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Abstract

Directed fuzzing is an advanced software testing approach
that systematically guides the fuzzing campaign toward user-
defined target sites, enabling efficient discovery of vulner-
abilities related to these sites. However, we have observed
that some complex vulnerabilities remain undetected by di-
rected fuzzers even when the flawed target sites are frequently
tested by the generated test cases, because triggering these
bugs often requires the execution of additional code in re-
lated program locations. Furthermore, when fuzzing multiple
targets, the existing energy assignment in directed fuzzing
lacks precision and does not ensure the fairness across tar-
gets, which leads to insufficient fuzzing effort spent on some
deeper targets.

In this paper, we propose a novel directed fuzzing solution
named AFLRUN, which features target path-diversity metric

and unbiased energy assignment. Firstly, we develop a new
coverage metric by maintaining extra virgin map for each
covered target to track the coverage status of seeds that hit the
target. This approach enables the storage of waypoints that hit
a target through interesting path into the corpus, thus enriching
the path diversity for each target. Additionally, we propose a
corpus-level energy assignment strategy that ensures fairness
for each target. AFLRUN starts with uniform target weight
and propagates this weight to seeds to get a desired seed
weight distribution. By assigning energy to each seed in the
corpus according to such desired distribution, a precise and
unbiased energy assignment can be achieved.

We built a prototype system and assessed its performance
using a standard benchmark and several extensively fuzzed
real-world applications. The evaluation results demonstrate
that AFLRUN outperforms state-of-the-art fuzzers in terms of
vulnerability detection, both in quantity and speed. Moreover,
AFLRUN uncovers 29 previously unidentified vulnerabilities,
including 8 CVEs, across four distinct programs.

∗Corresponding author.

1 Introduction

Fuzzing is a testing technique that examines a program’s be-
havior by subjecting it to a range of generated inputs, identi-
fying any anomalous behaviors that arise and reporting inputs
causing such anomalies. In recent years, coverage-guided
fuzzing [1,3,4,19] has made a significant stride in uncovering
software vulnerabilities. However, coverage-guided fuzzing
is designed to test all code regions within a program, but in
certain security scenarios, such as static analysis report ver-
ification [14] and patch testing [10], the focus is on fuzzing
specific code locations known as target sites. As a result, di-
rected fuzzing [11], building upon coverage-guided fuzzing,
has emerged as an alternative, receiving a lot of research at-
tention [12, 18, 23, 29, 34, 43, 44]. The key idea of directed
fuzzing is to approach and test the target sites by prioritizing
the seeds (stored test cases) whose execution traces get to
the vicinity of the target sites. This is achieved by evaluating
the seeds using a distance oracle and assigning more energy

(which determines the effort spent on fuzzing a given seed) to
those coming closer to the targets than others. In this way, the
fuzzer is expected to quickly discover the test cases capable
of reaching the target sites and activating the security flaws
(the vulnerabilities) at these sites (i.e., triggering the crash).

Listing 1 Example of Preconditioned Trigger
1 const char* get_string() {

2 if (/*Easy Constraint*/) return "default";

3 ... // Constaints solvable by genetic approach

4 return get_input(); // Get attacker-controllable input

5 }

6 void foo() {

7 char victim[128];

8 const char* p = get_string();

9 if (/*Hard Constraint*/)

10 strcpy(victim, p); // Potential Overflow

11 }

Limitations and challenges. However, directed fuzzing today
are impeded by the limitations of techniques, rendering it
less effective than expected in discovering vulnerabilities.
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Specifically, as observed in our research, oftentimes, hitting
a target site does not necessarily trigger the vulnerability it
carries: that is, the fuzzing fails to produce a detectable crash.
Instead, to activate the flaw, the execution trace needs to cover
some other code locations, which could be far away from this
target site. For example, in Listing 1, the flaw at the target site
(Line 10) can only be activated when the seed’s execution goes
through Line 4, instead of Line 2, since receiving a long input
is the precondition for overflowing the vulnerable buffer at
the target site. We call such a scenario, in which a unique path
needs to be covered before hitting the vulnerable target site for
triggering such vulnerability at the target, preconditioned flaw

activation or PFA. To sum up, PFA captures bugs requiring
certain previous paths to trigger. Another scenario is that at
the target site only the root cause of a security flaw is present
while the flaw can only be activated in a different program
location: as illustrated by the example in Listing 2, the target
site (Line 15-20) introduces an uninitialized pointer, which
has only be dereferenced (thereby causing a crash) at Line 28
and 29. We call this scenario post-target activation or PTA,
which captures bugs triggered at certain paths following the
root cause.

Moreover, in the presence of multiple target sites, a di-
rected fuzzer is supposed to generate test cases to fuzz these
sites in an unbiased way. However, today’s energy assignment
strategy relies primarily on a scalar distance oracle that de-
termines a seed’s priority using average. As pointed by the
prior work [28, 40, 43], this strategy fails to take into account
the dynamic status of each target (e.g., whether it is easier
than others to reach), causing global optimum discrepancy,
which could lead to a bias against certain targets or even

favor the seed unable to reach any target. As a result, deeper
target sites may receive insufficient fuzzing effort, potentially
leaving some vulnerabilities at these locations undiscovered.
Prior attempts to address the problem mostly focus on de-
sign of different distance oracles to mitigate the bias [12, 28].
These approaches, however, are still less effective due to their
continued use of aggregate information like average across
all targets, thereby missing the individual information of each
target, such as the extent to which the paths to a specific tar-
get have been covered by the current corpus. Even the most
recent approach, FishFuzz [43], which utilizes a vector-based
oracle instead of a distance oracle, still does not pay enough
attention to the path diversity, ignoring the seed that hits a
target visited frequently but is associated with the paths much
less traversed than others.

Solutions. To address those limitations, we developed a new
directed fuzzer by enhancing the greybox fuzzer with two in-
novative techniques. First, we introduce target path-diversity

metric. More specifically, our fuzzer, called AFLRUN, aims at
generating the seeds not only reaching a given target site but
covering as many paths involving the target as possible. The
criticality of these paths in activating bugs is emphasized by
the fact that enhancing path diversity can effectively address

both PFA and PTA. For this purpose, AFLRUN maintains
an extra virgin map for each target to record the coverage
status of all seeds that hit the target. When deciding whether
a mutated test case should be used to fuzz a program again
(that is, storing the test case into the fuzzer’s corpus as a seed),
AFLRUN not only checks its execution trace with the virgin
map of the coverage-guided fuzzer to evaluate its potential to
improve the total code coverage, but also with our extra virgin
maps to determine its capability of diversifying the execution
paths involving the target site. It is important to note that the
extra virgin map associated with the target captures coverage
both before and after execution reaches the target. This ap-
proach enables the comprehensive capture of both PFA and
PTA.

Second, we introduce unbiased energy assignment to en-
able fair exploration and exploitation of each target. AFLRUN

first assigns each target block (the basic block containing the
target site) a weight, which takes the same value to ensure
their fair chance to be visited. Then it propagates the weights
from the targets to a set of critical blocks, which include both
the target blocks visited before and a set of critical bound-

ary blocks: that is, a visited block leading to a target via the
inter-procedural control flow graph (ICFG), with none of other
blocks (including the target) from the block to the target being
covered before. For a given seed, our approach computes its
energy (which determines its mutation priority) by adding the
weights of the critical blocks it covers. In this way, AFLRUN

always prioritizes the seeds with the highest potentials to get
to a new target site and the seeds that cover any target sites,
and also ensures each target to have a fair chance to be tested.
When applied together with the targeted path-diversity metric,
the energy assignment strategy can further improve the path
diversity of each target.

We implemented AFLRUN on top of AFL++ [19] and
AFLGo [11], and evaluated it on a standard benchmark
Magma [21] and real-world programs intensively fuzzed by
the OSS-Fuzz project [6]. Our evaluation on the Magma
benchmark shows that compared with state-of-the-art fuzzers
(AFL++ [19], AFLGo [11], Parmesan [34], FishFuzz [43],
Hawkeye [12], WindRanger [18] and MOpt [30]), AFLRUN

achieves an average speedup of 168%, 109%, 235%, 183%,
147%, 157% and 78%, and triggers 38%, 20%, 138%, 29%,
24%, 14% and 50% more vulnerabilities. In addition,
AFLRUN has discovered 29 previously unknown vulnera-
bilities in real-world programs, with 8 CVE IDs assigned so
far.

Contributions. We have made the following contributions:

• New techniques. To the best of our knowledge, we present
the first directed fuzzing technique that improves path diver-
sity and fairness in energy assignment for each target at the
same time, in a systematic way. Serving this purpose are two
new techniques, including a new coverage metric that cap-
tures both PFA and PTA to improve the chance to activate
the flaws related to target sites, and a new energy assignment
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strategy that ensures the target fairness and prioritizes testing
of the new paths involving the targets. Both are found to be
highly effective.

• Implementation, evaluation and findings. We imple-
mented a prototype system and released its code at
https://github.com/Mem2019/AFLRun. AFLRUN has discov-
ered 29 zero-day vulnerabilities from the real-world software
that have been intensively fuzzed before, which provides evi-
dence to the efficacy of our techniques.

2 Background

In this section, we introduce the basic concepts and over-
all workflow of coverage-guided fuzzing (§2.1) and directed
fuzzing (§2.2).

2.1 Coverage-guided Fuzzing

The workflow of the current coverage-guided fuzzing tech-
nique can be summarized as follows: (1) At the beginning
of a fuzzing campaign, one or more inputs are provided as
the initial seed corpus. (2) The fuzzer selects a seed from
the corpus, which is then mutated to create a test case that is
executed by the program under test (PUT); this mutation and
execution process is repeated several times for each selected
seed. (3) If the test case triggers any new behavior not yet
triggered by the current corpus, it is stored as a seed for future
mutation. (4) The fuzzer repeats steps 2-3 in an infinite loop.
Since our approach focuses on improving energy assignment
and seed storage by modifying steps 2 and 3 in AFL++ [1,19],
we will discuss how AFL++ implements these two steps in
greater detail.

In AFL++, the fuzzer process and the PUT process share a
segment of memory to record the execution path of the PUT,
allowing the fuzzer to access this information. Each byte in
the shared memory represents an edge connecting two basic
blocks. The PUT is instrumented so that each time an edge
is traversed during execution, the corresponding byte is in-
cremented by one1. In the shared memory, the fuzzer obtains
a bitmap that abstractly represents the execution path of a
single run. In this paper, we refer to this bitmap as the execu-

tion trace. Additionally, AFL++ maintains a global bitmap to
record all bits covered by at least one execution trace of seeds
in the corpus so far. We refer to this bitmap as the virgin map

in this paper. Specifically, the virgin map is an array with the
same length as the execution trace, initialized with all bits set
to 1. When a new seed covers a new bit, the corresponding
bit in the virgin map is set to 0. Each time a mutated test case
is executed, AFL++ compares the generated execution trace
with the virgin map. If the execution trace covers a new bit

1AFL++ classifies value of each non-zero byte according to 8 predefined
ranges, each corresponding to a bit in the byte. Ultimately, the byte is set to
the bit corresponding to the classified range. The comparison between the
execution trace and the virgin map is performed at bit level.

that has not been covered by any previous seeds’ execution
traces, the test case will be added to the corpus as a seed. By
incrementally adding new seeds into corpus, total coverage
of the PUT can be improved.

In addition, AFL++ maintains a record of the best seed
for each edge using an array, based on metrics such as the
seed’s length and execution time. We refer to this array as
the top-rated array in this paper. When a new seed is added
to the corpus, AFL++ attempts to update the top-rated array
based on the seed’s edge coverage and metrics. If any updates
occur, a process called queue culling selects a subset of seeds
from the corpus to be marked as favored, and these favored
seeds are chosen for fuzzing more frequently than the others.

2.2 Directed Fuzzing

Directed fuzzing, built upon coverage-based fuzzing, focuses
on testing a specific set of user-defined target sites rather
than all code regions. The main concept involves using a
seed oracle (i.e., dynamic information gathered by executing
the PUT with the seed as input) to determine the proximity
between the seed and the target sites. This oracle is then used
to assign energy for preferentially testing these sites. The
energy assigned to a seed is defined by the number of times
the fuzzer is going to mutate the seed and execute the PUT
using the mutated test case as input.

The seed oracle is commonly referred to as the distance

in the context of directed fuzzing. To achieve such an oracle,
both static analysis and dynamic information are required.
Static analysis of the PUT computes the distance from each
code location (e.g., basic block) to all target sites, typically
averaged using the harmonic mean. During a fuzzing cam-
paign, each time the PUT is executed with a particular seed
as input, the seed’s distance value to target sites (i.e., seed
oracle) can be obtained by calculating the arithmetic mean
of the distance values of the relevant code locations covered
during the execution.

With this seed oracle, directed fuzzing assigns energy to
each seed such that seeds with lower distance values receive
higher amounts of energy. By adjusting energy assignment
to favor seeds closer to the target sites, the fuzzing campaign
focuses on testing these specific sites.

3 Motivation

In this section, we present a PTA vulnerability as our mo-
tivating example and discuss the directed fuzzing scenario
intended to discover such a vulnerability. (§3.1) We also ex-
amine how current directed fuzzing approaches fail to find it,
while AFLRUN is capable of successfully detecting it. (§3.2)
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Figure 1: Partial call graph that involves the critical functions
to trigger the vulnerability. Another target in xmalloc is also
included. The distance value of each function is annotated
above the rectangular in red.

3.1 Vulnerability and Fuzzing Scenario

We use the discovery of a zero-day vulnerability (CVE-
2023-25588) in binutils as an example to demonstrate
the limitations of existing techniques and motivate the
ideas of AFLRUN. Listing 2 shows the simplified vul-
nerable code snippet. The dump_bfd function invokes the
bfd_get_synthetic_symtab function pointer (Line 10)
to create synthetic symbols for indirect symbols and in-
vokes the disassemble_data function (Line 11) to dis-
assemble the contents of an object file. When processing
a Mach-O executable, the function pointer points to the
bfd_mach_o_get_synthetic_symtab function (Line 15-
21), in which an array of the asymbol structure is allo-
cated without initialization for its the_bfd pointer field. A
pointer to the allocated array is stored in the global vari-
able synthsyms. The disassemble_data function performs
complex logic and finally calls the compare_symbols func-
tion to sort symbols. During comparison, the the_bfd field
of the elements stored in the synthsyms array will be deref-
erenced, resulting in access of uninitialized pointer.

Figure 1 illustrates the partial call graph involving the criti-
cal functions needed to trigger the vulnerability. In the figure,
the solid lines represent normal function calls linking caller
and callee, the dashed line indicates a indirect call unable to
be identified by static distance computation, and the zigzag
line shows multiple normal calls with omitted intermediate
nodes. As depicted, in order to trigger the vulnerability at the
location of dereference (Line 28 in compare_symbols), a test
case must cover this location after executing the location of al-
location (Line 17 in bfd_mach_o_get_synthetic_symtab,
the root cause location of the vulnerability). It is important to
note that these two locations are distant from each other in
the code base.

Consider a security scenario that utilizes directed fuzzing
to verify a report from static analysis. An aggressive, yet com-
prehensive and scalable static checker might identify potential
risks if it detects a function that allocates a piece of heap mem-
ory without initializing the content within the function scope.

Listing 2 Simplified vulnerable code snippet.
1 typedef struct bfd_symbol {

2 struct bfd *the_bfd;

3 /* other fields are omitted */

4 } asymbol;

5

6 asymbol *synthsyms;

7 long *(bfd_get_synthetic_symtab)(...);

8

9 void dump_bfd (...) {

10 bfd_get_synthetic_symtab(..., &synthsyms);

11 disassemble_data(...);

12 }

13

14 /* bfd_get_synthetic_symtab for Mach-O executable */

15 long bfd_mach_o_get_synthetic_symtab(..., asymbol **ret) {

16 size_t size = count * sizeof(asymbol) + 1;

17 char *s_start = bfd_malloc(size);

18 *ret = (asymbol *) s_start;

19 /* intialize each field of the asymbol structure,

20 except for the the_bfd pointer field */

21 }

22

23 /* disassemble_data finally calls compare_symbols */

24 int compare_symbols(const void *ap, const void *bp) {

25 /* a and b point to the elements in synthsyms. */

26 const asymbol *a = * (const asymbol **) ap;

27 const asymbol *b = * (const asymbol **) bp;

28 /* code to dereference a->the_bfd and b->the_bfd,

29 resulting in access of uninitialized pointer */

30 }

31

32 /* Another target site detected by static analysis */

33 void * xmalloc (size_t size) {

34 void *newmem = malloc (size);

35 return (newmem);

36 }

When employing such a checker on binutils, it reports mul-
tiple program locations, which are treated as target sites for
directed fuzzing. The root cause of this vulnerability, located
at Line 17, is one of these target sites. Additionally, there are
other false positive target sites, including Line 34 at xmalloc,
which is simply a wrapper for the malloc function. Figure 1
also includes some functions that invoke xmalloc. For sim-
plicity, we only show two functions that call xmalloc, as it
is a utility commonly used by numerous functions. Thus, an
ideal directed fuzzer should be able to discover the vulnerabil-
ity by generating a test case that both creates and dereferences
the uninitialized variable, despite the interference from false
positive target sites like Line 34. Besides, it is worth not-
ing that these target locations conform to the format used
by AFLGo [11], instead of targets with explicit dependency
information required by some works [26, 33].

3.2 Limitations and Solutions

However, the current state-of-the-art directed fuzzer strug-
gles to efficiently trigger this bug under the scenario
we described earlier, even if the flawed target site at
bfd_mach_o_get_synthetic_symtab is already covered
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by the corpus during the fuzzing campaign. We outline two
limitations that contribute to this issue and explain how our
approaches address them.

First, current directed fuzzers still rely on the coverage met-
ric of coverage-guided fuzzing, which is designed to improve
the total code coverage of the corpus. Specifically, once a
constraint is solved, the edge of the constraint will be marked
as non-virgin in the virgin map, meaning that subsequent test
cases that cover the same edge will not be stored in the corpus.
In this example vulnerability, if the constraints on the path to
Line 28 (i.e., the dereference of the_bfd) are solved with a
seed that cannot cover Line 17 (i.e., the location that creates
the uninitialized pointer), the edges of these constraints are
no longer considered virgin. Consequently, if a test case that
covers the target site of uninitialized pointer allocation later
solves any of these constraints, it will not be stored in the
corpus. As a result, seeds that cover this target site cannot
make progress on these constraints by taking advantage of
the genetic approach employed by the greybox fuzzer, which
ultimately restricts the subsequent fuzzing campaign from
discovering this potential crash.

We have observed that, in order to trigger this bug, path
diversity of the target site with the uninitialized pointer al-
location is crucial. In other words, we aim to maximize the
total code coverage given the target site Line 17 is covered,
in order to increase the likelihood of executing the code loca-
tion that accesses the uninitialized pointer. Our approach, by
maintaining an additional virgin map for this target site, does
store test cases that improve path diversity of this target site
in the corpus, even if the original coverage metric of AFL++
would deem the test case uninteresting.

Second, the energy assignment in existing directed fuzzing,
which relies on the scalar distance oracle, may be biased to-
ward certain targets, resulting in inadequate fuzzing efforts
spent on the vulnerable target site. In this particular example
scenario, we demonstrate the bias toward the target Line 34.
For simplicity, we only consider these two target sites and
part of the program illustrated in Figure 1, and assume there
are only two categories of seeds in the corpus: Sa and Sb.
Seeds in Sa can visit target site Line 17, while those in Sb

cannot. Both categories of seeds are able to cover xmalloc
through slurp_symtab and disassemble_data. Since Line
17 is an uncommonly covered target, Sa makes up only a
small proportion of the corpus. To avoid loss of generality, we
calculate the seed distance values using a simplified method
that approximately represents current directed fuzzing ap-
proaches [11, 12, 34]: the distance value of each block is com-
puted by the average of minimum distances to all targets that
it can reach via the graph. Using the distance value of each
function in Figure 1, we can calculate the distance values of
Sa and Sb as 2+1+1+0+0

5 = 0.8 and 2+1+1+0
4 = 1, respectively.

It is worth noting that covering Line 17 only contributes one
additional term and does not significantly influence the aver-
age scalar value. As a result, the final energy assigned to each

seed in Sa and Sb does not differ greatly. However, since the
size of Sa is small, the total energy assigned to seeds in Sa

is also low, causing the fuzzing campaign to lose directness
toward target site Line 17 and become biased toward Line 34.

Instead, as we do not know which target site contains the
vulnerability beforehand, the importance of each target is
unknown a priori. Therefore, a best scheme is to treat each
target (e.g., Line 17 and Line 34) equally during the fuzzing
campaign. Our approach achieves this by assigning a uni-
form weight to each target and propagating such weight to
seeds for energy assignment. To be specific, the weight as-
signed to Sa is 1

|Sa|
+ 1

|Sa|+|Sb|
, and the weight assigned to Sb

is 1
|Sa|+|Sb|

.2 Since |Sa| is a much smaller value than |Sb|, the

weight assigned to each seed of Sa is significantly greater than
that of Sb. Therefore, even though Sa comprises only a small
set of seeds in the corpus, Line 17 will still be assigned an
equal amount of weight as the others, ensuring that it receives
enough energy to trigger the bug.

4 Design Overview

In this section, we provide a brief design overview of
AFLRUN, including its workflow (§4.1) and the fuzzing loop
(§4.2).

4.1 Workflow

Figure 2 illustrates the workflow of AFLRUN. In the static
stage, AFLRUN first takes the program source code and tar-
get sites for static analysis and instrumentation. The static
analysis generates a partial ICFG with vertices representing
basic blocks that can reach at least one of the target blocks,
along with distance values to these target blocks for each ver-
tex. Each of these blocks is instrumented with our runtime
callback function. In the dynamic stage, our unbiased energy
assignment generates energy values for all seeds, which deter-
mine the number of mutations and executions for each seed.
For each execution of a mutated test case, we employ our
target path-diversity metric to determine whether the test case
should be stored in the corpus. If so, we also use it to update
critical blocks and target clusters. Target clusters are utilized
to group targets exhibiting similar behavior, thereby reducing
the runtime overhead, particularly when the number of targets
is substantial (discussed in §5.2).

4.2 Fuzzing Loop

Algorithm 1 provides a high-level overview of the fuzzing
loop in AFLRUN. Each iteration of the outermost loop con-
stitutes one cycle, during which all seeds in the corpus are

2Here, we assume that the seeds in |Sa| and |Sb| have equal importance;
however, in reality, the energy assignment among seeds in such set is not
uniform. See §6.3 for more details.
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Figure 2: Workflow of AFLRUN.

Algorithm 1 Fuzzing Loop of AFLRUN

Require: Initial corpus

1: repeat

2: seed_energy := assign_energy(E, corpus)
3: for (seed,energy) ∈ seed_energy in descending order do

4: for i from 1 to energy do

5: s′ := mutate_input(seed)
6: t ′ := execute(s′)
7: if t ′ crashes then

8: add s′ to crashes

9: else if has_new_coverage(t ′) then

10: add s′ to corpus

11: if t ′ updates critical blocks then

12: break the outermost loop

13: end if

14: end if

15: end for

16: end for

17: until timeout reached or abort-signal
18: return crashes

supposed to be selected for fuzzing once. At the beginning
of each cycle, the assign_energy function, our unbiased en-
ergy assignment, is invoked to assign an energy value to each
seed. Unlike other greybox fuzzing approaches, including
directed ones, our energy assignment algorithm operates glob-
ally for the entire corpus rather than locally for individual
seeds. This global perspective is crucial for ensuring unbiased
energy assignment.

In the second loop, we iterate through each seed-energy pair
returned from assign_energy in descending order based on
energy, which allows AFLRUN to fuzz seeds with higher
energy first. The seed is mutated using mutate_input, the
mutation algorithm from AFL++ [19], and executed by the
PUT with our instrumentation using execute. The execution
results t ′ are examined similarly to other greybox fuzzing
methods. However, has_new_coverage is now replaced by
our target path-diversity metric, rather than the previous cover-
age metric used in AFL++. Additionally, if a new seed updates
the current critical blocks, the cycle is immediately halted to
restart the next cycle. This is because our unbiased energy
assignment depends on critical blocks; thus, if any updates
occur with them, AFLRUN should discard the obsolete en-
ergy results and re-assign energy using the updated critical
blocks.

5 Target Path-Diversity Metric

In this section, we will discuss how our coverage metric im-
proves the path diversity of already-covered targets. We in-
troduce our multiple virgin maps in §5.1 and explain how we
reduce overhead through clustering in §5.2.

5.1 Virgin Maps for Target Path Diversity

Algorithm 2 Coverage Metric for Test Case

Require: path_trace and virgin_maps

1: store := false

2: data := set()
3: for i := 1 to N do

4: if path_trace[i] = 1 then

5: updates := set()
6: for map ∈ virgin_maps do

7: if map[i] = 1 then

8: map[i] := 0
9: store := true

10: updates.insert(map)
11: end if

12: end for

13: if |updates| ̸= 0 then

14: data.insert(updates)
15: end if

16: end if

17: end for

18: return store, data

Given a particular corpus state during a fuzzing campaign,
the path diversity of a target is defined by the total coverage
of seeds that cover this target. To enhance this path diversity,
we propose to introduce an extra set of virgin maps. As we
discussed in §2.1, AFL++ [19] uses a virgin map to store
the coverage information of the current seed corpus. When
the execution trace of a test case covers any new bits not yet
covered by the corpus, the virgin map is updated, and the test
case is stored to the corpus. In our approach, rather than using
a single virgin map, we maintain and compare the execution
trace of each test case against multiple virgin maps. These
multiple virgin maps consist of the original virgin map used
by AFL++, referred to as primary virgin map, and a set of
extra virgin maps derived from all targets covered by the test
case, referred to as target virgin maps. After executing each
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test case, besides comparing its execution trace with primary
virgin map like AFL++, we also compare it with our extra
target virgin maps. If any of these virgin maps indicate that
new bits have been covered, the test case will be stored to
the corpus, and the bits of corresponding virgin map will be
marked as non-virgin.

This approach is detailed in Algorithm 2. The parameter
path_trace is a bit array of length N, which is the execution
trace of test case that has just been executed. The parameter
virgin_maps is a set of virgin maps including primary virgin
map and target virgin maps, each of which is also a bit array
of length N. The algorithm is somewhat similar to the original
one of AFL++, except we compare execution trace with mul-
tiple virgin maps instead of a single virgin map. Furthermore,
for each bit location where an update occurs, we record all
the virgin maps that have experienced an update at that bit
location. While this information is not useful for determining
whether to store the test case, it is useful for target clustering,
which will be discussed later.

5.2 Target Clustering

Another question to consider is how to obtain the set of tar-
get virgin maps from a set of targets covered by a test case.
A naive approach would be to maintain a target virgin map
for each of the targets that have been covered by seeds in
the corpus. However, this approach could suffer from perfor-
mance overhead: since comparing the execution trace with
virgin maps is a frequent event, a large number of targets
covered by each test case would require comparisons with a
correspondingly large number of virgin maps, resulting in a
non-negligible overhead. Initially, we implemented this naive
approach and, by observing how each target virgin map was
updated with new bits from the execution trace, we discovered
that some virgin maps frequently update the same bits simul-
taneously. The general idea is that we can cluster these virgin
maps into a single virgin map. This can reduce the overhead
caused by repeated comparisons while still maintaining the
desired path diversity.

Obtaining clusters. To select the set of clusters correspond-
ing to the execution of a test case, AFLRUN merges all clus-
ters containing the targets covered during the execution. Each
cluster corresponds to one virgin map and vice versa. By
assembling these clusters together with the primary cluster,
we can get the set of virgin maps used in Algorithm 2. For
an in-depth depiction, refer to Appendix G of our arXiv ver-
sion [36].

Association rule mining. Before discussing the details of
our clustering algorithm, we will first introduce some con-
cepts related to association rule mining used in this paper,
which differ slightly from the original definitions. Assume
we have a given set of items I = {i1, i2, ..., in} and a database
D = {t1, t2, ..., tm}. Each element t in D is defined as a subset
of I (i.e., ∀t∈D t ¦ I). In other words, the database consists of

multiple subsets of items. In this paper, we define an associ-
ation rule [8] between two items, denoted as ia ⇒ ib, where
ia ∈ I and ib ∈ I. Intuitively, this rule suggests that when ia
appears in a set t within the database, ib is also likely to ap-
pear. Several metrics have been defined to measure the extent
to which a given rule holds in a given database. The support
count of an itemset X ¦ I is the number of times the itemset
appears in the database. In other words, the support count,
denoted as σ(X), is the number of t ∈ D such that X ¦ t. The
confidence of a rule ia ⇒ ib is a ratio measuring the frequency

of ib appearing given that ia appears, calculated by σ({ia,ib})
σ(ia)

.

In this paper, we consider a rule ia ⇒ ib to be valid if both its
support count σ({ia, ib}) and its confidence are larger than a
specified threshold.

When a new target is covered by the corpus, a new clus-
ter containing only that target is created. At this point, the
virgin map selection for this target is equivalent to the naive
implementation mentioned earlier. As the fuzzing campaign
progresses, more dynamic information is gathered, enabling
us to merge clusters together. Specifically, we use data

from all seeds in the corpus, collected through Algorithm
2, as a database for association rule mining [8]. This allows
AFLRUN to identify target virgin maps that can be clustered
together. In Algorithm 2, we can observe that data consists
of sets of clusters, as each virgin map corresponds to a cluster.
We treat each cluster as an item and consider the union of
data from all seeds in the corpus as the database in the con-
text of association rule mining. Additionally, since our dataset
is constructed by joining the dataset of each individual seed,
we denote the dataset of a single seed s, which is a subset of
the entire dataset, as Is.

Algorithm 3 outlines the process of updating support count
after a new seed is added to the corpus. The parameter data

comes from the return value of Algorithm 2, and the parameter
support_count is a global map used to record the support
count of each itemset with one or two elements. For each
set in data, we count both single items and pairs of items by

1
|data| instead of 1. This design choice is made to prevent bias

caused by some seeds that trigger many new bits. (Remember
that each element in data corresponds to a new bit.) As a
result, we only assign a total support count of 1 for each seed,
which is then distributed uniformly among all sets of items it
contains.

Algorithm 3 Support Count Update for Each New Seed

Require: data and support_count

1: for items ∈ data do

2: for each single item i ∈ items do

3: support_count[{i}] += 1
|data|

4: end for

5: for each pair of items {ia, ib} ¦ items do

6: support_count[{ia, ib}] += 1
|data|

7: end for

8: end for
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Using the support count from Algorithm 3, we can calculate
the confidence value of a given rule ia ⇒ ib using the formula
described earlier.

Clustering. Given an association rule ia ⇒ ib, if both its sup-
port count and confidence are higher than the threshold values,
we can consider it to be valid. This semantically implies that
if the execution trace of a new seed covers a new virgin bit
in ia, it will typically also cover the same new virgin bit in ib.
In other words, the behavior of virgin bit updates in ia is very
similar to that of ib, so we can merge such redundant cluster
ia into ib to reduce overhead while keeping the capability
of improving path diversity of covered targets. Finally, it is
important to note that the primary cluster cannot be merged
into any other cluster, but other clusters can be merged into
it.

6 Unbiased Energy Assignment

In this section, we describe the definition of critical blocks
for each target (§6.1) and the process of selecting favored
seeds (§6.2). We then introduce how AFLRUN assigns en-
ergy among seeds at the beginning of each cycle with such
information (§6.3).

6.1 Critical Blocks

We firstly define a set R as the set of all basic blocks that have
been covered by the current seed corpus, with v ∈ R denoting
a covered block within the set. Next, we define critical blocks

Ct for each target t as a subset of R. The underlying idea is to
identify a set of blocks for each target at a given state, so that
we should concentrate our fuzzing energy on seeds that cover
these blocks, ultimately enabling more efficient exploration
or exploitation of the target. In this section, we introduce this
concept.

For covered targets. During a fuzzing campaign, we can
categorize the set of all targets into two groups: one set con-
sists of targets already covered by the current corpus (i.e.,
t ∈ R), and the other set contains targets not yet covered by
the current corpus (i.e., t /∈ R). If a target is already covered,
the critical block for this target is simply the target block itself.
Consequently, to fuzz this target, we should focus on fuzzing
seeds that cover such a target.

For uncovered targets. If a target is not yet covered, we
should instead attempt to find a seed that covers the target by
fuzzing seeds in the current corpus. Drawing on the intuition
from [37], we define the critical blocks for such a target as the
blocks that lie at the boundary between the explored parts and

unexplored parts of the path toward the target in the ICFG,
known as critical boundary blocks.

We firstly need to define some notations to introduce the
exact definition of critical blocks. Given a target basic block

A

B K

C D 2 L

H F E

G I

1 J

Figure 3: Inter-procedural Control Flow Graph

t, we can define a path3 toward the target in the ICFG as
follows:

v1 → v2 → ...→ vn → t

In the path above, vi with i ∈ {1, ...,n} are basic block
vertices in the ICFG, and each arrow is either a control flow
edge or a call edge that connects two adjacent vertices in
the ICFG. The idea behind critical boundary blocks is to
find each block visited by the corpus such that there exists a
path from this block to target, and all vertices along this path
are basic blocks not yet visited by the corpus except for the
block itself. This definition aligns with the intuition of finding
covered blocks at the boundary mentioned earlier, with the
uncovered blocks considered as the unexplored part. Formally,
critical blocks of an uncovered target t can be defined as all
blocks v1 ∈ R such that there exists a path from v1 to t with
∀v∈{v2,v3,...,vn,t}v /∈ R.

Example. We provide an example to illustrate concept of
critical blocks. Figure 3 is the ICFG of a program, with 1 and
2 as target blocks. We now have three seeds in corpus with
paths A → B → C → H, A → B → D → E and A → K → 2.
We mark basic blocks covered by the corpus in gray. Among
these blocks, C and D are critical blocks of target 1, because
we can have two paths to target C → 1 and D → F → G →
1 respectively, with F , G, 1 not yet covered by the corpus.
Furthermore, 2 itself is the critical block of target 2, because
the target has already been covered by the corpus.

6.2 Favored Seed Selection

Besides a target virgin map for each cluster introduced in §5.2,
AFLRUN also maintains a top-rated array for each cluster,
similar to the original top-rated array discussed in §2.1. When
a new seed is added to the corpus, a set of top-rated arrays are
selected, and we update these top-rated arrays using the same
method as AFL++.

Using these top-rated arrays, we can select a set of favored
seeds. We can apply the queue culling algorithm, similar
to AFL++, on top-rated arrays of all clusters to select the
favored seeds. For each top-rated array, we use the queue

3Here, the term “path" does not refer to the program’s execution path.
Instead, it refers to the concept of a path as defined in graph theory.
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culling algorithm from AFL++ to select a set of favored seeds,
and we then take the union of each set of favored seeds from
each top-rated array to obtain the total set of favored seeds.

6.3 Energy Assignment

In this section, we will introduce the method for assigning
energy among seeds using critical blocks of each target. In
previous directed fuzzing works, a distance-to-target metric
for each seed is used as the oracle for energy assignment.
By contrast, instead of using such distance oracle, we utilize
critical blocks covered by each seed as the oracle for en-
ergy assignment. The primary concept behind our algorithm
involves distributing uniform weight from targets through
critical blocks to seeds. Our goal is to assign energy to each
seed at the beginning of a cycle so that the total energy of
each seed after assignment can approach the proportion of
such seed weight as much as possible.

Target weight. As mentioned earlier, AFLRUN starts with
uniform weight values for all target basic block. Specifically,
we have a vector of ones representing the weight for each
target, denoted as 1. However, our approach does allow users
to specify a customized weight value for each target. We
provide a detailed description of this by-product in Appendix
A.

Block weight. In this part, we discuss how we distribute
weight from each target to its critical blocks. For each target
t, we have a set of critical blocks Ct ¦ R. By taking the union
of Ct for all targets, we obtain the set of all critical blocks
C ¦ R, where R is the set of all covered blocks defined earlier.
We can now define a matrix B for weight distribution: each
column of B represents a corresponding target, and each row
of B represents a block in C. An element of the matrix at row
b and column t is defined as follows:

Bb,t =

{

1
distance[b,t]+k

if b ∈Ct

0 otherwise

In the equation, the term distance[b, t] represents the dis-
tance from the basic block b to the target t, computed using
the method described in Appendix B, because this distance
computation is only an auxiliary component of our approach.
The constant k is a positive value that controls how signifi-
cantly the distance value influences the preference for a block.
The larger the value of k, the smaller the effect will be. Next,
the matrix B is normalized to B̂, ensuring that each column of
the matrix sums to 1. Now, the distribution of the set of critical
blocks can be obtained by calculating the product B̂1, which
distributes weight from each target to each critical block.

Seed weight. The process of distributing weight from each
critical block to seeds is quite similar to the distribution men-
tioned earlier. We also have a matrix S for this distribution:
each column of S represents a critical block in C, while each

row of S represents a seed in the corpus. An element at row s

and column b can be defined as follows:

Ss,b =











score[s] if favored s covers b

0.05 · score[s] if unfavored s covers b

0 otherwise

Next, matrix S is also normalized to Ŝ to ensure that the
sum of each column is equal to 1. The term score[s] represents
the energy assigned to seed s when fuzzed in coverage-guided
mode, as computed by the algorithm from AFL++. This en-
ergy can, in some sense, represent the preference of a seed
from AFL++’s perspective. We utilize this preference when
distributing weight from each critical block to seeds. Addi-
tionally, AFL++ skips unfavored seeds with a 95% probability.
We also follow this design by calculating an expected energy
for unfavored seeds. The favorability of a seed is determined
using the favored seeds selected. Finally, we can calculate
the seed weight vector by computing ŜB̂1+ c. This final seed
weight vector is also normalized to r, representing the final
ratio to be approached.

Preventing local optima. One problem of our energy as-
signment based on critical blocks is the potential for local
optima. To mitigate such issue, during the calculation of the
seed weight vector, we add a vector c, which represents the
energy assignment of each seed in coverage-guided fuzzing.
The sum of c is calculated by multiplying the total energy
(i.e., the number of targets) by a small fraction.

Seed energy assignment. Now, AFLRUN can assign energy
to seeds using the obtained r. AFLRUN also maintains a
vector b representing the energy that has been assigned to each
seed previously. Given a total energy value E for this cycle,
we assign energy E to each seed in the form of vector x, such
that x+b can approach the ratio r as closely as possible, under
the constraint ∑i xi = E. Instead of using a general algorithm
of mathematical optimization, we develop an algorithm with
a worst-case complexity of O(n2) that guarantees the optimal
solution. We discuss this algorithm in Appendix A of our
arXiv version [36], as it is unrelated to fuzzing.

7 Evaluation

In this section, we explore the following research questions
through experiments. RQ1: How effective is AFLRUN at trig-
gering vulnerabilities compared to other fuzzers and ablated
versions of AFLRUN? (§7.1 and Appendix E) RQ2: How ef-
fective is AFLRUN in ensuring fairness for each target? (§7.2)
RQ3: What is the runtime overhead incurred by AFLRUN

during fuzzing campaign? (§7.3) RQ4: Can AFLRUN dis-
cover new zero-day vulnerabilities in programs extensively
fuzzed by OSS-Fuzz using state-of-the-art industrial fuzzers?
(§7.4) RQ5: Do the extra seeds generated by AFLRUN assist
in triggering vulnerabilities? (Appendix D)
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Experiment setup. Unless otherwise specified, all experi-
ments were conducted on an Ubuntu 20.04.5 LTS machine
equipped with an Intel(R) Xeon(R) Gold 5318S CPU featur-
ing 96 logical cores and 256 GB of RAM.

7.1 Fuzzer Comparison

We use two sets of vulnerabilities for experiments. Firstly,
to compare AFLRUN with other fuzzers, we employ the
Magma [21], a benchmark commonly used by many fuzzing
works, to evaluate multi-target directed fuzzing for bug repro-
duction. Additionally, to demonstrate the individual contribu-
tion from each component of AFLRUN, we use another set
of vulnerabilities in a real-world bug discovery scenario to
conduct an ablation study.

Settings. We set the confidence threshold to 100% to only
cluster target blocks that consistently dominate each other,
because the target sites do not cause significant overhead
in these experiments. We also individually remove two key
components from AFLRUN, resulting in variations denoted
as AFLRUN- and AFLRUN*. AFLRUN- refers to AFLRUN

devoid of the target path-diversity metric, while AFLRUN*
denotes AFLRUN employing AFL++’s energy assignment
rather than our unbiased energy assignment. Following the
fuzzing papers’ general experimental approach, we ran each
fuzzing campaign for 24 hours and repeated 10 times. To
prevent interference between experiments, we left some CPU
cores unused, in line with previous research practices.

7.1.1 Evaluation on Magma

Magma operates by reintroducing multiple 1-day bugs into
real-world programs using patches, enabling us to set multi-
ple targets based on these patches and simultaneously fuzz
multiple bugs. We excluded some bugs that can be found in
less than ten minutes by coverage-guided fuzzers, as these
bugs can also be discovered by directed fuzzers while still in
coverage-guided mode, which would not effectively demon-
strate the efficacy of directed fuzzing.

Fuzzers for comparison. We compare AFLRUN with seven
fuzzers: AFL++ [19], AFLGo [11], Hawkeye [12], Parme-
san [34], FishFuzz [43], WindRanger [18] and MOpt [30]. We
chose AFL++ because it is the grey box fuzzer upon which we
build AFLRUN, and selected AFLGo and Parmesan as they
are open-source directed fuzzers commonly used for compari-
son. MOpt was chosen due to its outstanding performance on
the Magma benchmark, where it currently leads as the most
effective fuzzer. We also included Hawkeye, FishFuzz and
WindRanger, as they all attempt to address the global opti-
mum discrepancy problem. However, since Hawkeye is not
open-source, we implemented our own prototype based on
the approaches described in the paper. We exclude works that
are orthogonal to our approach [23, 29, 38, 44], because these

works can be applied on top of AFLRUN without modifying
both methods.

More fine-grained ablation study. In addition to AFLRUN-,
we introduced a more fine-grained ablation variant named
AFLRUN--. This ablated version not only removes the target
path-diversity metric but also discards the concept of critical
block. Instead of applying critical blocks, AFLRUN-- assigns
energy using all previously covered blocks that can reach the
target via the ICFG. The purpose of this ablation study is to
underscore the impact of the critical block design.

Target locations. Magma inserts one or more MAGMA_LOG
macros into the tested program for each bug to notify when
the bug is covered or triggered during execution. We set the
locations of these macros as targets for each bug. Furthermore,
Magma patches the program to invert the commits that fix the
bugs, and we set these locations as targets as well.

Results. The results are presented in Table 1. Each entry
in the table represents the average exposure time required
for the fuzzer to trigger the vulnerability, calculated using
survival analysis. We also computed p-values using the Mann-
Whitney U test [32], employing the alternative hypothesis
that AFLRUN has a shorter exposure time. P-values are in-
cluded in the parenthesis. T.O. indicates that the bug was not
triggered in any fuzzing campaign. Note that Parmesan and
WindRanger failed to run on some programs at either compile
time or runtime, even after we fixed some of the bugs, so we
mark those entries as N/A. We observe that AFLRUN(-) out-
performs other counterparts in most cases. On average, using
the geometric mean, AFLRUN achieves speedup factors of
168%, 109%, 235%, 183%, 147%, 157%, 78% and 56%, and
discovers 38%, 20%, 138%, 29%, 24%, 14%, 50% and 16%
more vulnerabilities compared to AFL++, AFLGo, Parmesan,
FishFuzz, Hawkeye, WindRanger, MOpt and AFLRUN--, re-
spectively. Besides, according to the results, AFLRUN can
discover a bug that other fuzzers so far have not triggered,
LUA002. We observe that the effectiveness of AFLRUN--
diminished with the ablation; however, it still outperforms
other fuzzers. This demonstrates that the design of the critical
block indeed contributes to its enhanced effectiveness. More-
over, the fact that AFLRUN-- still surpasses other fuzzers
highlights the value of its unbiased energy assignment, even
in the absence of the critical block design.

7.1.2 Evaluation on Real Scenario

The results from the Magma benchmark reveal that AFLRUN

does not significantly outperform AFLRUN-. Upon further in-
vestigation, we discovered that most bugs in Magma are quite
simple, probably because Magma requires easy detection of
bug trigger. However, our target path-diversity metric is de-
signed to handle complex bugs that require path diversity for
triggering, thus the benchmark results fail to fully illustrate
the impact of our method. Moreover, the Magma experiments
are designed to test bug reproduction capability when the bug
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Table 1: Magma Benchmark Results

Bug ID AFL++ AFLGo Parmesan FishFuzz Hawkeye WindRanger MOpt AFLRUN-- AFLRUN AFLRUN-

LUA002 T.O.(0.18) T.O.(0.18) T.O.(0.18) T.O.(0.18) T.O.(0.18) N/A T.O.(0.18) T.O.(0.18) T.O. 23.32h

LUA004 4.23h(1.00) 8.69h(0.96) T.O.(<.01) 5.93h(0.99) 3.37h(1.00) N/A 7.47h(0.97) 13.95h(0.61) 15.41h 20.42h
PDF002 T.O.(0.04) T.O.(0.04) N/A T.O.(0.04) 21.72h(0.14) 21.32h(0.23) 22.26h(0.12) 20.90h(0.35) 17.10h 21.65h
PDF003 6.60h(<.01) 3.84h(0.03) N/A 5.74h(0.01) 7.78h(<.01) 5.58h(0.02) 7.48h(<.01) 88.99m(0.95) 4.04h 2.15h
PDF006 17.49h(0.95) T.O.(0.18) N/A T.O.(0.18) T.O.(0.18) T.O.(0.18) T.O.(0.18) 20.59h(0.79) 22.81h T.O.
PDF011 22.83h(0.86) T.O.(1.00) N/A T.O.(1.00) T.O.(1.00) 22.74h(0.86) 21.14h(0.94) T.O.(1.00) T.O. T.O.
PDF014 T.O.(0.08) T.O.(0.08) N/A T.O.(0.08) T.O.(0.08) 22.67h(0.29) T.O.(0.08) T.O.(0.08) 21.32h 21.69h
PDF018 14.87h(<.01) 21.67h(<.01) N/A 19.37h(<.01) 22.48h(<.01) 2.59h(<.01) 40.01m(0.30) 2.79h(<.01) 36.39m 3.13h
PDF019 20.51h(0.22) 21.63h(0.06) N/A T.O.(<.01) T.O.(<.01) 23.64h(<.01) 21.26h(0.08) 19.27h(0.28) T.O. 18.44h

PDF021 23.89h(0.50) 23.47h(0.50) N/A T.O.(0.18) T.O.(0.18) 22.73h(0.50) T.O.(0.18) 18.80h(0.90) T.O. 22.55h
PHP004 17.97h(<.01) 8.66m(0.76) N/A 77.75m(0.45) 48.82m(0.21) N/A 12.20m(0.97) 34.19m(<.01) 9.85m 12.86m
PHP009 25.55m(<.01) 7.04m(0.11) N/A 50.93m(<.01) 6.96m(0.89) N/A 5.91m(0.14) 9.05m(<.01) 2.81m 8.01m
PNG001 T.O.(0.02) 22.73h(0.07) T.O.(0.02) T.O.(0.02) 21.61h(0.11) 23.24h(0.06) T.O.(0.02) T.O.(0.02) 22.12h 18.46h

PNG007 9.97h(<.01) 3.86h(<.01) T.O.(<.01) 4.07h(<.01) 1.68h(<.01) 10.54h(<.01) 9.88h(<.01) 46.99m(<.01) 8.44m 29.83m
SND017 15.02m(0.55) 17.23m(0.24) N/A 31.44m(0.14) 10.99h(<.01) 27.68m(0.04) 32.40s(1.00) 13.18m(0.56) 13.27m 15.10m
SND020 37.07m(<.01) 38.38m(<.01) N/A 3.04h(<.01) 19.92h(<.01) 68.89m(<.01) 11.74m(0.92) 27.17m(0.21) 20.96m 25.15m
SQL002 67.21m(<.01) 13.84m(0.14) N/A 55.77m(<.01) 6.55m(0.76) 45.34m(<.01) 37.15m(<.01) 9.84m(0.17) 13.68m 7.73m
SQL003 21.87h(0.19) 21.83h(0.19) N/A 22.57h(0.17) T.O.(0.04) 22.57h(0.17) T.O.(0.04) T.O.(0.04) 23.79h 20.12h

SQL012 20.06h(0.06) 22.61h(<.01) N/A 20.09h(0.05) 23.88h(<.01) 16.67h(0.28) T.O.(<.01) 17.77h(0.23) 19.15h 15.70h

SQL013 22.81h(0.44) 22.93h(0.25) N/A 22.91h(0.25) 23.29h(0.25) 18.73h(0.84) T.O.(0.08) 22.15h(0.44) T.O. 21.42h
SQL014 3.45h(<.01) 2.29h(<.01) N/A 3.63h(<.01) 2.17h(0.06) 3.20h(<.01) 4.43h(<.01) 44.51m(0.06) 25.32m 22.26m

SQL015 23.10h(0.86) 22.68h(0.86) N/A 21.39h(0.94) 20.03h(0.97) T.O.(1.00) T.O.(1.00) T.O.(1.00) T.O. T.O.
SQL020 18.33h(<.01) 22.41h(<.01) N/A 20.90h(<.01) 14.94h(0.01) 17.85h(<.01) T.O.(<.01) 13.02h(0.01) 15.16h 5.96h

SSL001 6.49h(<.01) 10.19h(<.01) 21.26h(<.01) 9.30h(<.01) 14.40h(<.01) 4.98h(0.21) 18.61h(<.01) 3.64h(0.03) 3.61h 59.40m

SSL020 21.59h(<.01) 21.07h(<.01) 3.74h(0.03) 21.03h(<.01) 22.89h(<.01) 10.21h(0.01) 16.66h(<.01) 6.79h(<.01) 1.68h 2.41h
TIF001 T.O.(0.18) T.O.(0.18) T.O.(0.18) T.O.(0.18) 23.32h(0.56) T.O.(0.18) T.O.(0.18) T.O.(0.18) 23.91h T.O.
TIF002 T.O.(<.01) 9.93h(0.96) T.O.(<.01) 16.09h(0.61) 11.31h(0.93) 21.30h(0.05) 16.73h(0.55) 14.39h(0.69) 19.90h 16.38h
TIF005 T.O.(0.18) 23.60h(0.50) 10.45h(0.99) 23.85h(0.50) T.O.(0.18) T.O.(0.18) 22.12h(0.56) 21.97h(0.56) T.O. 23.38h
TIF006 13.12h(0.58) 15.35h(0.45) 8.89h(0.93) 17.43h(0.28) 10.09h(0.90) 17.20h(0.22) 8.90h(0.90) 9.32h(0.83) 14.12h 17.25h
TIF008 T.O.(0.04) T.O.(0.04) T.O.(0.04) 22.26h(0.19) T.O.(0.04) 23.33h(0.17) T.O.(0.04) T.O.(0.04) 22.09h T.O.
TIF009 11.63h(<.01) 15.96h(<.01) T.O.(<.01) 23.25h(<.01) 11.98h(<.01) 7.94h(<.01) 6.08h(<.01) 4.61h(0.01) 56.93m 8.78h
TIF014 53.89m(<.01) 92.69m(<.01) 15.84h(<.01) 64.99m(<.01) 81.53m(<.01) 81.67m(<.01) 16.86m(0.03) 28.20m(0.31) 8.21m 43.59m

XML001 T.O.(<.01) 21.72h(<.01) 8.86h(<.01) 20.37h(<.01) 15.35h(<.01) 22.12h(<.01) 13.81h(<.01) 4.77h(<.01) 83.88m 54.90m

XML002 T.O.(1.00) T.O.(1.00) T.O.(1.00) T.O.(1.00) 22.11h(0.94) T.O.(1.00) T.O.(1.00) 21.06h(0.97) T.O. T.O.
XML003 31.68m(0.04) 22.08m(0.05) 2.61m(0.99) 1.71h(<.01) 39.14m(<.01) 2.84h(<.01) 55.83m(0.02) 13.82m(0.66) 14.56m 16.06m
XML006 T.O.(0.18) T.O.(0.18) T.O.(0.18) 23.18h(0.50) T.O.(0.18) T.O.(0.18) T.O.(0.18) 22.10h(0.56) 22.36h T.O.
XML009 42.69m(<.01) 6.69m(0.37) 13.28h(<.01) 37.59m(<.01) 11.95m(0.06) 1.68h(<.01) 16.41m(<.01) 28.22m(0.17) 8.04m 9.31m
XML010 T.O.(<.01) 23.18h(<.01) T.O.(<.01) T.O.(<.01) 22.36h(<.01) T.O.(<.01) T.O.(<.01) 18.89h(0.01) 14.63h 8.75h

XML012 T.O.(<.01) 20.48h(<.01) T.O.(<.01) 21.71h(<.01) 13.93h(0.05) 22.43h(<.01) 11.64h(0.09) 22.21h(<.01) 19.68h 8.82h

Figure 4: Path diversity curves

Table 2: Ablation Results

without False Positives with False Positives

Bug ID AFLRUN AFLRUN- AFLRUN* AFLRUN AFLRUN- AFLRUN*

CVE-2023-25588 11.26h T.O. 9.25h 14.97h T.O. 16.91h

CVE-2023-25587 6.86h T.O. 5.62h 10.44h T.O. 11.86h

CVE-2022-44408 0.31h 13.14h 1.20h 0.59h 5.58h 23.50h

CVE-2018-13785 0.55h T.O. 0.92h 0.42h T.O. 0.56h

CVE-2013-6954 0.57h 3.50h 0.37h 0.46h 2.74h 0.32h

sites are known. Yet, in real vulnerability discovery scenario
such as the one detailed in §3.1, numerous false positive tar-
gets might also exist. This situation has not been evaluated in
the aforementioned benchmarking experiment.

To address this deficiency of Magma benchmark, we con-
duct an additional experiment in a different setting, using
some bugs that align with our scenario. To demonstrate the
impact of encountering false-positive targets (emulating real-
world bug detection), we carry out the experiment under two
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conditions: with and without the introduction of false-positive
targets. Those false-positive targets are randomly chosen from
the bug reports detected by Clang static analyzer [2].

We did not include AFLRUN-- in this experiment as its
primary goal was to demonstrate AFLRUN’s effectiveness on
complex bugs that require path diversity for activation. In con-
trast, AFLRUN-- was designed to demonstrate the contribu-
tions of different components of unbiased energy assignment
in the Magma experiment.

The bug triggering time results are displayed in Table 2. We
observe that AFLRUN significantly outperforms AFLRUN-.
Furthermore, with the introduction of false-positive targets,
AFLRUN generally exhibits superior bug-triggering capabil-
ity compared to AFLRUN*. This indicates that the unbiased
energy assignment indeed helps in managing the seed explo-
sion caused by the increased target count.

These results are further elucidated by graphing the path
diversity curves from several experiments. For the corpus
created by each fuzzing campaign, we track the increase in
path diversity of basic block coverage necessary to trigger the
vulnerability over time. For each set of repeated experiments,
we compute the mean and the corresponding confidence in-
terval. The outcomes are depicted in Figure 4. As seen in the
figure, the target path-diversity metric significantly enhances
the path diversity of the target.

7.2 Target Fairness Comparison

In this experiment, we evaluate the effectiveness of AFLRUN

in balancing each target compared to its counterparts, address-
ing RQ2. We aim to scale up the total number of targets by
utilizing recently introduced commits as target sites for each
program in the Magma benchmark [21]. We also disable the
bugs introduced by Magma, as we are not concerned with
their triggering in this experiment. Furthermore, since the
primary goal of this experiment is to assess the effectiveness
of our unbiased energy assignment, we have ablated the target
path-diversity metric (i.e., we use AFLRUN-).

We conducted the experiment for three directed fuzzers:
Hawkeye, FishFuzz, and AFLRUN-. For each fuzzer, we car-
ried out an 8-hour fuzzing campaign, repeating each exper-
iment 10 times. We recorded the energy assigned (i.e., the
number of mutations and executions performed) to each seed.
Additionally, we used a modified version of afl-showmap
to determine the target coverage of each seed. With this in-
formation, we computed the total energy spent on fuzzing
each target. We sorted the energy for each target and plotted
a graph similar to the one in FishFuzz [43]. The results are il-
lustrated in Figure 5. The x-axis represents all targets ordered
incrementally by energy spent on them, and the y-axis is the
corresponding energy. We can see that AFLRUN generates
flatter curves compared to other counterparts, indicating a
more balanced energy assignment for each target, especially
for libtiff and libxml2.

Figure 5: Energy spent on each target

7.3 Overhead Measurement

To evaluate the overhead incurred by AFLRUN at runtime in
response to RQ3, we also scale up the total number of targets
by utilizing target sites of recent commits from §7.2. Similarly,
the fuzzing campaign is conducted with the vulnerabilities
introduced into these programs disabled.

To demonstrate the effectiveness of our clustering algo-
rithm, we conducted overhead experiments under five dif-
ferent configurations: for three of them, we enabled target
clustering with varying confidence threshold values of 50%,
70%, and 90% and a consistent support count threshold value
of 500; for one of them, the clustering was disabled, meaning
each target corresponds to a distinct virgin map and top-rated
array; for the last one, we removed our path diversity com-
ponent (AFLRUN-). We ran each experiment for 3 hours,
which was repeated 20 times. We recorded the number of
clusters at the end of each fuzzing campaign and calculated
the arithmetic mean across all repeated experiments for each
configuration. Similarly, we profiled the proportion of time
spent in AFLRUN process to total time for each fuzzing cam-
paign and calculated the mean. The results are shown in Table
3. Additionally, we measured the overhead incurred by the
instrumented code. However, such overhead is negligible: it
occupies less than 0.01% of total time in every fuzzing cam-
paign.

Each row in the table represents a different configuration.
The first three columns represent experiments with varying
confidence threshold values; the fourth column represents
an experiment without the clustering algorithm; and the last
column represents an experiment with AFLRUN-. Each entry
displays a pair of values: the upper value represents the aver-
age number of clusters when the fuzzing campaigns terminate,
and the lower value is the average ratio of time spent execut-
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Table 3: Overhead Results: The upper values of each program
are average number of clusters; the lower values are time ratio
spent in the PUT.

Program Threshold = 50% Threshold = 70% Threshold = 90% w/o Cluster w/o Diversity

libpng
157.85 159.35 157.05 327.05 1.0

86.03% 86.07% 86.31% 80.41% 93.26%

libsndfile
303.05 302.35 307.95 332.6 1.0

97.60% 97.66% 97.62% 97.08% 98.33%

libtiff
188.75 190.2 189.25 188.3 1.0

78.27% 80.00% 77.29% 81.97% 91.24%

libxml2
156.45 171.95 188.25 366.15 1.0

96.85% 96.97% 96.79% 95.46% 98.23%

lua
342.2 326.85 339.2 335.2 1.0

97.73% 97.69% 97.70% 97.75% 99.45%

poppler
159.95 169.35 164.85 173.65 1.0

99.06% 99.08% 99.07% 98.98% 99.48%

ing the PUT over the total time of each fuzzing campaign. We
can observe that the overhead incurred by the AFLRUN pro-
cess is not significant compared to the time spent in executing
the PUT. Additionally, the clustering algorithm that reduces
the total number of virgin maps significantly does decrease
some overhead spent in the fuzzer process.

7.4 Vulnerability Discovery

Lastly, we present all vulnerabilities found by AFLRUN to
answer RQ4. We use AFLRUN to fuzz the latest versions of
some famous programs that have been continuously fuzzed
by the OSS-Fuzz project [6] using powerful Google machines.
We integrate AFLRUN into OSS-Fuzz to simplify fuzzing
each program without struggling with the environment. Since
AFLRUN is a directed fuzzer, we set target locations using
two approaches. First, we attempt to fuzz recently introduced
commits by setting recently changed code locations as targets.
The intuition behind this is that recently modified code may
be more error-prone because older code has already been thor-
oughly fuzzed by OSS-Fuzz, while new code is less fuzzed.
Second, we use the static analysis tool to identify suspicious
code locations. Specifically, we write CodeQL [16] queries
to find potentially vulnerable code locations as our targets.

Table 4: Zero-day vulnerabilities found by AFLRUN.

Project ID Type Status
wabt CVE-2022-44407 Out-of-bounds Read Fixed
wabt CVE-2022-44408 Type Confusion Fixed
wabt CVE-2022-44409 Out-of-bounds Read Fixed
skia issue-40045089 Uncontrolled Recursion Accepted

freetype issue-1159 Uncontrolled Recursion Fixed
binutils CVE-2023-25585 Access of Uninitialized Pointer Fixed
binutils CVE-2023-25587 NULL Pointer Dereference Fixed
binutils CVE-2023-25588 Access of Uninitialized Pointer Fixed
binutils CVE-2023-25586 Use of Uninitialized Variable Fixed
binutils CVE-2023-255844 Out-of-bounds Read Fixed

4This CVE consists of a group of 20 vulnerabilities in total. We conduct
a case study for this CVE and list each of the individual vulnerability IDs in
the Appendix C of our arXiv version [36].

We discovered 29 previously unknown vulnerabilities in
these programs, which are listed in Table 4. We responsibly
reported them to the vendors. All vulnerabilities marked as
Fixed have already been addressed by the developers in the
upstream. At the time of writing, 28 vulnerabilities have been
fixed, and 8 CVE IDs have been assigned.

8 Discussion

In this section, we discuss the scope and limitation of
AFLRUN, and the potential enhancements that could be ap-
plied to our work in the future to address any limitations.

8.1 Scope

Target path-diversity metric. Our target path-diversity met-
ric aims to address PFA and PTA, as previously stated. In
cases where the bug does not require extra paths for activation
and can be triggered through mutations of seeds covering
the buggy target location only, extra seeds aimed at enhanc-
ing path diversity become redundant. If this information is
known in advance, users may choose to exclusively utilize
the unbiased energy assignment (i.e., AFLRUN-).

Unbiased energy assignment. The scope of unbiased en-
ergy assignment is significantly broader by comparison. This
method can be applied to nearly all scenarios of directed
fuzzing. The scenario in which AFLRUN may become less
effective occurs when the buggy target location is shallow
and easily reachable, whereas false-positive target locations
are deep and challenging to reach. In such instances, the bi-
ased energy assignment utilized by other directed fuzzing
approaches might coincidentally bias to the correct target.

8.2 Limitations and Potential Solutions

Seed explosion. Similar to other works that propose a more
fine-grained coverage metric [13, 15, 31, 39], our technique
also suffers from problem of seed explosion. This phe-
nomenon can lead to substantial overhead when the target
count reaches into the thousands, given that the cost asso-
ciated with processing each new seed is significant. In the
current design, each target cluster corresponds to a virgin map
that is exactly the same as the primary virgin map. However,
as noted in [29], not all edges are relevant to targets, and these
irrelevant edges can be discarded through static analysis. Con-
sequently, their orthogonal approach could be integrated with
our work to potentially mitigate the seed explosion problem.

Local optimum. In the current design, the critical boundary
block requires that the path toward the target should not in-
clude any previously covered blocks. However, this can lead
to directed fuzzing getting stuck in a local optimum, since
progress toward the target may not necessarily result from
mutating the seed that covers the boundary block. Although
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the addition of a vector c to seed weight vector as a mitiga-
tion strategy is proposed in §6.3, it fails to tackle the root
of the issue. A potential solution could involve relaxing the
restriction on the number of non-covered blocks in the path:
rather than insisting that no blocks can be covered, permitting
a small number, n, of blocks to be covered might be a viable
approach.

Clustering algorithm. Currently, AFLRUN employs a sim-
ple and naive clustering algorithm based on a simplified ver-
sion of association rule mining. However, more accurate clus-
tering algorithms in the context of association rule mining
exist [20]. As a future direction, the clustering algorithm could
be improved by adopting a more sophisticated approach with-
out sacrificing efficiency.

9 Related Work

9.1 Improving Coverage Metric

Numerous studies aim to enhance fuzzing effectiveness by re-
fining the coverage metric. Angora [13] considers call context
under which each edge is covered to make coverage metric
context-sensitive. MemFuzz [15] uses address of memory
access as extra coverage metric. Ankou [31] designs a new
fitness function based on distance between execution paths of
test cases, and their approach also allows to store extra seeds
that do not achieve new coverage. Ijon [9] improves coverage
metric to explore deep state in specific tested program by
taking advantage of the guidance of user-defined annotations
marked on important data in the program. AFL-Hier [39]
proposes a multi-level coverage metric and a reinforcement-
learning-based hierarchical scheduler in order to handle seed
explosion problem introduced by more fine-grained coverage
metric.

Some other works also have proposed coverage metric in or-
der to find domain-specific bugs. SlowFuzz [35] uses number
of executed instructions as metric to find bugs caused by worst
case of algorithm complexity. PerfFuzz [27] similarly uses
maximum count of each program location as storage metric
of new seed to also find complexity bugs. MemLock [41] pro-
poses memory usage as guidance to store extra seeds in order
to find uncontrolled memory consumption bugs. Krace [42]
designs a coverage tracking metric specially designed to find
bugs caused by data races in kernel file system.

All of these works have developed new coverage metrics for
coverage-guided fuzzing, while in contrast, AFLRUN intro-
duces a new coverage metric specifically for directed fuzzing.
To the best of our knowledge, we are the first to primarily
focus on this task, utilizing the coverage metric based on
multiple virgin maps for targets. Moreover, some of the men-
tioned works [31,39] devise novel seed scheduling algorithms
to address the seed explosion problem caused by their new
coverage metrics. Similarly, AFLRUN also proposes a new
energy assignment algorithm for directed fuzzing, which not

only serves the path diversity but also tackles the seed explo-
sion problem.

9.2 Directed Fuzzing

AFLGo [11] firstly proposes directed greybox fuzzing to
guide greybox fuzzing toward a set of user-defined targets.
It proposes a distance oracle for each seed, which is used
for energy assignment to favor seed closer to targets. How-
ever, such distance oracle is a very crude metric representing
preference of seed with respect to targets. Hawkeye [12] im-
proves directed fuzzing on top of design of AFLGo based
on several desired properties it should hold. Parmesan [34]
finds targets using information from compiler sanitizer passes,
and it also proposes some methods of directed fuzzing such
as dynamically constructing ICFG during fuzzing campaign.
WindRanger [18] improves distance computation from a seed
to targets by only considering basic blocks that deviate from
path toward targets. However, it does not take multiple targets
into account when obtaining such blocks. In addition, their
definition of deviation block is local and is based on only one
seed, while our critical blocks are global and take all seeds
in corpus into account. LeoFuzz [28] is the first work that
realizes the problem of using harmonic average distance of all
targets, and it proposes a method based on target sequence in
order to solve it. FishFuzz [43] also addresses such problem
by using a distance vector for each seed instead of an average
distance. By contrast, energy assignment of AFLRUN not
only solves such problem in a more fine-grained way, but also
serves for our path diversity component. Finally, CAFL [26]
takes sequence of locations with constraints as target, but
such sequence requires more manual effort than other directed
fuzzers.

There are other works that try to improve performance of
directed fuzzing by trimming redundant parts considered ir-
relevant to targets in fuzzing campaign. FuzzGuard [44] uses
deep learning to filter out test case considered to be unhelpful
for reaching target, so it is not executed by tested program be-
forehand. BEACON [23] applies static analysis to terminate
program early if current program state is guaranteed to be un-
able to reach any targets. SieveFuzz [38] also terminates the
program early by restricting fuzzing to search space guaran-
teed relevant to reaching targets. SelectFuzz [29] selectively
instruments and explores only target-relevant code, and it also
proposes a novel distance metric from a basic block to target
based on multi-path reaching probability. These works about
trimming are considered orthogonal to our approach.

10 Conclusion

We proposed AFLRUN, which includes target path-diversity
metric and unbiased energy assignment. Through evaluation,
we demonstrated the effectiveness of AFLRUN in triggering
known and zero-day bugs.
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A Target Weight Calculation

At compile time, AFLRUN can be provided with a set of
target locations with their corresponding weight. Target loca-
tion is a pair of file name and line number, usually in format
file.c:123. Target basic block, on the other hand, is the
basic block in tested program that contains at least one target
location. We show how we compute weight of target block
from weight of target location in this section. Each target
location can be contained by one or more target basic blocks,
and each target block can also contain one or more target loca-
tions. With such information, we distribute weight from target
locations to target blocks using distribution matrix. Each col-
umn of the matrix represent a target location, and each row
of the matrix represent a target block. We define matrix Φ as
follows:

Φb,l =

{

1
Nl

if target block b contains target location l

0 otherwise

Nl is the total number of target blocks that contain target
location l, and we should note that each column of this matrix
sums to 1. Finally, we can multiply Φ by weight vector of
target locations to obtain weight of each target block. At
this point, we can discard these target locations, and unless
otherwise specified, we use target to denote target basic block
instead of target location in this paper.

B Static Distance Computation

We have developed an efficient method for computing the
distance from each block to each target in O(|T ||E| +
|T ||V |log|V |), where V and E represent vertices and edges
of the ICFG, and T ¢V denotes the target blocks. We firstly
define the weight of each edge from vertex vsrc to vertex vdst

as follows:

W (vsrc,vdst) =

{

log2(Nout(vsrc)) for control-flow edge

0 for call edge

The term Nout(vsrc) represents the number of control-flow
outgoing edges of vertex vsrc. The rationale behind this weight
definition is to assign higher weight to edges that are less
likely to be traversed after executing the basic block vsrc.
As a result, the weight of both call edges and unconditional
control-flow edges should be 0, while the weight of condi-
tional control-flow edges grows logarithmically with respect
to the number of outgoing edges.

After obtaining the weight for each edge, we can define
the distance from block v to target t as the sum of weight
along the shortest path from v to t. This can be computed
using Dijkstra’s algorithm [17]. A naive approach involves
applying Dijkstra’s algorithm for each v ∈ V , as done by
AFLGo [11]. However, this method has a time complexity
of O(|V ||E|+ |V |2log|V |), which can be very slow for large
ICFGs. Instead, we compute this distance by reversing each

edge of the ICFG and applying Dijkstra’s algorithm for each
t ∈ T , since the shortest distance from v to t in the ICFG is
equal to the shortest distance from t to v in the transposed
ICFG. As the set of targets T is usually much smaller than
the set of basic blocks V in directed fuzzing, this method is
significantly more efficient than the naive one. We describe
this method in Algorithm 4.

Algorithm 4 Distance Computation

Require: ICFG

1: ICFG’ = transpose(ICFG)
2: distance: V ×T → R

3: for t ∈ T do

4: for (b, d) ∈ Dijkstra(ICFG’, t) do

5: distance[b, t] = d
6: end for

7: end for

8: return distance

C Implementation

We have implemented AFLRUN, a prototype based on the
ideas presented, using the source code from AFL++ [19] and
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AFLGo [11], totaling over 5,000 lines of C/C++ code. In this
section, we will discuss some implementation details.

Static analysis and instrumentation. The compilation stage
of AFLRUN is built upon the LLVM [25] Link Time Op-
timization (LTO) pass [5] by modifying the AFL++ LTO
compiler [22]. First, we identify all target basic blocks. Then,
using information from LLVM, we construct the ICFG of the
PUT. With the ICFG, we gather all basic blocks that can reach
at least one of the target blocks, including the target blocks
themselves, and calculate their distances to each target block
using the method described in Appendix B. Each of these
basic blocks is assigned a unique ID. Moreover, to obtain crit-
ical blocks at runtime, we record the subgraph of the ICFG
with these blocks as vertices. These blocks are instrumented
with a function at the beginning, which will be called with the
block ID as an argument when the block is executed.

Virgin map comparison. In AFL++, when comparing the
execution trace with the virgin map, it avoids inefficiently
comparing each bit individually. Instead, it compares 64 bits
at a time by casting pointers into 64-bit arrays. For each 64-bit
value in the execution trace and virgin map, AFL++ calculates
their bitwise AND value, and a non-zero result indicates new
bit coverage by the execution trace. We employ the same
technique for efficient comparisons with multiple virgin maps
by calculating the bitwise AND value between the execution
trace and each virgin map. Each non-zero AND value at each
location for each virgin map is also recorded and used to
obtain data in Algorithm 2.

Target clusters. We assign each cluster an ID, and each clus-
ter contains a set of targets recorded using an array indexed
by the cluster ID. In addition to recording the set of targets in
each cluster, we also need to map each target to its respective
cluster. This is achieved using hash map [7].

Association rule mining. We implement support_count
in Algorithm 3 using two data structures: one for counting
1-itemsets and another for counting 2-itemsets. We record
1-itemset support counts using an array indexed by cluster
ID, while 2-itemset support counts are recorded using hash
map [7], utilizing order-insensitive pairs as keys.

Covered blocks. For efficiency, we only consider covered
blocks that can reach at least one target in the ICFG, each of
which is assigned an ID during static analysis. To trace the
set of blocks covered by the execution of a test case, we use a
shared memory with n bits, where n is the number of blocks
assigned with an ID. Each bit in memory represents a distinct
block. In the instrumented function for each block, the block
ID is obtained from the argument, allowing instrumented code
to set the corresponding bit in the shared memory to 1 to indi-
cate that the block is covered during execution. Furthermore,
similar to the virgin map, we also have a virgin block bitmap
with n bits to record each block covered by the corpus, en-
abling AFLRUN to determine whether a new seed covers any
new blocks.

Table 5: Statistics about Unique Crashes

Program No. Diversity Crashes No. Total Crashes Ratio

libpng 1336 1437 92.97%
libsndfile 97 169 57.40%

libtiff 4485 5476 81.90%
libxml2 3711 4448 83.43%

lua 430 584 73.63%
openssl 31 38 81.58%

php 943 1084 86.99%
poppler 753 1076 69.98%
sqlite3 675 1395 48.39%

Energy assignment. The energy assignment algorithm dis-
cussed in §6.3 involves matrix multiplication. However, since
the related matrices are typically sparse, computing matrix
multiplication explicitly can be inefficient. To address this,
we represent each weight vector as a hash map [7] and use the
relevant information to directly distribute weight from one
hash map to another.

D Quality of Extra Seeds

In this appendix section, we address RQ5 by counting the
number of unique crashes that are mutated from the extra
seeds generated by our target path-diversity metric and calcu-
lating its ratio over the total number of crashes. We continued
to use the results from the Magma benchmark [21] and en-
abled the fatal canary feature in Magma, causing any bug
trigger to result in a crash. For each seed generated during
the fuzzing campaign, AFLRUN annotates its filename with
the factor contributing to its storage. Specifically, if a seed
covers any new bits in the primary virgin map, AFLRUN

marks a cov flag in its filename, and similarly adds a div flag
if any new bits are covered in the target virgin map. Moreover,
each unique crash is marked with the seed ID from which the
unique crash is mutated, also known as the source seed. Using
this information, we can track the flags of the source seed for
each unique crash. We consider a unique crash to be mutated
from the extra seed only if its source seed contains solely the
div flag. We denote such unique crash as the diversity crash.
The results are presented in Table 5. We observe that for the
majority of programs, more than half of the unique crashes
are mutated from our extra seeds, demonstrating the ability
of these extra seeds to discover vulnerabilities.

E Additional Experiments

In addition to the Magma benchmark, we conducted further
experiments to evaluate the effectiveness of AFLRUN com-
pared to other fuzzers using a set of vulnerabilities used in
the evaluations of previous directed fuzzing works [23, 24].
All fuzzers in §7.1.1 are included in this experiment except
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Table 6: Additional Results

Program CVE ID AFL++ AFLGo Parmesan FishFuzz Hawkeye WindRanger MOpt AFLRUN AFLRUN-

cxxfilt

2016-4487 15.37m(0.01) 13.90m(0.08) N/A 18.27m(<.01) 33.01m(0.04) 26.54m(<.01) 51.80m(<.01) 5.31m 6.70m
2016-4489 37.33m(<.01) 37.55m(<.01) N/A 25.28m(<.01) 15.96m(<.01) 31.79m(<.01) 68.94m(<.01) 3.87m 2.88m

2016-4490 6.98m(<.01) 9.22m(<.01) N/A 9.25m(<.01) 3.78m(<.01) 8.31m(<.01) 19.82m(<.01) 52.20s 84.20s
2016-4491 21.90h(0.86) 17.29h(0.97) N/A 18.45h(0.97) 19.91h(0.97) 22.50h(0.86) 23.60h(0.86) T.O. T.O.
2016-4492 41.92m(0.17) 38.44m(0.09) N/A 46.37m(0.09) 2.94h(0.04) 77.24m(0.07) 97.45m(<.01) 30.30m 59.77m

strip 2017-7303 2.95m(0.96) 2.88m(0.95) 8.45h(<.01) 36.72m(0.34) 6.70m(0.76) 74.21m(<.01) 4.47m(0.24) 7.39m 23.49m

objcopy
2017-8393 27.67m(0.17) 36.43m(0.21) 13.30h(<.01) 3.55h(0.02) 4.48h(0.02) 1.79h(0.09) 28.95m(0.43) 62.99m 36.18m
2017-8394 26.95m(0.92) 14.34m(0.94) 5.15h(0.48) 6.17h(<.01) 3.00h(0.19) 9.10m(0.98) 8.92m(1.00) 67.11m 1.97h
2017-8395 6.64m(0.09) 1.88m(0.29) 30.34m(<.01) 3.71h(<.01) 94.10s(0.63) 2.03m(0.09) 2.94m(<.01) 1.73m 2.39m

objdump

2017-8392 97.68m(<.01) 6.31m(<.01) 82.40s(<.01) 8.14h(<.01) 3.73m(<.01) 2.86m(<.01) 8.67m(<.01) 16.50s 33.60s
2017-8396 6.42h(1.00) 22.58h(0.56) 19.30h(0.79) T.O.(0.18) T.O.(0.18) T.O.(0.18) 22.71h(0.56) T.O. 23.89h
2017-8397 19.75h(0.03) 21.99h(<.01) 21.62h(<.01) 21.15h(<.01) 21.44h(<.01) 18.66h(0.05) 20.41h(0.02) 13.61h 12.51h

2017-8398 1.81h(0.50) 6.88m(0.26) 7.53h(<.01) 8.44h(<.01) 20.14m(0.01) 4.03m(0.87) 9.10m(0.07) 7.56m 13.10m

swftophp

2016-9827 4.01m(<.01) 1.67m(0.02) N/A 86.70s(0.04) 62.10s(0.37) 89.00s(0.04) 86.50s(0.03) 61.20s 89.10s
2016-9829 33.59m(<.01) 9.14m(0.03) N/A 8.30m(0.57) 7.96m(0.71) 11.39m(0.26) 4.95m(0.71) 7.60m 6.55m
2016-9831 14.52m(<.01) 8.57m(0.03) N/A 11.23m(0.01) 6.90m(0.12) 7.89m(0.11) 10.86m(<.01) 4.31m 6.84m
2017-11728 66.83m(0.01) 24.57m(0.14) N/A 45.58m(0.02) 21.74m(0.04) 78.32m(<.01) 55.13m(0.01) 2.81h 46.11m
2017-11729 4.54m(<.01) 2.74m(0.10) N/A 7.00m(0.05) 2.87m(0.26) 12.55m(<.01) 19.49m(<.01) 1.80m 4.02m
2017-9988 7.17h(<.01) 59.18m(0.26) N/A 2.32h(0.19) 3.82h(0.21) 17.66h(<.01) 53.43m(0.15) 52.56m 5.11h
2017-7578 12.48m(<.01) 7.41m(<.01) N/A 3.30m(0.01) 7.59m(0.02) 5.82m(0.02) 6.55m(<.01) 1.70m 1.95m
2018-11095 1.72h(<.01) 83.75m(<.01) N/A 8.13h(<.01) 5.52h(<.01) 80.06m(<.01) 4.25h(<.01) 33.31m 7.58m

2018-11225 14.27h(0.32) 16.72h(0.05) N/A 19.95h(<.01) T.O.(<.01) 13.65h(0.45) 18.61h(0.02) 20.66h 9.77h

2018-20427 11.94h(0.28) 12.57h(0.09) N/A 14.46h(0.04) 14.52h(0.02) 7.37h(0.79) 9.22h(0.31) 12.74h 6.28h

2018-7868 3.25h(0.83) 3.19h(0.74) N/A 8.59h(0.08) 11.75h(<.01) 3.02h(0.81) 5.93h(0.11) 7.42h 3.48h
2018-8807 2.27h(0.26) 2.47h(0.52) N/A 7.37h(<.01) 3.79h(0.14) 2.40h(0.66) 4.48h(<.01) 5.69h 2.06h

2019-12982 8.80h(0.42) 14.52h(0.20) N/A 15.08h(0.01) 20.80h(<.01) 6.21h(0.93) 13.72h(0.07) 21.13h 6.93h
2020-6628 2.69h(0.08) 1.93h(0.71) N/A 7.64h(<.01) 4.56h(0.08) 83.77m(0.96) 4.25h(<.01) 4.08h 1.96h
2019-9114 5.30h(0.94) 19.03h(<.01) N/A 14.22h(0.01) 19.23h(<.01) 9.56h(0.40) 17.01h(0.02) 13.63h 7.30h

xmllint
2017-9047 23.46h(<.01) 22.00h(<.01) N/A 22.49h(<.01) T.O.(<.01) 18.49h(0.02) T.O.(<.01) 23.26h 12.74h

2017-5969 30.08m(<.01) 50.30s(1.00) N/A 28.10m(<.01) 28.30s(0.99) 57.05m(<.01) T.O.(<.01) 3.17m 2.36m
2017-9048 23.68h(0.06) T.O.(0.02) N/A T.O.(0.02) T.O.(0.02) 23.16h(0.07) T.O.(0.02) 22.75h 20.99h

lrzip
2017-8846 18.89h(<.01) T.O.(<.01) N/A 2.15h(0.69) 4.77h(0.40) 2.96h(0.89) 21.61h(<.01) 7.43h 56.77m

2018-11496 14.10s(0.66) 47.10s(0.09) N/A 23.20s(0.83) 35.60s(0.58) 10.60s(0.85) 47.50s(0.11) 24.60s 51.50s

for AFLRUN--, the ablated version of AFLRUN that does not
contain the target path-diversity metric and critical blocks for
evaluating the effectiveness of critical blocks in our energy as-
signment method, a task we have already accomplished using
the Magma benchmark. However, we still include AFLRUN-
for its descent ability to find the vulnerabilities that do not
require path diversity to trigger.

The experimental setup was identical to that described in
§7.1.1: each fuzzing campaign was conducted 10 times, with
each lasting 24 hours. However, we directly used the buggy
version of the tested program instead of reintroducing old
bugs into newer versions. Additionally, we lacked the auto-
matic vulnerability trigger time recording feature provided
by Magma. To overcome this limitation, each fuzzer was con-
figured to record the time when a crashing input is saved.
After each fuzzing campaign ends, we executed the files in
the crash directory and identified the specific vulnerability
that causes each crash, based on the execution’s output. This
allows us to determine the triggering time of a vulnerabil-
ity in each fuzzing campaign. For the initial fuzzing setup,
we utilized the same seed corpus as the previous work [24].
However, the target locations were different: we adjusted

the target locations to the root-cause locations instead of the
vulnerability-trigger locations commonly used in previous
works; besides, similar to §7.1.1, we utilized multiple-target
settings to find multiple vulnerabilities simultaneously. These
two differences in target locations align with the two main
issues addressed in our work.

The results are presented in Table 6, formatted similarly to
Table 1. Compared to AFL++, AFLGo, Parmesan, FishFuzz,
Hawkeye, WindRanger, and MOpt, AFLRUN(-) achieves
speedups of 164%, 77%, 819%, 319%, 136%, 118%, and
194% respectively. We observe the deviation of the results
from those obtained from Magma: AFLGo instead of MOpt
becomes the best performer among all non-AFLRUN fuzzers,
and the effectiveness of Parmesan drops significantly (even
when excluding unrunnable campaigns due to its buggy im-
plementation). Furthermore, our results also differ from those
of previous studies, as AFLGo outperforms the works that
followed it. We believe this inconsistency arises from our
different configuration of the target locations mentioned ear-
lier. Nevertheless, AFLRUN still outperforms the other tested
fuzzers, demonstrating its superiority across a diverse set of
bugs without any overfitting.
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