
SPARSETRANSX: EFFICIENT TRAINING OF TRANSLATION-BASED
KNOWLEDGE GRAPH EMBEDDINGS USING SPARSE MATRIX OPERATIONS

Md Saidul Hoque Anik 1 Ariful Azad 1

ABSTRACT
Knowledge graph (KG) learning offers a powerful framework for generating new knowledge and making inferences.
Training KG embedding can take a significantly long time, especially for larger datasets. Our analysis shows that
the gradient computation of embedding is one of the dominant functions in the translation-based KG embedding
training loop. We address this issue by replacing the core embedding computation with SpMM (Sparse-Dense
Matrix Multiplication) kernels. This allows us to unify multiple scatter (and gather) operations as a single
operation, reducing training time and memory usage. We create a general framework for training KG models
using sparse kernels and implement four models, namely TransE, TransR, TransH, and TorusE. Our sparse
implementations exhibit up to 5.3x speedup on the CPU and up to 4.2x speedup on the GPU with a significantly
low GPU memory footprint. The speedups are consistent across large and small datasets for a given model. Our
proposed sparse approach can be extended to accelerate other translation-based (such as TransC, TransM, etc.) and
non-translational (such as DistMult, ComplEx, RotatE, etc.) models as well. An implementation of the SpTransX
framework is publicly available as a Python package in https://github.com/HipGraph/SpTransX.

1 INTRODUCTION

Knowledge Graphs (KGs) are structured as directed graphs
containing entities as nodes and relations as edges. Each
edge in a KG is typically stored as a triplet (head, rela-
tion, tail)—abbreviated as (h, r, t)—where head and tail
are entities connected by a relation that denotes the nature
of their interaction. Knowledge graph embedding (KGE)
techniques map these entities and relations into a continuous
vector space, enabling efficient computation and manipula-
tion while preserving the underlying structural properties of
the KG. The entity and relation embeddings are widely used
in many downstream tasks, such as KG completion (Bordes
et al., 2013; Chen et al., 2020), entity classification (Nickel
et al., 2012), and entity resolution (Bordes et al., 2014).

Translational models (Bordes et al., 2013; Lin et al., 2015)
are a widely used and effective class of KGE methods.
These models represent entities and relations in a continu-
ous vector space, where relations are interpreted as trans-
lations applied to entity embeddings. However, training
translational KGE models for large-scale KGs is computa-
tionally intensive and incurs high memory overhead, espe-
cially when large batches are used. These challenges are

1Department of Computer Science and Engineering, Texas
A&M University, USA. Correspondence to: Md Saidul Hoque
Anik <anik@tamu.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

due in part to the fact that current KGE implementations
represent triplets as dense matrices and rely heavily on fine-
grained scatter-gather computations during training. This
fine-grained computational model contributes to the follow-
ing bottlenecks: (1) irregular memory access patterns from
fine-grained operations on KGs and embeddings, which
increase memory access costs, (2) increased backpropaga-
tion expenses due to more granular gradient computations,
and (3) significant memory demands for dense matrices. In
this paper, we address these issues by proposing a sparse-
matrix representation of the KG and utilizing highly opti-
mized sparse-matrix operations to streamline KGE training,
thereby reducing both computational and memory bottle-
necks.

Expressing graph operations through sparse linear algebra
has been highly effective for developing efficient and scal-
able graph neural networks (GNNs). As a result, popular
graph machine learning libraries, such as PyTorch Geomet-
ric (PyG) (Fey & Lenssen, 2019) and DGL (Wang, 2019),
utilize optimized implementations of sparse-dense matrix
multiplication (SpMM). Despite the widespread success of
sparse operations in GNNs, existing KGE libraries have yet
to adopt sparse operations for training KGE models. Even
models utilizing sparse embeddings, such as TranSparse (Ji
et al., 2016), store embeddings as dense matrices, limiting
their ability to fully leverage sparse matrix operations.

One of this paper’s main contributions is the development
of sparse formulations for several popular translation-based

https://github.com/HipGraph/SpTransX

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Table 1. 200 epoch training time breakdown of a TransE model
using the sparse approach compared to a non-sparse approach. The
time shown is the average training time taken for 7 datasets listed
in Table 3. The GPU is a single NVIDIA A100-SXM4 with 40
GB VRAM. The CPU is an AMD EPYC 7763 (Milan) CPU with
64 cores and 512GB DDR4 memory.

Sparse Non-Sparse
(TorchKGE)

CPU
Forward 74.86 299.2

Backward 166.59 919.17
Step 15.4 15.95

GPU
Forward 18.2 48.8

Backward 17.49 89.51
Step 0.4 0.45

KGE models. Adapting different translation models to
sparse operations presents unique challenges, as each model
interprets translations differently. For instance, TransE (Bor-
des et al., 2013) uses a single embedding space for both
entities and relations, while TransR (Lin et al., 2015) uses
separate spaces. Despite these differences, we designed a
unified framework that allows diverse translation models
to be represented through sparse matrices and mapped to
sparse matrix operations like SpMM. We collectively re-
fer to these sparse variants of translation-based embedding
methods as SpTransX.

We develop a comprehensive library based on our sparse for-
mulation. This library consolidates most computations into
several SpMM function calls, allowing optimized SpMM
to directly accelerate the overall runtime of KGE training.
We also discuss how to extend this concept to other non-
translational models such as DistMult (Yang et al., 2014a)
or ComplEx (Trouillon et al., 2016) in Appendix D. We
observe that SpTransX models significantly outperform es-
tablished knowledge graph frameworks, such as TorchKGE
and DGL-KE, particularly in terms of training time and
GPU memory usage. For example, the average improve-
ment in training time for the TransE model is illustrated in
Table 1.

Overall, this paper presents the following contributions:

1. Sparse Formulations of Translation-Based KGE
Models: We introduce sparse formulations for
translation-based KGE models, enabling the mapping
of KGE computations to SpMM and leveraging well-
established SpMM techniques in model training.

2. Development of an Optimized Library: Our library
incorporates various optimization techniques, includ-
ing SIMD vectorization, loop unrolling, cache block-
ing, tiling, and WARP-level GPU optimization, to en-
hance performance. As a result, SpTransX models
significantly outperform established knowledge graph

frameworks, such as TorchKGE and DGL-KE.

3. Enhanced Large-Batch Training: By reducing mem-
ory requirements, SpTransX facilitates large-batch
training on memory-limited GPUs.

2 BACKGROUND

Knowledge graph training is performed by learning the
representations or embeddings of the entities and their corre-
sponding relations on a set of training triplets or subgraphs.
Each triplet or edge (in subgraph) contains a valid combina-
tion of subject (head), predicate (relation), and object (tail).
Once trained, the embeddings can illustrate their semantic
meaning and structure, enabling them to effectively perform
reasoning-based tasks such as link prediction and entity
classification. The training typically uses machine learn-
ing techniques and involves a gradient descent algorithm.
The exact forward propagation process can vary depend-
ing on the model type. Translation-based models, such as
TransE, TransR, etc, are widely used due to their simple yet
effective way of capturing relations between entities. The
training can also be done by using bilinear methods (Dist-
Mult (Yang et al., 2014b), RESCAL (Nickel et al., 2011b)),
deep learning and convolution (ConvKB (Nguyen et al.,
2017)), or Graph Neural Networks (R-GCN (Schlichtkrull
et al., 2018)).

Training a translation-based knowledge graph embedding
typically involves taking a list of triplets (head, tail, relation
index) and optimizing their corresponding embeddings to
minimize the distance between the ωtail and ωhead+ ωrelation.
The translational models vary based on (1) the linear trans-
formation applied to the entities and relations and (2) the
distance metric. The linear transformation can be applied
to (a) individual entities/relations, (b) head - tail, or (c)
the overall head - tail + relation. The measurement can
be in a typical Euclidean space (L1 or L2) or a toroidal
(wraparound) space distance (L1 torus or L2 torus) function.
The training is typically done in batches, where a ‘batch’ of
head, tail, and relations are fetched for training instead of
single ones.

3

5

8

Indices

Embeddings

(a) Forward

0xA451

0x72B0

0x82D6

Gradients

Zero Matrix

(b) Backward

Figure 1. Scatter and Gather operation in translational KG training

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Figure 2. Top three CPU intensive functions for various translation-based KGE models and datasets (indicated in brackets). The redness
represents the popularity of a function among models. The dark red box indicates that the corresponding function is used in several
different models. Blue/Purple indicates that the function is typically exclusive to the current model. The dark gray box indicates the
dataset loading time. The light gray box indicates the rest of the training time.

The training process starts with triplets with the index po-
sition of the head, tail, and relation entities. In each epoch,
embeddings are fetched from the indices, and linear trans-
formation is applied to them to compute the final loss. This
means the forward propagation involves several (typically
three or more) ‘gather’ operations (see Figure 1(a)) that
collect the index batch’s head, tail, and relation embeddings.
Some models also require one or more transform matrices
(may be based on the relation), which are also gathered in
sthis step. Consequently, the backward propagation per-
forms the opposite, the ‘scatter’ operations that distribute
gradients across the corresponding indices (see Figure 1(b))

These individual operations, especially the gradient compu-
tations in the backward step, can take up around 40% of the
CPU’s training time (see Figure 2). In particular, we observe
that embedding gradient computation is among the top three
CPU-intensive functions for most translational models.

3 RELATED WORK

3.1 Translational Models for KGE

Translation-based models represent entities and relations in
a continuous vector space, interpreting relations as transla-
tions operating on entity embeddings. Several well-known
models follow this approach, including TransE (Bordes
et al., 2013), TransR (Lin et al., 2015), TransH (Wang
et al., 2014), TransD (Ji et al., 2015), TransA (Xiao et al.,
2015), TransG (Xiao et al., 2016), TransC (Lv et al., 2018),
TransM (Fan et al., 2014), TorusE (Ebisu & Ichise, 2018),
and KG2E (He et al., 2015). Each model varies in how it rep-
resents the head, relation, and tail embeddings to capture re-
lational semantics effectively. For instance, TransE embeds
entities and relations in the same vector space Rd, assuming
that relations can be modeled as a simple addition between
the head and tail entities. In contrast, TransR utilizes dis-

tinct vector spaces for entities and relations, allowing it to
better capture heterogeneous relation types, while TransE
struggles with symmetric and one-to-many relations. Some
models, like TransH, introduce translations on hyperplanes
to address the limitations of basic Euclidean embeddings.
More recently, models such as rotatE (Sun et al., 2019)
have enabled translations within hyperbolic space instead
of Euclidean space, allowing for better representation of
hierarchical structures commonly found in some knowledge
graphs. It has been observed that translation-based models
are typically more computationally efficient compared to
semantic matching models that use a bilinear score function,
such as DistMult (Yang et al., 2014a), RESCAL (Nickel
et al., 2011a), and ComplEx (Trouillon et al., 2016). This
efficiency, along with their adaptability across different KG
structures, makes translation-based models a popular choice
for large-scale knowledge graph applications.

3.2 KGE frameworks

Several frameworks are available for training knowledge
graphs (KGs). Some, like TorchKGE (Boschin, 2020) and
DGL-KE (Zheng et al., 2020), are specifically designed for
this purpose. Others, such as PyTorch Geometric (Fey &
Lenssen, 2019) and GraphStorm (Zheng et al., 2024), offer
facilities for training KG models in addition to modules for
training graph neural networks.

Many frameworks are built on top of the PyTorch Frame-
work, including TorchKGE, PyKeen (Ali et al., 2021), Py-
Torch Geometric, etc. AmpliGraph (Costabello et al., 2019)
has Tensorflow 2.0 backend. Some frameworks support
hybrid backends, such as DGL-KE or OpenKE (Han et al.,
2018). DGL-KE supports PyTorch and MXNet as the back-
end. OpenKE supports PyTorch, Tensorflow, and C++ as
the backend. Most frameworks have support for Python.

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Some frameworks, such as Pykg2vec (Yu et al., 2019) or
DGL-KE, choose not to use the autograd feature of the
backend ML, such as PyTorch, and implement their cus-
tom gradient update mechanism. PyKeen is designed to
be highly extensible and uses a modular code base. It fea-
tures automatic memory optimization support that generates
sub-batches when the user-defined batch does not fit in the
memory.

Most frameworks, such as TorchKGE, PyG, and PyKeen,
use PyTorch’s embedding module directly to store entity
and relation embeddings. Others, such as DGL-KE, convert
the training triplets into DGL graphs before training. DGL-
KE, PyTorch BigGraph (Lerer et al., 2019), PyKeen, and
several other frameworks allow multi-CPU and multi-GPU
training using Python and distributed frameworks such as
DGL or PyTorch Lightning.

3.3 Sparse Operations in Graph ML

Expressing graph operations through sparse linear algebra
has proven highly effective for developing efficient and scal-
able graph learning algorithms. For example, the forward
and backward propagation in graph convolutional networks
(GCNs) and graph attention networks (GATs) can be op-
timized with sampled dense-dense matrix multiplication
(SDDMM), sparse-dense matrix multiplication (SpMM), or
their combination, known as FusedMM (Fey & Lenssen,
2019; Wang, 2019; Rahman et al., 2021). Similarly, SpMM
and sparse-sparse matrix multiplication (SpGEMM) are
widely used in algorithms for graph embedding (Ranawaka
et al., 2024; Rahman et al., 2020b), clustering (Azad et al.,
2018), and visualization (Rahman et al., 2020a). Conse-
quently, popular graph machine learning libraries, such as
PyTorch Geometric (PyG) (Fey & Lenssen, 2019) and DGL
(Wang, 2019), rely on optimized implementations of SpMM,
SpGEMM, and SDDMM available in vendor-provided li-
braries like cuSparse, MKL, or open-source libraries such
as iSpLib (Hoque Anik et al., 2024), FeatGraph (Hu et al.,
2020), and SparseTIR (Ye et al., 2023). Despite the wide
success of sparse operations in GNNs and graph embed-
dings, to the best of our knowledge, existing knowledge
graph embedding libraries do not leverage sparse operations
for training KGE models.

4 METHODOLOGY

4.1 Sparse Approach

We observe that the embedding extraction operation and its
gradient computation is a bottleneck in the training of many
translational models (Figure 2). We tackle this by replacing
the typical embedding extraction process with Sparse-Dense
Matrix Multiplication (SpMM). We form a sparse incidence
matrix out of the training triplets so that multiplying it with

the embedding matrix would directly generate at least a
portion of the scores for each triplet.

The sparse approach unifies the embedding gather opera-
tions for entities in forward propagation and scatter opera-
tions for gradients in backward propagation. This unified
framework enables us to leverage high-performance matrix
multiplication techniques, such as loop unrolling, cache
blocking, tiling, and WARP-level GPU primitives. Addi-
tionally, we can apply advanced parallelization methods,
including dynamic load balancing across threads and code
generation, as well as more efficient SIMD (Single Instruc-
tion, Multiple Data) vectorization.

In the following subsections, we briefly discuss how to per-
form training in a sparse approach using SpMM instead of
regular embedding extraction for several translation-based
models. Both forward and backward propagation of our
approach benefit from the efficiency of a high-performance
SpMM (proof shown in Appendix G). This concept also ex-
tends broadly to various other knowledge graph embedding
(KGE) methods as well, including DistMult, ComplEx, and
RotateE (detailed formulations are provided in Appendix D).
The sparsity of our formulation and related computational
complexity are discussed in Appendix B and C.

4.2 Adjacency Matrix Formulation

We analyze the score function of several translation-based
models and observe that many models such as TransE,
TransR, and TransH take head, tail, and relation - and com-
pute either (a) (head - tail) or (b) (head - tail + relation)
expression before applying additional linear projections as
needed. For simplicity, we refer to these as ‘ht’ and ‘hrt’
expressions, respectively. Table 2 lists a few of such models
and their corresponding score functions. For some models,
the expressions mentioned earlier are apparent, and for oth-
ers, we need to perform minor algebraic rearrangements.
These formulations are listed from subsection 4.3 to 4.6.

Table 2. Translational models with common expressions in score
function fr(h, t)

MODEL SCORING FUNCTION

TRANSE (BORDES ET AL., 2013) ||ωh+ ωr → ωt||
TRANSH (WANG ET AL., 2014) || ωh→ + ωdr → ωt→||

TRANSR (LIN ET AL., 2015) ||Mr
ωh+ ωr →Mrωt||

TORUSE (EBISU & ICHISE, 2018) ||ωh+ ωr → ωt||
TRANSA (XIAO ET AL., 2015) |ωh + ωr ↑ ωt|TWr|ωh + ωr ↑ ωt|

TRANSC (LV ET AL., 2018) ||ωh+ ωr → ωt||22
TRANSM (FAN ET AL., 2014) wr||ωh+ ωr → ωt||

Instead of gathering head, tail, and relations individually
from the indices and then computing the ht and hrt expres-
sions, we can directly get this result by forming an incidence
matrix. The following subsection describes how we can

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

compute ht and hrt expressions using sparse-dense matrix
multiplication.

4.2.1 ht or (head - tail) computation

Let the knowledge graph contain N entities and M triples
in the training data, with an embedding size (dimension)
denoted by d. To compute the ht expression, we store entity
embedding in a dense matrix E → RN→d, where each row
stores the embedding of an entity. We store the training
triples in a sparse incidence matrix A → {↑1, 0, 1}M→N ,
where the rows represent the training triplets and the
columns represent entities. For a triplet, the corresponding
column of a head or tail index is filled with the coefficient of
the head or tail. In the expression head - tail, the coefficient
of the head is +1 and ↑1 for the tail. This implies that each
row of the incidence matrix contains exactly two nonzero
entries. Once we multiply this incident sparse matrix A with
the embedding matrix e, we get the array of (head - tail) for
the corresponding training triplets. Figure 3(a) shows an
example of this calculation. This computed expression can
be used to complete the score calculation.

4.2.2 hrt or (head + relation - tail) computation

Evaluating this expression requires accessing two separate
dense matrices when entity and relation embeddings are
stored individually. We can still compute this expression
in a single sparse-dense matrix multiplication if we stack
the entity and relations horizontally in the incidence sparse
matrix and vertically as an embedding dense matrix.

Let the knowledge graph contain R relations. To com-
pute the hrt expression with a single SpMM operation,
we store the entity and relation embeddings in the same
dense matrix E → R(N+R)→d, where the first N row
stores the embeddings of entities and the last R rows
store the embeddings of relations. For this computation,
we store the training triples in a sparse incidence matrix
A → {↑1, 0, 1}M→(N+R), where the rows represent the
training triplets and the columns represent entities and rela-
tions. As before, we place the expressions’ coefficients in
the corresponding columns (+1 for head and relation, ↑1
for tail). The relation associated with each triple is repre-
sented by placing a +1 in the corresponding column for that
relation. Note that we offset the relation index by the total
number of entities in the incidence matrix A. This ensures
that, when multiplied, the relation index aligns correctly
with the corresponding relation embedding located just be-
low the entity embeddings. Finally, we multiply the sparse
matrix with the combined dense embedding matrix to get
the hrt expression result. Figure 3(b) shows an example of
this computation.

The following subsections contain the implementation
of four translational models using the sparse approach.

Throughout the rest of the paper, we refer to these four im-
plementations collectively as SparseTransX, or SpTransX
in short.

4.3 TransE Formulation

For triplets (ωh, ωr, ωt), where ωh is the head entity vector, ωr
is the relation entity vector, and ωt is the tail entity vector,
TransE tries to enforce the following for a training set U:

↓(ωh,ωt,ωr) → U,

ωh+ ωr ↔ ωt

=↗ ωh+ ωr ↑ ωt ↔ ω0

(1)

For TransE, a normalization function (L1 or L2) is typically
applied to this expression to get the final score. We can
directly obtain this expression using the hrt computation
method discussed in subsection 4.2.2.

4.4 TransR Formulation

The TransR model applies a linear projection to the head
and tail before computing the score. For a projection matrix
Mr corresponding to relation ωr, TransR tries to enforce the
following translation:

↓(ωh,ωt,ωr) → U,

Mr
ωh+ ωr ↔ Mrωt

=↗ Mr
ωh+ ωr ↑Mrωt ↔ ω0

=↗ Mr(ωh↑ ωt) + ωr ↔ ω0

(2)

After rearrangement, we see that it contains the (head-tail)
expression. This can be computed using the ht computation
method discussed in subsection 4.2.1.

4.5 TransH Formulation

TransH (Translating Embeddings on Hyperplanes) extends
TransE by allowing each relation to have its hyperplane,
addressing the limitation that a single translation vector can-
not handle 1-to-N, N-to-1, and N-to-N relations effectively.
In TransH, each relation ωr is associated with a hyperplane
characterized by a normal vector ωwr and a translation vector
ωdr. The projection of entities onto the hyperplane is then
used in the translation. It tries to enforce the following:

↓(ωh,ωt,ωr) → U,

ωh↑ + ωdr ↔ ωt↑
(3)

Where,

ωh↑ = ωh↑ (ωwr
T · ωh) ωwr

ωt↑ = ωt↑ (ωwr
T · ωt) ωwr

Substituting these values in Equation 3, we find that for
every triplet, TransH is trying to enforce:

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

of Entities

of Entities

0 … 5 6 … 15 … 21

0

1 1 -1

2

…

88

89

of

 S
am

pl
es

Incidence Sparse Matrix

0

1

…

5 .32 .21 .67 .12 .93

…

15 .92 .83 .03 .37 .84

…

21

Embedding Size

Embedding Dense Matrix

(a) (h→ t) Computation. All cells in the highlighted row are
zero except h-idx and t-idx. For the highlighted row, h-idx
= 5, t-idx = 15, entity-count = 22.

0 … 5 6 … 15 … 21 22 23 … 29

0

1 1 -1 1

2

…

88

89

of Entities
of Relations

of

 S
am

pl
es

of Entities # of Relations

Incidence Sparse Matrix

0

…

5 .32 .21 .67 .12 .93

…

15 .92 .83 .03 .37 .84

…

22 .62 .85 .65 .26 .96

…

29

Embedding Size

Embedding Dense Matrix

(b) (h + r → t) Computation. All cells in the highlighted row are zero
except h-idx, t-idx, and r-idx + entity-count. For the highlighted row,
h-idx = 5, t-idx = 15, entity-count = 20, r-idx = 2.

Figure 3. Computing common expressions using SpMM. Only the highlighted row is populated for demonstration.

ωh↑ (ωwr
T · ωh) ωwr + ωdr ↔ ωt↑ (ωwr

T · ωt) ωwr

=↗ ωh↑ (ωwr
T · ωh) ωwr + ωdr ↑ ωt+ (ωwr

T · ωt) ωwr ↔ ω0

=↗ ωh↑ ωt+ ωdr ↑ (ωwr
T · ωh) ωwr + (ωwr

T · ωt) ωwr ↔ ω0

=↗ (ωh↑ ωt) + ωdr ↑ ωwr
T · (ωh↑ ωt) ωwr ↔ ω0

We observe that the final arrangement contains two expres-
sions of ht. This can be computed using the ht computation
method discussed in subsection 4.2.1.

4.6 TorusE Formulation

The TorusE model is very similar to TransE regarding the
score function. It typically uses L1/L2 torus distance instead
of regular L1/L2 norm and only works with the fractional
components of the embeddings.

Just like TransE, it also tries to enforce the following:

↓(ωh,ωt,ωr) → U,

ωh+ ωr ↔ ωt

=↗ ωh+ ωr ↑ ωt ↔ ω0
(4)

We can directly obtain this expression using the hrt compu-
tation method discussed in subsection 4.2.2.

4.7 SparseTransX Framework

We develop a general framework for SpTransX model train-
ing to enable efficient translation-based model training for
large KG datasets. The framework is implemented using Py-
Torch 2.3 and consists of several modules, which are briefly
described below.

SQLite3
Pandas

DataFrame

Sparse Trans[X] Model

SparseKG
Dataset

KG Dataset from
File (CSV, TTL,

RDF) or Database
(Neo4j)

LLM
Embeddings

From Disk

Py
To

rc
h

DD
P/

FS
DP

CPU

GPU

Multi-GPU

Multi-Node

Memory-mapped
Tensor (Optional)

Streaming
SparseKG

Dataset

DataLoader (Regular/Distributed)

TTL to DB
Converter

Core Functions Utilities

Figure 4. SparseTransX Framework

4.7.1 SparseTransX Models

This module contains the sparse implementations of the
translational models. These implementations are agnostic
to the sparse matrix library used underneath. The models
have built-in support for streaming embeddings from disc
storage when the embeddings are too large to fit in CPU
memory. This streaming model support is implemented
using PyTorch memory-mapped tensors. Researchers of-
ten use Large Language Model (LLM) embeddings such
as BERT (Devlin et al., 2019), T5 (Colin, 2020), or GPT
(Radford, 2018) to perform knowledge graph completion
(Wang et al., 2022; Kim et al., 2020) and want to start with
pre-trained embeddings that are typically too large to fit
on CPU memory. Such training can be performed using
this feature of the framework. Finally, this module also has
functionalities for calculating scores, predicting links, and
classifying entities in addition to the training loop.

4.7.2 Dataloaders

Our framework contains various dataloaders for shared and
distributed training. It supports several standard knowledge

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

graph formats, such as TTL, RDF, and CSV. Additionally,
it contains a streaming dataset module for datasets that are
too large to fit in memory. When invoked, it creates an
SQLite representation of the knowledge graph and stores
the entity-index mapping in the database along with the
triplets. All dataloaders connect to the sparse model input
using a common interface.

4.7.3 Utilities and Core Functions

This module consists of the sparse adjacency matrix builder
described in subsection 4.2.1 and 4.2.2, an efficient sparse
negative sampler, and the matrix multiplier interface.

5 EXPERIMENTAL SETTING

We implement the SpTransX models using PyTorch Frame-
work and compare their total training time and GPU memory
allocation with other well-known KG frameworks. We run
these experiments for 7 datasets consisting of various sizes
on a single CPU and a single GPU system separately. We
provide a guideline to reproduce the experiment for one
of the datasets in Appendix A. Although our framework
supports distributed training using standard PyTorch data-
parallel libraries, this paper focuses on sparse techniques
and presents experiments conducted on a single GPU only.
A preliminary result on distributed training of a large knowl-
edge graph dataset, COVID-19 (Tabassum et al., 2024), is
shown in Appendix F.

5.1 Datasets

Below are the 7 datasets used in the experiments.

Table 3. Knowledge graph datasets

TRAINING
DATASET ENTITY RELATIONS TRIPLETS

FB15K 14951 1345 483142
FB15K237 14541 237 272115

WN18 40943 18 141442
WN18RR 40943 11 86835

FB13 67399 15342 316232
YAGO3-10 123182 37 1079040

BIOKG 93773 51 4762678

5.2 Frameworks and Models

For comparison, we pick three popular KG frameworks:
TorchKGE, PyTorch Geometric, and DGL-KE. PyTorch
Geometric (or PyG) supports the TransE model, while DGL-
KE supports the TransE and TransR models. TorchKGE
supports all four models: TransE, TransR, TransH, TorusE.

5.3 Training Loop

We prepare 11 separate scripts (SpTransE, SpTransR, Sp-
TransH, SpTorusE, transe-torchkge, transr-torchkge, transh-
torchkge, toruse-torchkge, transe-dglke, transr-dglke, and
transe-pyg) to train the models on various datasets. Each
script receives the dataset name as a command-line argu-
ment. The dataset is loaded from a shared repository. All
frameworks use the same training configuration (learning
rate: 0.0004, margin: 0.5), dissimilarity function (L2 or L2
torus), and loss function (MarginRankingLoss), and run for
200 epochs. Batch size and embedding dimensions are se-
lected to maximize accuracy while utilizing available GPU
memory (see subsection 6.1). The following table lists the
dimensions and batch sizes used for different models.

Table 4. Training configuration for CPU and GPU. Reduced em-
bedding and batch size for TransR and TransH due to memory
limitation.

MODEL EMBEDDING BATCH

TRANSE 1024 12↑ 32768
TORUSE 1024 12↑ 32768
TRANSR 128 2↑ 32768
TRANSH ENT=128,REL=128 32768

The negative samples are generated once per positive sample
and are pre-generated outside the training loop.

5.4 System and Profiler Details

All experiments are run on the NERSC Perlmutter system.
The GPU experiments run on a single NVIDIA A100-SXM4
GPU with 40 GB VRAM. The CPU experiments run on an
AMD EPYC 7763 (Milan) CPU with 64 cores and 512GB
DDR4 memory.

We use Python’s time module to measure training time and
its breakdown. PyTorch’s CUDA module is used to measure
peak memory usage in GPU experiments. Finally, Linux’s
perf tool is used to measure the cache miss rate and FLOPs
count for CPU experiments.

5.5 SparseTransX Configuration

In the SparseTransX framework, users can choose to use
any high-performance SpMM to perform model training.
We select iSpLib SpMM (Hoque Anik et al., 2024) for
CPU training and DGL g-SpMM (Wang, 2019) for GPU
training. CSR (Compressed Sparse Row) format is used for
iSpLib, and COO (Coordinate) format is used for DGL as
per the library requirement. The framework automatically
generates sparse minibatches in the correct format when the
user specifies the underneath SpMM library.

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

6 RESULTS

6.1 Hyperparameter Selection

Knowledge graphs are primarily used for link prediction
tasks (Gregucci et al., 2023). Hits@10 is a popular mea-
surement of link prediction accuracy. We train the KG mod-
els on various embedding sizes and plot the corresponding
Hits@10 accuracy in Figure-5. We observe that accuracy
increases as the entity embedding size grows. We keep the
number of positive and negative edges equal within a batch
for each model.

Figure 5. Hits@10 accuracy w.r.t. embedding size for FB15K
dataset. 100 epoch training with a batch size of 32768 and relation
entity dimension as 8 (for TransH model). The TransH model en-
counters out-of-memory issues when the embedding size exceeds
256. Other models converge at an embedding size of approxi-
mately 2048 and show no improvement in Hits@10 accuracy for
larger embeddings.

Figure 6. Training time and GPU memory allocation w.r.t. Batch
Size. 100 epoch training with entity dimension as 128 and relation
dimension as 8 (for TransH model).

Another significant hyperparameter is the batch size. We
plot model training time and GPU memory allocation for
various batch sizes in Figure 6. We observe that maximum
CUDA memory utilization is possible when the largest batch
size is used. It also corresponds to the fastest training time.

6.2 Training Performance

We measure the total training time, GPU memory allocation,
CPU Cache miss, and FLOPs count for various datasets
on the available models of the frameworks mentioned in
subsection 5.2.

6.2.1 Training Time

The total training time for various datasets on CPU and GPU
are shown in Figure 7. Our implementation outperforms
all frameworks for both CPU and GPU. The speedup is
consistent for both small and large datasets.

SpTransX models exhibit good speedup on CPU and GPU
systems. The speedups are consistent across datasets for
the same model. We observe the most speedup in the
TransE model. This is because, for this model, the compu-
tational bottleneck is the embedding gradient computation
(see Figure 2). We eliminate this bottleneck by replacing
fine-grained embedding scatter-gather with SpMM, which
results in faster training time and efficient GPU memory
usage (due to lower intermediate variable usage).

Although TorusE uses the same scoring function, we do not
observe the same amount of speedup in this model com-
pared to TransE. This is because the primary computational
bottleneck in this model is not always the embedding com-
putation but the torus L2 dissimilarity function (marked as
yellow boxes in Figure 2).

Among TransR and TransH, TransR is computationally
more demanding. However, we still manage to perform
better in TransR compared to TransH because the computa-
tional graph of TransH is much larger than TransR, and the
embedding computation (or SpMM in our case) accounts
for a lower percentage of system time compared to TransR.
This means SpTransX has less impact on TransH compared
to TransR.

6.2.2 GPU Memory Usage

Our implementations of the models take up significantly
less CUDA memory than other frameworks. Table 5 demon-
strates the average CUDA memory allocation for various
frameworks and our implementations.

Table 5. Average CUDA memory allocation for various models (in
GB)

MODEL SPTRANSX TORCHKGE DGL-KE PYG

TRANSE 5.61 13.55 11.37 13.54
TRANSR 13.65 20.42 30.73 -
TRANSH 0.28 3.1 - -
TORUSE 12.03 15.87 - -

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

(a) CPU

(b) GPU

Figure 7. Total training time for CPU and GPU for various datasets. The slowdown factors of each framework compared to SpTransX are
shown along the bars.

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

(a) CPU (b) GPU

Figure 8. Breakdown of total training time for CPU and GPU on average of 7 datasets

SpTransX is optimized for GPU memory usage by limiting
the model size to tensors only necessary during the training
time. Furthermore, the SpMM accounts for fewer interme-
diate variables, reducing the memory footprint. We observe
the highest GPU memory efficiency in the TransH model,
around 11↘ more efficient than TorchKGE on average. This
is because the training loop uses linear algebraic imple-
mentation (discussed in subsection 4.5) and reuses several
expressions to reduce unnecessary GPU memory allocation.

6.2.3 Breakdown of Training Time

Each model training epoch consists of loss calculation (for-
ward propagation), gradient computation (backward call),
and parameter update (optimizer step). The chart in Figure
8 shows the average breakdown of the three steps for the
frameworks.

We observe that SparsTransX improves the average forward
propagation time for both CPU and GPU. It also outper-
forms backward computation for all cases except in TransR
with DGL-KE for both GPU and CPU. DGL-KE uses the
heterograph data structure instead of a regular triplet array
and updates the backward gradients manually through the
DGL graph API. This results in an unusually long parame-
ter update time for DGL-KE in the CPU. This issue is not
present in GPU since DGL-KE has a separate GPU imple-
mentation. Despite the slower backward time, SpTransX
outperforms DGL-KE in terms of overall training time.

Table 6. Average FLOPs count of 7 datasets (factor of ↑1010)

MODEL SPTRANSX TORCHKGE DGL-KE PYG

TRANSE 220 483.87 293.06 483.82
TRANSR 567.37 1157.94 874.67 -
TRANSH 9.66 19.58 - -
TORUSE 289.99 387.93 - -

6.2.4 FLOPs count and Cache Miss Rate

We measure the FLOPs count for our CPU implementation
and the cache miss rate. SpTransX exhibits a lower FLOP
count than other frameworks for all models on average, as
shown in Table 6. It uses high-performance SpMM that
typically uses fewer floating-point operations than regular
non-sparse implementations. This results in the lowest aver-
age FLOP count for SpTransX compared to all frameworks
for all models.

Table 7. Average cache miss rate of 7 datasets (in %)

MODEL SPTRANSX TORCHKGE DGL-KE PYG

TRANSE 26.54 29.37 29.99 29.04
TRANSR 17.02 19.20 29.54 -
TRANSH 10.43 9.75 - -
TORUSE 21.53 22.94 - -

Table 7 lists the average cache miss rates. We observe that
SpTransX performs better in all cases except for the TransH
model. In this case, SparseTransX has a slightly higher
cache miss rate than its peer, TorchKGE. This is because
the impact of SpMM is small in the TransH model, and
other operations overshadow the improved cache miss rate
obtained by the efficient SpMM.

6.2.5 Model Accuracies

The sparse approach does not change the computational
steps and thus does not affect the model accuracy. The ac-
curacies of our implementations are consistent with that of
other models, such as TorchKGE. For 100 epochs training
on WN18 datasets with a fixed learning rate of 0.0004, Sp-
TransX’s TransE, TorusE, and TransH models receive 0.72,
0.63, and 0.59 Hits@10 scores, whereas TorchKG’s models
receive 0.74, 0.63, and 0.60. A more detailed evaluation
(discussed in Appendix E) reveals that SpTransX achieves
similar or better Hits@10 accuracy compared to TorchKGE
when the training loop is equipped with a learning rate

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

scheduler.

7 CONCLUSION

Despite the inherent sparsity of knowledge graphs and their
embedding algorithms, existing frameworks often do not
leverage sparse matrix operations to accelerate the train-
ing of KGE models. We develop sparse formulations of
translation-based KGE models that significantly outper-
form established knowledge graph frameworks, such as
TorchKGE and DGL-KE, particularly regarding training
time and GPU memory usage. Our findings demonstrate
that the proposed approach consistently achieves improved
performance across a range of both small and large datasets.
We design a PyTorch-based library named SparseTransX
that incorporates the sparse formulation methods for Knowl-
edge Graph models and can demonstrate the aforementioned
performance gains. The design of the library is flexible, and
it can potentially perform distributed training once coupled
with PyTorch Distributed Data Parallel (DDP) and Fully
Sharded Data Parallel (FSDP) wrappers.

Our sparse approach has multiple benefits. By using sparse
representations, we reduce memory usage during training,
which allows us to work with larger knowledge graphs with-
out exhausting GPU resources. The efficiency improve-
ments in training time come from optimizing matrix op-
erations. Given the extensive research in parallel sparse
matrix operations and the availability of highly optimized
libraries, our approach paves the way for faster computa-
tions and enhanced scalability for larger knowledge graphs.
We believe this work will inspire further advancements in
the development of robust and scalable knowledge graph
frameworks.

ACKNOWLEDGEMENTS

This research is supported by the NSF OAC-2112606 and
OAC-2339607 grants and DOE DE-SC0022098 and DE-
SC0023349 awards.

REFERENCES

Ali, M., Berrendorf, M., Hoyt, C. T., Vermue, L., Shar-
ifzadeh, S., Tresp, V., and Lehmann, J. Pykeen 1.0:
a python library for training and evaluating knowledge
graph embeddings. Journal of Machine Learning Re-
search, 22(82):1–6, 2021.

Azad, A., Pavlopoulos, G. A., Ouzounis, C. A., Kyrpides,
N. C., and Buluç, A. Hipmcl: a high-performance parallel
implementation of the markov clustering algorithm for
large-scale networks. Nucleic Acids Research, 46(6):
e33–e33, 2018.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Burges, C., Bottou, L., Welling,
M., Ghahramani, Z., and Weinberger, K. (eds.), Advances
in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013.

Bordes, A., Glorot, X., Weston, J., and Bengio, Y. A se-
mantic matching energy function for learning with multi-
relational data: Application to word-sense disambigua-
tion. Machine Learning, 94:233–259, 2014.

Boschin, A. TorchKGE: knowledge graph embedding in
python and pytorch. arXiv preprint arXiv:2009.02963,
2020.

Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., and
Duan, Z. Knowledge graph completion: A review. IEEE
Access, 8:192435–192456, 2020.

Colin, R. Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn. Res., 21:
140–1, 2020.

Costabello, L., Bernardi, A., Janik, A., Creo, A., Pai, S.,
Van, C. L., McGrath, R., McCarthy, N., and Tabacof, P.
AmpliGraph: a Library for Representation Learning on
Knowledge Graphs, March 2019. URL https://doi.
org/10.5281/zenodo.2595043.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

Ebisu, T. and Ichise, R. Toruse: Knowledge graph em-
bedding on a lie group. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Fan, M., Zhou, Q., Chang, E., and Zheng, F. Transition-
based knowledge graph embedding with relational map-
ping properties. In Proceedings of the 28th Pacific Asia
conference on language, information and computing, pp.
328–337, 2014.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gregucci, C., Nayyeri, M., Hernández, D., and Staab, S.
Link prediction with attention applied on multiple knowl-
edge graph embedding models. In Proceedings of the
ACM Web Conference 2023, pp. 2600–2610, 2023.

https://doi.org/10.5281/zenodo.2595043
https://doi.org/10.5281/zenodo.2595043
https://aclanthology.org/N19-1423

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Han, X., Cao, S., Xin, L., Lin, Y., Liu, Z., Sun, M., and Li,
J. Openke: An open toolkit for knowledge embedding.
In Proceedings of EMNLP, 2018.

He, S., Liu, K., Ji, G., and Zhao, J. Learning to represent
knowledge graphs with gaussian embedding. In Proceed-
ings of the 24th ACM international on conference on
information and knowledge management, pp. 623–632,
2015.

Hoque Anik, M. S., Badhe, P., Gampa, R., and Azad, A.
iSpLib: a library for accelerating graph neural networks
using auto-tuned sparse operations. In Companion Pro-
ceedings of the ACM on Web Conference 2024, pp. 778–
781, 2024.

Hu, Y., Ye, Z., Wang, M., Yu, J., Zheng, D., Li, M., Zhang,
Z., Zhang, Z., and Wang, Y. FeatGraph: a flexible and
efficient backend for graph neural network systems. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–13.
IEEE, 2020.

Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. Knowledge
graph embedding via dynamic mapping matrix. In Pro-
ceedings of the 53rd annual meeting of the association
for computational linguistics, pp. 687–696, 2015.

Ji, G., Liu, K., He, S., and Zhao, J. Knowledge graph com-
pletion with adaptive sparse transfer matrix. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

Kim, B., Hong, T., Ko, Y., and Seo, J. Multi-task learning
for knowledge graph completion with pre-trained lan-
guage models. In Proceedings of the 28th international
conference on computational linguistics, pp. 1737–1743,
2020.

Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose,
A., and Peysakhovich, A. Pytorch-biggraph: A large
scale graph embedding system. Proceedings of Machine
Learning and Systems, 1:120–131, 2019.

Lin, Y., Liu, Z., Sun, M., Liu, Y., and Zhu, X. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of the AAAI conference on
artificial intelligence, volume 29, 2015.

Lv, X., Hou, L., Li, J., and Liu, Z. Differentiating concepts
and instances for knowledge graph embedding. arXiv
preprint arXiv:1811.04588, 2018.

Nguyen, D. Q., Nguyen, T. D., Nguyen, D. Q., and Phung,
D. A novel embedding model for knowledge base com-
pletion based on convolutional neural network. arXiv
preprint arXiv:1712.02121, 2017.

Nickel, M., Tresp, V., Kriegel, H.-P., et al. A three-way
model for collective learning on multi-relational data. In
International conference on machine learning, volume 11,
pp. 3104482–3104584, 2011a.

Nickel, M., Tresp, V., Kriegel, H.-P., et al. A three-way
model for collective learning on multi-relational data. In
ICML, volume 11, pp. 3104482–3104584, 2011b.

Nickel, M., Tresp, V., and Kriegel, H.-P. Factorizing yago:
scalable machine learning for linked data. In Proceedings
of the 21st international conference on World Wide Web,
pp. 271–280, 2012.

Radford, A. Improving language understanding by gen-
erative pre-training. https://openai.com/index/language-
unsupervised/, 2018.

Rahman, M. K., Sujon, M. H., and Azad, A. Batchlayout:
A batch-parallel force-directed graph layout algorithm
in shared memory. In 2020 IEEE Pacific Visualization
Symposium (PacificVis), pp. 16–25. IEEE, 2020a.

Rahman, M. K., Sujon, M. H., and Azad, A. Force2vec:
Parallel force-directed graph embedding. In 2020 IEEE
International Conference on Data Mining (ICDM), pp.
442–451. IEEE, 2020b.

Rahman, M. K., Sujon, M. H., and Azad, A. FusedMM:
A unified SDDMM-SpMM kernel for graph embedding
and graph neural networks. In 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS),
pp. 256–266. IEEE, 2021.

Ranawaka, I., Hussain, M. T., Block, C., Gerogiannis, G.,
Torrellas, J., and Azad, A. Distributed-memory parallel
algorithms for sparse matrix and sparse tall-and-skinny
matrix multiplication. In SC24: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pp. 1–17. IEEE, 2024.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R.,
Titov, I., and Welling, M. Modeling relational data with
graph convolutional networks. In The semantic web: 15th
international conference, ESWC 2018, Heraklion, Crete,
Greece, June 3–7, 2018, proceedings 15, pp. 593–607.
Springer, 2018.

Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowl-
edge graph embedding by relational rotation in complex
space. arXiv preprint arXiv:1902.10197, 2019.

Tabassum, A., Kannan, R., Yin, J., Lim, S.-H., Cong, G.,
Hasan, S., Patton, R., and Potok, T. E. Knowledge
graph embedding using large language models for covid-
19. Technical report, Oak Ridge National Laboratory
(ORNL), Oak Ridge, TN, USA, 2024.

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and
Bouchard, G. Complex embeddings for simple link pre-
diction. In International conference on machine learning,
pp. 2071–2080. PMLR, 2016.

Wang, L., Zhao, W., Wei, Z., and Liu, J. SimKGC: simple
contrastive knowledge graph completion with pre-trained
language models. arXiv preprint arXiv:2203.02167,
2022.

Wang, M. Y. Deep graph library: Towards efficient and
scalable deep learning on graphs. In ICLR workshop on
representation learning on graphs and manifolds, 2019.

Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge
graph embedding by translating on hyperplanes. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 28, 2014.

Xiao, H., Huang, M., Hao, Y., and Zhu, X. Transa: An
adaptive approach for knowledge graph embedding. arXiv
preprint arXiv:1509.05490, 2015.

Xiao, H., Huang, M., and Zhu, X. TransG: a generative
model for knowledge graph embedding. In Proceedings
of the 54th Annual Meeting of the Association for Com-
putational Linguistics, pp. 2316–2325, 2016.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Em-
bedding entities and relations for learning and inference
in knowledge bases. arXiv preprint arXiv:1412.6575,
2014a.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L. Em-
bedding entities and relations for learning and inference
in knowledge bases. arXiv preprint arXiv:1412.6575,
2014b.

Ye, Z., Lai, R., Shao, J., Chen, T., and Ceze, L. Sparsetir:
Composable abstractions for sparse compilation in deep
learning. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pp. 660–
678, 2023.

Yu, S. Y., Rokka Chhetri, S., Canedo, A., Goyal, P., and
Faruque, M. A. A. Pykg2vec: A python library for knowl-
edge graph embedding. arXiv preprint arXiv:1906.04239,
2019.

Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong, J.,
Xiong, H., Zhang, Z., and Karypis, G. DGL-KE: train-
ing knowledge graph embeddings at scale. In Proceed-
ings of the 43rd international ACM SIGIR conference on
research and development in information retrieval, pp.
739–748, 2020.

Zheng, D., Song, X., Zhu, Q., Zhang, J., Vasiloudis, T.,
Ma, R., Zhang, H., Wang, Z., Adeshina, S., Nisa, I.,
et al. GraphStorm: all-in-one graph machine learning
framework for industry applications. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 6356–6367, 2024.

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

A ARTIFACT EVALUATION

A.1 Abstract

We provide a guideline to reproduce the training
times for one of the datasets reported in this pa-
per. We share a publicly available GitHub reposi-
tory (https://github.com/OnixHoque/sptransx-mlsys2025-
reproduce) containing two bash scripts and a Jupyter Note-
book that generate the workflow. The first bash script installs
the frameworks needed to compare the performance with
SpTransX and generates the environments required to run
them. Another bash script runs the actual CPU and GPU
experiments and stores the training times into text files. We
include a validation Jupyter Notebook that performs pro-
cessing on these text files and generates tables that depict
Figure 7 of the paper (for FB15K dataset). The experiments
are run on one of the seven datasets (FB15K). The training
time is computed for a single minibatch to keep the work-
flow short. The validation notebook approximates the total
training time by multiplying the number of batches with the
calculated training time. We further discuss how to run the
workflow and perform validation from the generated results
(also available in the Readme file of the GitHub repository).
Please note that SpTransX is referred to as FastKG (former
name) in the workflow.

A.2 Artifact check-list (meta-information)
• Algorithm: TransE, TransR, TransH, TorusE (Knowledge

Graph Embedding Training Models)

• Program: PyTorch

• Compilation: Conda, PIP, Python 3.7 and Python 3.8

• Data set: FB15K Knowledge Graph Dataset

• Run-time environment: Conda, GCC

• Hardware: A CPU (preferably AMD) with 64 cores and
512GB DDR4 memory. An NVIDIA GPU with 40GB
VRAM.

• Run-time state: Training Time

• Execution: Bash Script and Jupyter Notebook (requires
CUDA for GPU experiments)

• Metrics: Training Time (in seconds)

• Output: Table showing total training time and slowdown
factors of other frameworks

• Experiments: Performs a single minibatch training on
FB15K dataset for 200 epochs for all models available in all
four frameworks in CPU and GPU

• How much disk space required (approximately)?: 50 GB

• How much time is needed to prepare workflow (approxi-
mately)?: 3 hours

• How much time is needed to complete experiments (ap-
proximately)?: 3 hours

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Workflow framework used?: Bash Scripts and Jupyter
Notebook

• Archived (provide DOI)?: Not generated yet

A.3 Description

A.3.1 How delivered

The workflow is available in the following GitHub repository:
https://github.com/OnixHoque/sptransx-mlsys2025-reproduce.

A.3.2 Hardware dependencies

The CPU and GPU experiments were run on dedicated CPU/GPU
(single) nodes of NERSC Perlmutter. Their configurations are
given below. The parameters are set to maximize CPU/GPU uti-
lization. Similar configurations are recommended to reproduce the
results. The CPU configuration is AMD EPYC 7763 (Milan) CPU
with 64 cores and 512GB DDR4 memory. The GPU configuration
is a single NVIDIA A100-SXM4 GPU with 40 GB VRAM.

A.3.3 Software dependencies

The experiments were tested on the following configuration.

• GCC 12.2

• Conda 24.9.1

• Python 3.9 (3.8 for DGLKE)

• PyTorch 2.3.1 (1.7.1 for DGLKE)

• CUDAToolKit 12.1 (11.0 for DGLKE)

A.3.4 Datasets

FB15K dataset is used in the workflow. It is one of the seven
datasets used in the paper. It is included in the repository.

A.4 Environment Installation
To set up the environments, clone the GitHub repository and run
the following command. It will create two virtual environments.
One specific to DGLKE, and another for the rest.

./0.setup_environments.sh

A.5 Experiment Workflow
To run the experiments, execute the following command.

./1.run_experiments.sh

It will generate the training time of a single minibatch training for
various models and frameworks of the FB15K dataset. The outputs
will be saved in cpu.txt and gpu.txt.

https://github.com/OnixHoque/sptransx-mlsys2025-reproduce
https://github.com/OnixHoque/sptransx-mlsys2025-reproduce
https://github.com/OnixHoque/sptransx-mlsys2025-reproduce

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

A.6 Evaluation and Expected Result
To generate the table of Figure 7 (for FB15K) in the paper, execute
the Jupyter Notebook 2.validation.ipynb. It will parse the generated
text files and produce the tables for CPU and GPU for the FB15k
dataset. The table includes the total training time and the slowdown
factors of each framework compared to SpTransX.

It is expected that SpTransX is up to 5↑ and 4↑ faster in CPU and
GPU, respectively, compared to other frameworks. The Jupyter
Notebook contains the expected tables for both CPU and GPU
from past experiments.

A.7 Notes
Please note that SpTransX is referred to as FastKG (former name)
in the workflow.

B APPLICABILITY OF SPARSETRANSX FOR
DENSE GRAPHS

Even for fully dense graphs, our KGE computations remain highly
sparse. This is because our SpMM leverages the incidence matrix
for triplets, rather than the graph’s adjacency matrix. In the paper,
the sparse matrix A ↓ {→1, 0, 1}M↓(N+R) represents the triplets,
where N is the number of entities, R is the number of relations, and
M is the number of triplets. This representation remains extremely
sparse, as each row contains exactly three non-zero values (or
two in the case of the ”ht” representation). Hence, the sparsity of
this formulation is independent of the graph’s structure, ensuring
computational efficiency even for dense graphs.

C COMPUTATIONAL COMPLEXITY

For a sparse matrix A with m ↑ k having nnz(A) = number
of non zeros and dense matrix X with k ↑ n dimension, the
computational complexity of the SpMM is O(nnz(A) · n) since
there are a total of nnz(A) number of dot products each involving
n components. Since our sparse matrix contains exactly three
non-zeros in each row, nnz(A) = 3m. Therefore, the complexity
of SpMM is O(3m · n) or O(m · n), meaning the complexity
increases when triplet counts or embedding dimension is increased.
Memory access pattern will change when the number of entities
is increased and it will affect the runtime, but the algorithmic
complexity will not be affected by the number of entities/relations.

D APPLICABILITY TO
NON-TRANSLATIONAL MODELS

Our paper focused on translational models using sparse opera-
tions, but the concept extends broadly to various other knowledge
graph embedding (KGE) methods. Neural network-based models,
which are inherently matrix-multiplication-based, can be seam-
lessly integrated into this framework. Additionally, models such as
DistMult, ComplEx, and RotatE can be implemented with simple
modifications to the SpMM operations. Implementing these KGE
models requires modifying the addition and multiplication opera-
tors in SpMM, effectively changing the semiring that governs the
multiplication.

In the paper, the sparse matrix A ↓ {→1, 0, 1}M↓(N+R) repre-
sents the triplets, and the dense matrix E ↓ R(N+R)↓d represents

the embedding matrix, where N is the number of entities, R is the
number of relations, and M is the number of triplets. TransE’s
score function, defined as h+ r → t, is computed by multiplying
A and E using an SpMM followed by the L2 norm. This oper-
ation can be generalized using a semiring-based SpMM model:
Zij =

⊕n
k=1(Aik ↔ Ekj)

Here, ↗ represents the semiring addition operator, and ↔ rep-
resents the semiring multiplication operator. For TransE, these
operators correspond to standard arithmetic addition and multipli-
cation, respectively.

DistMult
DistMult’s score function has the expression h↘ r ↘ t. To adapt
SpMM for this model, two key adjustments are required: The
sparse matrix A stores +1 at the positions corresponding to hidx,
tidx, and ridx. Both the semiring addition and multiplication opera-
tors are set to arithmetic multiplication. These changes enable the
use of SpMM for the DistMult score function.

ComplEx
ComplEx’s score function has h↘ r ↘ t̄, where embeddings are
stored as complex numbers (e.g., using PyTorch). In this case,
the semiring operations are similar to DistMult, but with complex
number multiplication replacing real number multiplication.

RotatE
RotatE’s score function has h↘ r→ t. For this model, the semiring
requires both arithmetic multiplication and subtraction for ↗. With
minor modifications to our SpMM implementation, the semiring
addition operator can be adapted to compute h↘ r → t.

Support from other libraries
Many existing libraries, such as GraphBLAS (Kimmerer, Raye,
et al., 2024), Ginkgo (Anzt, Hartwig, et al., 2022), and Gunrock
(Wang, Yangzihao, et al., 2017), already support custom semirings
in SpMM. We can leverage C++ templates to extend support for
KGE models with minimal effort.

Table 8. Average of 9 Hits@10 Accuracy for WN18 dataset
Model TorchKGE SpTransX
TransE 0.79 ± 0.001700 0.79 ± 0.002667
TransR 0.29 ± 0.005735 0.33 ± 0.006154
TransH 0.76 ± 0.012285 0.79 ± 0.001832
TorusE 0.73 ± 0.003258 0.73 ± 0.002780

E MODEL PERFORMANCE EVALUATION
AND CONVERGENCE

SpTransX follows a slightly different loss curve (see Figure 9)
and eventually converges with the same loss as other non-sparse
implementations such as TorchKGE. We test SpTransX with the
WN18 dataset having embedding size 512 (128 for TransR and
TransH due to memory limitation) and run 200-1000 epochs. We
compute average Hits@10 of 9 runs with different initial seeds
and a learning rate scheduler. The results are shown below. We
find that Hits@10 is generally comparable to or better than the

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Figure 9. Loss curve for sparse and non-sparse approach. The sparse approach eventually reaches the same loss value with similar
Hits@10 test accuracy.

Hits@10 achieved by TorchKGE.

F PRELIMINARILY EXPERIMENT ON
SCALING

Communication can be a significant bottleneck in distributed KGE
training when using sparse-dense matrix multiplication (SpMM)
kernels. We perform a preliminary experiment to observe the scal-
ing capacity of SparseTransX for the TransE model using a large
knowledge graph dataset, COVID-19 (Tabassum et al., 2024). We
wrap the model in the Data Distributed Parallel (DDP) wrapper pro-
vided by PyTorch and train the model to 64 NVIDIA A100 GPUs
to observe scaling behaviour. DDP (Distributed Data Parallel)
trains a model by replicating it across multiple GPUs, synchroniz-
ing gradients during backpropagation to ensure consistent updates.
The training times for various GPUs are reported in Table 9.

Table 9. Scaling TransE model on COVID-19 dataset with 60,820
entities, 62 relations, and 1,032,939 triplets (Tabassum et al., 2024)

Number of GPUs 500 epoch time (seconds)
4 706.38
8 586.03

16 340.00
32 246.02
64 179.95

It indicates that communication is not a bottleneck up to 64 GPUs.
If communication becomes a performance bottleneck at larger
scales, we plan to explore alternative communication-reducing
algorithms, including 2D and 3D matrix distribution techniques,
which are known to minimize communication overhead at extreme
scales. Additionally, we will incorporate model parallelism along-
side data parallelism for large-scale knowledge graphs.

G BACKPROPAGATION OF SPMM
Our main computational kernel is the sparse-dense matrix multipli-
cation (SpMM). The computation of backpropagation of an SpMM
w.r.t. the dense matrix is also another SpMM. To see how, let’s

consider the sparse-dense matrix multiplication AX = C which
is part of the training process. As long as the computational graph
reduces to a single scaler loss L, it can be shown that εC

εX = A
T .

Here, X is the learnable parameter (embeddings), and A is the
sparse matrix. Since A

T is also a sparse matrix and εL
εC is a dense

matrix, the computation εL
εX = εC

εX ↑ εL
εC = A

T ↑ εL
εC is an

SpMM. This means that both forward and backward propagation
of our approach benefit from the efficiency of a high-performance
SpMM.

Proof that ωC
ωX = AT

To see why εC
εX = A

T is used in the gradient calculation, we can
consider the following small matrix multiplication without loss of
generality.

A =

[
a1 a2

a3 a4

]

X =

[
x1 x2

x3 x4

]

C =

[
c1 c2

c3 c4

]

Where C = AX , thus-

c1 = f(x1, x3)

c2 = f(x2, x4)

c3 = f(x1, x3)

c4 = f(x2, x4)

Therefore-

εL

εx1
=

εL

εc1
↑ εc1

εx1
+

εL

εc2
↑ εc2

εx1
+

εL

εc3
↑ εc3

εx1
+

εL

εc4
↑ εc4

εx1

=
εL

εc1
↑ εc1

εx1
+ 0 +

εL

εc3
↑ εc3

εx1
+ 0

= a1 ↑
εL

εc1
+ a3 ↑

εL

εc3

SparseTransX: Efficient Training of Translation-Based Knowledge Graph Embeddings Using Sparse Matrix Operations

Similarly-

εL

εx2
= a1 ↑

εL

εc2
+ a3 ↑

εL

εc4

εL

εx3
= a2 ↑

εL

εc1
+ a4 ↑

εL

εc3

εL

εx4
= a2 ↑

εL

εc2
+ a4 ↑

εL

εc4

This can be expressed as a matrix equation in the following
manner-

εL

εX
=

εC

εX
↑ εL

εC

=≃
[

εL
εx1

εL
εx2

εL
εx3

εL
εx4

]
=

εC

εX
↑

[
εL
εc1

εL
εc2

εL
εc3

εL
εc4

]

By comparing the individual partial derivatives computed earlier,
we can say-

[
εL
εx1

εL
εx2

εL
εx3

εL
εx4

]
=

[
a1 a3

a2 a4

]
↑

[
εL
εc1

εL
εc2

εL
εc3

εL
εc4

]

=≃
[

εL
εx1

εL
εx2

εL
εx3

εL
εx4

]
= A

T ↑
[

εL
εc1

εL
εc2

εL
εc3

εL
εc4

]

=≃ εL

εX
= A

T ↑ εL

εC

↭ εC

εX
= A

T

