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Active Gradient Manipulation for Privacy Breaching

in Vertical Federated Learning
Tre’ R. Jeter – Minh N. Vu, Raed Alharbi, Jung Taek Seo, and My T. Thai∗

Abstract—Federated Learning (FL) has emerged as a promis-
ing approach for privacy-preserving collaborative machine learn-
ing. Specifically, vertical FL (vFL) allows various devices in multi-
agent systems to collectively train models on vertically partitioned
data while safeguarding sensitive information. Recent research
on vFL privacy analysis primarily explores passive settings
where attackers adhere to the FL protocol. This perspective
may underestimate the threats posed by vFL, as practical
adversaries can deviate from the protocol to enhance their attack
capabilities. In response, this work proposes two novel active
data reconstruction attacks to compromise data privacy. Each
attack induces gradient manipulation during the training phase
to breach data privacy. Including an Active Inversion Network
(AIN), our first attack exploits a subset of known data in the
training set to make passive parties train an auto-encoder (AE)
to reconstruct their private data. The second attack introduces
an Active Generative Network (AGN) that relies only on the data
distribution to train a conditional generative adversarial network
(C-GAN) for private feature reconstruction. Our experiments
demonstrate the effectiveness of both attacks in three real-
world datasets: MNIST, CIFAR10, and USCensus. Additionally,
we provide valuable insights and guidelines for enhancing the
security of vFL systems through the application of calibrated
noise via Local Differential Privacy (LDP).

Impact Statement—Vertical Federated Learning (vFL) enables
organizations to collaboratively train machine learning models on
vertically partitioned data while preserving privacy. For instance,
healthcare providers and insurance companies often need to col-
laborate on patient cases but cannot share overlapping informa-
tion. Healthcare providers retain medical records, imaging data,
and clinical notes, while insurance companies hold claims, policy
details, and payment history. Personally Identifiable Information
(PII) such as names, social security numbers, and financial details
are never shared. However, existing research has underestimated
the capabilities of real-world attackers in reconstructing PII from
shared data. To address this, we introduce two novel active attack
scenarios consisting of an Active Inversion Network (AIN) and an
Active Generative Network (AGN), highlighting the critical need
for robust defenses in vFL systems beyond the passive scope.
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I. INTRODUCTION

Federated Learning (FL) allows multiple parties to jointly

train machine learning models without sharing their sensitive

data. Vertical FL (vFL) is a variant of FL that allows multiple

parties to jointly train while using different features of the

same dataset [1], [2]. vFL’s primary objective is to enable

collaborative model training that fully leverages vertically

partitioned and distributed data while preserving the privacy

of sensitive information. The adoption of vFL in Large-Scale

Multi-Agent Systems has experienced a notable increase in

recent years. This rise is credited to its ability to address

challenges associated with data privacy, training efficiency, and

decentralized control. These advantages have been exemplified

in diverse sectors such as local banks, insurance companies,

and healthcare facilities [3]–[5].

Given that vFL involves multiple parties, not all of whom

can be fully trusted, it is crucial to prevent malicious par-

ticipants from compromising sensitive data. While prior re-

search has suggested that data protection is enhanced when

distributed parties use their own datasets and avoid sharing

data, the potential for malicious participants to exploit privacy

vulnerabilities in vFL remains a concern. In particular, vFL has

proven to be susceptible to label inference [6], [7], data re-

construction [8], [9], and property inference attacks [9], during

training and inference phases. To counter, provisional defense

strategies have been introduced [10], [11]. However, both

attack and defense strategies have not fully conveyed vFL’s

privacy risks since they under-exploit the realistic capabilities

of adversarial participants. In fact, all previous studies consider

the passive setting, in which adversarial participants still abide

by the system protocol. Previous threat models overlook the

privacy risks posed by active adversaries who can deviate from

the protocol without detection [12]–[14].

To our knowledge, this work introduces the first inves-

tigation on active privacy attacks conducted by an actively

malicious party. Note that ”active party” and ”passive party”

refer to the participants in vFL who own or does not own

the labels, respectively. On the other hand, the ”active” or

”passive” denotation of our privacy attacks indicates whether

the attacker deviates from the protocol. Under the active

setting, we investigate how effectively an active party can

reconstruct the private training data of passive parties by

deviating from the protocol. Differing from previously ex-

amined passive privacy breaches, our attacks manipulate the
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gradients computed during training and transmits them to the

passive parties. This manipulation allows the adversary to

subsequently exploit these gradients to reveal the data of each

passive participant during the inference phase.

Our primary contributions include:

• We introduce a novel data reconstruction attack, consist-

ing of an Active Inversion Network (AIN), which ma-

nipulates gradients during training by leveraging a small

portion of publicly available data. This attack deceives

passive parties into training an auto-encoder (AE) that

reconstructs their private features.

• We propose a second reconstruction attack, consisting

of an Active Generative Network (AGN), designed for

scenarios where the attacker lacks direct knowledge of

private features. The AGN exploits the training data dis-

tribution by guiding passive parties to train a conditional

generative adversarial network (C-GAN) that reconstructs

private features based on known attributes.

• Extensive experiments on three real-world

datasets—MNIST [15], CIFAR10 [16], and

USCensus [17]—demonstrate that our attacks

significantly improve private data reconstruction

compared to passive attacks in vFL.

• Additionally, we evaluate the effectiveness of our attacks

on data protected by Local Differential Privacy (LDP),

analyzing the trade-offs between model performance and

privacy across different tasks and datasets.

Organization. The manuscript is structured as follows: Sec-

tion II covers relevant background on traditional FL, vFL, data

reconstruction attacks in vFL, and the LDP defensive mecha-

nism. Section III describes notations adopted in this paper and

our threat models in the active setting. Section IV provides

the descriptions of our proposed active data reconstruction

attacks consisting of an Active Inversion Network (AIN) and

Active Generative Network (AGN). A thorough experimental

evaluation is discussed in Section V. Section VI discusses

possible defense strategies to mitigate the proposed attacks.

Section VII concludes the paper.

II. BACKGROUND AND RELATED WORKS

This section covers relevant background information and

related works. We start with brief descriptions of FL and vFL.

Then, we summarize well-known data reconstruction attacks

executed while training neural networks in vFL. Next, we

provide a brief introduction to LDP. Finally, we discuss the

limited research within the active attack setting and explain

the additional contributions made in this work.

A. Federated Learning

Initially introduced by Google [18], FL is designed for

scenarios involving cross-device collaboration, where many

devices work together to train a deep learning model with

the assistance of a central server. Particularly, FL is an iter-

ative learning framework and the most common versions use

gradient descent [19]. The central server randomly initializes

global model parameters at the start of the process. In each

iteration of training, a random subset of clients is selected to

participate. Selected users obtain the global parameters from

the server to compute their local gradients based on their local

dataset. The computed gradients are uploaded to the server for

aggregation into a new global model. The server redistributes

the global model parameters to a new randomly selected subset

of clients. This iterative process continues until the global

model converges.

(a) Horizontal Federated Learning (b) Vertical Federated Learning

Figure 1: Two types of Federated Learning.

B. Vertical Federated Learning

Influenced by how data is divided among users, FL typically

takes two primary forms: horizontal and vertical. In the

horizontal setting (hFL), all participants share the same feature

space while working with distinct data samples (Figure 1a).

Conversely, in the vertical setting (vFL), each participant

maintains different sets of features while sharing the same

set of data samples (Figure 1b) [2]. In this context, labels are

regarded as special features owned by a participant known

as the active party. All other participants are referred to as

passive parties. Each party in vFL maintains its own local

model. Both training and inference phases in vFL necessitate

the sharing of intermediate results (signals) among parties.

The need for vFL has increased considerably across vari-

ous industries. For instance, companies and institutions with

limited and fragmented data have actively sought partnerships

in advanced artificial intelligence technology to optimize data

utilization [20], [21]. At the same time, the growing global

concerns about data leakages and breaches have raised the

bar for privacy and security. As a result, numerous privacy-

preserving initiatives supporting vFL have emerged and gar-

nered significant attention [3]–[5], [22].

The general training procedure for vFL comprises two

phases: Entity Alignment (EA) and Privacy-Preserving Train-

ing (PPT). During the EA phase, the objective is to match

features from the same samples to facilitate collaborative train-

ing. In practice, EA typically utilizes Private Set Intersection

(PSI) methods to identify shared sample IDs while keeping

the unaligned dataset private. Once the alignment process is

complete, the participating parties can begin the PPT phase

using the aligned samples. PPT most commonly employs

gradient descent techniques [19]. In this approach, instead of

sharing their local data, the involved parties send their local

model outputs and the corresponding gradients. The attacks

described in this work occur during the training phase and a

more comprehensive description of the vFL training procedure

is provided in Section III.
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C. Data Reconstruction Attacks on Neural Networks in vFL

In recent years, several feature inference attacks have been

introduced to deduce features from neural networks. These

attacks typically focus on scenarios in which the active party

acts as an attacker seeking to infer the private features of

passive parties. An attacker may or may not know the passive

party’s model architecture and parameters, which, correspond

to the white-box and black-box settings, respectively. White-

box settings primarily employ two methods: Model Inversion

(MI) and Gradient Inversion (GI). White-box MI methods [8],

[9], [23] generally optimize for inferred features that yield

model outputs closely resembling the actual outputs. In con-

trast, Jin et al. present CAFE [10], a GI attack that aims to find

the feature with gradients similar to the actual gradients. In the

black-box setting, Ye et al. [11] proposed a Binary Feature

Inference (BFI) attack to reconstruct binary features from

passive parties, assuming that the local models are made up

of just one fully-connected layer. In black-Box MI attacks [8],

[23], an attacker first trains a shadow model f̂i mimicking the

local model fi. Then, the attacker substitutes fi for f̂i and

carries out the attack as in the white-box setting. When the

attacker is allowed to query the passive parties, He et al. in [8]

demonstrate that a direct inversion model g′ can be learned to

reconstruct the input features from the intermediate features.

Table I provides a summary of existing attacks. Note that each

of these methods only observe the gradients or the intermediate

signals of vFL without maliciously changing them to breach

privacy; thus, they belong to the class of passive attacks.

TABLE I: Data Reconstruction Attacks on Neural Networks

in vFL. Auxiliary Requirements for the attacks is denoted as

Aux. Req., Binary Features is denoted as Bin. Feat., Auxiliary

Training Data is denoted as Aux. Data, and Data Dist. indicates

the need for knowledge about the data distribution.

Attack Setting Type Aux. Req.

CAFE [10] White-box Passive –
White-Box MI [8], [9], [23] White-box Passive –

Black-Box MI [8] Black-box Passive Aux. Data
BFI [11] Black-box Passive Bin. Feat.

AIN (Ours) Black-box Active Aux. Data
AGN (Ours) Black-box Active Data Dist.

D. FL with Local Differential Privacy and Other Defenses

Local Differential Privacy (LDP) [24], [25] is a privacy-

enhancing technique designed to protect individuals’ sensitive

information while still extracting useful insights from the data.

LDP operates in a decentralized manner, where each data point

is perturbed with carefully crafted random noise before it is

shared. As such, LDP has been recognized as a solution to

alleviate the privacy risks associated with gradient sharing in

FL systems. ε-LDP conditioned on an algorithm is defined as:

Definition 1. [ε-LDP]: A randomized algorithm M fulfills ε-

LDP, if for any two inputs x and x′, and for all possible outputs

O ∈ Range(M), we have: Pr[M(x) = O] f eεPr[M(x′) =
O], where ε is a privacy budget. We use the notation Mε to

refer to an algorithm that satisfies ε-LDP.

Intuitively, a smaller privacy budget ε implies a higher

privacy guarantee and a lower model performance as the

distortion between Mε(x) and x is higher.

However, specialized defense strategies have also been

introduced to more efficiently thwart specific privacy attacks.

Jin et al. introduce Random Fake Gradients [10] as a defense

against CAFE that replaces the true gradients with randomly

generated ones. Ye et al.’s Masquerade Defense [11] defeats

BFI attacks by guiding attackers to prioritize randomly gen-

erated features instead of the true features.

E. Additional Contributions

Vu et al. introduced the foundational concepts and initial

attack models for the Active Inversion Network (AIN) and

Active Generative Network (AGN) in vFL [26], primarily

within a two-party system, as seen in [8]. This paper extends

that work by adapting the two-party vFL framework to a

more realistic multiparty setting, assessing the impact of active

attacks across varying numbers of passive participants. Sec-

tion V demonstrates that these attacks remain highly effective

across three real-world datasets. Additionally, we expand the

discussion on defenses by conducting an experimental analysis

of Local Differential Privacy (LDP) via BitRand [27], exam-

ining its trade-offs between model performance and privacy

across different tasks and applications.

III. NOTATIONS AND ACTIVE THREAT MODELS

Prior research primarily concentrated on scenarios in which

attackers aimed to extract the victim’s information while

adhering to the system protocol. The server in this scenario is

typically described as honest-but-curious or semi-malicious.

However, this perspective does not fully encompass the po-

tential vulnerabilities of the vFL system, as a participant can

diverge from the protocol to mount more aggressive privacy

attacks [12]–[14]. In this paper, we primarily focus on the

training of neural networks within a vFL framework, where

the complete model is divided among various parties. We

specifically explore the concerns related to the active party,

i.e., the one who owns the labels and has the capability to

modify the training gradients (Figure 2a). Our investigation

reveals that by manipulating these gradients, the malicious

active party can coerce passive parties into training models

capable of effectively inferring their private features. Conse-

quently, this amplifies the attack’s capabilities compared to

passive scenarios. Our study focuses on the black-box setting

where the attacker has no knowledge of the passive parties’

models or parameters. We opt for the black-box setting to

better illustrate the advantages active adversaries have over

passive ones.

A. Protocol and Related Notations

We consider a vFL system where K +1 parties collaborate

to train a neural network for a classification task. The training

dataset D = {(xn, yn)}
N
n=1 is stored locally without sharing,

where n is the data index. Each party is associated with

a unique feature set. In particular, a sample xn ∈ D is
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(a) Normal vFL (b) AIN with AE (c) AGN with C-GAN

Figure 2: Illustrations of a three-party vFL system under normal operation and our proposed attacks. The portions the active

party controls are shown in colors. The forwarding and back-propagating directions are shown in solid and dashed arrows,

respectively. The green and red in 2c represent two different training phases of the attacker. While the generator G is trained

to recover the input, the discriminator D learns to differentiate generated inputs from original data.

partitioned into [xn,0, · · · , xn,K+1], where xn,k is the k-th

partition of the n-th sample. The only participant that has

the label, the active party, is associated with index 0. The

other participants, the passive parties, are referred to by the

remaining indices.

As illustrated in Figure 2a, since only the active party has

the labels, it handles the aggregation of intermediate signal

zn,k sent from passive users k. By denoting the encoder of user

k by fk, we can express the intermediate outputs as zn,k =
fk(xn,k), and the final output of the forwarding computation

of the vFL model as:

ŷn = g ([f0(xn,0), · · · , fK+1(xn,K+1)]) (1)

where g denotes the aggregating model owned by the active

party. In a normal training round, the loss on a local dataset

D is given as:

L(θ;D) =
1

N

N∑

n=1

l (θ;xn, yn) + λ
K∑

k=0

γ(θ) (2)

where θ, l, γ and λ are the vFL model’s parameters, training

loss, regularizing function, and the controlling hyperparameter

for regularization, respectively. The active party updates the

parameters of its encoder f0 and the aggregation model g,

denoted by θ0 and θg , based on the gradients ∇θ0L(θ;D) and

∇θgL(θ;D), respectively. The shorthand is written as ∇θ0L
and ∇θgL, respectively. The final activity during one iteration

of training is sending the gradients ∇θkL from the active party

to the passive user k so that the user can locally update θk
without sharing its parameters and data.

B. Settings of Active Attacks

In active attacks, the active party can tamper with the

distributed gradients to manipulate the models of the passive

parties. For instance, as depicted in Figures 2b and 2c, our

proposed attacks use an auto-encoder (AE) reconstruction loss

LAE and a generative binary cross-entropy loss LBCE to

compute the gradients sent to other parties. As described

in both figures, the active attacks can also modify the later

components of the vFL models to improve their ability to infer

private information. In each scenario, the passive parties lack

knowledge of the encoder f0 of the active user and the later

layers of the training model so, they have no clear means of

detecting whether the gradients have been tampered.

We consider two attackers in two different scenarios. In

the first scenario, the attacker knows a subset of the training

data, denoted as auxiliary data DAUX ¢ D. This can also be

considered as the case of the limited-query threat model [8]

where the active party can send inference queries toward the

passive parties. In that context, the number of inference queries

is equivalent to the size of DAUX. This scenario suggests the

attacker knows both xn,k and fk(xn,k) for xn in the auxiliary

data DAUX and only knows fk(xn,k) for xn in the rest of the

data D\DAUX. From the practical perspective, the assumption

depicts the situation when the active party collaboratively

trains a model with participants who possess exclusive values

of a set of specialized features. While only the local owners

have the values of those features; the active party might have

those values for some samples used during training. An exam-

ple of this scenario is when a central hospital collaboratively

develops a deep learning model with a specialized healthcare

center. The inputs of the model are patients’ records with some

features only accessible by the specialized healthcare center.

However, the central hospital might have the values of those

features for some records before training.

In the second scenario, we consider an attacker that only

knows the data distribution (|DAUX| = 0). This model applies

to real-world scenarios where the active party has a sufficient

amount of data to represent the feature distribution [28] or

where the attacker can sample data directly from the data

distribution. For instance, this situation is similar to the

earlier hospital example where a central hospital maintains

a comprehensive database of patient records containing all the

features used by the model. Even if these data samples are not

utilized in the vFL training process, the attack considered in

this scenario can be executed by the central hospital as long

as the training data stems from the same distribution.

Although our threat models are applicable to vFL systems

with more than two participants, we adhere to the approach

outlined in [8] and focus on two-party systems, consisting

of one active party and one passive party. Expanding these

attacks to multi-party systems can be accomplished by treating
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all passive parties as a single entity. The key distinction in

this generalization lies in the architecture of the combined

models among the passive parties. For instance, in a multi-

party setting, the model f2 does not have access to features

such as xn,1. We do, however, provide an experiment involving

a multi-party system as a preliminary result in Section V.

The result indicates that there are minimal differences among

settings (Table IV).

IV. ACTIVE DATA RECONSTRUCTION ATTACKS

This section provides the descriptions for our proposed

attacks. They are designed for cases in which the adversarial

active party does not know the architecture and the parameters

of local models fk. Liu et al. [29] theoretically showed

that, without additional information, the private features xn,k

cannot be exactly recovered and established the fundamental

challenge of inference attacks on black-box models. From a

practical viewpoint, not knowing the local models prevents

the attacker from computing the intermediate signals zn; thus,

thwarting MI and GI attacks from solving for features resulting

in zn or gradients based on zn. However, our proposed attacks

depend on an under-explored capability of the active party

in vFL. In our attacks, the active party has control over

the gradients sent toward the passive users. As discussed

in Section III-B, both of our attacks operate on a minimal

assumption regarding information about the private training

data. Another key difference in our proposed active attacks,

compared to previous passive attacks, is the inclusion of the

passive users’ local models. While passive attacks consider the

local models determined, our attacks exploit the gradients to

manipulate them to enhance privacy breaches.

A. Active Inversion Network

Our first attack includes an Active Inversion Network (AIN)

aiming to train an inverse network h to recover private features

(Figure 2b). The attacker manipulates the returned gradients,

thereby deceiving passive users into jointly training the ad-

versarial inverse network. Specifically, the attacker leverages

a batch of auxiliary data points known before the training

and utilizes a loss function such as Mean-Squared-Error

(MSE), to compute corresponding gradients. These gradients

are then transmitted to passive users. Upon updating their

local parameters with these gradients, the passive users’ local

models undergo training for the adversarial reconstruction

task. As a result, intermediate signals zn,k produced by these

models post-adversarial training become more effective in

reconstructing private input features.

Training the Active Inversion Network. Algorithm 1 shows

the pseudocode of the AIN when given the intermediate

signal from passive users during one training iteration of

vFL, which consists of three main tasks: data filtering for the

computation of the reconstruction loss (lines 2-8), updating

the attacker’s local parameters (lines 9-10), and sending the

manipulated gradients to the passive users (line 12). The

adversarial reconstruction loss to train the inverse network is:

LAE(X̂,X) =
1

|X|

|X|∑

n=1

∥x̂n − xn∥
2 (3)

Algorithm 1 AIN Training Step

Input: Intermediate activations {zn,k}
n=B,k=K+1
n=1,k=1

Parameter: Reconstruction loss LAE , learning rate µ
Given: Intermediate activations {zn,0}

B
n=1, xn if xn ∈ DAUX

Output: None

1: c = 0, X̂ = empty array, X = empty array

\\ Filtering training batch B in DAUX

2: for n = 1 to B do

3: if xn ∈ DAUX then

4: c = c+ 1
5: x̂n = h([zn,0, · · · , zn,K+1])
6: X[c] = xn, X̂[c] = x̂n

7: end if

8: end for

\\ Updating active party’s parameters

9: θ
(t+1)
h = θ

(t)
h − µ∇

θ
(t)
h

LAE(X̂,X)

10: θ
(t+1)
f0

= θ
(t)
f0

− µ∇
θ
(t)
f0

LAE(X̂,X)

\\ Computing and sending adversarial gradients

11: for user k = 1 to K + 1 do

12: Send ∇zn,k
LAE(X̂,X) to user k

13: end for

where X is the set of inputs that appear in both training

and auxiliary batches of data. X̂ is the output of h on the

intermediate signal zn resulting from those xn ∈ X . With

that, the AIN training can be formalized as:

Active User: argmin
θ0,h

LAE(X̂,X) (4)

Passive User k: argmin
θk

LAE(X̂,X) (5)

While the local updating serves as the attacker’s optimization

(4), the gradient-sending is for the passive parties optimization

(5). The gradients of the passive parties are given by:

∇θkLAE =
∂LAE

∂θk
=

∑

n

∂LAE

∂zn,k

∂zn,k
∂θk

(6)

Reconstructing Data with the Active Inversion Network.

When the training of h is complete, the active party is able

to recover any private inputs from the intermediate signals,

given that it can compute xn ≈ h(zn). Note that the more

data in DAUX, the better the reconstruction capability and the

stronger the attack. As the access to DAUX of the active user is

hardly ever noticed in practice, our AIN-based attack signifies

the importance in designing a more secure vFL protocol.

B. Active Generative Network

Our second attack, comprises an Active Generative Network

(AGN), tailored for scenarios where no auxiliary data is avail-

able. The AGN draws inspiration from Generative Adversarial

Networks (GANs) [30], comprising of a generator and a

discriminator. In a GAN setup, the generator produces fake

data samples mimicking real samples from the distribution.

The discriminator aims to distinguish between the real data

samples from the distribution and the fake samples generated

by the generator. However, GANs typically generate samples
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Algorithm 2 AGN Training Step

Input: Intermediate activations {zn,k}
n=B,k=K+1
n=1,k=1

Parameter: BCE loss LBCE (as specified in Eq. 7 and 8),

discriminator learning rate µD, generator learning rate µG,

Given: Input features {xn,0}
B
n=1 and intermediate activations

{zn,0}
B
n=1

Output: None

1: Xreal = empty array, Xfake = empty array

\\ Generating training batch B for discriminator D
2: for n = 1 to B do

3: Sample xreal from Px

4: xfake = G([zn,0, · · · , zn,K+1])
5: xfake,0 = xn,0

6: Include xreal to Xreal and xfake to Xfake

7: end for

\\ Updating the adversarial discriminator D

8: θ
(t+1)
D = θ

(t)
D − µDLBCE(D(Xreal), 1)

−µDLBCE(D(Xfake), 0)
\\ Updating adversarial generator G

9: θ
(t+1)
G = θ

(t)
G − µG∇θ

(t)
G

LBCE(D(Xfake), 1)

\\ Computing and sending adversarial gradients

10: for user k = 1 to K + 1 do

11: Send ∇zn,k
LBCE(D(Xfake), 1) to user k

12: end for

via random noise and are not inherently designed for recon-

struction or inference tasks. To address this limitation, the

AGN takes advantage of the information known to the active

party about the target sample, i.e., xn,0 and potentially yn,

to guide the GAN generator in returning xn rather than an

arbitrary sample from the data distribution. In this regard,

the AGN exhibits similarities with the conditional generative

adversarial network (C-GAN) [31], a modified GAN that

conditions data generation based on additional information.

Training the Active Generative Network. Algorithm 2 out-

lines the pseudocode for the AGN in a single vFL training

iteration, comprising four key steps. First is the generation of

the batch data to train the discriminator (lines 2-7). The real

data is sampled from the known distribution Px while the fake

data is generated from the intermediate activations. To enforce

the knowledge of the active party on the target sample xn,

the portion of the original sample xn,0 that the active party

knows is updated onto the fake sample (line 5). Note that our

current implementation and algorithm only exploits xn,0, not

yn. The second step is the update of the discriminator which

is the same as in the standard GAN training. In particular, the

discriminator is updated with the Binary Cross-Entropy (BCE)

loss (line 8) whose description is:

LBCE(Y, 1) =
1

|X|

∑

n

log(yn) (7)

LBCE(Y, 0) =
1

|X|

∑

n

log(1− yn) (8)

Next is updating the generator. In contrast to the discriminator

which is trained to recognize the fake sample with the loss

LBCE(D(Xfake), 0), the generator aims to generate data

from the distribution Px with the loss LBCE(D(Xfake), 1)
(line 9). The final step of this attack is to send the manipulated

gradients ∇zn,k
LBCE(D(Xfake), 1) to the passive users. This

makes the users jointly train the generator G.

Reconstructing Data with the Active Generative Network.

During the inference phase, the attacker reconstructs the

private data using the generator:

x̂n = G([zn,0, · · · , zn,K+1]), x̂n,0 = xn,0

where [zn,0, · · · , zn,K+1] are the received intermediate sig-

nals. This is also the computation of xfake at lines 4 and 5 of

Algorithm 2. As the generator is trained to produce x̂n that

closely resembles the training data and its 0-th partition x̂n, 0
aligns with that of the original input xn, the generator tends

to recover x̂ ≈ x. Intuitively, the more xn,0 are known by

the attacker, the higher the likelihood that x̂n becomes similar

to xn. We conduct an experiment to illustrate this claim in

Section V (Table III).

The key advantage of the AGN compared to the AIN is that

it does not need to know any features used for training, which

makes the attack much stealthier. Given the swift expansion of

real-world public data, assuming the active party can access

or cheaply sample data from the distribution is increasingly

realistic. As a result, the AGN-based attack serves as a direct

illustration of real-world privacy threats.

V. EXPERIMENTS

This section presents the results of our experiments, demon-

strating the efficacy of our proposed attacks in reconstructing

real-world private data within a vFL framework. Our primary

objective is to underscore the inherent privacy threats an active

attacker can attain by circumventing the vFL protocol.

A. Experimental Settings

We implement our experiments with Python 3.8. Each

experiment is conducted on a single GPU-assisted compute

node installed with a Linux 64-bit operating system. Our

testbed resources include 36 CPU cores with 60GB of RAM

and 2 threads per core. Our allocated node is also provisioned

with 8 GPUs with 80GB of VRAM per GPU.

Datasets. Our experiments are conducted on three real-

world datasets: MNIST [15] (hand-written image dataset),

CIFAR10 [16] (image dataset), and USCensus taken from the

UCI Machine Learning Repository [17] (tabular dataset). The

two image datasets are commonly used in vision tasks while

the USCensus contains a one percent sample with 68 features

of the Public Use Microdata Samples records. The features

of the image datasets are normalized into a range between 0

and 1. The 68 categorical features of the USCensus dataset

are preprocessed into 396 binary features. Table II shows the

general information of our experiments reported in this work.

The DAUX and DTRAIN indicate the sizes of the auxiliary and

training datasets for the respective attacking methods.

Simulating the Passive Parties. In practice, the model’s

components for passive users are chosen based on the applica-

tions at hand. In our evaluation, we use Multi-layer Perceptron

(MLP) and Convolutional (Conv.) layers for the image datasets

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2025.3556094

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on April 15,2025 at 19:25:12 UTC from IEEE Xplore.  Restrictions apply. 



FIRST A. AUTHOR et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 7

TABLE II: Configurations and Parameters of our experiments.

Dataset Dimension DAUX DTRAIN Attacks Victim Module (fi) Attacker Modules

MNIST 1× 28× 28

50-3000 N/A MLP AIN 2-layer MLP encoder 2-layer MLP decoder
50-3000 N/A Conv. AIN 2-layer MLP encoder 2-layer CNN decoder

N/A 50000 AGN 2-layer MLP encoder 4-layer CNN generator and 4-layer CNN discriminator

CIFAR10 3× 32× 32

50-2000 N/A MLP AIN 3-layer CNN encoder 2-layer MLP decoder
50-2000 N/A Conv. AIN 3-layer CNN encoder 2-layer CNN decoder

N/A 50000 AGN 1-layer MLP encoder 2-layer CNN generator and 4-layer CNN discriminator

USCensus 68
50-3000 N/A AIN 3-layer MLP encoder 3-layer MLP decoder

N/A 100000 AGN 1-layer MLP encoder 3-layer MLP generator and 3-layer MLP discriminator

and only MLPs for the tabular dataset. The hyperparameters of

the layers are selected based on the common tasks conducted

on the datasets: image classifications (MNIST/CIFAR10) and

data clustering (USCensus). Table II also provides a brief

description of the hyperparameter configurations.

Attacker Configurations. The model’s components on the

active party’s side are directly under the control of the attacker

in the threat models. Hence, it can select different architectures

as well as fine-tune their parameters for better-reconstructed

signals. In our AIN-based attack on MNIST and CIFAR10,

we use two different architectures, namely MLP and Conv. in

which the decoder’s architectures use MLP and Conv. layers,

respectively. All other experiments use MLPs.

Evaluation Metrics. We quantify our results in image datasets

with the Peak Signal-to-Noise Ratio (PSNR), which measures

the pixel level recovery quality of the image and is defined as:

PSNR(x̂, x) = 20 log10 (max(x)/MSE)

where maxi(x) is the maximum possible value of pixels in the

original image x and MSE is the reconstruction loss between

the original image x and the recovered image x̂. Since the

features are categorical for the USCensus dataset, we also use

accuracy to evaluate the attacking results. All reported results

are obtained with at least 10 runs.

Benchmark. Although no prior work exists on active data

reconstruction attacks in vFL, black-box attacks have also

proven to be limited (Table I). Therefore, we compare our

proposed attack methods with the black-box MI method in [8]

and refer to it as the benchmark in our results. Compared

to our methods, the benchmark has two main differences.

First, it is a passive attack conducted during the inference

phase instead of the training phase. Second, since the attack

is during the inference phase, it does not involve the update

and manipulation of the model’s components of the passive

parties. The configuration of the model architecture used for

the benchmark is an MLP as in the original paper. Since

models for tabular data are not provided in [8], our results

on tabular data exclude the benchmark.

B. Experimental Results

General Performance. Figures 3 and 4 visually illustrate the

effectiveness of our reconstruction attacks on MNIST and

CIFAR10. For both figures, the top row indicates the target

inference in the test set, and the remaining rows are recovered

images from different attack methods. Since we consider a

two-party vFL system, each party holds half of the images. In

these experiments, we consider an active attacker that holds the

Figure 3: Reconstructed samples from MNIST. Our attack

methods are highlighted in bold. The notations 1K and 2K

refer to the size of the auxiliary dataset DAUX.

Figure 4: Reconstructed samples from CIFAR10. Our attack

methods are highlighted in bold. The notations 1K and 2K

refer to the size of the auxiliary dataset DAUX.

lower half of the images and its goal is to reconstruct the upper

half. Therefore, the resulting PSNRs are calculated only on the

upper half. However, Figures 3 and 4 show the reconstructed

images in their entirety for more intuitive visualizations.

Our attack methods are highlighted in bold. For both

datasets, the AIN refers to the Conv. AIN in which the decoder

uses Convolutional layers for the decoder h (Figure 2b). We

can see that our adversaries can accurately recover the images

with competitive performance. While the AIN approach can

be better than the AGN with just the knowledge of 1000

training samples in MNIST, the AGN approach proves to

be much better in the more complex CIFAR10 dataset. It

is also clear that, with the same amount of auxiliary data,

the AIN-based attack performs significantly better than the

benchmark in terms of PSNR. In fact, even with 2000 samples,

the recovered CIFAR10 images of the passive benchmark are

hardly recognizable. These results clearly demonstrate the gain

of active attackers over passive ones.

Impact of the Size of the Auxiliary Dataset DAUX.

Figure 5 provides thorough evaluations of different attacks

with different sizes of auxiliary data. The results on image
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Figure 5: PSNR (dB) of reconstructed data samples in MNIST and CIFAR10 along with accuracy of reconstructed features in

USCensus. The AGN-based attack does not require DAUX so, its results are plotted in a straight line for convenient comparison.

TABLE III: Accuracy and PSNR (dB) of our AGN-based attack on the USCensus dataset with varying numbers of known

features. The dataset contains a total of 68 features.

No. of Known Features 50 46 38 30 22 14

Accuracy 99.73± 0.10 99.36± 0.06 99.28± 0.24 98.69± 0.40 97.65± 0.55 95.90± 0.34
PSNR (dB) 52.55± 3.05 44.18± 0.70 43.52± 2.51 38.20± 2.31 33.00± 1.93 27.98± 0.65

datasets show that by manipulating the later layers of

the training (Conv. AIN), the attacker can significantly

improve the reconstructed signal. Notably, the AGN approach

outperforms all methods in CIFAR10. This observation

can be attributed to the increased complexity of CIFAR10

compared to MNIST, indicating that our AIN methods and

the benchmark would require a larger number of samples to

match the performance of the generative approach.

For the USCensus dataset, our attacks aim to infer at least

half (34/68) of the private features of the input samples. While

the AGN can consistently achieve ≈ 99% of inference, the

AIN needs ≈ 3000 data samples to reach the same perfor-

mance. Since there is no available passive attack for tabular

data, we cannot include the passive benchmark. However, the

results have demonstrated that our methods work competitively

for both image and tabular data.

Impact of the Number of Known Features. The more fea-

tures the attacker knows, the easier to infer the remaining

private features. In fact, Table III reports the results of our

AGN-based attack on the USCensus dataset with different

numbers of known features and reflects the above statement.

The table includes both the accuracy and the PSNR of the

reconstructed features for better illustration. The PSNR is

computed by considering the tabular features as vectors with

components between 0 and 1. Note that our AIN-based attack

does not rely on the known features, thus the analysis is only

meaningful for our second attack comprised of the AGN. It is

important to note that with just 14 features, our AGN approach

is capable of inferring the remaining 54 features with almost

96% accuracy. This observation suggests that even limiting the

number of known features might not be an effective approach

to mitigate this active attack.

Impact of the Number of Passive Parties. When the num-

ber of parties increases, the neurons of different parties are

more disconnected. This means that, compared to the case of

the single passive party, the multi-party vFL settings do not

TABLE IV: Accuracy and PSNR (dB) of our attacks on the

USCensus dataset varying different numbers of passive users.

No. of Passive Users 1 2 4

AGN
Accuracy 98.81 98.30 98.11

PSNR (dB) 38.96 35.73 34.86

AIN
Accuracy 95.69 86.42 86.54

PSNR (dB) 27.17 26.87 28.52

have trainable weights among neurons belonging to different

parties. Analyzing the impact of this modification on the attack

is not trivial. On one hand, it may decrease the expressive

power of the AIN approach due to the absence of cross-user

weights. On the other hand, it may also help the AIN-based

attack avoid over-fitting as there is a reduction in the number

of total parameters.

We implement three vFL systems using the USCensus

dataset with 1, 2, and 4 passive users to heuristically study

the impact of the number of passive parties on both of

our attacks. The number of features owned by each user in

those systems is 40, 20, and 10, respectively. Each user’s

module fi is a 1-layer MLP. Table IV reports the PSNR and

the accuracy of our AGN and AIN-based attacks with the

described configurations. We can see that there is no clear

indicator of which number of users is more susceptible to

the attacks even though 1 passive user seems to result in a

higher reconstructed accuracy. One meaningful observation is

that changing the number of participants might not help to

prevent active data reconstruction attacks.

VI. DISCUSSION OF DEFENSES

This section discusses possible defense strategies to mitigate

the attacks studied in this paper.

Deeper Client Modules or Specific Client’s Architectures?

Previous studies on passive attacks recommend increasing

the depth of client-side modules and running fully connected

layers before sending out results [8]. These recommendations
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Figure 6: Accuracy and PSNR (dB) of reconstructed data samples from MNIST and CIFAR10 along with accuracy of

reconstructed features from the USCensus dataset under the BitRand [27] LDP-mechanism.

are primarily tailored for passive settings, assuming that the

active party cannot manipulate the weights of the client’s

modules. However, in active settings, where these modules

participate in adversarial inference during training, these

modifications provide limited protection. For example, the

attacker can counteract a deeper client module by reducing

the depth of their own components. Additionally, deeper

networks increase the computational demands on the client-

side. In practice, the client or device might lack the necessary

computational power, storage capacity, or battery resources

to implement these recommendations effectively.

Avoid Public Data During Training? Given that our AIN-

based attack exploits public data used during the training

phase, one apparent strategy to counter these attacks is to

abstain from using public data altogether. Conversely, the AGN

approach relies on data distribution, and in certain specialized

circumstances, offering minimal information about the data

might enhance privacy. Nonetheless, it is important to note

that neither of these approaches can be considered entirely

reliable because information about private features and data

distribution can still be obtained through side channels.

Defense with Local Differential Privacy. Acknowledged as

a solution to address the privacy concerns arising from the

sharing of gradients, LDP operates on the principle of random-

ized response [32]. Figure 6 reports our experiments evaluating

our attacks when BitRand [27] is applied to the input data.

Figure 7: Samples of reconstructed data by the AGN attack

on the MNIST dataset with different privacy budgets ε. Note

that the attacker has the bottom half of the input.

For the image datasets, we provide the black curves indi-

cating the test set accuracy of a neural network trained in the

classification tasks with respect to different privacy budgets ε.

From the model’s performance perspective, we can see that the

model performance in MNIST begins to drop when ε = 10,

and significantly drops when ε < 8. From the attacker’s point

of view, we provide Figure 7 showing the reconstructed signal

of our AGN method for MNIST samples. We can see that

only when ε f 9, the attack starts to fail to reconstruct the

inputs. Therefore, the result of MNIST demonstrates clearly

the trade-off between model performance and data privacy. We

can also observe that trade-off in experiments of CIFAR10.

For example, if we want the model to maintain an accuracy

> 90%, the privacy budget ε needs to be about 9. However,

around that range, the PSNR of the recovered signal is about

30 dB, at which, the reconstructed features are blurry, but still

recognizable (Figure 4). Since the USCensus dataset does not

have the labels for the classification task, we simply report the

accuracy of our attacks in Figure 6. The results indicate the

performance of our attacks in LDP-protected tabular data is

not that much different from how they perform in image data.

Particularly, the attack performance starts to drop significantly

around ε ≈ 8.

The takeaway here is that implementing LDP-protecting

mechanisms can provide some defense against our proposed

attack. Nevertheless, it is essential to recognize that there

exists an obvious trade-off between performance and privacy.

Determining the appropriate privacy budget requires additional

examination and assessment based on the specific applications.

It is also essential to be aware that the usage of LDP-

protecting mechanisms might significantly burden the passive

participant’s devices in terms of computational complexity and

energy consumption.

VII. CONCLUSION

Our work exposes critical privacy vulnerabilities in vertical

Federated Learning (vFL), demonstrating how an active party

can manipulate gradients during local training to reconstruct

private data. We introduce two novel attack methods—one

leveraging a small set of known training samples and the

other exploiting the underlying data distribution—both of

which reveal significant privacy risks in vFL systems. These

findings highlight the urgent need for strengthening existing

defenses, such as Local Differential Privacy (LDP), while also

addressing the inherent trade-off between model performance

and privacy. Beyond identifying these security challenges, our
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study provides practical insights for improving vFL protocols

to mitigate adversarial threats. By encouraging further research

into adaptive privacy mechanisms and strategies for balancing

performance, privacy, and security, this work aims to guide

the development of more resilient vFL systems for secure

deployment in real-world applications.
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