version of this lemma and the proof is
presented in Appendix C.1. Note that the variance estima-
tor V̂art appears on the right-hand side of the inequality
above because the parameter ϱ↓t(f̂ , f ↓) cannot be directly
set in terms of

∑
i→!t

ω
2
i /w

2
i , and we instead use the sur-

rogate V̂art. The V̂art dependence will be eliminated af-
ter demonstrating the close relationship between V̂art and∑

i→!t
ω
2
i /w

2
i in the next part.

Part II: Accuracy of variance estimation. For any t ↑

[t], let Vi(f̂t↗1) = (yi ↘ f̂t↗1(xi))2/w2
i . The conditional

expectation of this term is

E[Vi(f̂t↗1)|xi] = (ω2
i + (fω(xi)↘ f̂t↗1(xi))

2)/w2
i .

Then, by using Lemma 3.2 and using an argument similar
to Part I, we can control the concentration error

tCatoniϑtVar

(
Vi(f̂t↑1)


i→”t

)
↔

∑

i→”t

E[Vi(f̂t↑1)|xi]
.

Hence, it suffices to bound the gap between the variance
and the expectation:


∑

i→”t

E[Vi(f̂t↑1)|xi]↔
∑

i→”t

ε
2
i

w2
i



=
∑

i→”t

(fϖ(xi)↔ f̂t↑1(xi))
2

w2
i

=
∑

i→”t

(f̂t↑1(xi)↔ f
ϖ(xi))

2

w2
i

+
(f̂t↑1(xt)↔ f

ϖ(xt))
2

w2
t

↑ ↼̂
2
t↑1 +

D
2
t

w2
t

· ↼̂2
t↑1 ↑ (1 + 2↑2l)↼̂2

t↑1,

where the first inequality uses fω
↑ Ft↗1, the definition of

Di and Di/wi = 2↗l.

Recalling the definition (6) of V̂art, we derive the following
accuracy guarantee of this estimate compared with the true
aggregated weighted variance:

Lemma 4.5. Under Algorithm 2 and the condition that f
ω
↑

F
l
t↗1, when 2l is large enough, we have with probability at

least 1↘ 2↽ for all large enough t ↑ [T ],

∑

i→”t

ε
2
i

w2
i

↑ 2Vart,

Vart ↑
3
2

∑

i→”t

ε
2
i

w2
i

+O

(
↽
↗(φ)(ε2

φ + cφ) +”ς + ϑ

)
.

(10)

Part III: Bounding the regret for each level l. Con-
ditioning on the high-probability events, we can show
that for any time step t ↑ #l

T , the true optimal decision
x
ω
t = argmaxx→Xt

f
ω(x) remains in the candidate set X l

t

during the level-wise elimination in Algorithm 2, where
l is the level from which xt arises. By the definition of
X

l
t , we know that xt cannot be far from x

ω
t , thus we can

demonstrate the following lemma.

Lemma 4.6. Under Assumption 4.1 and Algorithm 2, if

f
ω
↑ F

l
t↗1 and (10) hold for all large enough t, l, then, for

all large enough l and t ↑ #l
T , we have:

x
ω
t ↑ X

l
t ,

and the regret at the l-th level is bounded by

∑

t→!l
T :t≃”(1)

(fω(xω
t )↘ f

ω(xt)) ↔ 2↗l+3
⇁̂
l↗1
T · |#l

T |.

The details and the proof of the lemma are deferred to Ap-
pendix C.1. Hence, it suffices to bound the size of #l

T . We
get via D

l
t(xt)/wt = 2↗l that

|#l
T | =22l ·

∑

i→!T,l

(Dl
t(xi))2

w2
i

↔ 22ldim1,T (F).

Ultimately, by combining the results above the choice of
⇁̂
l↗1
t in (8), we can obtain the bound for each l. The

final regret is obtained by summing the regret for level
l = l⇐, . . . , L.

5. Conclusion
In this work, we consider contextual bandits under heavy-
tailed rewards (rewards with a large range R) with general
function approximation. The key novelty of our approach
is the application of Catoni’s mean estimator for non-linear
settings based on the observation that excess loss estimation
is the correct object to robustify. For the known-variance
case, the Catoni-OFUL algorithm combines the adaptive
Catoni estimator and the variance-weighted optimization.
The algorithm enjoys a variance-based regret bound with
only polynomial dependence on R. When the per-round
variance is unknown, our proposed variance-agnostic Catoni
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bandit algorithm carefully peels the samples based on their
uncertainty and utilizes a plug-in estimator for the sum
of variances. The algorithm also obtains a variance-based
bound depending on R logarithmically, but has a worse
dependence on the eluder dimension. Improving this is left
as a future direction. We also provide a lower bound to show
that our regret bounds are optimal in the leading-order term.

For the future work, since the Catoni estimator is a gen-
eral device from robust statistics, it might also be useful to
investigate if it enables us to handle other forms of noise,
such as adversarial corruption (He et al., 2022; Ye et al.,
2023; 2024b). Additionally, while we obtain information-
theoretic results in this paper, the algorithms are not easy to
implement, both because OFUL-style algorithms are always
tricky due to the version space structure, and the function-
dependent choice of ϱ in the way we invoke the Catoni
estimator makes things even harder. It would also be inter-
esting to extend the results to general MDPs.
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A. Notation Table and Additional Related Works
A.1. Notation Table

To improve the readability of this paper, we provide Tables 2 and 3 for the notations used in this paper.

Notation Description
[n] {1, . . . , n}
R The range for the noise εt, ⇒t ↑ [T ]
ωt The variance for the noise εt

Lf The range for any function f ↑ F

N The ϖ-covering number for the reward function class F
DF (x,ω;x[t↗1],ω[t↗1]),
D

2
F (x;x[t↗1],ω[t↗1])

The eluder coefficients in Definition 2.2

dim(F , X,ω),
dimε,T )(F)

The eluder dimension in Definition 2.2

Catoniϖ({Zi}i→[t]) Catoni estimator defined in (2)
⇀
2
0 4 log

(
48R(1+2AR)t2

min(1,a)φ2↼ log(A/a)
)

⇀(↽) $(
√

log(RLfTN (F , ϖ)/↽))

ϱt(f, f ↓) 2↽(↼)√
∑

i↔[t](f(xi)↗f ↑(xi))2/⇀̄2
i ·
(
1+(2↽(↼))→1

√
⇁̂2
t→1+λ

)
+φ2

⇁̂t The confidence radius, $(
√
log(RLfN (F , ϖ)T/↽))

φ 1/
→
T

λ $(1)
ϖ O(1/L12

f R
4
T

10)

Table 2. The Table of Notations for the Known Variance Case.

A.2. Additional Related Works

Variance-weighted regression. Variance-weighted regression has been studied for light-tailed noises for both contextual
bandits and Markov Decision Processes (MDPs) with linear and general function approximation. Specifically, Zhou et al.
(2021); Zhou & Gu (2022) apply variance-weighted regression to obtain second-order bounds for linear contextual bandits
under the known variance case. They also use the weighting technique for linear mixture MDPs under unknown variance
case, where they assume that the variance can be realized by a linear function class. Similar weighted regression also appears
in MDPs with linear and general function approximation to achieve the optimal regret bound (Agarwal et al., 2023; He et al.,
2023; Zhao et al., 2023a), and in the adversarial corruption settings to make the algorithm robust to adversarial attacks (He
et al., 2022; Ye et al., 2023; 2024b;a).

Heavy-tailed rewards in bandits and RL. The topic of robustness to heavy-tailed rewards has received a considerable
amount of attention recently. Bubeck et al. (2013) are the first to study heavy-tailed rewards in multi-armed bandits. More
generally, robust mean estimators (Lugosi & Mendelson, 2019) such as median-of-means, truncated mean and Catoni’s
mean have been applied to linear contextual bandits (Medina & Yang, 2016; Shao et al., 2018; Xue et al., 2020; Huang et al.,
2024; Li & Sun, 2024).

B. Proofs for the Known Variance Setting
B.1. Proof for the Lower Bound

Proof of Theorem 3.1. For any 0 ↔ ω ↔ 1/2, 0 ↔ ϑ ↔ ω/2 and R >
→
3, define three distributions

P⇀ = ω(1 +R
↗1), P

+
⇀,φ =






2ω, w.p. ⇀+φ
2⇀ ,

2ωR, w.p. ⇀+φ
2⇀R2 ,

0, w.p. 1↘ (⇀+φ)(1+R→2)
2⇀ ,

P
↗
⇀,φ =






2ω, w.p. ⇀↗φ
2⇀ ,

2ωR, w.p. ⇀↗φ
2⇀R2 ,

0, w.p. 1↘ (⇀↗φ)(1+R→2)
2⇀ ,

12
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Notation Description
ω
2
ϱ The union bound for ω2

t , ⇒ t ↑ [T ]
cϱ The union bound of the ratio: Var[ε2t |Ft] ↔ cϱVar[εt|Ft]
#l

t The set of time steps when the update happens for level l in Algorithm 2
λ
l The parameter in the uncertainty 2↗2l for l ↑ [L]

lω ⇑log2(1076⇀
↓(↽))⇓

D
l
t(x) supf,f ↑→Fl

t→1

|f(x)↗f ↑(x)|√∑
i↔!l

t→1
(f(xi)↗f ↑(xi))2/w2

i+λl

b̂
l
t 14⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λl

ϱ
t,l
Var (4(2ω2

ϱ + cϱ + L
2
f + 2↗2l+4

· (⇁̂l
t↗1)

2))↗1

%ς $(Poly(LfRϖT ))

⇀
↓(↽) $

(
log

(
RLf (ω2

ϱ + cϱ +%ς + λl)NLT/↽

))

ϱ
l
t(f, f

↓) ↽↑(↼)√
2→2l(⇁̂l

t→1)
2(V̂ar

l
t+V l

t (f,f
↑))+2→4l

(⇁̂l
t)

2 The confidence radius, 2880(⇀↓(↽))22↗2lV̂ar
l

t + 60⇀↓(↽)2↗2l + 12%ς,2 + 2λl

%ς $
(
LfϖT

2 + L
4
fR

2
⇀
↓(↽)ϖ0.5

T
3.5 + L

3
fR

1.5
ϖ
0.25

T
1.25 +R

3
L
3
fϖT +

√
RLfϖT

)

Table 3. The Table of Notations for the Unknown Variance Case.

We have the means

µ⇀ = ω(1 +R
↗1), µ

+
⇀,φ = (ω + ϑ)(1 +R

↗1), µ
↗
⇀,φ = (ω ↘ ϑ)(1 +R

↗1),

and variance
V⇀ = 0,

V
+
⇀,φ = (ω + ϑ)(4ω ↘ (1 +R

↗1)2ω ↘ (1 +R
↗1)2ϑ) ↔ 6ω2

,

V
↗
⇀,φ = (ω ↘ ϑ)(4ω ↘ (1 +R

↗1)2ω + (1 +R
↗1)2ϑ) ↔ 2ω2

.

(11)

Thus, the rewards induced by the last two distributions P+
⇀,φ, P

↗
⇀,φ have large L1 norm (2ωR) and bounded variances.

Furthermore, we have

KL(P↗
⇀,φ≃P

+
⇀,φ) =

ω ↘ ϑ

2ω
log

ω ↘ ϑ

ω + ϑ
+

ω ↘ ϑ

2ωR2
log

ω ↘ ϑ

ω + ϑ
+

(
1↘

(ω ↘ ϑ)(1 +R
↗2)

2ω

)
log

ω + ϑ↘
⇀↗φ
R2

ω ↘ ϑ↘
⇀+φ
R2

↔(1 +R
↗2)

ω ↘ ϑ

2ω
log

ω ↘ ϑ

ω + ϑ
+ (1 +R

↗2)
ω + ϑ

2ω
log

ω + ϑ

ω ↘ ϑ

↔4(1 +R
↗2)

ϑ
2

ω2
.

Fix a policy ↼. Now, we construct two 2-armed bandits and let the context space X = ⇔. For the first bandit B1, the reward
of the first arm R1(a1) ↖ P⇀, and the reward of the second arm R1(a2) ↖ P

↗
⇀,φ. Thus, the first arm a1 is the optimal arm

for B1. For the second bandit, we have R2(a1) ↖ P⇀, and R2(a2) ↖ P
+
⇀,φ, and the second arm is the optimal arm for B2

but with a large variance. For i = 1, 2, let Pi denote the distribution generated by the bandit environment Bi, and let Ei

denote the expectations under Pi. Then, we have

E1[RT ] ⇐ P1(NT (1) ↔ T/2) ·
T ϑ

2
, E2[RT ] ⇐ P2(NT (1) ⇐ T/2) ·

T ϑ

2
.

Then, by Bretagnolle-Huber inequality, we have

E1[RT ] + E2[RT ] ⇐
T ϑ

2

(
P1(NT (1) ↔ T/2) + P2(NT (1) > T/2)

)
⇐

T ϑ

4
exp(↘KL(P1≃P2)).

We also have

KL(P1≃P2) = E1[NT (2)]KL(P↗
⇀,φ≃P

+
⇀,φ) ↔

4(1 +R
↗2)E1[NT (2)]ϑ2

ω2
.
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Thus, we have

E1[RT ] + E2[RT ] ⇐
T ϑ

4
exp

(
↘

4(1 +R
↗2)E1[NT (2)]ϑ2

ω2

)

By choosing ϑ =
√

ω2/4(1 +R↗2)E1[NT (2)], we have

E1[RT ] + E2[RT ] ⇐
T

4e

√
ω2

4(1 +R↗2)E1[NT (2)]

Since the variance accumulates only when the arm x2 is pulled,

T ⇐ E1[NT (2)] = E1

[ T∑

t=1

I(xt = x2)
]
⇐

E1[
∑T

t=1 ω
2
t ]

6ω2
= ”(

√
ω2E1[NT (2)]),

which implies that

max
i

{Ei[RT ]} ⇐ ”
(
E1

T∑

t=1

ω
2
t

)
.

Symetrically, we can also get

max
i

{Ei[RT ]} ⇐ ”
(
E2

T∑

t=1

ω
2
t

)
.

B.2. Proof for Theorem 3.4

Theorem B.1 (Formal version of Theorem 3.4). Under Algorithm 1 with the parameter φ = 1/
→
T , λ = $(1), ϖ =

O(1/L12
f R

4
T

10) and

⇁̂t = $(
√

log(RLfN (F , ϖ)T/↽)), (12)

with probability 1↘ 2↽, we can bound the regret by

RT =Õ

(
Lf

√∑

t→[T ]

ω2
t · dim 1↓

T
,T (F) · logN (F , ϖ)

+ Lf · logN (F , ϖ) · dim 1↓
T
,T (F)

)
.

Notations In the following analysis, we use the short-hand notation for any f, f
↓
↑ F

Vt(f, f
↓) :=

∑

i→[t]

(f(xi)↘ f
↓(xi))2

ω̄2
i

.

Recall that we define the excess loss and expected loss: for any f, f
↓
↑ F

Lt(f, f
↓) =

∑

i→[t]

1

ω̄2
i

(f ↓(xi)↘ f(xi))
2 + 2tCatoniϖt(f,f ↑)({Zi(f, f

↓)}i→[t]),

Rt(f, f
↓) =

∑

i→[t]

1

ω̄2
i

Ei


(f(xi)↘ f

↓(xi))
2 + 2(f(xi)↘ f

↓(xi))(f
↓(xi)↘ yi)



=
∑

i→[t]

1

ω̄2
i


(f(xi)↘ f

↓(xi))
2 + 2(f(xi)↘ f

↓(xi))(f
↓(xi)↘ f

ω(xi))

,

14



Catoni Contextual Bandits are Robust to Heavy-tailed Rewards

where we define

Zi(f, f
↓) =

1

ω̄2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ yi),

ϱt(f, f
↓) =

2⇀(↽)
Vt(f, f ↓)

(
1 + (2⇀(↽))↗1

√
⇁̂2
t↗1 + λ

)
+ ϑ2

,

⇀(↽) =

log


720R2L3

fN
2T 5

↽


.

We also use the short-hand notation for the covering number N := N (F , ϖ).

Part I: Concentration of excess loss To begin with, we focus on proving the concentration between Lt(f, f ↓) and
Rt(f, f ↓). We first consider two fixed functions f, f ↓

↑ F .

Lemma B.2 (Formal Version of Lemma 3.5). For each time step t ⇐ 3⇀2(↽) and two fixed f, f
↓
↑ Ft↗1, if we take

φ = 1/
→
T and ϑ = 1, we have with probability at least 1↘ ↽/N

2
,

∣∣∣Lt(f, f
↓)↘Rt(f, f

↓)
∣∣∣ =2

∣∣∣tCatoniϖt(f,f ↑)({Zi(f, f
↓)}i→[t])↘

∑

i→[t]

1

ω̄2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ f
ω(xi))

∣∣∣

↔
1

2
Vt(f, f

↓) + 16⇀(↽)(1 +

→
λ

2
) + 32⇀2(↽) + 5⇀(↽) +

1

6
⇁̂
2
t↗1.

Proof. We first compute the expectation of Zi(f, f ↓) as

µi(f, f
↓) =

1

ω̄2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ f
ω(xi)),

and bound the sum of variance by

∑

i→[t]

Var[Zi(f, f
↓)] =

∑

i→[t]

E
[ 1

ω̄4
i

(f(xi)↘ f
↓(xi))

2(fω(xi)↘ yi)
2
]

↔

∑

i→[t]

(f(xi)↘ f
↓(xi))2

ω̄2
i

= Vt(f, f
↓).

We can also bound ϱt(f, f ↓) ↑ [a,A] by choosing

A =
⇀(↽)

ϑ
, a =

⇀(↽)√
8L2

f t/φ
2 + ϑ2

.

Hence, given choice of φ = 1/
→
T and ϑ = 1, we have

log


48R(1 + 2AR)t2

min(1, a)ϑ2 · (↽/N2T )
log(A/a)


↔ log


720R2

L
3
fT

4

↽/N2T


↔ ⇀

2(↽)

Thus, for any time step

t ⇐ 6⇀2(↽) ⇐ 4⇀2(↽) + 2 log


48R(1 + 2AR)t2

min(1, a)ϑ2 · (↽/N2T )
log(A/a)


,
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by using Lemma 3.2 with φ = 1/
→
T and ϑ = 1, we have with probability at least 1↘ ↽/N

2
T ,

∣∣∣tCatoniϖt(f,f ↑)({Zi(f, f
↓)}i→[t])↘

∑

i→[t]

1

ω̄2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ f
ω(xi))

∣∣∣

↔ϱt(f, f
↓)
(
Vt(f, f

↓) +
∑

i→[t]

1

ω̄4
i

(f(xi)↘ f
↓(xi))

2(f ↓(xi)↘ f
ω(xi))

2
)
+

4⇀2(↽)

ϱt(f, f ↓)
+ ϑ

↔ϱt(f, f
↓)Vt(f, f

↓)
(
1 + max

i→[t]

1

ω̄2
i

(f ↓(xi)↘ f
ω(xi))

2
)
+

4⇀2(↽)

ϱt(f, f ↓)
+ ϑ

↔ϱt(f, f
↓)Vt(f, f

↓)
(
1 +

1

2⇀(↽)
·

√
⇁̂2
t↗1 + λ

)
+

4⇀2(↽)

ϱt(f, f ↓)
+ ϑ, (13)

where the last inequality uses the definition of the weight ω̄2
i ⇐ 4⇀(↽)LfDf (xi, x[i↗1], ω̄[i↗1]) and f, f

↓
↑ Ft↗1 ↙ Fi↗1 to

get for any i ↑ [t]

1

ω̄2
i

(f ↓(xi)↘ f
ω(xi))

2
↔
Lf

ω̄2
i

· sup
f,f ↑→Fi→1

|f
↓(xi)↘ f

ω(xi)|√∑
k→[i↗1]

1
⇀̄2
k
(f ↓(xk)↘ fω(xk))2 + λ

·


∑

k→[i↗1]

1

ω̄2
k

(f ↓(xk)↘ fω(xk))2 + λ

↔
1

4⇀(↽)

2
∑

k→[t↗1]

1

ω̄2
k

(f ↓(xk)↘ f̂t↗1(xk))2 + 2
∑

k→[i↗1]

1

ω̄2
k

(fω(xk)↘ f̂t↗1(xk))2 + λ

↔
1

2⇀(↽)
·

√
⇁̂2
t↗1 + λ,

where the second inequality uses the Cauchy-Schwartz inequality, and the last inequality uses the definition of Fi↗1. Via the
choice of

ϱt(f, f
↓) =

2⇀(↽)
Vt(f, f ↓)

(
1 + (2⇀(↽))↗1

√
⇁̂2
t↗1 + λ

)
+ ϑ2

,

we get the right-hand side of (13) is upper-bounded by

4⇀(↽)


Vt(f, f ↓)

(
1 + (2⇀(↽))↗1

√
⇁̂2
t↗1 + λ

)
+ ϑ2 + ϑ

↔4⇀(↽)

√

1 +

→
λ

2
·

√
Vt(f, f ↓) + 2

√
2⇀(↽) ·

√
Vt(f, f ↓)⇁̂t↗1 + 5⇀(↽)ϑ

↔
1

4
Vt(f, f

↓) + 16⇀(↽)(1 +

→
λ

2
) +

1

4
Vt(f, f

↓) + 96⇀2(↽) +
1

6
⇁̂
2
t↗1 + 5⇀(↽)

=
1

2
Vt(f, f

↓) + 16⇀(↽)(1 +

→
λ

2
) + 96⇀2(↽) + 5⇀(↽) +

1

6
⇁̂
2
t↗1,

which concludes the proof by taking the union bound over t ↑ [T ].

Lemma B.3. For any f, f
↓
↑ F , there exist two fς, f

↓
ς ↑ Fς such that ≃f ↘ fς≃↑ ↔ ϖ, ≃f

↓
↘ f

↓
ς≃↑ ↔ ϖ. Then, we have

∣∣Catoniϖt(f,f ↑)({Zi(f, f
↓)}i→[t])↘ Catoniϖt(fω,f ↑

ω)
({Zi(fς, f

↓
ς)}i→[t])

∣∣

↔
360L4

fR
2
⇀(↽)

→
ϖt

φ4ϑ2
+

90L3
fR

1/2(ϖt)1/4

⇀(↽)φ5/2ϑ1/2
.
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Proof. From the definitions of Zi(f, f ↓), we have Zi(f, f ↓) ↔ 2Lf (2Lf +R)/φ2, and

|Zi(f, f
↓)↘ Zi(fς, f

↓
ς)| ↔

∣∣∣∣
1

ω̄2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ yi)↘
1

ω̄2
i

(fς(xi)↘ f
↓
ς(xi))(f

↓
ς(xi)↘ yi)

∣∣∣∣

↔

∣∣∣∣
1

ω̄2
i

(
f(xi)↘ fς(xi)↘ f

↓(xi) + f
↓
ς(xi)

)
(f ↓(xi)↘ yi)↘

1

ω̄2
i

(
fς(xi)↘ f

↓
ς(xi)

)
(f ↓

ς(xi)↘ f(xi))

∣∣∣∣

↔
6Lfϖ

φ2
.

From the definitions ϱt(f, f ↓), we get ϱt(f, f ↓) ↔ ⇀(↽)/ϑ and

|ϱt(f, f
↓)↘ ϱt(fς, f

↓
ς)| ↔

∣∣∣∣∣∣
⇀(↽)√∑

i→[t](f(xi)↘ f ↓(xi))2/ω̄2
i + ϑ2

↘
⇀(↽)√∑

i→[t](fς(xi)↘ f ↓
ς(xi))2/ω̄2

i + ϑ2

∣∣∣∣∣∣

↔
⇀(↽)

ϑ
·


∑

i→[t]

1

ω̄2
i

[(f(xi)↘ f ↓(xi))2 ↘ (fς(xi)↘ f ↓
ς(xi))2]

↔
⇀(↽)

ϑφ
·

√
8Lfϖt.

Combining the two inequalities above, we have

% =
1

t

∑

i→[t]

ϱt(f, f
↓) |Zi(f, f

↓)↘ Zi(fς, f
↓
ς)|+

6Lf (2Lf +R)

φ2
· |ϱt(f, f

↓)↘ ϱt(fς, f
↓
ς)|

↔
⇀(↽)

ϑ
·
6Lfϖ

φ2
+

6Lf (2Lf +R)

φ2
·
⇀(↽)

ϑφ
·
√

8Lfϖt

↔
60L2.5

f R⇀(↽)
→
ϖt

φ3ϑ
.

Then, by invoking Lemma E.2, we deduce that
∣∣Catoniϖt(f,f ↑)({Zi(f, f

↓)}i→[t])↘ Catoniϖt(fω,f ↑
ω)
({Zi(fς, f

↓
ς)}i→[t])

∣∣

↔
1 + 2ϱt(f, f ↓) · 2Lf (2Lf +R)/φ2

ϱt(f, f ↓)
·%+

√
2%

(ϱt(f, f ↓))2

↔
360L4

fR
2
⇀(↽)

→
ϖt

φ4ϑ2
+

90L3
fR

1/2(ϖt)1/4

⇀(↽)φ5/2ϑ1/2
.

Then, it follows the analysis for any f, f
↓
↑ F which uses the uniform cover.

Lemma B.4. If we take ϖ = O(1/L12
f R

4
T

10), φ = 1/
→
T , ϑ = 1, and ⇁̂t = $(⇀(↽)(1 + λ

1/4)). For any f, f
↓
↑ F and

any t ⇐ 3⇀2(↽), with probability at least 1↘ ↽,

∣∣∣Lt(f, f
↓)↘Rt(f, f

↓)
∣∣∣ =2

∣∣∣tCatoniϖt(f,f ↑)({Zi(f, f
↓)}i→[t])↘

∑

i→[t]

1

ω̄2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ f
ω(xi))

∣∣∣

↔
1

2
Vt(f, f

↓) +
1

3
⇁̂
2
t .

Proof. For any f, f
↓
↑ F , there exist two fς, f

↓
ς ↑ Fς such that ≃f ↘ fς≃↑ ↔ ϖ, ≃f ↓

↘ f
↓
ς≃↑ ↔ ϖ. by invoking Lemma

B.3 with φ = 1/
→
T , ϑ = 1, we have

∣∣Catoniϖt(f,f ↑)({Zi(f, f
↓)}i→[t])↘ Catoniϖt(fω,f ↑

ω)
({Zi(fς, f

↓
ς)}i→[t])

∣∣

↔ 360L4
fR

2
⇀(↽)ϖ0.5

T
2.5 +

90L3
fR

0.5
ϖ
0.25

T
1.5

⇀(↽)
:= %c.

17
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Additionally, we get
∣∣∣Rt(f, f

↓)↘Rt(fς, f
↓
ς)
∣∣∣

=
∑

i→[t]

1

ω̄2
i

∣∣Ei[(f(xi)↘ yi)
2]↘ Ei[(f

↓(xi)↘ yi)
2]↘ Ei[(fς(xi)↘ yi)

2] + Ei[(f
↓
ς(xi)↘ yi)

2]
∣∣

↔ 12LfϖT
2
.

Thus, by using Lemma 3.5 with a union bound over fς, f ↓
ς ↑ Fς , we have with probability at least 1↘ ↽,

∣∣∣Lt(f, f
↓)↘Rt(f, f

↓)
∣∣∣

=
∣∣∣Lt(f, f

↓)↘ Lt(fς, f
↓
ς) + Lt(fς, f

↓
ς)↘Rt(fς, f

↓
ς) +Rt(fς, f

↓
ς)↘Rt(f, f

↓)
∣∣∣

↔

∣∣∣Lt(fς, f
↓
ς)↘Rt(fς, f

↓
ς)
∣∣∣+ 18LfϖT

2 + T%c

↔
1

2
V

2
t (fς, f

↓
ς) + 16⇀(↽)

(
1 +

→
λ

2

)
+ 96⇀2(↽) + 5⇀(↽) +

1

6
⇁̂
2
t↗1 + 18LfϖT

2 + T%c

↔
1

2
Vt(f, f

↓) + 4LfϖT + 16⇀(↽)
(
1 +

→
λ

2

)
+ 96⇀2(↽) + 5⇀(↽) +

1

6
⇁̂
2
t↗1 + 18LfϖT

2 + T%c

↔
1

2
Vt(f, f

↓) +
1

3
⇁̂
2
t ,

where the last inequality holds since ⇁̂t↗1 satisfies that

⇁̂
2
t↗1 ⇐ 6


16⇀(↽)

(
1 +

→
λ

2

)
+ 96⇀2(↽) + 5⇀(↽) + 24LfϖT

2 + T%c


.

Part II: Sharpness of the confidence set
Lemma B.5 (Formal version of Lemma 3.6). If we take ϖ = O(1/L12

f R
4
T

10), φ = 1/
→
T , ϑ = 1, and under Algorithm 1

with ⇁̂t = $(⇀(↽)(1 + λ
1/4)), we have for all large enough t ↑ [T ] with probability at least 1↘ ↽,

Lt(f̂t) ⇐
2

3
Vt(f̂t, f

ω)↘
1

3
⇁̂
2
t ,

Lt(f
ω) ↔

1

3
⇁̂
2
t ,

where the maximizer for f
↓

is f
↓
max = 2

3f
ω + 1

3 f̂t.

Proof of Lemma 3.6. By invoking Lemma B.4 with taking minimum over f ↓
↑ F on the both sides of the inequality and

f = f̂t, we have with probability at least 1↘ ↽

max
f ↑→Ft→1

Lt(f̂t, f
↓) ⇐ max

f ↑→Ft→1


Rt(f̂t, f

↓)↘
1

2
Vt(f̂t, f

↓)↘
1

3
⇁̂
2
t


,

which implies that

Lt(f̂t) ⇐ max
f ↑→Ft→1


Vt(f̂t, f

ω)↘ Vt(f
↓
, f

ω)↘
1

2
Vt(f̂t, f

↓)↘
1

3
⇁̂
2
t



= max
f ↑→Ft→1


↘

3

2

∑

i→[t]

(f ↓(xi)↘
2
3f

ω(xi)↘
1
3 f̂t(xi))2

w2
i

+
2

3
Vt(f̂t, f

ω)↘
1

3
⇁
2
t



=
2

3
Vt(f̂t, f

ω)↘
1

3
⇁̂
2
t ,

18
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where the minimizer is f ↓
max = 2

3f
ω + 1

3 f̂t.

Additionally, by using Lemma 3.5 with taking minimum over f ↓
↑ F on the both sides of the inequality and f = f

ω, we
have with probability at least 1↘ ↽

Lt(f
ω) ↔ max

f ↑→Ft→1


Rt(f

ω
, f

↓) +
1

2
Vt(f

↓
, f

ω) +
1

3
⇁̂
2
t



= max
f ↑→Ft→1


↘ Vt(f

↓
, f

ω) +
1

2
Vt(f

↓
, f

ω) +
1

3
⇁̂
2
t



↔
1

3
⇁̂
2
t ,

where the minimizer of f ↓ = f
ω.

Lemma B.6. If we take ϖ = O(1/L12
f R

4
T

10), φ = 1/
→
T , ϑ = 1, and under Algorithm 1 with ⇁̂t = $(⇀(↽)(1 + λ

1/4)),
with probability at least 1↘ ↽, we have f

ω
↑ Ft.

Proof. We use the notation Lt(f) := maxf ↑→F Lt(f, f ↓), and recall that

Rt(f, f
↓) =

∑

i→[t]

1

w2
i

Ei


(f(xi)↘ f

ω(xi) + f
ω(xi)↘ yi)

2
↘ (f ↓(xi)↘ f

ω(xi) + f
ω(xi)↘ yi)

2


=
∑

i→[t]

1

w2
i

Ei


(f(xi)↘ yi)

2 + (fω(xi)↘ yi)
2
↘ (f ↓(xi)↘ yi)

2
↘ (fω(xi)↘ yi)

2


=
∑

i→[t]

1

w2
i

Ei


(f(xi)↘ yi)

2
↘ (f ↓(xi)↘ yi)

2


=Vt(f, f
ω)↘ Vt(f

↓
, f

ω).

Since f̂t = argminf→Ft→1
Lt(f), we invoke Lemma B.5 to get

0 ⇐ Lt(f̂t)↘ Lt(f
ω) ⇐

2

3
Vt(f̂t, f

ω)↘
2

3
⇁̂
2
t ,

which means that

Vt(f̂t, f
ω) =

∑

i→[t]

1

ω̄2
i

(f̂t(xi)↘ f
ω(xi))

2
↔ ⇁̂

2
t .

Part III: Bounding the regret conditioning on good events. We now recall the definition that T := {t ↑ [T ] : t >
7⇀2(↽n,T )}, we further denote the good events E0 = {f

ω
↑ ∝t→T Ft}.

Proof of Theorem 3.4. Conditioning on both good events E0, we use the notation ft(x) = argmaxf→Ft→1
f(x) can bound

the regret of t ↑ T by

max
x→Xt

f
ω(x)↘ f

ω(xt)

↔ max
x→Xt

ft(x)↘ f
ω(xt) ↔ ft(xt)↘ f

ω(xt)

↔ ω̄tDFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1]) ·


∑

i→[t↗1]

1

ω̄2
i

(
ft(xi)↘ f̂t↗1(xi) + f̂t↗1(xi)↘ fω(xi)

)2
+ λ

↔ ω̄tDFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1]) ·

2
∑

i→[t↗1]

1

ω̄2
i

(
ft(xi)↘ f̂t↗1(xi)

)2
+ 2

∑

i→[t↗1]

1

ω̄2
i

(
f̂t↗1(xi)↘ fω(xi)

)2
+ λ

↔ 2ω̄tDFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1]) · ⇁̂t↗1,
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where the second inequality follows from Xt = argmaxx→Xt
ft(x), the second inequality uses the definition of uncertainty

DFt→1 , and the last inequality holds due to f
ω
, f̂t↗1 ↑ Ft↗1.

Combining this with the range bound that ≃fω
≃↑ ↔ Lf , the cumulative regret is bounded by

RT =
∑

t→[T ]

(max
x→Xt

f
ω(x)↘ f

ω(xt))

↔ 2Lf · 7⇀2(↽) + 2Lf

∑

t↗1→T
min

(
1, ω̄tDFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1])⇁̂t↗1

)
. (14)

To finally bound the regret, we bound the second term in RHS of RT expression in (14) respectively. These steps
mainly follow Lemma 4.4 in (Zhou & Gu, 2022). We can decompose the terms by considering I1 = {t ↘ 1 ↑

T |DFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1]) ⇐ 1} and I2 = {t↘ 1 ↑ T , t /↑ I1}.

For the first set, we bound its size naively by

|I1| ↔

∑

t→I1

min
(
1, D2

Ft→1
(xt, ω̄t;x[t↗1], ω̄[t↗1])

)
↔ dimε,T (F).

For the second set, we bound the summation of terms of interest contraining on I2 by

∑

t→I2

ω̄t

√
⇁̂2
t↗1 + λ ·DFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1])

↔

∑

t→I2,⇀̄t=⇀t or ε

ω̄t

√
⇁̂2
t↗1 + λ ·DFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1])

+
∑

t→I2,⇀̄t=
→

4↽(↼n,t,l)LfDFt→1 (xt;x[t→1],⇀̄[t→1])

ω̄t

√
⇁̂2
t↗1 + λ ·DFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1])

(i)
↔

∑

t→[T ]

(ωt + φ) ⇁̂t↗1 ·DFt→1(xt, ω̄t;x[t↗1], ω̄[t↗1]) +
∑

t→[T ]

32Lf ⇀(↽n,t,l)⇁̂t↗1 ·D
2
Ft→1

(xt, ω̄t;x[t↗1], ω̄[t↗1])

(ii)
↔

√
2
∑

t→[T ]

⇁̂2
t↗1(ω

2
t + φ2)

√
dimε,T (F) + 16Lf ⇀(↽n,t,l)max

t→[T ]
⇁̂t↗1 · dimε,T (F).

Here for (i) we use the condition for each distinct set and for (ii) we use Cauchy-Schwarz inequality for the first term and
the definition of dimε for both terms.

Consequently plugging these back in (14) and take supremum over x : |x| = T , we conclude that with probability at least
1↘ 2↽,

RT = O


Lf · ⇀

2(↽n,T ) + Lfdimε,T (F) + L
2
f · ⇀(↽n,t,l) ·max

t→[T ]
⇁̂t↗1 · dimε,T (F)

Lf +
√∑

t→[T ]

⇁̂2
t↗1 (ω

2
t + φ2) ·

√
dimε,T (F)





= Õ



Lf · logN (F , ϖ) · dim 1↓
T
,T (F) + Lf

√∑

t→[T ]

ω2
t ·

√
dim 1↓

T
,T (F) · logN (F , ϖ)



 ,

where for the last inequality we pick λ = $(1), φ = 1/
→
T and ϖ = O(1/L12

f R
4
T

10).
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C. Proofs for Unknown Variance
C.1. Proof of Theorem 4.2

Theorem C.1 (Formal Version of Theorem 4.2). Suppose that Assumption 4.1 holds. Under Algorithm 2 with γ =

1/(ωϱT
3/2) and ⇀

↓(↽) = $(


log

(
RLf (ω2

ϱ + cϱ +%ς + λl)NLT/↽

)
), if T ⇐ 14(⇀↓(↽))2, with probability at least

1↘ 3↽, we can bound the regret by

RT =Õ


Lf

( ∑

t→[T ]

ω
2
t · logN (F , ϖ)

)1/2
· dim1,T (F)

+ Lfdim1,T (F)(logN (F , ϖ))3/4(
→
cϱ + ωϱ)


.

Notations In the following analysis, we use the short-hand notation for any f, f
↓
↑ F

V
l
t (f, f

↓) :=
∑

i→!l
t

(f(xi)↘ f
↓(xi))2

w2
i

.

Recall that we define the excess loss and expected loss: for each t ↑ [T ], l ↑ [L], and any f, f
↓
↑ F

L
l
t(f, f

↓) =
∑

i→!l
t

1

w2
i

(f ↓(xi)↘ f(xi))
2 + 2tCatoniϖt(f,f ↑)({Zi(f, f

↓)}i→!l
t
),

R
l
t(f, f

↓) =
∑

i→!l
t

1

w2
i

Ei


(f(xi)↘ f

↓(xi))
2 + 2(f(xi)↘ f

↓(xi))(f
↓(xi)↘ yi)



=
∑

i→!l
t

1

w2
i


(f(xi)↘ f

↓(xi))
2 + 2(f(xi)↘ f

↓(xi))(f
↓(xi)↘ f

ω(xi))

,

where we define

Zi(f, f
↓) =

1

w2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ yi),

ϱ
l
t(f, f

↓) =
⇀
↓(↽)√

2↗2l(⇁̂2
t↗1 + λ)(Var

l
t + V l

t (f, f
↓)) + ϑ2

,

⇀
↓(↽) = $

(
log

(
RLf (ω2

ϱ + cϱ +%ς + λl)NLT/↽

))
.

The proof is decomposed into four main parts.

In the following parts, we will show that the following two events both hold with a high probability:

E
t
var :=





∑

i→!l
t

ω
2
i

w2
i

↔ 2V̂ar
l

t, for l ↑ [L], 2l ⇐ 1076⇀↓(↽)




 ,

E
t
conv :=

{
f
ω
↑ F

l
t , for l ↑ [L], 2l ⇐ 1076⇀↓(↽)

}
.

(15)

We will prove the events hold conditioned on each other sequentially for t = $(1), . . . , T . We also use the short-hand
notation for the covering number N := N (F , ϖ).

Part I: Concentration of excess loss First of all, we also need to prove the concentration of excess loss for each l ↑ [L].

In the following lemma, for conciseness, we neglect level l in the concentration analysis. Later, we will apply the result for
each l ↑ [L].
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Lemma C.2 (Formal version of 4.4). Under Assumption 4.1, given {xi, yi, wi}i→[t], we define for i ↑ [t ↘ 1], Fi =

{f ↑ Fi↗1 :
∑

l→[i](f(xl)↘ f̂i(xi))2/w2
l + λ ↔ ⇁̂

2
i }, and Di = supf,f ↑→Fi→1

|f(xi)↗f ↑(xi)|→∑i→1
l=1 (f(xl)↗f ↑(xl))2/w2

i+λ
. Suppose that

supi→[t]
Di
wi

↔ ▷, wi ⇐ 1, (⇀↓(↽))2 ⇐ $
(
log

(
RLf (ω2

ϱ+ cϱ+%ς+λ
l)NLT/↽ · ⇁̂t↗1

))
and ▷ ↔ min{1, 1/(16

→
3⇀↓(↽))}.

Then, for the time step t such that the following event happens Et =

t ⇐ 4(⇀↓(↽))2

∑
i↔[t] ⇀

2
i /w

2
i

V̂art
+ 6(⇀↓(↽))2


, and for any

f, f
↓
↑ Ft↗1, if we take ϑ = ▷

2
, with probability at least 1↘ ↽/TL,

∣∣∣Lt(f, f
↓)↘Rt(f, f

↓)
∣∣∣ ↔

1

2
Vt(f, f

↓) +
1

3



1

2
⇁̂
2
t↗1 + 6


48(⇀↓(↽))2▷2




(∑

i→[t] ω
2
i /w

2
i

)2

V̂art
+ V̂art



+ 5⇀↓(↽)▷2 +%ς,2



 ,

where V̂art = tCatoniϖt
Var

(
1
w2

i
(yi ↘ f̂t↗1(xi))2



i→[t]

)
+ 14⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λ, and %ς,2 = $(LfϖT
2 +

L
4
fR

2
⇀
↓(↽)ϖ0.5

T
3.5 + L

3
fR

1.5
ϖ
0.25

T
1.25), ϱtVar = (4(2ω2

ϱ + cϱ + L
2
f + 16▷2 · ⇁̂t↗1)2)↗1

.

Proof. At each time step t ↑ [T ], for two fixed f, f
↓
↑ Ft↗1, we first compute the expectation of Zi(f, f ↓) as

µi(f, f
↓) =

1

w2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ f
ω(xi)).

Additionally, we deduce that

(f(xi)↘ f
↓(xi))2

w2
i

↔
1

w2
i

· sup
f,f ↑→Fi→1

|f(xi)↘ f
↓(xi)|2∑

l→[i↗1](f(xl)↘ f ↓(xl))2/w2
l + λ

·




∑

l→[i↗1]

(f(xl)↘ f
↓(xl))2

w2
l

+ λ





↔
D

2
i

w2
i

·



2
∑

l→[t↗1]

(f(xl)↘ f̂t↗1(xl))2

w2
l

+ 2
∑

l→[i↗1]

(f ↓(xl)↘ f̂t↗1(xl))2

w2
l

+ λ





↔4▷2⇁̂2
t↗1,

where the first inequality uses f, f ↓
↑ Ft↗1 ↙ Fi↗1, the second inequality uses the definition of Di and the Cauchy-Schwarz

inequality, and the last inequality follows from Di/wi ↔ ▷ and f, f
↓
↑ Ft↗1. Thus, we bound the sum of variance by

∑

i→[t]

Var[Zi(f, f
↓)] =

∑

i→[t]

E
[ 1

w4
i

(f(xi)↘ f
↓(xi))

2(fω(xi)↘ yi)
2
∣∣∣xi

]

↔

∑

i→[t]

(f(xi)↘ f
↓(xi))2

w2
i

·
ω
2
i

w2
i

↔4▷2⇁̂2
t↗1

∑

i→[t]

ω
2
i

w2
i

.

Similarly, we can bound the sum of µ2
i by

∑

i→[t]

µ
2
i (f, f

↓) ↔
∑

i→[t]

1

w4
i

(f(xi)↘ f
↓(xi))

2(f ↓(xi)↘ f
ω(xi))

2

↔Vt(f, f
↓)max

i→[t]

(f ↓(xi)↘ f
ω(xi))2

w2
i

↔Vt(f, f
↓)max

i→[t]

D
2
i

w2
i

·




∑

l→[t↗1]

(f ↓(xl)↘ f
ω(xl))

2
/w

2
l + λ





↔Vt(f, f
↓) · 4▷2⇁̂2

t↗1.
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We can also get the upper and lower bound of ϱt(f, f ↓):

ϱt(f, f
↓) =

⇀
↓(↽)√

▷2⇁̂2
t↗1(V̂art + Vt(f, f ↓)) + ϑ2

↔
⇀
↓(↽)

ϑ
:= A.

Besides, by using Claim A.14 from Wagenmaker et al. (2022), we know that

Catoniϖt
Var

( 1

w2
i

(yi ↘ f̂t↗1(xi))
2


i→[t]

)
↔ max

i→[t]

1

w2
i

(yi ↘ f̂t(xi))
2
↔ max

i→[t]

(
2ε2i + (fω(xi)↘ f̂t(xi))

2
)
↔ 2R2 + 4L2

f ,

which indicates the lower bound of ϱt(f, f ↓):

ϱt(f, f
↓) ⇐

⇀
↓(↽)√

(T (2R2 + 8L2
f ) + 17⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λl)▷2⇁̂2
t↗1 + ▷4

:= a

Hence, given choice of ϑ = ▷
2, we have

log


48R(1 + 2AR)t2

min(1, a)ϑ2 · (↽/N2TL)
log(A/a)



↔ log


144R2

T
2

▷2↽/N2TL
·

(
A

a

)2


↔ log


144R2

T
2

▷2↽/N2TL
·

(
(T (2R2 + 8L2

f ) + 17⇀↓(↽)(2ω2
ϱ + cϱ) + 43%ς + 268λl)▷2⇁̂2

t↗1 + ▷
4
)

↔ (⇀↓(↽))2,

where the last inequality holds since

(⇀↓(↽))2 ⇐ $
(
log

(
RLf (ω

2
ϱ + cϱ +%ς + λ

l)NLT/↽ · ⇁̂t↗1

))
.

Thus, since the following condition holds for time step

Et =




t ⇐ 4(⇀↓(↽))2

∑
i→[t]

⇀2
i

w2
i

V̂art
+ 6(⇀↓(↽))2




 ,

we have

t ⇐ 4(⇀↓(↽))2

∑
i→[t]

⇀2
i

w2
i
+ Vt(f, f ↓)

V̂art + Vt(f, f ↓)
+ 2 log


48R(1 + 2AR)t2

min(1, a)ϑ2 · (↽/N2TL)
log(A/a)


,

by combining the results above and using Lemma 3.2 with ϑ = ▷
2 and the choice of ϱt(f, f ↓), we have with probability at
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least 1↘ ↽/N
2
TL,
∣∣∣tCatoniϖt(f,f ↑)({Zi(f, f

↓)}i→[t])↘
∑

i→[t]

1

w2
i

(f(xi)↘ f
↓(xi))(f

↓(xi)↘ f
ω(xi))

∣∣∣

↔ ϱt(f, f
↓)
(∑

i→[t]

Var[Zi(f, f
↓)] +

∑

i→[t]

µ
2
i (f, f

↓)
)
+

4(⇀↓(↽))2

ϱt(f, f ↓)
+ ▷

2

↔
⇀
↓(↽)√

▷2⇁̂2
t↗1(V̂art + Vt(f, f ↓)) + ϑ2

· 4▷2⇁̂2
t↗1




∑

i→[t]

ω
2
i

w2
i

+ Vt(f, f
↓)





+ 4⇀↓(↽)
√
▷2⇁̂2

t↗1(V̂art + Vt(f, f ↓)) + ϑ2 + 1

↔ 4⇀↓(↽)▷⇁̂t↗1




∑

i→[t] ω
2
i /w

2
i√

V̂art

+

√
V̂art + 2

√
Vt(f, f ↓)



+ 4⇀↓(↽)▷2 + ▷
2

↔
1

12
⇁̂
2
t↗1 + 48(⇀↓(↽))2▷2




(∑

i→[t] ω
2
i /w

2
i

)2

V̂art
+ V̂art + 4Vt(f, f

↓)



+ 5⇀↓(↽)▷2

↔
1

4
Vt(f, f

↓) +
1

12
⇁̂
2
t↗1 + 48(⇀↓(↽))2▷2




(∑

i→[t] ω
2
i /w

2
i

)2

V̂art
+ V̂art



+ 5⇀↓(↽)▷2, (16)

where the fourth inequality uses the Cauchy-Schwarz inequality and λ = O(1), and the last inequality holds due to the
condition that ▷ ↔ 1/16

→
3⇀↓(↽).

Then, for any f, f
↓
↑ Ft↗1, there exist two fς, f

↓
ς ↑ Fς such that ≃f ↘ fς≃↑ ↔ ϖ, ≃f ↓

↘ f
↓
ς≃↑ ↔ ϖ. Similar to Lemma

B.3, we have
∣∣Catoniϖt(f,f ↑)({Zi(f, f

↓)}i→[t])↘ Catoniϖt(fω,f ↑
ω)
({Zi(fς, f

↓
ς)}i→[t])

∣∣

↔ 360L4
fR

2
⇀
↓(↽)ϖ0.5

T
0.5 + 90L3

fR
0.5

ϖ
0.25

T
0.25 := %ς,1.

Additionally, we get
∣∣∣Rt(f, f

↓)↘Rt(fς, f
↓
ς)
∣∣∣

=
∑

i→[t]

1

ω̄2
i

∣∣Ei[(f(xi)↘ yi)
2]↘ Ei[(f

↓(xi)↘ yi)
2]↘ Ei[(fς(xi)↘ yi)

2] + Ei[(f
↓
ς(xi)↘ yi)

2]
∣∣

↔ 12LfϖT
2
.

Thus, by using (16) with a union bound over fς, f ↓
ς ↑ Fς , we have with probability at least 1↘ ↽/TL,

∣∣∣Lt(f, f
↓)↘Rt(f, f

↓)
∣∣∣

=
∣∣∣Lt(f, f

↓)↘ Lt(fς, f
↓
ς) + Lt(fς, f

↓
ς)↘Rt(fς, f

↓
ς) +Rt(fς, f

↓
ς)↘Rt(f, f

↓)
∣∣∣

↔

∣∣∣Lt(fς, f
↓
ς)↘Rt(fς, f

↓
ς)
∣∣∣+ 24LfϖT

2 + T%ς,1

↔
1

4
Vt(f, f

↓) +
1

12
⇁̂
2
t↗1 + 48(⇀↓(↽))2▷2




(∑

i→[t] ω
2
i /w

2
i

)2

V̂art
+ V̂art



+ 5⇀↓(↽)▷2 +%ς,2

↔
1

4
Vt(f, f

↓) +
1

6
⇁
2
t ,

where we define %ς,2 = 24LfϖT
2 + T%ς,1 the last inequality holds due to the definition of ⇁t.
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Lemma C.3. Under the conditions of Lemma 4.4, assume that f
ω
↑ Ft↗1, and the estimator f̂t is

f̂t = argmin

f̂→Ft→1

max
f ↑→Ft→1

Lt(f̂ , f
↓) :=

∑

i→[t]

1

ω̄2
i

(f ↓(xi)↘ f̂(xi))
2 + 2tCatoniϖt(f̂ ,f ↑)({Zi(f̂ , f

↓)}i→[t]).

Then, for the time step t such that the following event happens

Et =




t ⇐ 4(⇀↓(↽))2

∑
i→[t]

⇀2
i

w2
i

V̂art
+ 6(⇀↓(↽))2




 ,

and all l ↑ [L], if we take ϑ = 2↗2l
, with probability at least 1↘ ↽/TL,

∑

i→[t]

(fω(xi)↘ f̂t(xi))2)

w2
i

+ λ ↔
1

2
⇁̂
2
t↗1 +6


48(⇀↓(↽))2▷2




(∑

i→[t] ω
2
i /w

2
i

)2

V̂art
+ V̂art



+5⇀↓(↽)▷2 +%ς,2


+ λ := ⇁

2
t .

Proof. Let Lt(f) := maxf ↑→F Lt(f, f ↓) and

(⇁↓
t)

2 =
1

2
⇁̂
2
t↗1 + 6


48(⇀↓(↽))2▷2




(∑

i→[t] ω
2
i /w

2
i

)2

V̂art
+ V̂art



+ 5⇀↓(↽)▷2 +%ς,2



Thus, by invoking Lemma 4.4 with taking minimum over f ↓
↑ Ft↗1 on the both sides of the inequality and f = f̂t, we have

with probability at least 1↘ ↽

Lt(f̂t) ⇐ max
f ↑→Ft→1


Rt(f̂t, f

↓)↘
1

2
Vt(f̂t, f

↓)↘
1

3
(⇁↓

t)
2


⇐ max
f ↑→Ft→1


Vt(f̂t, f

ω)↘ Vt(f
↓
, f

ω)↘
1

2
Vt(f̂t, f

↓)↘
1

3
(⇁↓

t)
2


= max
f ↑→Ft→1


↘

3

2

∑

i→[t]

(f ↓(xi)↘
2
3f

ω(xi)↘
1
3 f̂t(xi))2

w2
i

+
2

3
Vt(f̂t, f

ω)↘
1

3
(⇁↓

t)
2


=
2

3
Vt(f̂t, f

ω)↘
1

3
(⇁↓

t)
2
,

where we take f
↓ = 2

3f
ω + 1

3 f̂t.

Additionally, by using Lemma 3.5 with taking minimum over f ↓
↑ F on the both sides of the inequality and f = f

ω, we
have with probability at least 1↘ ↽

Lt(f
ω) ↔ max

f ↑→Ft→1


Rt(f

ω
, f

↓) +
1

2
Vt(f

ω
, f

↓) +
1

3
(⇁↓

t)
2


= max
f ↑→Ft→1


↘ Vt(f

↓
, f

ω) +
1

2
Vt(f

↓
, f

ω) +
1

3
(⇁↓

t)
2


↔
1

3
(⇁↓

t)
2
,

where we take f
↓ = f

ω.

Since f̂t = argminf→Ft→1
Lt(f), we have

0 ⇐ Lt(f̂t)↘ Lt(f
ω) ⇐

2

3
Vt(f̂t, f

ω)↘
2

3
(⇁↓

t)
2
,

which means that

Vt(f̂t, f
ω) + λ =

∑

i→[t]

1

ω̄2
i

(f̂t(xi)↘ f
ω(xi))

2 + λ ↔ (⇁↓
t)

2 + λ = ⇁
2
t .
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Part II: Event Et,l
var holds with high probability. In this part, we focus on the relationship between the sum of true

variance
∑

i→[t] ω
2
i /w

2
i and the estimation V̂art conditioned on E

t↗1
conv. Recall that we define the events Et

var and E
t
conv in

(15). First, we will show that event Et
var conditioned on E

t↗1
conv holds with high probability.

First of all, we provide a lemma for the ϖ-cover.
Lemma C.4. For any f ↑ F , there exist fς ↑ Fς such that ≃f ↘ fς≃↑ ↔ ϖ. Then, we have

∣∣∣∣∣Catoniϖ
↑

{
1

w2
i

(yi ↘ f(xi))
2

}

i→[t]


↘ Catoniϖ↑

{
1

w2
i

(yi ↘ fς(xi))
2

}

i→[t]

∣∣∣∣∣

↔ 4(R+ 2Lf )
3
ϖ + 2

√
(R+ 2Lf )ϖ.

Proof. We have
1

w2
i

(yi ↘ f(xi))
2
↔ 2R2 + 8L2

f ,

and
∣∣∣∣
1

w2
i

(yi ↘ f(xi))
2
↘

1

w2
i

(yi ↘ fς(xi))
2

∣∣∣∣ ↔ |(fς(xi)↘ f(xi))(2yi ↘ f(xi)↘ fς(xi))|

↔ ϖ(2R+ 4Lf ).

From the definitions ϱtVar, we get

ϱ
t
Var = (2(36Lf▷⇁̂t↗1 + cϱ + 2ω2

ϱ) + ϑ)↗1
↔ 1/ϑ

Combining the two inequalities above, we have

1

t

∑

i→[t]

ϱ
t
Var

∣∣∣∣
1

w2
i

(yi ↘ f(xi))
2
↘

1

w2
i

(yi ↘ fς(xi))
2

∣∣∣∣

↔
1

ϑ
· ϖ(2R+ 4Lf ).

Then, by invoking Lemma E.2 with % = 1
φ · ϖ(2R+ 4Lf ) and taking ϑ = ▷

2, we deduce that
∣∣∣Catoniϖt

Var
({Zi(f, f

↓)}i→[t])↘ Catoniϖt(fω,f ↑
ω)
({Zi(fς, f

↓
ς)}i→[t])

∣∣∣

↔
1 + 2ϱtVar · 2R

2 + 8L2
f

ϱtVar

· ϖ(2R+ 4Lf ) +

√
2ϖ(2R+ 4Lf )

(ϱtVar)
2

↔ 4(R+ 2Lf )
3
ϖ + 2

√
(R+ 2Lf )ϖ.

Lemma C.5. Under the same condition as Lemma 4.4, and assuming that f
ω
↑ Ft↗1, we use the Catoni estimator

Vart(f̂t) = tCatoniϖt
Var

{
1

w2
i

(yi ↘ f̂t↗1(xi))
2

}

i→[t]


,

where ϱ
t
Var = (12(2ω2

ϱ + cϱ + L
2
f + 16▷2 · ⇁̂

2
t↗1))

↗1
, and suppose that ▷ ↔ 1/(1076⇀↓(↽)) and ⇁̂

2
t↗1 ↔

4320(⇀↓(↽))2▷2
∑t↗1

i=1
⇀2
i

w2
i
+ 16 ↓ 5660(⇀↓(↽))32↗2l(2ω2

ϱ + cϱ) + 120⇀↓(↽)▷2 + 26%ς + 4λ, where %ς is defined in Ta-

ble 3.

Then, for the time step t such that the following event happens

Et =




t ⇐ 4(⇀↓(↽))2

∑
i→[t]

⇀2
i

w2
i

V̂art
+ 6(⇀↓(↽))2




 ,
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we have with probability 1↘ 2↽/TL

∣∣∣∣∣Vart(f̂t)↘
1

2

t∑

i=1

ω
2
i

w2
i

∣∣∣∣∣ ↔ 14⇀↓(↽)(2ω2
ϱ + cϱ) + 43%ς + 268λ.

where %ς = $(LfϖT
2 + L

4
fR

2
⇀
↓(↽)ϖ0.5

T
3.5 + L

3
fR

1.5
ϖ
0.25

T
1.25 +R

3
L
3
fϖT +

√
RLfϖT ).

Proof. For a fixed f ↑ Ft↗1, let

Vi(f) =
1

w2
i

(yi ↘ f(xi))
2 =

1

w2
i

(
ε
2
i + (fω(xi)↘ f(xi))

2 + 2εi(f
ω(xi)↘ f(xi))

)
.

We know that
|Vi(f)| ↔ R

2 + 8L2
f + 2ϖ2 := R

↓
.

We can calculate the conditional mean of Zi:

µi(f) =
1

w2
i

(
ω
2
i + (fω(xi)↘ f(xi))

2
)
,

and the sum of variance of Zi:

t∑

i=1

Var[Vi(f)] =
t∑

i=1

1

w4
i

E

(ε2i ↘ ω

2
i )

2 + 4ε2i (f
ω(xi)↘ f(xi))

2


↔

t∑

i=1

1

w4
i

ω
2
i

(
cϱ + 4(fω(xi)↘ f(xi))

2
)

↔

t∑

i=1

ω
2
i

w2
i

·

(
cϱ + 16▷2 · ⇁̂2

t↗1

)
,

where the second inequality holds since

1

w2
i

(fω(xi)↘ f(xi))
2
↔

1

w2
i

· sup
f,f ↑→Fi→1

|f(xi)↘ f
↓(xi)|2∑

k→[i↗1]
1
⇀̄2
k
(f(xk)↘ f ↓(xk))2 + λ

·




∑

k→[i↗1]

1

ω̄2
k

(f(xk)↘ f
ω(xk))

2 + λ





↔▷
2



2
∑

k→[t↗1]

1

ω̄2
k

(f(xk)↘ f̂t↗1(xk))
2 + 2

∑

k→[i↗1]

1

ω̄2
k

(fω(xk)↘ f̂t↗1(xi))
2 + λ



 .

↔4▷2 · ⇁̂2
t↗1, (17)

where the second inequality uses the Cauchy-Schwartz inequality, and the last inequality uses the definition of Fi↗1.

Then, we have

t∑

i=1

µ
2
i (f) ↔

t∑

i=1

2

w4
i

(
ω
4
i + (fω(xi)↘ f(xi))

4
)

↔2
t∑

i=1

ω
4
i

w4
i

+ Vt(f, f
ω) ·max

i→[t]

f
ω(xi)↘ f(xi))2

w2
i

↔2ω2
ϱ

t∑

i=1

ω
2
i

w2
i

+ Vt(f, f
ω) · 4▷2 · ⇁̂2

t↗1,

where the first inequality uses the Cauchy-Schwarz inequality, the last inequality holds due to Assumption 4.1 and (17).
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Then, since from ϱ
t
Var = (12(2ω2

ϱ + cϱ + L
2
f + 16▷2 · ⇁̂2

t↗1))
↗1 we have

(ϱtVar)
2


t∑

i=1

Var[Vi(f)] +
t∑

i=1

(µi ↘ µ̄)2


↔ (ϱtVar)
2


t∑

i=1

ω
2
i

w2
i

·

(
2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1

)
+ Vt(f, f

ω) · 4▷2⇁̂2
t↗1



↔ (ϱtVar)
2
(
tω

2
ϱ

(
2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1

)
+ t · 4L2

f · 4▷2⇁̂2
t↗1

)

↔
t

6
,

by the choice of ⇀↓(↽) and the condition Et holds, we get

t =
t

6
+

5t

6
⇐ (ϱtVar)

2
( t∑

i=1

Var[Vi(f)] +
t∑

i=1

(µi ↘ µ̄)2
)
+ 2 log(NTL/↽).

Therefore, we can apply Lemma E.1 and with a union bound over the covering set of Ft↗1, which is denoted as Ft↗1,ς , to
obtain with probability at least 1↘ ↽/TL, for any f ↑ Ft↗1,ς

∣∣Vart(f)↘
t∑

i=1

µi(f)
∣∣ ↔ϱ

t
Var

( t∑

i=1

Var[Vi(f)] +
t∑

i=1

µ
2
i (f)

)
+ 2

log(NTL/↽)

ϱtVar

↔ϱ
t
Var


t∑

i=1

ω
2
i

w2
i

·

(
2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1

)
+ Vt(f, f

ω) · 4▷2⇁̂2
t↗1


+ 2

log(NTL/↽)

ϱtVar

. (18)

Then, for the estimator f̂t↗1, there exists a fς ↑ Ft↗1,ς such that ≃f̂t↗1 ↘ fς≃↑ ↔ ϖ. By invoking Lemma C.4, we have
∣∣∣∣∣Catoniϖ

t
Var

{
1

w2
i

(yi ↘ f̂t↗1(xi))
2

}

i→[t]


↘ Catoniϖt

Var

{
1

w2
i

(yi ↘ fς(xi))
2

}

i→[t]

∣∣∣∣∣

↔ 4(R+ 2Lf )
3
ϖ + 2

√
(R+ 2Lf )ϖ.

Also, we can get

∣∣
t∑

i=1

µi(f̂t↗1)↘
t∑

i=1

µi(fς)
∣∣ ↔4LfϖT.

Combining the results above and by the choice of ϱtVar, we obtain that with probability at least 1↘ ↽,

∣∣Vart(f̂t↗1)↘
t∑

i=1

µi(f̂t↗1)
∣∣

↔
∣∣Vart(fς)↘

t∑

i=1

µi(fς)
∣∣+ T (4(R+ 2Lf )

3
ϖ + 2

√
(R+ 2Lf )ϖ) + 4LfϖT

↔ ϱ
t
Var


t∑

i=1

ω
2
i

w2
i

·

(
2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1

)
+ Vt(fς, f

ω) · 4▷2⇁̂2
t↗1


+ 2

⇀
↓(↽)

ϱtVar

+%ς,3

↔ ϱ
t
Var


t∑

i=1

ω
2
i

w2
i

·

(
2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1

)
+ (Vt(f̂t↗1, f

ω) + 4Lfϖ) · 4▷
2
⇁̂
2
t↗1


+ 2

⇀
↓(↽)

ϱtVar

+%ς,3

where %ς,3 = 4(R+ 2Lf )3ϖT + 2
√
(R+ 2Lf )ϖT + 4LfϖT . Further, we have

t∑

i=1

µi(f̂t↗1)↘
t∑

i=1

ω
2
i

w2
i

= Vt(f̂t↗1, f
ω),
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and

Vt(f̂t↗1, f
ω) =

∑

i→[t↗1]

(f̂t↗1(xi)↘ f
ω(xi))2

w2
i

+
(f̂t↗1(xt)↘ f

ω(xt))2

w2
t

↔⇁̂
2
t↗1 +

D
2
t

w2
t

· ⇁̂
2
t↗1

↔(1 + ▷
2)⇁̂2

t↗1,

where the first inequality uses the definition of Dt and f
ω
↑ Ft↗1. Combining the results above and the value of

ϱ
t
Var = (12(2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1))

↗1 leads to

∣∣Vart(f̂t)↘
t∑

i=1

ω
2
i

w2
i

∣∣

↔ ϱ
t
Var


t∑

i=1

ω
2
i

w2
i

·

(
2ω2

ϱ + cϱ + 16▷2⇁̂2
t↗1

)
+ ((1 + ▷

2)⇁̂2
t↗1 + 4LfϖT ) · 4▷

2
⇁̂
2
t↗1


+ 2

⇀
↓(↽)

ϱtVar

+%ς,3 + (1 + ▷
2)⇁̂2

t↗1

↔
1

4

t∑

i=1

ω
2
i

w2
i

+
1 + ▷

2

16
⇁̂
2
t↗1 +

1

4
LfϖT + 8⇀↓(↽)(2ω2

ϱ + cϱ) + 64▷2⇁̂2
t↗1 +%ς,3 + (1 + ▷

2)⇁̂2
t↗1

↔
1

4

t∑

i=1

ω
2
i

w2
i

+ 67
(
4320(⇀↓(↽))2▷2

t↗1∑

i=1

ω
2
i

w2
i

+ 16↓ 5660(⇀↓(↽))32▷2(2ω2
ϱ + cϱ) + 120⇀↓(↽)▷2 + 26%ς,2 + 4λ

)

+
1

4
LfϖT +%ς,3

↔
1

2

t∑

i=1

ω
2
i

w2
i

+ 67
(
16↓ 5660(⇀↓(↽))3▷2(2ω2

ϱ + cϱ) + 26%ς,2 + 4λ
)
+ 8⇀↓(↽)(2ω2

ϱ + cϱ) +%ς

↔
1

2

t∑

i=1

ω
2
i

w2
i

+ 14⇀↓(↽)(2ω2
ϱ + cϱ) + 43%ς + 268λ,

where the second inequality uses ▷ ↔ 1, and the third inequality uses the value of ⇁̂2
t↗1, the last second inequalities

holds since we know from ▷ ↔ 1/(1076⇀↓(↽)) that 67 ↓ 4320(⇀↓(↽))2▷2 ↔ 1/4, and the last inequality also holds due to
67↓ 4↓ 123(⇀↓(↽))2▷2 ↔ 2, and we define %ς = 67↓ 26%ς,2 +%ς,3 +

1
4LfϖT = $(LfϖT

2 + L
4
fR

2
⇀
↓(↽)ϖ0.5

T
3.5 +

L
3
fR

1.5
ϖ
0.25

T
1.25 +R

3
L
3
fϖT +

√
RLfϖT ), which concludes the proof. There is a fixable error. Now, I change the plug-in

in V̂art from f̂t to f̂t↗1, and change the analysis above, so now the upper and lower bound is reasonable.

Lemma C.6 (Formal version of Lemma 4.5). Recall the definition of the variance estimation from (6):

V̂ar
l

t =Var
l
t + 14⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λl
,

where ϱ
t,l
Var = (4(2ω2

ϱ + cϱ + L
2
f + 2↗2l+4

· ⇁̂
2
t↗1))

↗1
and %ς = $(LfϖT

2 + L
4
fR

2
⇀
↓(↽)ϖ0.5

T
3.5 + L

3
fR

1.5
ϖ
0.25

T
1.25 +

R
3
L
3
fϖT +

√
RLfϖT ). Then, conditioned on E

t↗1
conv, when 2l ⇐ 1076⇀↓(↽) we have with probability at least 1↘ 2↽ for all

t ⇐ 14(⇀↓(↽))2,

1

2

∑

i→!l
t

ω
2
i

w2
i

↔ V̂ar
l

t ↔
3

2

∑

i→!l
t

ω
2
i

w2
i

+ 2
(
14⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λl
)
,

which implies that ′t→[T ]:t≃14(↽↑(↼))2E
t
var holds.

Proof of Lemma 4.5. If we suppose that Et happens, since E
t↗1
conv holds true, we can apply Lemma C.5 to each l ↑ [L]

satisfying that 2l ⇐ 1076⇀↓(↽) with ▷ = 2↗l and obtain with probability 1↘ 2↽,
∣∣∣∣∣Vart(f̂t)↘

1

2

t∑

i=1

ω
2
i

w2
i

∣∣∣∣∣ ↔ 14⇀↓(↽)(2ω2
ϱ + cϱ) + 43%ς + 268λl

,
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which indicates the desired result according to the definition of V̂ar
l

t.

Furthermore, we show that when t ⇐ 14(⇀↓(↽))2, Et holds true.

t ⇐ 14(⇀↓(↽))2 = 4(⇀↓(↽))2 ↓ 2 + 6(⇀↓(↽))2

⇐ 4(⇀↓(↽))2

∑
i→!l

t

⇀2
i

w2
i

Var
l
t

+ 6(⇀↓(↽))2,

where the second inequality uses 1
2

∑
i→!l

t

⇀2
i

w2
i
↔ V̂ar

l

t.

Part III: Sharpness of the confidence set
Lemma C.7. Conditioned on E

t
var, if we take ϖ = O(1/L12

f R
6(⇀↓(↽))2T 7), ϑ = 2↗2l

, and take the confidence parameter as

(8):

(⇁̂l
t)

2 = 2880(⇀↓(↽))22↗2lV̂ar
l

t + 60⇀↓(↽)2↗2l + 12%ς,2 + 2λl
,

where %ς = $
(
LfϖT

2 + L
4
fR

2
⇀
↓(↽)ϖ0.5

T
3.5 + L

3
fR

1.5
ϖ
0.25

T
1.25 +R

3
L
3
fϖT +

√
RLfϖT

)
. We have

(⇁̂l
t)

2
↔ 4320(⇀↓(↽))22↗2l

∑

i→!l
t

ω
2
i

w2
i

+ 16↓ 5660(⇀↓(↽))32↗2l(2ω2
ϱ + cϱ) + 120⇀↓(↽)2↗2l + 26%ς + 4λl

.

Additionally, with probability at least 1↘ ↽, the following event occurs:

′t→[T ]:t≃3(↽↑(↼))2E
t
conv =

{
f
ω
↑ F

l
t , for l ↑ [L], 2l ⇐ 1076⇀↓(↽)

}
.

Proof. By invoking Lemma C.3 for l with ▷ = 2↗l, we get with probability at least 1↘ ↽,

∑

i→!l
t

(fω(xi)↘ f̂
l
t(xi))2)

w2
i

+ λ
l

↔
1

2
(⇁̂l

t↗1)
2 + 6


48(⇀↓(↽))22↗2l

((∑
i→!l

t
ω
2
i /w

2
i

)2

V̂ar
l

t

+ V̂ar
l

t

)
+ 5⇀↓(↽)2↗2l +%ς,2


+ λ

l
. (19)

Then, since Corollary C.6 implies that with probability at least 1↘ 2↽,

1

2

∑

i→!l
t

ω
2
i

w2
i

↔ V̂ar
l

t ↔
3

2

∑

i→!l
t

ω
2
i

w2
i

+ 2
(
14⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λl
)
, (20)

we get with probability at least 1↘ 2↽,
(∑

i→!l
t
ω
2
i /w

2
i

)2

V̂ar
l

t

+ V̂ar
l

t ↔ 5V̂ar
l

t.

Hence, we deduce that

∑

i→!l
t

(fω(xi)↘ f̂
l
t(xi))2)

w2
i

+ λ
l

↔
1

2
(⇁̂l

t↗1)
2 + 6


48(⇀↓(↽))22↗2l5V̂ar

l

t + 5⇀↓(↽)2↗2l +%ς,2


+ λ

l

↔
1

2
(⇁̂l

t↗1)
2 + 1440(⇀↓(↽))22↗2lV̂ar

l

t + 30⇀↓(↽)2↗2l + 6%ς,2 + λ
l

↔ (⇁̂l
t)

2
,
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where the last inequality uses the definition of ⇁̂l
t.

Moreover, we define

B
l
⇁ = 16↓ 5660(⇀↓(↽))32↗2l(2ω2

ϱ + cϱ) + 120⇀↓(↽)2↗2l + 26%ς + 4λl
,

and deduce from (20) that

(⇁̂l
t)

2 =2880(⇀↓(↽))22↗2lV̂ar
l

t + 60⇀↓(↽)2↗2l + 12%ς,2 + 2λl

↔4320(⇀↓(↽))22↗2l
∑

i→!l
t

ω
2
i

w2
i

+ 5660(⇀↓(↽))22↗2l
(
14⇀↓(↽)(2ω2

ϱ + cϱ) + 43%ς + 268λl
)
+ 60⇀↓(↽)2↗2l + 12%ς,2 + 2λl

↔4320(⇀↓(↽))22↗2l
∑

i→!l
t

ω
2
i

w2
i

+
1

2
B

l
⇁ +

1

2
B

l
⇁

=4320(⇀↓(↽))22↗2l
∑

i→!l
t

ω
2
i

w2
i

+ 16↓ 5660(⇀↓(↽))32↗2l(2ω2
ϱ + cϱ) + 120⇀↓(↽)2↗2l + 26%ς + 4λl

,

where the last inequality holds since 2l ⇐ 1076⇀↓(↽).

Part IV: Bounding the regret conditioning on good events. Recall the notation for the eluder coefficient for each layer

D
l
t(x) = sup

f,f ↑→Fl
t→1

|f(x)↘ f
↓(x)|√∑

i→!l
t→1

1
w2

i
(f(xi)↘ f ↓(xi))2 + λl

.

Lemma C.8. Let lω = ⇑log2(1076⇀
↓(↽))⇓. Under Assumption 4.1 and Algorithm 2, if ′t≃14(↽↑(↼))2E

t
conv happens, then, for

all l ↑ [lω, L], t ↑ #l
T , and X

⇐
t = argmaxx→Xt

f
ω(x) ↑ X

l
t , and the regret at the l-th level is bounded by

∑

t→!l
T :t≃14(↽↑(↼))2

(fω(x⇐
t )↘ f

ω(xt)) ↔ 2↗l+3
⇁̂
l↗1
T |#l

T |.

Proof of Lemma 4.6. First according to Algorithm 2, we will prove that for all t ↑ #l
T , X⇐

t ↑ X
l
t by induction from lω to l,

where l is the level from which xt arises, and note that Algorithm 2 starts from level lω.

(⇁̂l
t↗1)

2 = $


(⇀↓(↽))22↗2l

∑

i→!l
t→1

ω
2
i /w

2
i + (⇀↓(↽))32↗2l(ω2

ϱ + cϱ) +%ς


.

Assume that X⇐
t ↑ X

l0
t for some l0 ↑ [lω, l↘1] and X

l0+1
t exists. Since #l0+1

t exists only if Dl0
t (x) ↔ 2↗l0 for all x ↑ X

l0
t .

Then, we denote X
l0
t = argmax

x→X l0
t
f̂
l0
t↗1(x) and deduce that

f̂
l0
t↗1(x

⇐
t )↘ f̂

l0
t↗1(x

l0
t ) ⇐f

ω(x⇐
t )↘ f

ω(xl0
t )↘

∣∣∣f̂ l0
t↗1(x

⇐
t )↘ f

ω(x⇐
t )
∣∣∣↘

∣∣∣f̂ l0
t↗1(x

l0
t )↘ f

ω(xl0
t )

∣∣∣

⇐↘D
l0
t (x⇐

t )⇁̂
l
t↗1 ↘D

l0
t (x⇐

t )⇁̂
l
t↗1

⇐↘ 2↗l0+1
⇁̂
l
t↗1,

where the second inequality uses X
⇐
t = argmaxx→Xt

f
ω(x), and the last inequality holds by using D

l0
t (x⇐

t ) ↔

2↗l0 , D
l0
t (xl0

t ) ↔ 2↗l0 . Therefore, from the definition of X
l0+1
t = {x ↑ X

l0
t | f̂

l0
t↗1(x) ⇐ max

x→X l0
t
f̂
l0
t↗1(x) ↘

2↗l0+1
⇁̂
l↗1
t↗1}, we obtain that X⇐

t ↑ X
l0+1
t . Hence, via induction, we can prove that X⇐

t ↑ X
l
t .

Next, for the l0 + 1 ↔ l since X
⇐
t , Xt ↑ X

l
t , we know that

f̂
l↗1
t↗1(x

⇐
t )↘ f̂

l↗1
t↗1(xt) ↔ 2↗l+2

⇁̂
l↗1
t , (21)
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and

D
l↗1
t (x⇐

t ) ↔ 2↗l+1
, D

l↗1
t (xt) ↔ 2↗l+1

. (22)

Thus, we derive that

f
ω(x⇐

t )↘ f
ω(xt) ↔f̂

l↗1
t↗1(x

⇐
t )↘ f̂

l↗1
t↗1(xt) +

∣∣∣fω(x⇐
t )↘ f̂

l↗1
t↗1(x

⇐
t )
∣∣∣+

∣∣∣fω(xt)↘ f̂
l↗1
t↗1(xt)

∣∣∣

↔2↗l+2
⇁̂
l↗1
t +D

l↗1
t (x⇐

t )⇁̂
l↗1
t +D

l↗1
t (xt)⇁̂

l↗1
t

↔2↗l+2
⇁̂
l↗1
t + 2↗l+1

⇁̂
l↗1
t + 2↗l+1

⇁̂
l↗1
t

=2↗l+3
⇁̂
l↗1
t ,

which implies that
∑

t→!l
T :t≃14(↽↑(↼))2

(fω(x⇐
t )↘ f

ω(xt)) ↔
∑

t→!l
T

2↗l+3
⇁̂
l↗1
t

↔2↗l+3
⇁̂
l↗1
T |#l

T |.

Now, we provide the proof for the main theorem.

Proof of Theorem 4.2. Recall the definition of two good events

E
t
var :=





∑

i→!l
t

ω
2
i

w2
i

↔ 2V̂ar
l

t, for l ↑ [L], 2l ⇐ 1076⇀↓(↽)




 ,

E
t
conv :=

{
f
ω
↑ F

l
t , for l ↑ [L], 2l ⇐ 1076⇀↓(↽)

}
.

By invoking Lemma C.7 and C.6, we have

P
(
′t→[T ]:t≃3(↽↑(↼))2(E

t
conv ∝ E

t
var)

)
⇐ 1↘ 3↽.

In the remaining proof, we suppose that ′t→[T ]:t≃3(↽↑(↼))2(E
t
conv ∝ E

t
var) holds. Let lω be the minimum l ↑ [L] such that

2l ⇐ max{18c2⇁(⇀
↓(↽))2, 6↓ 482Lf (⇀↓(↽))2}.

We can decompose the regret into three parts

RT =
∑

l=lε

∑

t→!l
T

(fω(x⇐
t )↘ f

ω(xt))

︸ ︷︷ ︸
I1

+
L∑

l=lε+1

∑

t→!l
T

(fω(x⇐
t )↘ f

ω(xt))

︸ ︷︷ ︸
I2

+
∑

t→[T ]\⇒l↔[L]!
l
T

(fω(x⇐
t )↘ f

ω(xt))

︸ ︷︷ ︸
I3

,

where we use the short notation X
⇐
t = argmaxx→Xt

f
ω(x). For the term I1, we have

I1 ↔2lωLf |#
lε
T |

↔2lωLf2
2lε ·

∑

t→!T,lε

(Dlε
t (xt))2

w2
t

↔Lf lω2
2lε+1dim1,T (F) = Õ(Lf log(N) · dim1,T (F)),

where the second inequality holds due to 2↗lε = D
lε
t (xt)/wt from Algorithm 2, and the last inequality follows from the

fact that 2lε = $(Lf (⇀↓(↽))2).
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For the term I2, we invoke Lemma 4.6 to get

I2 ↔

∑

l≃lε+1

⇁̂
l
T 2

↗l+3
|#l

T | ↔ 8Lf

∑

l≃lε

⇁̂
l
T 2

↗l
· 22l

∑

i→!T,l

min

1,

(Dl
t(xi))2

w2
i



↔8Lf

∑

l≃lε+1

⇁̂
l
T 2

ldim1,T (F)

=Õ



Lf

√∑

t→[T ]

ω2
t · logN · dim1,T (F) + Lf (logN)3/4dim1,T (F)(

→
cϱ + ωϱ)



 ,

where the last inequality holds since we know from Lemma C.7 that ⇀
↓(↽) =

$
(

log
(
RLf (ω2

ϱ + cϱ +%ς + λl)NLT/↽

))
and

⇁̂
l
t = $


⇀
↓(↽)2↗l

√∑

i→!l
t

ω2
i /w

2
i + (⇀↓(↽))3/22↗l(ωϱ +

→
cϱ) +

√
%ς


.

For the term I3, we have

I3 ↔

∑

t→[T ]\⇒l↔[L]!
l
T

(f lt
t↗1(xt)↘ f

ω(xt))

↔

∑

t→[T ]\⇒l↔[L]!
l
T

⇁̂
lt
t · γ

=Õ


T · ωϱ

→

T ·
1

ωϱT
3/2


,

where the first inequality follows from the peeling rule that Dt,l
F (xt) ↔ γ for t ↑ [T ] \ ′l→[L]#

l
T , and the second inequality

uses the upper bound of ⇁̂lt
t and the γ = 1/ωϱT

3/2.

Combining all three terms leads us to the eventual result.

D. Another Algorithm: Construct Two Confidence Sets
In this section, we develop a substitution for the Catoni estimator by constructing another candidate set and picking one
estimator out of the set instead of solving the min-max optimization as (3). Additionally, for simplicity, we consider the
finite function space F with cardinality N in this section. By standard analysis for the union bound over the cover set, we
can extend the analysis to infinite function space with finite covering number as in Appendix B.2 and C.1.

D.1. Known Variance

Notations. Recall the probability parameter as follows:

↽n,t :=
↽

N(T + 1)
, ↽t :=

∑

n→[N ]

↽n,t =
↽

T + 1
. (23)

Note again we have
∑

n→[N ],t→[T ] ↽n,t =
∑

t→[T ] ↽t ↔ ↽.

We also define the following logarithmic factor throughout the analysis that

⇀ (↽n,t) =

log

→
21 · 288 · L2

fR
2T 3.5

↽n,t


⇐

log


96R(1 + 2R/ϑ)T 2

min(1,φ2/
→
20TL2

f )ϑ
2↽n,t


,

where for the last inequality we choose φ = 1/
→
T , ϑ = 1 and use the assumption that R ⇐ 1, Lf ⇐ 1 without loss of

generality.

33



Catoni Contextual Bandits are Robust to Heavy-tailed Rewards

Algorithm 3 Catoni-OFUL with Candidate Set

Input: Parameter ↽n,t and ⇁̂t for each t ↑ [T ].
for t=1,2,. . . ,T do

Pick action xt according to maxf→Ft→1,x→Dt f(x);
Observe the reward yt;
Let the weight ω̄t = max

(
ωt,φ, 4

√
2⇀(↽n,t)Lf ·DF (xt;x[t↗1], ω̄[t↗1])

)
;

Construct F̂t as defined in (24) and pick any f̂t ↑ F̂t;
Construct confidence set

Ft :=

f ↑ F :

∑

i→[t]

1

ω̄2
i

(
f(xi)↘ f̂t(xi)

)2
↔ ⇁̂

2
t


;

end for

Suppose that for each t ↑ [T ], the upper bound of the noise variance ω
2
t is known. We now consider the following VOFUL

algorithm tailored to this nonlinear function class setup. After specifying parameters ↽n,t and ⇁̂t for t ↑ [T ], and the weight

ω̄t = max
(
ωt,φ, 4

√
2⇀(↽n,t)Lf ·DF (xt;x[t↗1], ω̄[t↗1])

)

depending on the variance ωt and eluder coefficient DF , we define the candidate set for the estimator as

F̂t :=

{
f̂ ↑ F : min

f→F

∑

i→[t]

1

ω̄2
i

(
f(xi)↘ f̂(xi)

)2
+ 2t · Catoniϖ(f,f̂)(Z1, · · · , Zt) ⇐ ↘

1

4
⇁̂
2
t

}
, (24)

where Zi(f, f̂) =
1
⇀̄2
i
(f(xi)↘ f̂(xi))(f̂(xi)↘ yi) and

ϱt(f, f̂) =


⇀2 (↽n,t)

∑
i→[t]

1
⇀̄2
i

(
f(xi)↘ f̂(xi)

)2
+
∑

i→[t]
2
⇀̄4
i

(
f(xi)↘ f̂(xi)

)4
+ ϑ2

.

This candidate set selects robust estimations for the true function f
ω, and we will prove in the sequel that the f

ω belongs to
F̂t. Then, we choose any function f̂t from F̂t and further construct the confidence set Ft with a small weighted square error.
We will demonstrate that fω

↑ Ft. Based on the principle of optimism in the face of uncertainty, we choose the greedy
function f̂t ↑ Ft and the greedy action Xt ↑ Dt.

Theorem D.1. Under Algorithm 3 with the parameter ↽n,t = ↽/N(T +1), ⇀ (↽n,t) =


log

(→
21 · 288 · L2

fR
2T 3.5/↽n,t

)
,

and

⇁̂t :=
[(

8
(
8 · 134 + 2 · 132 + 13

))1/2
+ 13

→

2λ1/4
]
⇀(↽n,t), (25)

with probability 1↘ 2↽, we can bound the regret by

RT = Õ

(
Lf · logN · dim 1↓

T
,T (F) + Lf

( ∑

t→[T ]

ω
2
t

)1/2
·

√
dim 1↓

T
,T (F) · logN

)
.

We now divide the argument into the following three parts. In the analysis, we omit (f, f ↓) in Zi and ϱ when there is no
confusion.

Part I: With high probability 1↘ ↽, all the sets F̂t are non-empty for each t ↑ [Õ(1), T ].
Lemma D.2. For any iteration t ↑ [T ], t ⇐ 7⇀2(↽n,T ) and the set F̂t as constructed in (24), we have with probability at

least 1↘ ↽, ∝t→[T ],t≃7↽2(↼n,T )F̂t ∞= ⇔.
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Proof. It suffices to show that for each t, we have P(fω
/↑ F̂t) ↔ ↽t. When f

ω
/↑ F̂t, there exists some f

n
↑ F such that

∑

i→[t]

1

ω̄2
i

(fn(xi)↘ f
ω(xi))

2 + 2t · Catoniϖ

{
1

ω̄2
i

(fn(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→[t]


< ↘

1

4
⇁̂
2
t ,

which implies that

t · Catoniϖ

{
1

ω̄2
i

(fn(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→[t]


<

↘
1
4 ⇁̂

2
t ↘

∑
i→[t]

1
⇀̄2
t
(fn(xi)↘ f

ω(xi))
2

2
.

Now we bound the probability that the above inequality happens. We use the notation for any f, f
↓
↑ F

Zi(f, f
↓) =

1

ω̄2
i

(f(xi)↘ f
↓(xi)) (f

↓(xi)↘ yi) ,

which is short-notated as Zi when no confusion arises.

We apply Lemma E.1 to Zi(fn
, f

⇐). The variable Zi has conditional mean µi = EZi = 0, and sum of conditional variance

∑

i→[t]

E 1

ω̄4
i

(fn(xi)↘ f
ω(xi))

2 (fω(xi)↘ yi)
2

↔

∑

i→[t]

1

ω̄2
i

(fn(xi)↘ f
ω(xi))

2

:= V (fn
, f

⇐),

where the inequality uses the fact that E (fω(xi)↘ yi)
2 = ω

2
i ↔ ω̄

2
i . We can also bound ϱ by definition ϱ ↑ [a,A] where

A = ⇀(↽n,t,l)/ϑ and a =
⇀(↽n,t,l)√

20L4
f t/φ

4 + ϑ2
.

Thus, we have log
(

48R(1+2AR)t2

min(1,a)φ2↼n,t
log(A/a)

)
↔ 3⇀2(↽n,t,l) given choice of φ = 1/

→
T and ϑ = 1, and thus for any iteration

t ⇐ 7⇀2(↽n,t,l) ⇐ ⇀
2(↽n,t,l) + 6⇀2(↽n,t,l) ⇐ ⇀

2(↽n,t,l) + 2 log


48R(1 + 2AR)t2

min(1, a)ϑ2↽n,t
log(A/a)


,

by choice of ϱ =


↽2(↼n,t,l)∑
i↔[t]

1
ϑ̄2
i
(fn(xi)↗fε(xi))

2+
∑

i↔[t]
2
ϑ̄4
i
(fn(xi)↗fε(xi))

4+φ2
, with probability at least 1↘ ↽n,t, we have from
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Lemma 3.2 that

t ·
∣∣Catoniϖ({Zi}i→[t])

∣∣

↔ ⇀(↽n,t,l)
V +

∑
i→[t](µi ↘ µ̄)2

√
V +

∑
i→[t]

2
⇀̄4
i
(fn(xi)↘ fω(xi))4 + ϑ2

+ 12⇀(↽n,t,l)





V +
∑

i→[t]

2

ω̄4
i

(fn(xi)↘ fω(xi))4 + ϑ2





+ ϑ+ tµ̄

(o)
↔ 13

√

V ·


1 + max

i→[t]

2

ω̄2
i

(fn(xi)↘ fω(xi))
2

· ⇀(↽n,t,l) + 12⇀(↽n,t,l)ϑ+ ϑ

(i)
↔ 13

V ·



1 + max
i→[t]

4Lf

ω̄2
i

DF (xi;x[i↗1], ω̄[i↗1])


∑

k→[i↗1]

1

ω̄2
k

(fn(xk)↘ fω(xk))
2 + λ



⇀(↽n,t,l)

(ii)
↔ 13⇀(↽n,t,l)



1 +

→
λ

8


V +

13

2
→
2
V

3/4
(
⇀
2(↽n,t,l)

)1/4

(iii)
↔

V

4
+ 169


1 +

→
λ

8


⇀
2(↽n,t,l) +

V

4
+ 134⇀2(↽n,t,l)

(iv)
↔

1
4 ⇁̂

2
t +

∑
i→[t]

1
⇀̄2
i
(fn(xi)↘ f

ω(xi))
2

2
,

where we use (o) that
→
a+ b ↔

→
a +

→
b, and the inequality that log

(
48R(1+2AR)t2

min(1,a)φ2↼n,t
log(A/a)

)
↔ 3⇀2(↽n,t,l);

(i) the range assumption that |f(·)| ↔ Lf , choice of ϑ = 1 and definition of Dε; (ii) the choice of ω̄
2
i ⇐

32LfDF (xi;x[i↗1], ω̄[i↗1])⇀(↽n,t,l) and
→
a+ b ↔

→
a +

→
b; (iii) triangle inequality that

→
ab ↔

a
2c + c·b

2 where we
let a = V , b = 169⇀2(↽n,t,l), c = 2 and similarly a

3/4
b
1/4

↔
a
c + c

3
b where we let a = V , b = ⇀

2(↽n,t,l), and c = 13
→
2;

and finally (iv) the definition of ⇁̂t in (25) so that ⇁̂2
t ⇐ 8

(
134 + 132

)
⇀
2(↽n,t,l) + 132

→
λ⇀

2(↽n,t,l).

This implies that

P




∑

i→[t]

1

ω̄2
t

(fn(xi)↘ f
ω(xi))

2 + 2t · Catoniϖ

{
1

ω̄2
i

(fn(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→[t]


< ↘

1

4
⇁̂
2
t



 ↔ ↽n,t.

Thus taking a union bound on all f = f
n
↑ F and t ↑ [T ], t ⇐ 7⇀2(↽n,T ), we can conclude that with probability at least 1↘↽

(where ↽ =
∑

n→[N ],t→[T ] ↽n,t) for all iteration 7⇀2(↽n,T ) ↔ t ↔ T , one has fω
↑ F̂t, i.e. ∝t→[T ],t≃7↽2(↼n,T )F̂t ∞= ⇔.

Part II: With high probability 1↘ ↽, fω
↑ Ft for all t ↑ [Õ(1), T ]. We first provide the following lemma.

Lemma D.3. For any function f
n
↑ F , let Zi =

1
⇀̄2
i
(fω(xi)↘ f

n(xi)) (fn(xi)↘ yi) and ϱ as defined in (24), we have

for any t ⇐ 7⇀2(↽n,T ) with probability 1↘ ↽n,t,

t ·

∣∣∣∣∣∣
Catoniϖ(Z1, · · · , Zt) +

1

t

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2

∣∣∣∣∣∣
↔

1

4

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2 +
⇁̂
2
t

8
.

Proof. In order to apply the concentration inequality in Lemma E.1, we first bound the following

V =
∑

i→[t]

E

(Zi ↘ µi)

2
|Hi↗1


=

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2
,
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and further
∑

i→[t]

(µi ↘ µ̄)2 ↔

∑

i→[t]

µ
2
i =

∑

i→[t]

1

ω̄4
i

(fω(xi)↘ f
n(xi))

2 (fn(xi)↘ f
ω(xi))

2
↔

∑

i→[t]

2

ω̄4
i

(fω(xi)↘ f
n(xi))

4
.

Now by choice of ϱ =


↽2(↼n,t,l)∑
i↔[t]

1
ϑ̄2
i
(fn(xi)↗fε(xi))

2+
∑

i↔[t]
2
ϑ̄4
i
(fn(xi)↗fε(xi))

4+φ2
, we will have with probability 1↘ ↽n,t, for

any t ⇐ 7⇀2(↽n,T ), it holds that

t ·

∣∣∣∣∣∣
Catoniϖ({Zi}i→[t])↘

1

t

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi)) (f

n(xi)↘ f
ω(xi))

∣∣∣∣∣∣

↔ 13






∑

i→[t]

1

ω̄2
i

(fω(xi)↘ fn(xi))
2



 ·


1 + max

i→[t]

2

ω̄2
i

(fω(xi)↘ fn(xi))
2

⇀(↽n,t,l) + 13⇀(↽n,t,l).

We now proceed to bound maxi→[t]
2
⇀̄2
i
(fn(xi)↘ f

ω(xi))
2, we assume |fn(x)↘f

ω(x)| ↔ 2Lf for any x ↑ X , consequently
we have

max
i→[t]

2

ω̄2
i

(fn(xi)↘ f
ω(xi))

2
↔ max

i→[t]

4Lf

ω̄2
i

√
(fn(xi)↘ fω(xi))

2

↔ max
i→[t]

4Lf

ω̄2
i

DF (xi;x[i↗1], ω̄[i↗1])


∑

k→[i]

1

ω̄2
k

(fn(xk)↘ fω(xk))
2 + λ

↔
1

8⇀(↽n,t,l)


∑

i→[t]

1

ω̄2
i

(fn(xk)↘ fω(xk))
2 + λ

↔
1

8⇀(↽n,t,l)


∑

i→[t]

1

ω̄2
i

(fn(xk)↘ fω(xk))
2 +

→
λ

8
,

where for the last inequality we use the fact that ω̄2
i ⇐ 32Lf ⇀(↽n,t,l)D2

F (xi;x[i↗1], ω̄[i↗1]) by the choice of ω̄.

Plugging this back we can conclude that

t ·

∣∣∣∣∣∣
Catoniϖ({Zi}i→[t]) +

1

t

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2

∣∣∣∣∣∣
↘ 13⇀(↽n,t,l)

↔ 13



1 +

→
λ

8


·


∑

i→[t]

1

ω̄2
i

(fω(xi)↘ fn(xi))
2
⇀(↽n,t,l) +

13

2
→
2




∑

i→[t]

1

ω̄2
i

(fn(xt)↘ f
ω(xi))

2




3/4

(
⇀
2(↽n,t,l)

)1/4

↔
1

8

∑

i→[t]

1

ω̄2
i

(fn(xt)↘ f
ω(xi))

2 + 2 · 132⇀2(↽n,t,l)


1 +

→
λ

8


+

1

8

∑

i→[t]

1

ω̄2
i

(fn(xt)↘ f
ω(xi))

2 + 8 · 134⇀2(↽n,t,l)

=∈ t ·

∣∣∣∣∣∣
Catoniϖ({Zi}i→[t]) +

1

t

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2

∣∣∣∣∣∣
↔

1

4

∑

i→[t]

1

ω̄2
i

(fn(xt)↘ f
ω(xi))

2 +
1

8
⇁̂
2
t ,

where for the last inequality we use the definition of ⇁̂t so that ⇁̂2
t ⇐ 8(8 · 134+2 · 132+13)⇀2(↽n,t,l)+2 · 132

→
λ⇀

2(↽n,t,l).
This concludes the proof of lemma.

Corollary D.4. With high probability 1↘ ↽ where ↽ =
∑

n→[N ],t→[T ] ↽n,t, we have f
ω
↑ Ft for all t ↑ [T ↘ 1] satisfying

t ⇐ 7⇀2(↽n,T ).
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Proof. We bound the probability by a union bound argument. Let T := {t ↑ [T ↘ 1] : t ⇐ 7⇀2(↽n,T )} and Z
↓
i =

1
⇀̄2
i
(fω(xi)↘ f

n(xi)) (fn(xi)↘ yi), we have

P
(
∋ t, 7⇀2(↽n,T ) ↔ t ↔ T, f

ω
/↑ Ft

)
↔

∑

n→[N ],t→T

P



f̂t = f
n
,

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2
> ⇁̂

2
t





↔

∑

n→[N ],t→T

P




∑

i→[t]
1
⇀̄2
i
(fω(xi)↘ f

n(xi))
2 + 2t · Catoniϖ

(
{Z

↓
i}i→[t]

)
⇐ ↘

1
4 ⇁̂

2
t∑

i→[t]
1
⇀̄2
i
(fω(xi)↘ f

n(xi))
2
> ⇁̂

2
t





=
∑

n→[N ],t→T

P




∑

i→[t]
1
⇀̄2
i
(fω(xi)↘ f

n(xi))
2
↔

1
4 ⇁̂

2
t + 2t ·

∣∣∣Catoniϖ
(
{Z

↓
i}i→[t]

)
+ 1

t

∑
i→[t]

1
⇀̄2
i
(fω(xi)↘ f

n(xi))
2
∣∣∣

∑
i→[t]

1
⇀̄2
i
(fω(xi)↘ f

n(xi))
2
> ⇁̂

2
t





↔

∑

n→[N ],t→T

P



t ·

∣∣∣∣∣∣
Catoniϖ

(
{Z

↓
i}i→[t]

)
+

1

t

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2

∣∣∣∣∣∣
>

1

4

∑

i→[t]

1

ω̄2
i

(fω(xi)↘ f
n(xi))

2 +
1

8
⇁̂
2
t





↔

∑

n→[N ],t→T

↽n,t ↔

∑

n→[N ],t→[T ]

↽n,t ↔ ↽.

Part III: Bounding the regret conditioning on good events. We now recall the definition that T := {t ↑ [T ] : t ⇐
7⇀2(↽n,T )}, we further denote the good events E = {∝t→T F̂t ∞= ⇔} and E

↓ = {f
ω
↑ ∝t→T Ft}.

Proof of Theorem D.1. Conditioning on both good events E ∝ E
↓, we let fnt be the function maximizer in set Ft↗1 we pick

at step t and can bound the regret by

RT =
∑

t→[T ]

rt =
∑

t→[T ]

(fω(xω
t )↘ f

ω(xt)) ↔ 2Lf

(
7⇀2(↽n,T ) + 2

)
+

∑

t↗1→T
(fnt(xt)↘ f

ω(xt))

↔ 2Lf

(
7⇀2(↽n,T ) + 2

)
+

∑

t↗1→T

(∣∣∣fnt(xt)↘ f̂t↗1(xt)
∣∣∣+

∣∣∣f̂t↗1(xt)↘ f
ω(xt)

∣∣∣
)

(i)
↔ O

(
Lf · ⇀

2(↽n,T )
)
+

∑

t↗1→T



ω̄tDF (xt, ω̄t;x[t↗1], ω̄[t↗1]) ·






∑

i→[t↗1]

1

ω̄2
i

(
fnt(xi)↘ f̂t↗1(xi)

)2
+ λ

+


∑

i→[t↗1]

1

ω̄2
i

(
fω(xi)↘ f̂t↗1(xi)

)2
+ λ









(ii)
↔ O

(
Lf · ⇀

2(↽n,T )
)
+

∑

t↗1→T
2ω̄tDF (xt, ω̄t;x[t↗1], ω̄[t↗1]) ·

√
⇁̂2
t↗1 + λ


,

where we use (i) the definition of Dε for each t ↑ [T ] and (ii) the definition of Ft↗1 and that fnt , f
ω
↑ Ft↗1 conditioning

on E and E
↓.

Combining this with the range bound that [0, 1] of each individual reward one may receive by assumption, one can conclude
that

RT ↔ O
(
Lf · ⇀

2(↽n,T )
)
+ 2Lf

∑

t↗1→T
min


1, ω̄tDF (xt, ω̄t;x[t↗1], ω̄[t↗1])

√
⇁̂2
t↗1 + λ


. (26)

To finally bound the regret, we bound the second term in RHS of RT expression in (26) respectively. These steps
mainly follow Lemma 4.4 in (Zhou & Gu, 2022). We can decompose the terms by considering I1 = {t ↘ 1 ↑

T |DF (xt, ω̄t;x[t↗1], ω̄[t↗1]) ⇐ 1} and I2 = {t↘ 1 ↑ T , t /↑ I1}.
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For the first set, we bound its size naively by

|I1| ↔

∑

t→I1

min
(
1, D2

F (xt, ω̄t;x[t↗1], ω̄[t↗1])
)
↔ dimε,T (F).

For the second set, we bound the summation of terms of interest contraining on I2 by

∑

t→I2

ω̄t

√
⇁̂2
t↗1 + λ ·DF (xt, ω̄t;x[t↗1], ω̄[t↗1])

↔

∑

t→I2,⇀̄t=⇀t or ε

ω̄t

√
⇁̂2
t↗1 + λ ·DF (xt, ω̄t;x[t↗1], ω̄[t↗1])

+
∑

t→I2,⇀̄t=4
→

2↽(↼n,t,l)LfDF (xt;x[t→1],⇀̄[t→1])

ω̄t

√
⇁̂2
t↗1 + λ ·DF (xt, ω̄t;x[t↗1], ω̄[t↗1])

(i)
↔

∑

t→[T ]

(ωt + φ)
√

⇁̂2
t↗1 + λ ·DF (xt, ω̄t;x[t↗1], ω̄[t↗1]) +

∑

t→[T ]

32Lf ⇀(↽n,t,l)
√

⇁̂2
t↗1 + λ ·D

2
F (xt, ω̄t;x[t↗1], ω̄[t↗1])

(ii)
↔

√
2
∑

t→[T ]

(⇁̂2
t↗1 + λ)(ω2

t + φ2)
√
dimε,T (F) + 16Lf ⇀(↽n,t,l)max

t→[T ]

√
⇁̂2
t↗1 + λ · dimε,T (F).

Here for (i) we use the condition for each distinct set and for (ii) we use Cauchy-Schwarz inequality for the first term and
the definition of dimε for both terms.

Consequently plugging these back in (26) and take supremum over x : |x| = T , we conclude that with probability at least
1↘ 2↽,

RT = O


Lf · ⇀

2(↽n,T ) + dimε,T (F) + Lf · ⇀(↽n,t,l) ·max
t→[T ]

√
⇁̂2
t↗1 + λ · dimε,T (F)

+Lf

√∑

t→[T ]

(
⇁̂2
t↗1 + λ

)
(ω2

t + φ2) ·
√
dimε,T (F)





= Õ



Lf · logN · dim 1↓
T
,T (F) + Lf

√∑

t→[T ]

ω2
t ·

√
dim 1↓

T
,T (F) · logN



 ,

where for the last inequality we pick λ = $(1), φ = 1/
→
T .

D.2. Unknown Variance

We first choose the probability parameter as follows:

↽n,t,l :=
↽

N(T + 1)L
, ↽t :=

∑

l→[L]

∑

n→[N ]

↽n,t,l =
↽

T + 1
. (27)

Note again we have
∑

t→[T ] ↽t ↔ ↽.
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Algorithm 4 Variance-Agnostic Catoni Bandit with Candidate Set
1: Input: Parameter γ > 0, L = ⇑log2(1/γ)⇓, lω = ⇑log2(1076⇀

↓(↽))⇓.
2: Initialize the estimators for all layers: λl

△ 2↗2l
, ⇁̂

l
0 △ 2↗l+1

, #l
0 △ ⇔ for all l ↑ [lω, L].

3: for t=1,. . . ,T do
4: Observe Xt, and initialize X

1
t △ Xt, l △ lω.

5: while xt is not specified do
6: if Dl

t(x) ↔ γ for all x ↑ X
l
t then

7: Choose xt, f
l
t↗1 △ argmaxx→X l

t ,f→Fl
t→1

f(x)

8: Observe yt.
9: Break.

10: else if Dl
t(x) ↔ 2↗l for all x ↑ X

l
t then

11: Update X
l+1
t △ {x ↑ X

l
t | f̂

l
t↗1(x) ⇐ maxx→X l

t
f̂
l
t↗1(x)↘ 2↗l+1

⇁̂
l
t↗1}.

12: else
13: Choose xt ↑ X

l
t such that Dl

t(xt) > 2↗l and observe yt.
14: Update wt △ 2lDl

t(xt).
15: Update the index sets: #l

t △ #l
t↗1 ′ {t} and #l↑

t △ #l↑
t↗1 for l↓ ∞= l.

16: Pick any f̂
l
t ↑ F̂

l
t as in (28), and choose the confidence set F l

t defined in (32).
17: end if
18: Update l △ l + 1.
19: end while
20: For l ↑ [L] s.t. #l

t = #l
t↗1, f̂ l

t △ f̂
l
t↗1, F

l
t △ F

l
t↗1.

21: end for

For each layer l ↑ [L], define Zi =
1
⇀̄2
i
(f(xi)↘ f̂(xi))(f̂(xi)↘ yi) and

F̂
l
t :=

{
f̂ ↑ F : min

f→F
∑

i↔!l
t

1

w2
i

(
f(xi)↘ f̂(xi)

)2
+ 2t · Catoniϖ(f,f̂)(Z1, · · · , Zt) ⇐ ↘

1

4
(⇁̂l

t)
2

}
, (28)

where ϱ(f, f̂) =


(⇀↓ (↽n,t))2

∑
i→!l

t

1
w2

i

(
f(xi)↘ f̂(xi)

)2
+
∑

i→!l
t

2
w4

i

(
f(xi)↘ f̂(xi)

)4
+ ϑ2

, , (29)

and Catoniϖ is the ϱ-robust mean estimator for 1
t

∑
i→!l

t

1
w2

i

(
f(xi)↘ f̂(xi)

)(
f̂(xi)↘ f

ω(xi)
)

. The confidence radius is
specified as

(⇁̂l
t)

2 = $
(
(⇀↓(↽))22↗2lV̂ar

l

t + ⇀
↓(↽)2↗2l + λ

l
)
, (30)

where V̂ar
l

t should satisfy event Et,l
var holds with high probability:

V̂ar
l

t :=tCatoniϖt,l
Var

( 1

w2
i

(yi ↘ f̂
l
t↗1(xi))

2


i→!l
t

)
+ 14⇀↓(↽)(2ω2

ϱ + cϱ) + 268λl
. (31)

Then, we can define the confidence set

F
l
t :=




f ↑ F :
∑

i→!l
t

1

w2
i

(
f(xi)↘ f̂

l
t(Xi)

)2
↔ (⇁̂l

t)
2




 . (32)

The result is provided in the following theorem, where the bound is basically the same as the one-confidence set case in
Theorem 4.2.
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Theorem D.5. Suppose that Assumption 4.1 holds. Under Algorithm 4 with γ = 1/(LfT
3/2), if T ⇐ 14⇀2(↽n,T,l), with

probability at least 1↘ 3↽, we can bound the regret by

RT =Õ

(
Lf

√∑

t→[T ]

ω2
t · dim 1↓

T
,T (F) · logN + Lf · logN · dim 1↓

T
,T (F)

)
.

For the analysis, we now divide the argument into the following parts. For conciseness, we will omit the proofs similar to
the previous analysis.

Lemma D.6. Under Assumption 4.1, given {Xi, yi, wi}i→[t], we define D
2
i = supf,f ↑→F

|f(xi)↗f ↑(xi)|→∑i→1
l=1 (f(xl)↗f ↑(xl))2/w2

i+λ
. If

supi→[t]
Di
wi

↔ ▷, and E
t,l
var := {

∑
i→[t]

⇀2
i

w2
i
↔ 2V̂art} holds true, then, for the time step t such that

Et =

t ⇐ 4(⇀↓(↽n,t,l))

2

∑
i→[t] ω

2
i /w

2
i

V̂art
+ 6(⇀↓(↽n,t,l))

2

,

there exists some f = f
n
↑ F such that with probability at least 1↘ ↽,

t · Catoni

{
1

w2
i

(f(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→[t]


⇐

↘
1
4⇁

2
t ↘

∑
i→[t]

1
w2

i
(f(xi)↘ f

ω(xi))
2

2
.

Proof. Now we bound the probability that the above inequality happens. We apply Lemma E.1 to

Zi =
1

w2
i

(f(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi) ,

which has conditional mean µi = 0, and sum of conditional variance bounded by
∑

i→[t]

Var[Zi(f, f
↓)] =

∑

i→[t]

E
[ 1

w4
i

(f(xi)↘ f
↓(xi))

2(fω(xi)↘ yi)
2
∣∣∣xi

]

↔

∑

i→[t]

(f(xi)↘ f
↓(xi))2

w2
i

·
ω
2
i

w2
i

↔4▷2⇁̂2
t↗1

∑

i→[t]

ω
2
i

w2
i

↔ 8▷2⇁̂2
t↗1V̂art.

Then, follow the proof steps of Lemma C.2, we can obtain that with probability at least 1↘ ↽n,t, we have from Corollary 3.2
that

t ·
∣∣Catoniϖt(f,f ↑)({Zi(f, f

↓)}i→[t])
∣∣ ↔

1
4 (⇁̂

l
t)

2 + Vt(f, f ↓)

2
.

Thus taking a union bound on all f = f
n
↑ F , we can conclude that with probability at least 1↘ ↽t,

t ·
∣∣Catoniϖ({Zi}i→[t])

∣∣ ↔
1
4 (⇁̂

l
t)

2 + Vt(f, f ↓)

2
.

Lemma D.7. Conditioned on E
t,l
var, for any iteration t ↑ [T ], t satisfying Et, and any layer l ↑ [L] and the set F̂

l
t as

constructed in (28), we have with probability at least 1↘ ↽, ∝t→[T ],t≃7↽2(↼n,T )F̂
l
t ∞= ⇔.

Proof. It suffices to show that for each t and l, we have P(fω
/↑ F̂

l
t) ↔ ↽t. When f

ω
/↑ F̂

l
t , there exists some f = f

n
↑ F

such that with probability at least 1↘ ↽

∑

i→!l
t

1

w2
t

(f(xi)↘ f
ω(xi))

2 + 2t · Catoniε

{
1

w2
i

(f(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→!l
t


< ↘

1

4
(⇁̂l

t)
2
,
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which implies that

t · Catoni

{
1

w2
i

(f(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→!l
t


<

↘
1
4 (⇁̂

l
t)

2
↘
∑

i→!l
t

1
w2

i
(f(xi)↘ f

ω(xi))
2

2
.

Lemma D.6 implies that

P




∑

i→[t]

1

w2
t

(f(xi)↘ f
ω(xi))

2 + 2t · Catoniϖ

{
1

w2
i

(f(xi)↘ f
ω(xi)) (f

ω(xi)↘ yi)

}

i→[t]


< ↘

1

4
(⇁̂l

t)
2



 ↔ ↽n,t,l.

Thus taking a union bound on all f = f
n
↑ F and t ↑ [T ], t satisfying Et, we can conclude that with probability at least 1↘↽

(where ↽ =
∑

n→[N ],t→[T ] ↽n,t,l) for all iteration 7⇀2(↽n,T,l) ↔ t ↔ T , one has fω
↑ F̂

l
t , i.e. ∝t→[T ],t≃7↽2(↼n,T,l)F̂

l
t ∞= ⇔.

With probability at least 1↘ ↽, fω
↑ F

l
t for all t ↑ [Õ(1), T ], l ↑ [L].

Corollary D.8. Suppose that Assumption 4.1 holds. With high probability 1↘ ↽ where ↽ =
∑

l→[L],n→[N ],t→[T ] ↽n,t, we have

′t→[T ]:t≃3(↽↑(↼))2E
t
conv :=

{
f
ω
↑ F

l
t , for l ↑ [L], 2l ⇐ 1076⇀↓(↽)

}
.

Proof. Conditioned on E
t,l
var, we can follow the proof for the known-variance setting and get

f
ω
↑ F

l
t .

For each l ↑ [L], so it remains to prove that Et,l
var holds true. Following similar analysis of Lemma C.6, we can show that

conditioned on
{f

ω
↑ F

l
s, ⇒ l ↑ [L], s ↑ [7⇀2(↽n,T,l), t↘ 1]},

the event Et,l
var holds with probability at least 1↘ ↽.

Recall the value of ⇁̂l
t:

(⇁̂l
t)

2 = 392(⇀↓(↽n,t,l))
22↗2lV̂ar

l

t + 522(⇀↓(↽n,t,l))
22↗2l

→

λ+ 8↓ 524⇀4(↽n,t,l)2
↗4l +

λ

4
.

We can also demonstrate the relation between ⇁̂
l
t and the sum of variance

∑
i→!l

t

⇀2
i

w2
i

in the following lemma via similar
proofs with Lemma C.7.
Lemma D.9. Conditioned on E

t
var, if we take the confidence parameter as (8), We have

(⇁̂l
t)

2
↔ $

(
(⇀↓(↽))22↗2l

∑

i→!l
t

ω
2
i

w2
i

+ (⇀↓(↽))32↗2l(ω2
ϱ + cϱ) + ⇀

↓(↽)2↗2l + λ
l
)
.

Additionally, with probability at least 1↘ ↽, the following event occurs:

′t→[T ]:t≃3(↽↑(↼))2E
t
conv :=

{
f
ω
↑ F

l
t , for l ↑ [L], 2l ⇐ 1076⇀↓(↽)

}
.

Finally, following the proofs of Theorem D.1 and 4.2, we can obtain the result of Theorem D.5.

E. Auxiliary Proofs
E.1. Concentration Inequality for Catoni Estimator

Lemma E.1 (Concentration for Catoni estimator, cf. Lemma 13 in (Wei et al., 2020)). Let Zt be random variable adapted

to filtration Ht, suppose E[Zi|Hi↗1] = µi,
∑

i→[t] E
[
(Zi ↘ µi)

2
|Hi↗1

]
↔ V for some fixed V . Let µ̄ := 1

t

∑
i→[t] µi, for

some fixed parameter ϱ > 0, we have for any t ⇐ ϱ
2
(
V +

∑
i→[t](µi ↘ µ̄)2

)
+2 log(1/↽), with probability at least 1↘ 2↽,

∣∣Catoniϖ({Zi}i→[t])↘ µ̄
∣∣ ↔

ϱ

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t
+

2 log(1/↽)

ϱt
.
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We provide the following lemma used in proving Lemma 3.2

Lemma E.2 (Sensitivity of Catoni estimator, cf. Lemma A.13 of (Wagenmaker et al., 2022)). Consider some fixed

Z = {Zi}i→[t], Z̃ = {Z̃i}i→[t] satisfying |Zi| ↔ R, |Z̃i| ↔ R for all i ↑ [t], and some fixed ϱ > 0, ϱ̃ > 0. Then, assuming

that

% :=
1

t

∑

i→[t]

ϱ|Zi ↘ Z̃i|+ 3R|ϱ ↘ ϱ̃| ↔
1

18
min{1, ϱ2R2

},

we will have ∣∣∣Catoniϖ({Zi}i→[t])↘ Catoniϖ̃({Z̃i}i→[t])
∣∣∣ ↔

1 + 2ϱR

ϱ
%+


2%

ϱ2
.

Lemma E.3 (Formal version of Lemma 3.2). Let Zt be a random variable adapted to filtration Ht with a uniform bound

|Zt| ↔ R, E[Zi|Hi↗1] = µi,
∑

i→[t] E
[
(Zi ↘ µi)

2
|Hi↗1

]
↔ V for some fixed V . Let µ̄ := 1

t

∑
i→[t] µi. For any parameter

ϱ ↑ [a,A] and given ϑ ↔ 24R(1 + 2AR)t2, if t ⇐ ϱ
2(V +

∑
i→[t](µi ↘ µ̄)2) + 2 log( 48R(1+2AR)t2

min(1,a)φ2↼ log(A/a)), with

probability at least 1↘ 2↽,

∣∣Catoniϖ({Zi}i→[t])↘ µ̄
∣∣ ↔

ϱ

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t
+

4⇀20
ϱt

+
ϑ

t
,

where

⇀
2
0 = 4 log


48R(1 + 2AR)t2

min(1, a)ϑ2↽
log(A/a)


.

Proof of Lemma 3.2. For any ϑ > 0, set 0 = φ2·min(1,a)
24R(1+2AR)t2 ↔ 1, we consider a set A = {ϱ = (1 + 0)j · a | (1 + 0)j · a ↑

[a,A], j ⇐ 0}, it is immediate to see |A| ↔
48R(1+2AR)t2

min(1,a)φ2 log(A/a). Now for any ϱ ↑ A, we have by Lemma E.1 that with

probability 1↘ 2↽/|A|, we have for any t ⇐ ϱ
2
(
V +

∑
i→[t](µi ↘ µ̄)2

)
+ 2 log(|A|/↽),

∣∣Catoniϖ({Zi}i→[t])↘ µ̄
∣∣ ↔

ϱ

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t
+

2 log(|A|/↽)

ϱt
.

Thus by taking a union bound over ϱ ↑ A, we have with probability 1 ↘ 2↽, for all ϱ ↑ A, it holds that for any
t ⇐ ϱ

2
(
V +

∑
i→[t](µi ↘ µ̄)2

)
+ 2 log(|A|/↽),

∣∣Catoniϖ({Zi}i→[t])↘ µ̄
∣∣ ↔

ϱ

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t
+

2 log(|A|/↽)

ϱt
.

Thus, for any ϱ
↓
↑ [a,A], we have there exists some ϱ ↑ A such that the above bound holds true and |ϖ↑↗ϖ|

ϖ ↔ 0 ↔

min
(

φ
2·3R(1+2AR)t ,

a·φ2
24Rt2

)
. Now by triangle inequality we can conclude that for any ϱ ↑ [a,A],

|Catoniϖ ↘ µ̄| ↔ |Catoniϖ0 ↘ µ̄|+ |Catoniϖ ↘ Catoniϖ0 |

↔

ϱ0

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t
+

2 log(|A|/↽)

ϱ0t
+

ϑ

t

↔

ϱ

(
V +

∑
i→[t] (µi ↘ µ̄)2

)

t
+

4 log(|A|/↽)

ϱt
+

ϑ

t
,

where for the second inequality we use Lemma E.2.
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