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Active Gradient Manipulation for Privacy Breaching
in Vertical Federated Learning

Tre’ R. Jeter — Minh N. Vu, Raed Alharbi, Jung Taek Seo, and My T. Thai*

Abstract—Federated Learning (FL) has emerged as a promis-
ing approach for privacy-preserving collaborative machine learn-
ing. Specifically, vertical FL (vFL) allows various devices in multi-
agent systems to collectively train models on vertically partitioned
data while safeguarding sensitive information. Recent research
on VFL privacy analysis primarily explores passive settings
where attackers adhere to the FL protocol. This perspective
may underestimate the threats posed by vFL, as practical
adversaries can deviate from the protocol to enhance their attack
capabilities. In response, this work proposes two novel active
data reconstruction attacks to compromise data privacy. Each
attack induces gradient manipulation during the training phase
to breach data privacy. Including an Active Inversion Network
(AIN), our first attack exploits a subset of known data in the
training set to make passive parties train an auto-encoder (AE)
to reconstruct their private data. The second attack introduces
an Active Generative Network (AGN) that relies only on the data
distribution to train a conditional generative adversarial network
(C-GAN) for private feature reconstruction. Our experiments
demonstrate the effectiveness of both attacks in three real-
world datasets: MNIST, CIFAR10, and USCensus. Additionally,
we provide valuable insights and guidelines for enhancing the
security of VFL systems through the application of calibrated
noise via Local Differential Privacy (LDP).

Impact Statement—Vertical Federated Learning (vFL) enables
organizations to collaboratively train machine learning models on
vertically partitioned data while preserving privacy. For instance,
healthcare providers and insurance companies often need to col-
laborate on patient cases but cannot share overlapping informa-
tion. Healthcare providers retain medical records, imaging data,
and clinical notes, while insurance companies hold claims, policy
details, and payment history. Personally Identifiable Information
(PID) such as names, social security numbers, and financial details
are never shared. However, existing research has underestimated
the capabilities of real-world attackers in reconstructing PII from
shared data. To address this, we introduce two novel active attack
scenarios consisting of an Active Inversion Network (AIN) and an
Active Generative Network (AGN), highlighting the critical need
for robust defenses in VFL systems beyond the passive scope.
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I. INTRODUCTION

Federated Learning (FL) allows multiple parties to jointly
train machine learning models without sharing their sensitive
data. Vertical FL (vFL) is a variant of FL that allows multiple
parties to jointly train while using different features of the
same dataset [1], [2]. VFL’s primary objective is to enable
collaborative model training that fully leverages vertically
partitioned and distributed data while preserving the privacy
of sensitive information. The adoption of VFL in Large-Scale
Multi-Agent Systems has experienced a notable increase in
recent years. This rise is credited to its ability to address
challenges associated with data privacy, training efficiency, and
decentralized control. These advantages have been exemplified
in diverse sectors such as local banks, insurance companies,
and healthcare facilities [3]-[5].

Given that vFL involves multiple parties, not all of whom
can be fully trusted, it is crucial to prevent malicious par-
ticipants from compromising sensitive data. While prior re-
search has suggested that data protection is enhanced when
distributed parties use their own datasets and avoid sharing
data, the potential for malicious participants to exploit privacy
vulnerabilities in VFL remains a concern. In particular, vFL has
proven to be susceptible to label inference [6], [7], data re-
construction [8], [9], and property inference attacks [9], during
training and inference phases. To counter, provisional defense
strategies have been introduced [10], [11]. However, both
attack and defense strategies have not fully conveyed vFL’s
privacy risks since they under-exploit the realistic capabilities
of adversarial participants. In fact, all previous studies consider
the passive setting, in which adversarial participants still abide
by the system protocol. Previous threat models overlook the
privacy risks posed by active adversaries who can deviate from
the protocol without detection [12]-[14].

To our knowledge, this work introduces the first inves-
tigation on active privacy attacks conducted by an actively
malicious party. Note that “active party” and ’passive party”
refer to the participants in vFL who own or does not own
the labels, respectively. On the other hand, the “active” or
“passive” denotation of our privacy attacks indicates whether
the attacker deviates from the protocol. Under the active
setting, we investigate how effectively an active party can
reconstruct the private training data of passive parties by
deviating from the protocol. Differing from previously ex-
amined passive privacy breaches, our attacks manipulate the
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gradients computed during training and transmits them to the
passive parties. This manipulation allows the adversary to
subsequently exploit these gradients to reveal the data of each
passive participant during the inference phase.

Our primary contributions include:

« We introduce a novel data reconstruction attack, consist-
ing of an Active Inversion Network (AIN), which ma-
nipulates gradients during training by leveraging a small
portion of publicly available data. This attack deceives
passive parties into training an auto-encoder (AE) that
reconstructs their private features.

o« We propose a second reconstruction attack, consisting
of an Active Generative Network (AGN), designed for
scenarios where the attacker lacks direct knowledge of
private features. The AGN exploits the training data dis-
tribution by guiding passive parties to train a conditional
generative adversarial network (C-GAN) that reconstructs
private features based on known attributes.

« Extensive experiments on three real-world
datasets—MNIST [15], CIFAR10 [16], and
USCensus  [17]—demonstrate  that our attacks
significantly improve private data reconstruction

compared to passive attacks in vFL.

« Additionally, we evaluate the effectiveness of our attacks
on data protected by Local Differential Privacy (LDP),
analyzing the trade-offs between model performance and
privacy across different tasks and datasets.

Organization. The manuscript is structured as follows: Sec-
tion II covers relevant background on traditional FL, vFL, data
reconstruction attacks in vFL, and the LDP defensive mecha-
nism. Section III describes notations adopted in this paper and
our threat models in the active setting. Section IV provides
the descriptions of our proposed active data reconstruction
attacks consisting of an Active Inversion Network (AIN) and
Active Generative Network (AGN). A thorough experimental
evaluation is discussed in Section V. Section VI discusses
possible defense strategies to mitigate the proposed attacks.
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORKS

This section covers relevant background information and
related works. We start with brief descriptions of FL and vFL.
Then, we summarize well-known data reconstruction attacks
executed while training neural networks in vFL. Next, we
provide a brief introduction to LDP. Finally, we discuss the
limited research within the active attack setting and explain
the additional contributions made in this work.

A. Federated Learning

Initially introduced by Google [18], FL is designed for
scenarios involving cross-device collaboration, where many
devices work together to train a deep learning model with
the assistance of a central server. Particularly, FL is an iter-
ative learning framework and the most common versions use
gradient descent [19]. The central server randomly initializes
global model parameters at the start of the process. In each
iteration of training, a random subset of clients is selected to
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participate. Selected users obtain the global parameters from
the server to compute their local gradients based on their local
dataset. The computed gradients are uploaded to the server for
aggregation into a new global model. The server redistributes
the global model parameters to a new randomly selected subset
of clients. This iterative process continues until the global
model converges.
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Figure 1: Two types of Federated Learning.

B. Vertical Federated Learning

Influenced by how data is divided among users, FL typically
takes two primary forms: horizontal and vertical. In the
horizontal setting (hFL), all participants share the same feature
space while working with distinct data samples (Figure 1a).
Conversely, in the vertical setting (VFL), each participant
maintains different sets of features while sharing the same
set of data samples (Figure 1b) [2]. In this context, labels are
regarded as special features owned by a participant known
as the active party. All other participants are referred to as
passive parties. Each party in vFL maintains its own local
model. Both training and inference phases in VFL necessitate
the sharing of intermediate results (signals) among parties.

The need for vFL has increased considerably across vari-
ous industries. For instance, companies and institutions with
limited and fragmented data have actively sought partnerships
in advanced artificial intelligence technology to optimize data
utilization [20], [21]. At the same time, the growing global
concerns about data leakages and breaches have raised the
bar for privacy and security. As a result, numerous privacy-
preserving initiatives supporting VFL have emerged and gar-
nered significant attention [3]-[5], [22].

The general training procedure for vFL comprises two
phases: Entity Alignment (EA) and Privacy-Preserving Train-
ing (PPT). During the EA phase, the objective is to match
features from the same samples to facilitate collaborative train-
ing. In practice, EA typically utilizes Private Set Intersection
(PSI) methods to identify shared sample IDs while keeping
the unaligned dataset private. Once the alignment process is
complete, the participating parties can begin the PPT phase
using the aligned samples. PPT most commonly employs
gradient descent techniques [19]. In this approach, instead of
sharing their local data, the involved parties send their local
model outputs and the corresponding gradients. The attacks
described in this work occur during the training phase and a
more comprehensive description of the vFL training procedure
is provided in Section III.
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C. Data Reconstruction Attacks on Neural Networks in vFL

In recent years, several feature inference attacks have been
introduced to deduce features from neural networks. These
attacks typically focus on scenarios in which the active party
acts as an attacker seeking to infer the private features of
passive parties. An attacker may or may not know the passive
party’s model architecture and parameters, which, correspond
to the white-box and black-box settings, respectively. White-
box settings primarily employ two methods: Model Inversion
(MI) and Gradient Inversion (GI). White-box MI methods [8],
[9], [23] generally optimize for inferred features that yield
model outputs closely resembling the actual outputs. In con-
trast, Jin et al. present CAFE [10], a GI attack that aims to find
the feature with gradients similar to the actual gradients. In the
black-box setting, Ye et al. [11] proposed a Binary Feature
Inference (BFI) attack to reconstruct binary features from
passive parties, assuming that the local models are made up
of just one fully-connected layer. In black-Box MI attacks [8],
[23], an attacker first trains a shadow model f,» mimicking the
local model f;. Then, the attacker substitutes f; for fl and
carries out the attack as in the white-box setting. When the
attacker is allowed to query the passive parties, He et al. in [8]
demonstrate that a direct inversion model g’ can be learned to
reconstruct the input features from the intermediate features.
Table I provides a summary of existing attacks. Note that each
of these methods only observe the gradients or the intermediate
signals of vFL without maliciously changing them to breach
privacy; thus, they belong to the class of passive attacks.

TABLE I: Data Reconstruction Attacks on Neural Networks
in vFL. Auxiliary Requirements for the attacks is denoted as
Aux. Req., Binary Features is denoted as Bin. Feat., Auxiliary
Training Data is denoted as Aux. Data, and Data Dist. indicates
the need for knowledge about the data distribution.

Attack Setting Type Aux. Req.
CAFE [10] White-box | Passive -
White-Box MI [8], [9], [23] | White-box | Passive -
Black-Box MI [§] Black-box | Passive | Aux. Data
BFI [11] Black-box | Passive Bin. Feat.
AIN (Ours) Black-box Active Aux. Data
AGN (Ours) Black-box Active Data Dist.

D. FL with Local Differential Privacy and Other Defenses

Local Differential Privacy (LDP) [24], [25] is a privacy-
enhancing technique designed to protect individuals’ sensitive
information while still extracting useful insights from the data.
LDP operates in a decentralized manner, where each data point
is perturbed with carefully crafted random noise before it is
shared. As such, LDP has been recognized as a solution to
alleviate the privacy risks associated with gradient sharing in
FL systems. e-LDP conditioned on an algorithm is defined as:

Definition 1. [¢-LDP]: A randomized algorithm M fulfills e-
LDP, if for any two inputs x and ', and for all possible outputs
O € Range(M), we have: PriM(x) = O] < e*Pr[M(z') =
O|, where € is a privacy budget. We use the notation M°® to
refer to an algorithm that satisfies e-LDP.

Intuitively, a smaller privacy budget ¢ implies a higher
privacy guarantee and a lower model performance as the
distortion between M*®(z) and x is higher.

However, specialized defense strategies have also been
introduced to more efficiently thwart specific privacy attacks.
Jin et al. introduce Random Fake Gradients [10] as a defense
against CAFE that replaces the true gradients with randomly
generated ones. Ye et al.’s Masquerade Defense [11] defeats
BFI attacks by guiding attackers to prioritize randomly gen-
erated features instead of the true features.

E. Additional Contributions

Vu et al. introduced the foundational concepts and initial
attack models for the Active Inversion Network (AIN) and
Active Generative Network (AGN) in vFL [26], primarily
within a two-party system, as seen in [8]. This paper extends
that work by adapting the two-party VFL framework to a
more realistic multiparty setting, assessing the impact of active
attacks across varying numbers of passive participants. Sec-
tion V demonstrates that these attacks remain highly effective
across three real-world datasets. Additionally, we expand the
discussion on defenses by conducting an experimental analysis
of Local Differential Privacy (LDP) via BitRand [27], exam-
ining its trade-offs between model performance and privacy
across different tasks and applications.

III. NOTATIONS AND ACTIVE THREAT MODELS

Prior research primarily concentrated on scenarios in which
attackers aimed to extract the victim’s information while
adhering to the system protocol. The server in this scenario is
typically described as honest-but-curious or semi-malicious.
However, this perspective does not fully encompass the po-
tential vulnerabilities of the vFL system, as a participant can
diverge from the protocol to mount more aggressive privacy
attacks [12]-[14]. In this paper, we primarily focus on the
training of neural networks within a vFL framework, where
the complete model is divided among various parties. We
specifically explore the concerns related to the active party,
i.e., the one who owns the labels and has the capability to
modify the training gradients (Figure 2a). Our investigation
reveals that by manipulating these gradients, the malicious
active party can coerce passive parties into training models
capable of effectively inferring their private features. Conse-
quently, this amplifies the attack’s capabilities compared to
passive scenarios. Our study focuses on the black-box setting
where the attacker has no knowledge of the passive parties’
models or parameters. We opt for the black-box setting to
better illustrate the advantages active adversaries have over
passive ones.

A. Protocol and Related Notations

We consider a VFL system where K + 1 parties collaborate
to train a neural network for a classification task. The training
dataset D = {(z,,,yn)}2_; is stored locally without sharing,
where n is the data index. Each party is associated with

a unique feature set. In particular, a sample z, € D is
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Figure 2: Illustrations of a three-party VFL system under normal operation and our proposed attacks. The portions the active
party controls are shown in colors. The forwarding and back-propagating directions are shown in solid and dashed arrows,
respectively. The green and red in 2c represent two different training phases of the attacker. While the generator G is trained
to recover the input, the discriminator D learns to differentiate generated inputs from original data.

partitioned into [x,, 0, ,Zpn Kk+1], Where z, ; is the k-th
partition of the n-th sample. The only participant that has
the label, the active party, is associated with index 0. The
other participants, the passive parties, are referred to by the
remaining indices.

As illustrated in Figure 2a, since only the active party has
the labels, it handles the aggregation of intermediate signal
zn, 1 sent from passive users k. By denoting the encoder of user
k by fr, we can express the intermediate outputs as z, =
fr(xn,k), and the final output of the forwarding computation
of the VFL model as:

(D

where g denotes the aggregating model owned by the active
party. In a normal training round, the loss on a local dataset
D is given as:

Gn = g ([fo(zn0), s frr1(Tn x41)])

N K

:%Zl(@;xn,yn) +)\Z’Y(9)

n=1 k=0

£(6;D) 2)
where 0,1,~v and A are the VFL model’s parameters, training
loss, regularizing function, and the controlling hyperparameter
for regularization, respectively. The active party updates the
parameters of its encoder f; and the aggregation model g,
denoted by 6, and 6, based on the gradients Vg,£(6; D) and
Vo, L(0; D), respectively. The shorthand is written as Vg, L
and Vg L, respectively. The final activity during one iteration
of training is sending the gradients Vg, £ from the active party
to the passive user k so that the user can locally update 6y
without sharing its parameters and data.

B. Settings of Active Attacks

In active attacks, the active party can tamper with the
distributed gradients to manipulate the models of the passive
parties. For instance, as depicted in Figures 2b and 2c, our
proposed attacks use an auto-encoder (AE) reconstruction loss
Lap and a generative binary cross-entropy loss Lpcp to
compute the gradients sent to other parties. As described
in both figures, the active attacks can also modify the later
components of the vFL models to improve their ability to infer
private information. In each scenario, the passive parties lack

knowledge of the encoder fy of the active user and the later
layers of the training model so, they have no clear means of
detecting whether the gradients have been tampered.

We consider two attackers in two different scenarios. In
the first scenario, the attacker knows a subset of the training
data, denoted as auxiliary data D,yx C D. This can also be
considered as the case of the limited-query threat model [8]
where the active party can send inference queries toward the
passive parties. In that context, the number of inference queries
is equivalent to the size of D,yx. This scenario suggests the
attacker knows both x,, j; and fi(z, k) for x,, in the auxiliary
data D,yx and only knows fi(x, ) for z, in the rest of the
data D\ D,yx. From the practical perspective, the assumption
depicts the situation when the active party collaboratively
trains a model with participants who possess exclusive values
of a set of specialized features. While only the local owners
have the values of those features; the active party might have
those values for some samples used during training. An exam-
ple of this scenario is when a central hospital collaboratively
develops a deep learning model with a specialized healthcare
center. The inputs of the model are patients’ records with some
features only accessible by the specialized healthcare center.
However, the central hospital might have the values of those
features for some records before training.

In the second scenario, we consider an attacker that only
knows the data distribution (|D,yx| = 0). This model applies
to real-world scenarios where the active party has a sufficient
amount of data to represent the feature distribution [28] or
where the attacker can sample data directly from the data
distribution. For instance, this situation is similar to the
earlier hospital example where a central hospital maintains
a comprehensive database of patient records containing all the
features used by the model. Even if these data samples are not
utilized in the vFL training process, the attack considered in
this scenario can be executed by the central hospital as long
as the training data stems from the same distribution.

Although our threat models are applicable to VFL systems
with more than two participants, we adhere to the approach
outlined in [8] and focus on two-party systems, consisting
of one active party and one passive party. Expanding these
attacks to multi-party systems can be accomplished by treating
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all passive parties as a single entity. The key distinction in
this generalization lies in the architecture of the combined
models among the passive parties. For instance, in a multi-
party setting, the model f, does not have access to features
such as z,, 1. We do, however, provide an experiment involving
a multi-party system as a preliminary result in Section V.
The result indicates that there are minimal differences among
settings (Table IV).

IV. ACTIVE DATA RECONSTRUCTION ATTACKS

This section provides the descriptions for our proposed
attacks. They are designed for cases in which the adversarial
active party does not know the architecture and the parameters
of local models fx. Liu et al. [29] theoretically showed
that, without additional information, the private features x,, j
cannot be exactly recovered and established the fundamental
challenge of inference attacks on black-box models. From a
practical viewpoint, not knowing the local models prevents
the attacker from computing the intermediate signals z,,; thus,
thwarting MI and GI attacks from solving for features resulting
in z, or gradients based on z,,. However, our proposed attacks
depend on an under-explored capability of the active party
in vFL. In our attacks, the active party has control over
the gradients sent toward the passive users. As discussed
in Section III-B, both of our attacks operate on a minimal
assumption regarding information about the private training
data. Another key difference in our proposed active attacks,
compared to previous passive attacks, is the inclusion of the
passive users’ local models. While passive attacks consider the
local models determined, our attacks exploit the gradients to
manipulate them to enhance privacy breaches.

A. Active Inversion Network

Our first attack includes an Active Inversion Network (AIN)
aiming to train an inverse network h to recover private features
(Figure 2b). The attacker manipulates the returned gradients,
thereby deceiving passive users into jointly training the ad-
versarial inverse network. Specifically, the attacker leverages
a batch of auxiliary data points known before the training
and utilizes a loss function such as Mean-Squared-Error
(MSE), to compute corresponding gradients. These gradients
are then transmitted to passive users. Upon updating their
local parameters with these gradients, the passive users’ local
models undergo training for the adversarial reconstruction
task. As a result, intermediate signals z, ; produced by these
models post-adversarial training become more effective in
reconstructing private input features.

Training the Active Inversion Network. Algorithm 1 shows
the pseudocode of the AIN when given the intermediate
signal from passive users during one training iteration of
vFL, which consists of three main tasks: data filtering for the
computation of the reconstruction loss (lines 2-8), updating
the attacker’s local parameters (lines 9-10), and sending the
manipulated gradients to the passive users (line 12). The
adversarial reconstruction loss to train the inverse network is:
|X|

= X| 2 ll#n = zall? 3)

EAE(X X)

Algorithm 1 AIN Training Step

Input: Intermediate activations {z,, k}:l:f}f:l}(“

Parameter: Reconstruction loss £ 4, learning rate p
Given: Intermediate activations {z, 0}2_;, x, if z,, € Dayx
Output: None
Le=0,X= empty array, X = empty array
\\ Filtering training batch B in Dyx

2: forn=1to B do

3:  if z,, € Dayx then

4: c=c+1

5: ETn = h([zn,()l' e 7Zn,K+1])
6: Xc] =z, X[c] = in

7:  end if

8: end for

\\ Updating active party’s parameters
9: 9}(:5—&-1) = 9,(f) — ;Lve(f)ﬁAE(X X)
o =) — 1Yy Lan(X, X)
\\ Computing and sendmg adversarial gradients
11: for user k =1to K +1 do
12 Send V., ,Lap(X,X) to user k
13: end for

10:

where X is the set of inputs that appear in both training
and auxiliary batches of data. X is the output of i on the
intermediate signal z, resulting from those z,, € X. With
that, the AIN training can be formalized as:

Active User: arg 1@1112 EAE(X, X) ())
0>

Passive User k: arg n;in LAE(X, X) 5)
k

While the local updating serves as the attacker’s optimization
(4), the gradient-sending is for the passive parties optimization
(5). The gradients of the passive parties are given by:

8[:,4}3 0L AE azmk
Z 8zn,k aﬁk (6)

Vo, Lag =

Reconstructing Data with the Active Inversion Network.
When the training of h is complete, the active party is able
to recover any private inputs from the intermediate signals,
given that it can compute x,, ~ h(z,). Note that the more
data in D,yx, the better the reconstruction capability and the
stronger the attack. As the access to D,yx of the active user is
hardly ever noticed in practice, our AIN-based attack signifies
the importance in designing a more secure VFL protocol.

B. Active Generative Network

Our second attack, comprises an Active Generative Network
(AGN), tailored for scenarios where no auxiliary data is avail-
able. The AGN draws inspiration from Generative Adversarial
Networks (GANs) [30], comprising of a generator and a
discriminator. In a GAN setup, the generator produces fake
data samples mimicking real samples from the distribution.
The discriminator aims to distinguish between the real data
samples from the distribution and the fake samples generated
by the generator. However, GANs typically generate samples
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Algorithm 2 AGN Training Step
n=B,k=K+1

Input: Intermediate activations {2y x}, -1 j—;

Parameter: BCE loss Lpcp (as specified in Eq. 7 and 8),
discriminator learning rate pp, generator learning rate ug,
Given: Input features {,, o}2_; and intermediate activations

{zn.0 }5:1
Qutput: None

I: Xyeqr = empty array, X ;qpe = empty array
\\ Generating training batch B for discriminator D
for n=1to B do
Sample x4 from P,
T fake = G([Zn,07 co 7Zn,K+1])
T fake,0 = Tn,0
Include x;cqi 0 Xyeqr and Trqge t0 Xpake
end for
\\ Updating the adversarial discriminator D
8: 00 = 0% — pLpop(D(Xrea), 1)
—pLpoe(D(Xfake),0)
\\ Updating adversarial generator G
9: 9£§+1) = 98) - NGV9g>ﬁBCE(D(Xf'ake)a 1)
\\ Computing and sending adversarial gradients
10: for user k =1to K +1 do
11:  Send V., , Lpce(D(Xfake), 1) to user k
12: end for

A o

via random noise and are not inherently designed for recon-
struction or inference tasks. To address this limitation, the
AGN takes advantage of the information known to the active
party about the target sample, i.e., x, ¢ and potentially y,,,
to guide the GAN generator in returning z,, rather than an
arbitrary sample from the data distribution. In this regard,
the AGN exhibits similarities with the conditional generative
adversarial network (C-GAN) [31], a modified GAN that
conditions data generation based on additional information.
Training the Active Generative Network. Algorithm 2 out-
lines the pseudocode for the AGN in a single vFL training
iteration, comprising four key steps. First is the generation of
the batch data to train the discriminator (lines 2-7). The real
data is sampled from the known distribution P, while the fake
data is generated from the intermediate activations. To enforce
the knowledge of the active party on the target sample x,,
the portion of the original sample x, o that the active party
knows is updated onto the fake sample (line 5). Note that our
current implementation and algorithm only exploits x,, ¢, not
Yn. The second step is the update of the discriminator which
is the same as in the standard GAN training. In particular, the
discriminator is updated with the Binary Cross-Entropy (BCE)
loss (line 8) whose description is:

1
X > " log(yn) (7)

1
Lpop(Y,0) = X > log(1 - yn) (8)

Lpce(Y,1) =

Next is updating the generator. In contrast to the discriminator
which is trained to recognize the fake sample with the loss
Lcr(D(Xfake),0), the generator aims to generate data

from the distribution P, with the loss Lpcr(D(X fake), 1)
(line 9). The final step of this attack is to send the manipulated
gradients V., Lor(D(Xfake), 1) to the passive users. This
makes the users jointly train the generator G.

Reconstructing Data with the Active Generative Network.

During the inference phase, the attacker reconstructs the
private data using the generator:

i'n = G([Zn,07 e 7Zn,K+1]); -’i‘n,O = Tn,0

where [2,,0, - ,2n,Kk+1] are the received intermediate sig-
nals. This is also the computation of  f,1. at lines 4 and 5 of
Algorithm 2. As the generator is trained to produce Zn that
closely resembles the training data and its O-th partition Zn, 0
aligns with that of the original input x,,, the generator tends
to recover £ ~ x. Intuitively, the more z, o are known by
the attacker, the higher the likelihood that z,, becomes similar
to z,. We conduct an experiment to illustrate this claim in
Section V (Table III).

The key advantage of the AGN compared to the AIN is that
it does not need to know any features used for training, which
makes the attack much stealthier. Given the swift expansion of
real-world public data, assuming the active party can access
or cheaply sample data from the distribution is increasingly
realistic. As a result, the AGN-based attack serves as a direct
illustration of real-world privacy threats.

V. EXPERIMENTS

This section presents the results of our experiments, demon-
strating the efficacy of our proposed attacks in reconstructing
real-world private data within a vFL framework. Our primary
objective is to underscore the inherent privacy threats an active
attacker can attain by circumventing the vFL protocol.

A. Experimental Settings

We implement our experiments with Python 3.8. Each
experiment is conducted on a single GPU-assisted compute
node installed with a Linux 64-bit operating system. Our
testbed resources include 36 CPU cores with 60GB of RAM
and 2 threads per core. Our allocated node is also provisioned
with 8 GPUs with 80GB of VRAM per GPU.

Datasets. Our experiments are conducted on three real-
world datasets: MNIST [15] (hand-written image dataset),
CIFARIO0 [16] (image dataset), and USCensus taken from the
UCI Machine Learning Repository [17] (tabular dataset). The
two image datasets are commonly used in vision tasks while
the USCensus contains a one percent sample with 68 features
of the Public Use Microdata Samples records. The features
of the image datasets are normalized into a range between 0
and 1. The 68 categorical features of the USCensus dataset
are preprocessed into 396 binary features. Table II shows the
general information of our experiments reported in this work.
The D,ux and Dipan indicate the sizes of the auxiliary and
training datasets for the respective attacking methods.

Simulating the Passive Parties. In practice, the model’s
components for passive users are chosen based on the applica-
tions at hand. In our evaluation, we use Multi-layer Perceptron
(MLP) and Convolutional (Conv.) layers for the image datasets
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TABLE II: Configurations and Parameters of our experiments.

Dataset Dimension Davx D1rain Attacks Victim Module (f;) Attacker Modules
50-3000 N/A MLP AIN  2-layer MLP encoder 2-layer MLP decoder
MNIST 1 x 28 x 28  50-3000 N/A Conv. AIN  2-layer MLP encoder 2-layer CNN decoder
N/A 50000 AGN 2-layer MLP encoder  4-layer CNN generator and 4-layer CNN discriminator
50-2000 N/A MLP AIN  3-layer CNN encoder 2-layer MLP decoder
CIFAR10 3 x32x32 50-2000 N/A Conv. AIN  3-layer CNN encoder 2-layer CNN decoder
N/A 50000 AGN 1-layer MLP encoder  2-layer CNN generator and 4-layer CNN discriminator
USCensus 68 50-3000 N/A AIN 3-layer MLP encoder 3-layer MLP decoder S
) N/A 100000 AGN 1-layer MLP encoder  3-layer MLP generator and 3-layer MLP discriminator

and only MLPs for the tabular dataset. The hyperparameters of
the layers are selected based on the common tasks conducted
on the datasets: image classifications (MNIST/CIFAR10) and
data clustering (USCensus). Table II also provides a brief
description of the hyperparameter configurations.

Attacker Configurations. The model’s components on the
active party’s side are directly under the control of the attacker
in the threat models. Hence, it can select different architectures
as well as fine-tune their parameters for better-reconstructed
signals. In our AIN-based attack on MNIST and CIFARIO,
we use two different architectures, namely MLP and Conv. in
which the decoder’s architectures use MLP and Conv. layers,
respectively. All other experiments use MLPs.

Evaluation Metrics. We quantify our results in image datasets
with the Peak Signal-to-Noise Ratio (PSNR), which measures
the pixel level recovery quality of the image and is defined as:

PSNR(&,x) = 20log,, (max(z)/MSE)

where max;(z) is the maximum possible value of pixels in the
original image x and M SFE is the reconstruction loss between
the original image = and the recovered image Z. Since the
features are categorical for the USCensus dataset, we also use
accuracy to evaluate the attacking results. All reported results
are obtained with at least 10 runs.

Benchmark. Although no prior work exists on active data
reconstruction attacks in vFL, black-box attacks have also
proven to be limited (Table I). Therefore, we compare our
proposed attack methods with the black-box MI method in [8]
and refer to it as the benchmark in our results. Compared
to our methods, the benchmark has two main differences.
First, it is a passive attack conducted during the inference
phase instead of the training phase. Second, since the attack
is during the inference phase, it does not involve the update
and manipulation of the model’s components of the passive
parties. The configuration of the model architecture used for
the benchmark is an MLP as in the original paper. Since
models for tabular data are not provided in [8], our results
on tabular data exclude the benchmark.

B. Experimental Results

General Performance. Figures 3 and 4 visually illustrate the
effectiveness of our reconstruction attacks on MNIST and
CIFARI10. For both figures, the top row indicates the target
inference in the test set, and the remaining rows are recovered
images from different attack methods. Since we consider a
two-party VFL system, each party holds half of the images. In
these experiments, we consider an active attacker that holds the

PSNR

INNENIN & /| 2 Y & o 7 & o [ERERAE
INVGINEN O /| 2D Y ¢ & 7 & o JEUNERIE

Inputs

0O/ LD¥Yg b7 4

AGN O/ L3>Y G o7 & o |EEEAIE

0/ 2%Y <4 b7 & o |EERERIE
C /| L35Y G a7 & o 2R

Figure 3: Reconstructed samples from MNIST. Our attack
methods are highlighted in bold. The notations 1K and 2K
refer to the size of the auxiliary dataset D,yx-

Benchmark(2K)
Benchmark (1K)

Inputs PSNR
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AIN(IK) [y 267408

U 15,5248

Figure 4: Reconstructed samples from CIFARI10. Our attack
methods are highlighted in bold. The notations 1K and 2K
refer to the size of the auxiliary dataset D,yx.

lower half of the images and its goal is to reconstruct the upper
half. Therefore, the resulting PSNRs are calculated only on the
upper half. However, Figures 3 and 4 show the reconstructed
images in their entirety for more intuitive visualizations.

Our attack methods are highlighted in bold. For both
datasets, the AIN refers to the Conv. AIN in which the decoder
uses Convolutional layers for the decoder h (Figure 2b). We
can see that our adversaries can accurately recover the images
with competitive performance. While the AIN approach can
be better than the AGN with just the knowledge of 1000
training samples in MNIST, the AGN approach proves to
be much better in the more complex CIFARI10 dataset. It
is also clear that, with the same amount of auxiliary data,
the AIN-based attack performs significantly better than the
benchmark in terms of PSNR. In fact, even with 2000 samples,
the recovered CIFAR10 images of the passive benchmark are
hardly recognizable. These results clearly demonstrate the gain
of active attackers over passive ones.

Impact of the Size of the Auxiliary Dataset D,yx.
Figure 5 provides thorough evaluations of different attacks
with different sizes of auxiliary data. The results on image
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Figure 5: PSNR (dB) of reconstructed data samples in MNIST and CIFAR10 along with accuracy of reconstructed features in
USCensus. The AGN-based attack does not require D,yx s, its results are plotted in a straight line for convenient comparison.

TABLE III: Accuracy and PSNR (dB) of our AGN-based attack on the USCensus dataset with varying numbers of known

features. The dataset contains a total of 68 features.

No. of Known Features 50 46 38 30 22 14
Accuracy 99.734+0.10 99.36 £0.06 99.28 +0.24 98.69 £0.40 97.65+0.55 95.90 +0.34
PSNR (dB) 52.55 +3.05 44.18 £0.70 43.52+2.51 38.20+£2.31 33.00+1.93 27.98 +0.65

datasets show that by manipulating the later layers of
the training (Conv. AIN), the attacker can significantly
improve the reconstructed signal. Notably, the AGN approach
outperforms all methods in CIFARI10. This observation
can be attributed to the increased complexity of CIFARI0
compared to MNIST, indicating that our AIN methods and
the benchmark would require a larger number of samples to
match the performance of the generative approach.

For the USCensus dataset, our attacks aim to infer at least

half (34/68) of the private features of the input samples. While
the AGN can consistently achieve =~ 99% of inference, the
AIN needs ~ 3000 data samples to reach the same perfor-
mance. Since there is no available passive attack for tabular
data, we cannot include the passive benchmark. However, the
results have demonstrated that our methods work competitively
for both image and tabular data.
Impact of the Number of Known Features. The more fea-
tures the attacker knows, the easier to infer the remaining
private features. In fact, Table III reports the results of our
AGN-based attack on the USCensus dataset with different
numbers of known features and reflects the above statement.
The table includes both the accuracy and the PSNR of the
reconstructed features for better illustration. The PSNR is
computed by considering the tabular features as vectors with
components between 0 and 1. Note that our AIN-based attack
does not rely on the known features, thus the analysis is only
meaningful for our second attack comprised of the AGN. It is
important to note that with just 14 features, our AGN approach
is capable of inferring the remaining 54 features with almost
96% accuracy. This observation suggests that even limiting the
number of known features might not be an effective approach
to mitigate this active attack.

Impact of the Number of Passive Parties. When the num-
ber of parties increases, the neurons of different parties are
more disconnected. This means that, compared to the case of
the single passive party, the multi-party vFL settings do not

TABLE IV: Accuracy and PSNR (dB) of our attacks on the
USCensus dataset varying different numbers of passive users.

No. of Passive Users 1 2 4
AGN Accuracy 98.81 9830 98.11
PSNR (dB) 38.96 3573 34.86
AIN Accuracy 95.69 86.42 86.54
PSNR (dB) 27.17  26.87 28.52

have trainable weights among neurons belonging to different
parties. Analyzing the impact of this modification on the attack
is not trivial. On one hand, it may decrease the expressive
power of the AIN approach due to the absence of cross-user
weights. On the other hand, it may also help the AIN-based
attack avoid over-fitting as there is a reduction in the number
of total parameters.

We implement three vFL systems using the USCensus
dataset with 1, 2, and 4 passive users to heuristically study
the impact of the number of passive parties on both of
our attacks. The number of features owned by each user in
those systems is 40, 20, and 10, respectively. Each user’s
module f; is a 1-layer MLP. Table IV reports the PSNR and
the accuracy of our AGN and AIN-based attacks with the
described configurations. We can see that there is no clear
indicator of which number of users is more susceptible to
the attacks even though 1 passive user seems to result in a
higher reconstructed accuracy. One meaningful observation is
that changing the number of participants might not help to
prevent active data reconstruction attacks.

VI. DISCUSSION OF DEFENSES

This section discusses possible defense strategies to mitigate
the attacks studied in this paper.
Deeper Client Modules or Specific Client’s Architectures?

Previous studies on passive attacks recommend increasing
the depth of client-side modules and running fully connected
layers before sending out results [8]. These recommendations
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Figure 6: Accuracy and PSNR (dB) of reconstructed data samples from MNIST and CIFARIO along with accuracy of
reconstructed features from the USCensus dataset under the BitRand [27] LDP-mechanism.

are primarily tailored for passive settings, assuming that the
active party cannot manipulate the weights of the client’s
modules. However, in active settings, where these modules
participate in adversarial inference during training, these
modifications provide limited protection. For example, the
attacker can counteract a deeper client module by reducing
the depth of their own components. Additionally, deeper
networks increase the computational demands on the client-
side. In practice, the client or device might lack the necessary
computational power, storage capacity, or battery resources
to implement these recommendations effectively.

Avoid Public Data During Training? Given that our AIN-
based attack exploits public data used during the training
phase, one apparent strategy to counter these attacks is to
abstain from using public data altogether. Conversely, the AGN
approach relies on data distribution, and in certain specialized
circumstances, offering minimal information about the data
might enhance privacy. Nonetheless, it is important to note
that neither of these approaches can be considered entirely
reliable because information about private features and data
distribution can still be obtained through side channels.
Defense with Local Differential Privacy. Acknowledged as
a solution to address the privacy concerns arising from the
sharing of gradients, LDP operates on the principle of random-
ized response [32]. Figure 6 reports our experiments evaluating
our attacks when BitRand [27] is applied to the input data.

Figure 7: Samples of reconstructed data by the AGN attack
on the MNIST dataset with different privacy budgets €. Note
that the attacker has the bottom half of the input.

For the image datasets, we provide the black curves indi-
cating the test set accuracy of a neural network trained in the
classification tasks with respect to different privacy budgets e.

From the model’s performance perspective, we can see that the
model performance in MNIST begins to drop when ¢ = 10,
and significantly drops when € < 8. From the attacker’s point
of view, we provide Figure 7 showing the reconstructed signal
of our AGN method for MNIST samples. We can see that
only when ¢ < 9, the attack starts to fail to reconstruct the
inputs. Therefore, the result of MNIST demonstrates clearly
the trade-off between model performance and data privacy. We
can also observe that trade-off in experiments of CIFARI10.
For example, if we want the model to maintain an accuracy
> 90%, the privacy budget ¢ needs to be about 9. However,
around that range, the PSNR of the recovered signal is about
30 dB, at which, the reconstructed features are blurry, but still
recognizable (Figure 4). Since the USCensus dataset does not
have the labels for the classification task, we simply report the
accuracy of our attacks in Figure 6. The results indicate the
performance of our attacks in LDP-protected tabular data is
not that much different from how they perform in image data.
Particularly, the attack performance starts to drop significantly
around ¢ ~ 8.

The takeaway here is that implementing LDP-protecting
mechanisms can provide some defense against our proposed
attack. Nevertheless, it is essential to recognize that there
exists an obvious trade-off between performance and privacy.
Determining the appropriate privacy budget requires additional
examination and assessment based on the specific applications.
It is also essential to be aware that the usage of LDP-
protecting mechanisms might significantly burden the passive
participant’s devices in terms of computational complexity and
energy consumption.

VII. CONCLUSION

Our work exposes critical privacy vulnerabilities in vertical
Federated Learning (vFL), demonstrating how an active party
can manipulate gradients during local training to reconstruct
private data. We introduce two novel attack methods—one
leveraging a small set of known training samples and the
other exploiting the underlying data distribution—both of
which reveal significant privacy risks in VFL systems. These
findings highlight the urgent need for strengthening existing
defenses, such as Local Differential Privacy (LDP), while also
addressing the inherent trade-off between model performance
and privacy. Beyond identifying these security challenges, our
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study provides practical insights for improving vFL protocols
to mitigate adversarial threats. By encouraging further research
into adaptive privacy mechanisms and strategies for balancing
performance, privacy, and security, this work aims to guide

the

development of more resilient VFL systems for secure

deployment in real-world applications.
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