
Theoretically Unmasking Inference Attacks Against LDP-Protected Clients in
Federated Vision Models

Quan Nguyen * 1 Minh N. Vu * 2 Truc Nguyen 3 My T. Thai 1

Abstract
Federated Learning enables collaborative learn-
ing among clients via a coordinating server while
avoiding direct data sharing, offering a perceived
solution to preserve privacy. However, recent
studies on Membership Inference Attacks (MIAs)
have challenged this notion, showing high success
rates against unprotected training data. While lo-
cal differential privacy (LDP) is widely regarded
as a gold standard for privacy protection in data
analysis, most studies on MIAs either neglect
LDP or fail to provide theoretical guarantees for
attack success rates against LDP-protected data.

To address this gap, we derive theoretical lower
bounds for the success rates of low-polynomial-
time MIAs that exploit vulnerabilities in fully con-
nected or self-attention layers. We establish that
even when data are protected by LDP, privacy
risks persist, depending on the privacy budget.
Practical evaluations on federated vision models
confirm considerable privacy risks, revealing that
the noise required to mitigate these attacks signif-
icantly degrades models’ utility.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) is a decen-
tralized machine learning paradigm where multiple devices
or nodes (e.g., smartphones, edge devices, or distributed
servers) collaboratively train a shared model while keep-
ing their data localized. Due to this property, it has long
been heralded as a robust solution for privacy-preserving
machine learning. However, FL itself does not provide for-
mal privacy guarantees, as the model updates (gradients
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or weights) can still reveal sensitive information about the
training data (Fang et al., 2024; Yang et al., 2023). A promi-
nent attack against FL is the membership inference attack
(MIAs) (Shokri et al., 2017; Hu et al., 2022b) in which the
server seeks to determine whether a particular record was
part of the model’s training dataset.

To mitigate such privacy risks, local differential privacy
(LDP) (Dwork et al., 2014; Wang et al., 2020) emerged as
a prominent solution to limit the privacy leakage of local
training data. Under LDP, individuals perturb their data
locally before sharing it with the server, thereby eliminating
the need for a trusted centralized curator. However, recent
studies (Nguyen et al., 2023; Chen et al., 2021) demon-
strated that tackling active membership inference attacks
(AMI) conducted by dishonest FL servers requires adding
large privacy-preserving noise that would also damage FL
utility. In AMI, the server actively poisons the global model
before distributing it to clients, enabling them to infer pri-
vate information. Such attacks typically require multiple
training iterations or the use of shadow models, resulting
in non-trivial time complexity, and provide no theoretical
privacy risks to FL. Building on this, (Vu et al., 2024) pro-
posed a low-polynomial-time attack, presenting two active
membership inference attacks on LLMs with guaranteed
theoretical success rates on unprotected data.

Despite these advancements, most existing works rely heav-
ily on empirical validation and lack a robust theoretical foun-
dation or guarantees for attack success rates, especially un-
der LDP. This challenge arises from the randomness of noise
introduced by privacy mechanisms, which varies across it-
erations and clients, making it challenging to analyze the
effectiveness of attacks in a theoretical framework.

This paper takes a step back and establishes a broader view
of the principle of privacy risk imposed by dishonest servers
in federated vision models under LDP from both theoretical
and practical perspectives. Our study focuses on the ac-
tive adversary setting, where the FL server acts dishonestly
by manipulating the trainable weights of a vision model to
breach privacy. Specifically, we aim to demonstrate that
clients’ data, even under LDP protection, are fundamentally
vulnerable to AMI attacks carried out by dishonest servers.
For that purpose, we analyze attacks that exploit the train-
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able fully connected (FC) layers and self-attention layers in
FL updates as both are widely adopted in federated vision
models. Our main contributions are summarized as follows:

• We derive theoretical lower and upper bounds (Theo-
rem 1 and 2) on the success rates of a low-polynomial-
time attack (Vu et al., 2024) that exploits vulnerabilities
in FC layers, showing that privacy risks persist under
LDP protection depending on the privacy budget.

• For transformer-based vision models such as ViTs
(Dosovitskiy et al., 2021), we extend the attack on
LLMs in (Vu et al., 2024) to continuous domain and de-
rive theoretical lower bounds on the vulnerability of the
self-attention mechanisms against a low-polynomial-
time attack that exploit’s the layer’s memorization
mechanism. (Theorem 3).

• Our experimental results in real-world state-of-the-art
vision models such as ViTs and ResNet (He et al.,
2016) demonstrate that AMI attacks achieve notably
high success rates observed even under stringent LDP
protection (i.e., small privacy budgets ϵ) that consid-
erably degrade the model’s utility (Section 5). Fur-
thermore, we consider both traditional FL where
clients train a small model (ResNet) and the parameter-
efficient-fine-tuning paradigm, where clients often uti-
lize large foundation models for pre-training and fine-
tune only some layers or parameters (ViTs).

2. Background and Related Works
Federated Learning with Local Differential Privacy (FL-
LDP). In Federated Learning (FL) (McMahan et al., 2017),
a central server orchestrates training while clients store
data locally. The server initializes the model parameters
θ, and in each training iteration, a subset of clients com-
putes gradients of the loss function L on local data D, i.e.,
θ̇ = ∇θLΦ(D). These gradients are aggregated and sent
to the server, which updates the parameters accordingly.
Training continues until convergence.

To protect the privacy leakage in FL, Local Differential
Privacy (LDP) (Dwork, 2006; Erlingsson et al., 2014) has
been introduced. LDP is a privacy-preserving mechanism
that mitigates risks by perturbing individual data before it
leaves the client’s device in FL. LDP ensures that the server
cannot infer sensitive client information directly from the
shared data as defined below.

Definition 1. ε-LDP. A randomized mechanismM satis-
fies ε-LDP if, for any two inputs x and x′ and all possible
outputs O ∈ Range(M),

Pr[M(x) = O] ≤ eεPr[M(x′) = O],

where ε is the privacy budget, and Range(M) denotes all
possible outputs ofM. In FL-LDP, ε controls the privacy-
utility trade-off: smaller ε enhances privacy by introducing
more noise to the data, but this can reduce the utility of
the aggregated updates for the global model. While there
are other privacy-preserving techniques for FL, such as
secure aggregation using multi-party computation (SMPC)
or homomorphic encryption (Bonawitz et al., 2017; Nguyen
et al., 2023), these are orthogonal research directions and
are discussed separately in Appendix. I.

Federated Foundation Models via Parameter-Efficient
Fine-Tuning (PEFT). PEFT methods adapt large pre-
trained models to specific tasks by modifying a small subset
of parameters, reducing computational and storage costs.
Key approaches include LoRA (Hu et al., 2022a), which
adds trainable low-rank matrices; Adapter Modules (Yin
et al., 2023), which insert lightweight layers; BitFit (Zaken
et al., 2022), which updates bias terms; and Prompt Tuning
(Lester et al., 2021), which optimizes input embeddings. In
our work, we specifically analyze scenarios where trainable
layers are fully connected or self-attention layers.

Membership Inference Attacks (MIAs) in FL. MIAs in
FL aim to identify if a specific data point was part of a
client’s training set. Although FL keeps data local, model
updates exchanged between clients and the server can still
leak information. Passive attacks (Shokri et al., 2017; Zhang
et al., 2020) involve an honest-but-curious server observ-
ing the model updates, while Active Membership Infer-
ence (AMI) attacks involve a dishonest server poisoning
the global models, e.g., maliciously modifying model pa-
rameters, before dispatching them to clients. The first AMI
attack in FL was introduced by (Nasr et al., 2019), relying
on multiple FL iterations. A stronger, single-iteration AMI
attack requiring training a separate neural network was later
proposed by (Nguyen et al., 2023). Both approaches have
non-trivial time complexity and do not establish theoretical
privacy risks in FL. Recently, (Vu et al., 2024) introduced
two AMI attacks that exploit fully connected and attention
layers in LLMs, achieving a high success rate in compro-
mising membership information of unprotected client data.

The primary focus of our study is to demonstrate the ex-
istence of low-complexity adversaries with provably high
attack success rates, particularly when the data is protected
by any ideal LDP mechanism. Since our research aims to as-
sess the resilience of privacy-preserving techniques against
real-world adversarial threats, we chose to examine two
state-of-the-art AMI attacks on the FC and Attention layers
proposed by (Vu et al., 2024), which have low-polynomial
time complexity. These attacks allow the server to exploit
FC layers to perfectly infer membership information (The-
orem 1 in (Vu et al., 2024)) and to exploit self-attention
layers to achieve a similarly high success rate (Theorem 2
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in (Vu et al., 2024)). However, their theoretical analysis is
only applicable to the non-LDP setting.

3. AMI Attacks
3.1. AMI threat models

The AMI threat models under LDP are formalized through
the security games ExpAMI

LDP, as described in Fig. 1, following
standard security frameworks (Nguyen et al., 2023; Vu et al.,
2024). Further details about the security games can be found
in Appendix B. In ExpAMI

LDP, the adversarial serverAD (super-
script D indicates that the server knows the data distribution
of the client’s private data) comprises three components:
AD

INIT, AD
ATTACK, and AD

GUESS. In ExpAMI
LDP, a random bit b

determines if a target sample T is in the client’s data D.
Each client applies LDP to perturb their data, generating
D′ = Mε(D) = {Mε(X)}X∈D. The server’s AD

INIT se-
lects a model Φ, and AD

ATTACK crafts parameters θ using
T . Clients compute gradients θ̇ = ∇θLΦ(D

′) and send
them back. With θ̇, AD

GUESS infers b, effectively identifying
whether T ∈ D. The advantage of the adversarial server
AD in the security game is given by:

AdvAMI
LDP(AD) = 2Pr[ExpAMI

LDP(AD) = 1]− 1 (1)
= Pr[b′ = 1|b = 1] + Pr[b′ = 0|b = 0]− 1

where 1
2 Pr[b

′ = 1|b = 1] + 1
2 Pr[b

′ = 0|b = 0] denotes the
success rate of the attack. The existence of an adversary with
a high advantage implies a high privacy risk/vulnerability
of the protocol described in the security game.

3.2. FC-based AMI adversary

We analyze the FC-based AMI adversary first introduced in
(Vu et al., 2024). In that paper, they proved the existence of
an AMI adversary that exploits two FC layers to achieve a
perfect membership inference success rate for unprotected
data. The FC-based adversary AD

FC is designed to detect a
target sample T with dimension dT within local training
data D during FL training. For analysis of FC-based ad-
versary, we represent the dataset as D = {Xi}ni=1, where
Xi ∈ X , and X ⊆ RdX . The model Φ introduces two
adversarial fully connected (FC) layers. The first layer has
weights W1 of size 2dT × dT and biases b1 of size 2dT ,
structured to encode the target T . The second layer outputs
a single neuron, with weights W2[1, :] and bias b2[1] set to
target the presence of T . These parameters are defined as:

W1 ←
[
IdT

−IdT

]
, b1 ←

[
−T
T

]
(2)

W2[1, :]← −1⊤dT
, b2[1]← τD (3)

where τD controls the allowable L1-distance between inputs
and T . Upon receiving input X , the two FC layers compute

z0 := max{b2[1]−∥X−T∥L1
, 0}. If X = T , z0 activates,

and the gradient of b2[1] is non-zero. For b2[1] = τD > 0
small enough, z0 = 0 for X ̸= T , leaving the gradient zero.
The adversary uses the gradient of b2[1] as an indicator of the
presence of T in the local data. A non-zero gradient implies
T exists, while a zero gradient indicates it does not. The FC
attack AD

FC does not need any distributional information to
work on unprotected data. In fact, the attacker just needs to
specify τD (2) small enough such that τD < ∥X1 −X2∥L1

for any X1 ̸= X2 in the model’s dictionary. Since the
dictionary or the pre-trained feature extractor is public, se-
lecting τD does not require any additional information.The
description of AD

FC is given in Appendix C.1.

3.3. Attention-based AMI adversary

The proposed AD
Attn (Vu et al., 2024) leverages the mem-

orization capability of self-attention, a property that was
indirectly explored in (Ramsauer et al., 2021). That study
demonstrates that self-attention can be interpreted as equiv-
alent to the Hopfield layer, which is specifically designed to
integrate memorization directly within the layer. Building
on this perspective, AD

Attn employs a tailored configuration
of attention to facilitate the memorization of local training
data while selectively excluding the target of inference.

The dataset is represented as D = {xi}ni=1, where xi ∈ X ,
X ⊆ RdX×NX , and each column xj ∈ RdX is referred to
as a pattern. Since AD

Attn operates at a pattern level, the
target of inference is the pattern derived from embedding
the target T , denoted as v ∈ RdX . The underlying intuition
of this approach involves configuring an attention head to
memorize the input batch while excluding the target pattern.
This configuration introduces a measurable discrepancy be-
tween the output of the filtered attention head and that of a
non-filtered head. The resulting gap can then be exploited
to infer the victim’s data. A detailed explanation of the com-
ponents of this attack are further elaborated in Appx. C.2 or
readers can refer to (Vu et al., 2024) for the full description
of the attack.

3.4. Attention-based AMI attack against Vision
Transformer

While (Vu et al., 2024) focuses on exploiting the attention
layer in LLMs to infer the presence of a pattern in a dataset,
we further extend this attack to the continuous image do-
main, where we exploit the attention layer used in ViTs.
We formulate the attack AD

Attn in the context of attacking
ViT models as follow: Given an image I ∈ RH×W×C , the
image is divided into L non-overlapping patches (see Fig.
14). The patches are flattened into vectors, and projected
into an embedding space using a linear projection matrix
Wembed. The result of this embedding layer is:

xj = Flatten(Ij)Wembed + pj , j = 1, . . . , L
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Figure 1. Active inference security game under LDP: a random bit b determines the state of the data D (i), the server AD specifies Φ (ii)
and θ (iii), gradients on LDP-protected data D′ are sent back (iv), and AD guesses b (v).

where Ij ∈ R
H√
L
× W√

L
×C represents the j-th patch of the im-

age I and pj is the corresponding positional encoding. The
resulting set of embeddings {xj}Lj=1 is then passed through
the Vision Transformer (ViT) architecture, where the at-
tention mechanism operates on these embeddings. When
incorporating LDP noise into ViTs, we apply the noise di-
rectly to these embeddings before they enter the attention
layers. We employ a similar attack strategy to the one used
in the attention-based AMI adversary, but in the context of
the ViT’s embeddings. Implementation details of the attack
are given in Appx. G.2.

B1(T,∆
X )

X = T

X1

X2

Mε(X)
∆X

Discrete Alphabet X

(a) The protected version of the target Mε(X) jumps out of
B1(T,∆

X ).

B1(T,∆
X )

TMε(X)

X1

X

∆X

Discrete Alphabet X

(b) X ̸= T such that Mε(X) ∈ B1(T,∆
X )

Figure 2. Scenarios when AD
FC fail.

4. Privacy Leakage Analysis
This section presents our theoretical analysis for assessing
the risk of leaking membership information of users’ local
training data in FL under LDP. Given the security game

ExpAMI
LDP defined in Section 3.1, we generalize the lower

bound and upper bound for the advantage of the adversar-
ial server AD

FC in Theorem 1 and Theorem 2, respectively.
Finally, we provide the lower bound for the advantage of
AD

Attn under LDP in Theorem 3.

4.1. FC-based AMI on LDP-Protected Data

We now theoretically show that the adversary AD
FC con-

structed in Subsect. 3.2 can also be used to expose the true
privacy risks of LDP-protected data w.r.t AMI in FL and
state it in Theorem 1. First, we need to lay out some as-
sumptions on the data and the LDP mechanisms.

The data X is assumed to be from a discrete alphabet
X , in which the L1 metric is well-defined. In our anal-
ysis, we denote X as the set of possible output values of
the LDP algorithm (see remark 2). We denote ∆X :=
minX,Y ∈X ∥X − Y ∥L1

/2. Note that ∆X is a statistic of
D and is known by the server. We denote B1(X,∆X ) to
be a ball of radius ∆X centering around X in the L1 norm.
Given an LDP mechanismM with budget ε applied on an
alphabet X , PMε denotes the probability that the protected
version of a point is not in the ball of radius ∆X centering
at that point: PMε := Pr

[
Mε(X) /∈ B1(X,∆X )

]
. Intu-

itively, a smaller ε would impose more LDP noise, resulting
in a larger PMε .
Theorem 1. Given the security game ExpAMI

LDP, there exists
an AMI adversary AD

FC whose time complexity is O(d2X)

such that AdvAMI
LDP(AD

FC) = 1 − n+|X |−1
|X |−1 PMε , where n

is the size of the dataset D, |X | is the cardinality of the
possible output values of the LDP-mechanism and PMε is
the probability that the LDP-mechanism makes the protected
version of data point inside the neighborhood of another
data point. (Proof in Appx. D.1)

We use AD
FC constructed in Subsect. 3.2 with τD = ∆X

to show Theorem 1. Given input X , target T and LDP
mechanismMε, the goal ofAD

FC is to configure the first two
FC layers so that the first row of the second layer computes
z0 := max{τD − ∥Mε(X) − T∥L1

, 0}. If ∥Mε(X) −
T∥L1 < τD, then z0 activates and the gradient of b2[1] is
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non-zero. For τD = ∆X , ifMε(X) /∈ B1(T,∆
X ), then

z0 = 0, leaving the gradient zero. Conversely, ifMε(X) ∈
B1(T,∆

X ), then z0 > 0 and the gradient θ̇(b2[1]) > 0. The
adversary uses the gradient of b2[1] as an indicator of the
presence of T in the local data. A non-zero gradient implies
T exists in the data, while a zero gradient indicates it does
not. Intuitively, AD

FC fails if either (i) the protected version
of the dataMε(X) jumps out of B1(T,∆

X ) when X = T
or (ii) there is an X ̸= T such thatMε(X) ∈ B1(T,∆

X ).
These scenarios are illustrated in Fig. 2. The probabilities of
the two events are bounded by PMε and nPMε/(|X | − 1),
respectively (see Appx. D.1). Theorem 1 demonstrates the
trade-off between privacy and data utility: a highly protected
data would have high PMε , thus lowering the advantage of
the adversary; however, its distortion from the original data
is large as a result.
Remark 1. Lower bound of Theorem 1. It is non-trivial
to obtain PMε for Theorem 1 due to the dependencies on
the data as well as the specific LDP mechanisms. To demon-
strate the intuition behind the proof, we provide an example
of how to derive PMε for Generalized Random Response
(GRR (Warner, 1965)), a classical LDP algorithm, and the
corresponding theoretical lower bound for GRR-protected
data in Theorem 4 (Appx. E). We also simulate the lower
theoretical bound in Theorem 1 for data protected by LDP
algorithms BitRand (Jiang et al., 2022), GRR, dBitFlipPM
(Ding et al., 2017) and RAPPOR (Erlingsson et al., 2014)
in Figs. 7 and 8. Those theoretical lower bounds are shown
along with the success rates of some AMI attacks (discussed
in Section 3) for comparison.
Remark 2. Cardinality of X . |X | is dependent on the
specific LDP algorithm used. For binary LDP algorithms
such as Binary Randomized Response (Warner, 1965) or
RAPPOR (Erlingsson et al., 2014), |X | = 2 due to the bi-
nary nature of the values being perturbed (e.g., a "yes/no" or
"0/1" response). In contrast, for generalized k-ary random-
ized response algorithms, such as Generalized Randomized
Response (GRR) or k-RAPPOR, |X | = k, where k > 2
represents the cardinality of the set of possible output values
of the algorithm. This allows for more nuanced privacy-
preserving mechanisms, where the response set consists of
k different values, each with a specific probability distribu-
tion determined by the privacy parameters of the algorithm.
In modern bit-flipping algorithms such as OME or BitRand,
the original data or embedding features are first converted
into binary vectors of size b. The LDP mechanisms are then
applied on top of those binary representations of the signal
by flipping random bits. In this case, |X | = 2b. For large
enough b, n+|X |−1

|X |−1 ≈ 1 and AdvAMI
LDP(AD

FC) ≈ 1− PMε .

Theorem 2. For all AMI adversary A of the security game
ExpAMI

LDP , we have

AdvAMI
LDP(AD

FC) ≤
eϵ − 1

eϵ + 1
(4)

(Proof in Appx. F)

This theorem shows the theoretical upper bound for
AdvAMI

LDP(AD
FC), given the privacy budget ϵ. Accordingly,

we measure the adversary’s attack success rate as 1
2 (1 +

AdvAMI
LDP(AD

FC)) (see Equation 1) and plot the theoretical up-
per bound alongside the lower bound of AMI attack success
rate and empirical success rate against real-world datasets
under LDP protection in Figs. 7 and 8.

4.2. Attention-based AMI on LDP-Protected Data

Our theoretical result on the vulnerability of private data
to Attention-based AMI attack under LDP is quantified on
Separation of Patterns, an intrinsic measure of data:
Definition 2. (Separation of Patterns (Ramsauer et al.,
2021)). For a pattern xi in a data point X =
{xj}NX

j=1, its separation ∆i from X is ∆i :=

minj,j ̸=i

(
x⊤
i xi − x⊤

i xj

)
= x⊤

i xi − maxj x
⊤
i xj . We

say the pattern i is separated from the data point X if
∆i > 0. We say X is ∆-separated if ∆i ≥ ∆ for all
i ∈ {1, · · · , NX}. A data D is ∆-separated if all X in D
are ∆-separated.

For the attention-based attack, we represent the victim’s
dataset as D = {Xi}ni=1, where Xi ∈ X , and X ⊆
RdX×NX . For any 2-dimensional array X , each column
xj ∈ RdX is referred to as a pattern. Since the LDP
mechanisms are generally applied at a pattern level in 2-
dimensional data (Qu et al., 2021; Yue et al., 2021), the
distortion imposed by LDP is modeled by a noise ri added
to each pattern: Xε = Mε(X) = {xi + ri}NX

i=1. We
assume ri is bounded by a norm budget Rε that is de-
fined by specific mechanisms and applications. M de-
notes the maximum L2-norm of all patterns, defined as
M = maxX∈D maxxj∈X ∥xj∥. The adjusted pattern’s

norm is then upper-bounded by Mε =
√

M2 +Rε2. Re-
garding data separation under LDP, denoted by ∆ε, whose
value is not easily obtainable even when the LDP mech-
anism is known, we can generally expect ∆ε ≥ ∆. The
reason is, as the noise ri is independent of the patterns, it
makes the patterns less aligned. This intuition is demon-
strated via an example in Appx. D.3.

The notion of ∆ε-separated helps capture the intrinsic diffi-
culty of the data for the inference task: the less separating
the data, i.e., a smaller ∆ε, the harder for the adversary to
detect the patterns. However, it is not beneficial to impose a
low separation on the data in practice since it would impair
the model’s performance. Note that, if D is considered as
the data after preprocessing, ∆ε can be manipulated by the
choice of preprocessing methods for the FL model, which
are often specified by the server. We are now ready to state
Theorem 3 that analyzes the vulnerability of LDP-protected
data to Attention-based AMI in FL.
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Figure 3. The adversarial server exploits self-attention mechanism to conduct inference attack of victim’s protected local training data D′

in FL: If xi in the data equals to the target pattern v, the input to the filtered attention heads is the pertubed version xε
i and the output z1i of

the filtered head is close to the protected pattern’s average X̄ε instead of xε
i . This creates non-zero gradients on weights computing on the

difference of attention heads’ outputs. The attack fails when the added noise is large and the embedding of protected data overlaps at the
center of the embedding.

Theorem 3. Given a ∆ε-separated data DMε (the LDP-
protected version of the data D) with i.i.d patterns of the
security game ExpAMI

LDP, for any β > 0 large enough such
that

∆ε ≥ 2

βNX
+

1

β
log(2(NX − 1)NXβMε2), (5)

there exists an AMI adversary, AD
Attn, that exploits the self-

attention layer with a time complexity of O(d3X) such that
AdvAMI

LDP(AD
Attn) is lower bounded by:

AdvAMI
LDP(AD

Attn) ≥ PDMε

proj

(
1

βNXMε

)
+PDMε

proj

(
1

βNXMε

)2nNX

−PDMε

box

(
3∆̄ε + β(mε

max)
2Rε

)
− 1 (6)

where ∆̄ε := 2Mε(NX−1) exp (2/NX − β∆ε) andDMε

is the distribution of the protected data DMε induced by
the original data distribution D and the LDP-mechanism
Mε. mε

x = 1
NX

∑NX

i=1 x
ε
i is the arithmetic mean of all

LDP-protected patterns and mε
max = max1≤i≤NX

∥xi −
mε

x∥. Here, PDMε

proj (δ) is the probability that the projected
component between two independent patterns drawn from
DMε is smaller than δ and PDMε

box (δ) is the probability that
a random pattern drawn from DMε is in the cube of size
2δ centering at the arithmetic mean of the patterns in DMε .
(Proof in Appx. D.4)

The key step in proving Theorem 3 is to demonstrate that
the configuration of the self-attention model, specified in
Appendix C.2, behaves as outlined in Fig. 3. Given any
input pattern xi ∈ X , the attention heads process the LDP-
protected version of the pattern, xi+ri. Let v denote the tar-
get pattern. If v is not present in the victim’s training dataset,
i.e., xj ̸= v for all 1 ≤ j ≤ NX , then, using Lemma 1
(Appendix D.2), which builds on the Exponentially Small
Retrieval Error Theorem for the attention layer (Ramsauer
et al., 2021), we show that zh1 ≈ xi + ri and zh2 ≈ xi + ri,
both with a probability lower-bounded by:

PDMε

proj

(
1

βNXMε

)
.

This probability governs the false-positive error of the at-
tack.

If there exists xi = v (i.e., v is in the training dataset), the
weights of attention head 1 filter v and output:

zh1 = Xεsoftmax
(
βXε⊤(ri − r̄vi )

)
,

where r̄vi is the projection of ri onto v. If Rε is small enough,
zh1 ≈ X̄ε. By computing the difference between the two
heads, |z1i − z2i |, the adversary can infer the presence of
v in X . For a hyperparameter γ, if |z1i − z2i | > γ, then
v ∈ X . Conversely, if |z1i − z2i | < γ, then v /∈ X . We
select γ = 2∆̄ε, a choice justified in Appendix D.4.

False-negative errors occur when the embedding of pro-
tected data overlaps at the center of the embedding space,
causing |z1i −z2i | < γ even when v ∈ X . By using the mean
value theorem and bounding the Jacobian of the attention’s
forwarding function, this error is upper bounded by:

PDMε

box

(
3∆̄ε + β(mε

max)
2Rε

)
.

As noise increases, the cube of size 6∆̄ε + 2β(mε
max)

2Rε

covers more patterns and causes PDMε

box to increase. At high
noise levels, the attention outputs for all patterns are more
likely to cluster near the center of the embedding space, as
illustrated in Fig. 4. This leads to higher false-negative rates
for the attack. However, models trained on such noisy data
generally exhibit poor performance since patterns whose
embeddings overlap in these central regions become indis-
tinguishable. This results in PDMε

box ≈ 1 for large enough
Rε, causing the advantage to drop sharply regardless of di-
mensionality as the cube fully encloses the patterns. Our
simulations of Eq. (6) for one-hot and spherical data are
shown in Fig. 5 and Fig. 6, respectively.

Remark 3. ∆ε vs. the advantage’s lower bound (6).
A larger ∆ε allows a smaller β to satisfy (5) and makes
PDMε

proj

(
1

βNXMε

)
larger and PDMε

box

(
3∆̄ε + β(mε

max)
2Rε

)
smaller.

Remark 4. The most vulnerable embedding. The
lower bound in (6) would be optimized with one-hot data.
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Figure 4. For large Rε s.t. Pbox ≈
1, the embedding of protected data
overlaps at the center of the em-
bedding and impairs data utility.
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Figure 5. AdvAMI
LDP(AD

Attn) on one-hot data using
Monte-Carlo simulation
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Attn) on spherical data us-
ing Monte-Carlo simulation

Since it has no alignment among patterns, ∆ε achieves
its maximum which is the pattern’s norm. Furthermore,
PDMε

proj

(
1

βNXMε

)
is 1 because all patterns are orthogo-

nal to each other. Finally, since there is no pattern at the
center of one-hot data, we can select a very large β so
that PDMε

box

(
3∆̄ε + β(mε

max)
2Rε

)
= 0, given Rε is small

enough.

Remark 5. Asymptotic behavior of the advantage (6).
For high dimensional data, i.e., dX → ∞, two random
points are surely almost orthogonal (PDMε

proj

(
1

βNXMε

)
→

1), and a random point is almost always at the bound-
ary (Blum et al., 2020). Therefore, PDMε

box

(
3∆̄ε +

β(mε
max)

2Rε
)
→ 0 for small enough Rε and β. This phe-

nomenon can be seen in one-hot data (see Fig. 5). For spher-
ical data, the amount of noise needed for PDMε

box

(
3∆̄ε +

β(mε
max)

2Rε
)
→ 1 is smaller, and the cut-off noise’s norm

gradually decreases as the input dimension increases.

Remark 6. Impact of β. Increasing the hyper-parameter β
inAD

Attn (Algo. 3, Appx. C.2) would raise the memorization
of the attention layer (Ramsauer et al., 2021). (Vu et al.,
2024) showed experimentally that increasing β leads to
better adversarial success rates against unprotected data.
For LDP-protected data, this is not the case, as increasing
β also increases PDMε

box

(
3∆̄ε +β(mε

max)
2Rε

)
, reducing the

lower bound of AdvAMI
LDP(AD

Attn). We provide experiments
on the impact of β on AdvAMI

LDP(AD
Attn) in Sect. 5.

5. Experiments
This section demonstrates the practical risks of leaking pri-
vate data in FL. In particular, we implement the FC-based
AD

FC and attention-based AD
Attn adversaries, and evaluate

their success rates in synthetic and real-world datasets. Im-
plementation details are given in Appendix. G

Datasets and embedding. Our experiments use two syn-
thetic and three real-world datasets. The synthetic datasets
include one-hot encoded data and spherical data (points

on the unit sphere). The real-world datasets, including CI-
FAR10, CIFAR100 (Krizhevsky et al., 2009), and Ima-
geNet (Krizhevsky et al., 2012), are processed using pre-
trained embedding modules to obtain data D for our threat
models. We also use the ImageNet dataset, a large-scale
benchmark consisting of labeled images across 1,000 cate-
gories (Deng et al., 2009). For ResNet, we extract feature
embeddings with Img2Vec (Safka, 2021), while for ViTs,
we use pretrained foundation models provided by the au-
thors on HuggingFace (Dosovitskiy et al., 2021). We refer
readers to Appx. G.1 for more details.

LDP mechanisms. We use BitRand (Jiang et al., 2022),
GRR (Warner, 1965), RAPPOR (Erlingsson et al., 2014),
dBitFlipPM (Ding et al., 2017) as LDP mechanisms for
real-world datasets. Details about these algorithms are in
Appx. G.4. We also provide some results on OME (Lyu
et al., 2020) in Appx. H.1.

Results on synthetic datasets. Fig. 5 and Fig. 6 shows the
impact of the L1 norm of Rε on the advantage of Attention-
based AMI adversary on one-hot and spherical data, respec-
tively. For one-hot data, as we increase dX , random noise is
almost always at the boundary and there is no pattern at the
center of one-hot data. This reduces the likelihood that the
protected data’s embedding overlaps with the center of the
embeddings, increasing the lower bound of the adversary’s
advantage in (6). On the other hand, for spherical data, the
advantage drops sharply when Rε increases, regardless of
the dimension of the data.

Results of FC-based AMI adversary. Figures 7 and 8
show the success rates of FC-based AMI attacks against
4 different LDP algorithms on CIFAR10 and CIFAR100.
The theoretical lower and upper bound on the adversary’s
attack success rate can be derived directly from the theoreti-
cal lower and upper bound of AdvAMI

LDP(AD
FC) using Eq. 1.

Across these LDP mechanisms, the amount of LDP noise
needed to protect against AMI attack significantly reduces
the model’s utility. For example, for BitRand-protected CI-
FAR10, to make the inference rate lower than 80% (yellow
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(a) (b) (c) (d)

Figure 7. Theoretical upper/lower bound and empirical results on the attack success rates of FC-based AMI adversaries against CIFAR10
dataset protected by BitRand (a), GRR (b), RAPPOR (c) and dBitFlipPM (d).

(a) (b) (c) (d)

Figure 8. Theoretical upper/lower bound and empirical results on the attack success rates of FC-based AMI adversaries against CIFAR100
dataset protected by BitRand (a), GRR (b), RAPPOR (c) and dBitFlipPM (d).

line), the model has to suffer at least 20% accuracy loss. The
theoretical lower bound of the attack’s success rate corrobo-
rates the empirical success rate of ≈ 100% when ϵ = 8. For
both real-world datasets, AD

FC achieves near 100% success
rate when ϵ approaches 6. Among the evaluated mecha-
nisms, GRR, RAPPOR, and dBitFlipPM preserve higher
model accuracy at lower ε values but expose the model to
greater privacy risks, as indicated by both the empirical and
theoretical attack success rates approaching 100% at ε = 5
and 6, respectively.

Results of Attention-based AMI adversary. Experiments
on CIFAR10 and ImageNet (1000 classes) are conducted
on ViT-B-32-224 and ViT-B-32-384, respectively (Fig. 9).
For LDP-protected data, the inference success rate of AD

Attn

approaches 100% when ϵ = 3 or higher. At this privacy
budget, model performance suffers significantly. Fig. 9
also illustrates the impact of batch size on the attack success
rates, showing that the proposedAD

Attn performs consistently
across different batch sizes.

Impact of β on AdvAMI
LDP(AD

Attn). As discussed in remark
6, increasing β also increases PDMε

box

(
3∆̄ε+β(mε

max)
2Rε

)
,

and in turn makes the lower bound of Eq. (6) smaller. We
illustrate this behavior in Fig.10. The more we increase
β, the less likely the adversary succeed. Note that we still
need to choose a β large enough for Eq. 5 to hold. We fur-
ther discuss the choice of hyperparameters in Appendix G.3.
Given the assumption that the server has knowledge of the

client’s data distribution (as outlined in the AMI threat mod-
els in Section 3.1), the server can simulate the client’s data
to compute a minimally sufficient value for β. When do-
ing experiments, we found that setting β to a reasonably
small value (e.g., 0.01) yielded consistently good results
across realistic ε values and datasets/LDP mechanisms. As
illustrated in Figure 10, for LDP-protected data, β = 0.01
generally achieves better success rates under small ε.

Empirical results on NLP datasets. In section 4.2, the
distortion imposed by LDP is modeled by a noise ri added
to each pattern: Xε =Mε(X) = {xi+ ri}NX

i=1 = {xε
i}

NX
i=1.

In our analysis, we assume xi and ri to be continuous, and
the impact of LDP noise can be visualized in Fig. 4. For
NLP data, both the data and the noise should be modeled as
discrete, hence our theoretical analysis might not directly
apply to the NLP scenario. The key challenge is that in
NLP, tokens are typically represented as discrete embed-
dings, and adding continuous noise is not meaningful in this
context. Therefore, a separate theoretical framework would
be required to account for the discrete nature of NLP data.

However, it is important to note that the attack still ex-
perimentally works against both vision and NLP data. To
demonstrate this, we conducted comprehensive experiments
across 4 NLP datasets (IMDB (Maas et al., 2011), Yelp
(Zhang et al., 2015), Twitter (Saravia et al., 2018), Finance
(Casanueva et al., 2020)), 4 models (BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), GPT-1 (Radford et al.,
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(a) (b) (c)

Figure 9. Comparison of success rates of Attention-based AMI adversaries against CIFAR10 protected by BitRand, GRR, RAPPOR, and
dBitFlipPM (a) as well as the privacy-utility trade-off and the impact of batch size on attack success on BitRand-protected data (b,c).
Here, Attn-10 means the attack is conducted with batch size 10, and so on. Batch size is 10 if not explicitly mentioned.

Figure 10. Impact of β on AdvAMI
LDP(AD

Attn)

2018), DistilBERT (Sanh et al., 2019)), and 3 LDP algo-
rithms (GRR, RAPPOR, dBitFlipPM). The results given
in Appx. H.2 indicate that privacy risks persist even for
LLMs, depending on the privacy budget. To explore more
in depth the impact of different LDP mechanisms on the
attack success rates, we also conduct an ROC analysis of
the attack success rates (on IMDB dataset) in Appx. H.3.

6. Conclusion
This work studies the formal threat models for AMI attacks
with dishonest FL servers, effectively and rigorously pro-
viding the theoretical bound on the vulnerabilities of FL
under LDP protection. We also provide experimental evi-
dence for the high success rates of active inference attacks
under certain LDP mechanisms. The results imply that LDP-
protected data might be vulnerable to inference attacks in FL
with dishonest servers and clients should carefully consider
the tradeoff between privacy and utility.
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A. Appendix
This is the appendix of our paper Theoretically Unmasking Inference Attacks Against LDP-Protected Clients in Federated
Vision Models. Its main content and outline are as follows:

• Appendix B provides the details of the security games examined in this work.

• Appendix C shows detailed description of FC-based and Attention-based AMI Attack in FL.

– Appendix C.1: the description of FC-based adversary for AMI (Vu et al., 2024).
– Appendix C.2: the description of attention-based adversary for AMI (Vu et al., 2024).

• Appendix D proves the advantage of FC-based and Attention-based AMI Attack in FL under LDP.

– Appendix D.1: the proof of Theorem 1.
– Appendix D.2 discusses attention layer’s memorization capabilities through Exponentially Small Retrieval Error

Theorem (Ramsauer et al., 2021).
– Appendix D.3: the impact of LDP mechanisms on data separation.
– Appendix D.4: the proof of Theorem 3.

• Appendix E proves the lower bound of the advantage of FC-based AMI attack under GRR mechanism.

• Appendix F proves the upper bound of the advantage of FC-based AMI attack under LDP.

• Appendix G provides the details of our experiments reported in the main manuscript.

– Appendix G.1: details of the tested datasets.
– Appendix G.2: implementation of Attention-based AMI Adversary against Vision Transformer
– Appendix G.3: details choices of hyperparameters of the adversaries.
– Appendix G.4: descriptions of the tested LDP mechanisms.

• Appendix H provides additional experimental results.

– Appendix H.1: provides additional experiments on data protected by OME mechanism.
– Appendix H.2 provides experimental results on NLP datasets.
– Appendix H.3 provides ROC analysis of the attack success rates on IMDB dataset.

• Appendix I discusses alternative privacy-preserving techniques such as SMPC and Homomorphic Encryption.

B. Active Inference Threat Models as Security Games
This appendix provides the descriptions of the security games examined in our work. All games are conducted between a
challenger/client, and an adversary/server in FL. The adversary is denoted by AD, in which the superscript D indicates that
the server knows the data distribution of the client’s private data. At the beginning of the games, a random bit b is generated
and it is used to decide whether the challenger’s private data has a specific sample. The goal of the AMI adversary is to
guess the bit b, which is equivalent to inferring information on the challenger’s data.

As pointed out briefly in Sect. 3.1, the adversarial server AD in all security games consists of three components AD
INIT,

AD
ATTACK and AD

GUESS. An illustration of their dynamics is provided in Fig. 1. To specify an adversary, for each security
game, we need to describe how it determines the model Φ for FL in AD

INIT, how it crafts the model’s parameters θ in
AD

ATTACK and how it guesses the bit b in AD
GUESS. The security games considered in this work are described below.

AMI on unprotected data ExpAMI
NONE(AD): This security game is about the base AMI threat model, which is first formulated

in (Nguyen et al., 2023) to study the threat of AMI in FL. While we do not directly study this security game, it serves as the
foundation for ExpAMI

LDP(AD).The subscript NONE indicates there is no defense mechanism applied on the data. The goal of
the adversary is to decide if a target sample T is included in the training data D. Fig. 11 provides the pseudo-code of this
security game.
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ExpAMI
NONE(AD):

# Simulating the dataset D of the client
D ← ∅
while |D| < n do

X
D←X # Sampling X from the input distribution D

if X /∈ D then
D ← D ∪ {X}

# The random bit game
b

$←{0, 1}
X ← NONE
if b = 1 then

T
$←D # Uniformly sampling T from n samples in D

else
while T == NONE or T ∈ D do

T
D←X # Sampling T from the input distribution

# The attack
Φ← AD

INIT # The adversarial server decides a model Φ
θ ← AD

ATTACK(T ) # The server computes the parameters θ based on the target input T
θ̇ ← ∇θLΦ(D) # The client computes the gradients of the loss w.r.t the parameters based on its data D

b′ ← AD
GUESS(T, θ̇) # The server receives θ̇ and guesses a bit b′

Ret [b′ = b] # The game returns 1 if b′ = b (the adversarial server wins), 0 otherwise

Figure 11. The AMI Threat Model as a Security Game.

ExpAMI
LDP(AD, ε):

# Simulating the dataset D of the client
As in the AMI threat model in Fig. 11
# The random bit game
As in the AMI threat model in Fig. 11
# The attack
Φ← AD

INIT

θ ← AD
ATTACK(T )

D′ ←Mε(D) = {Mε(X)}X∈D # Applying LDP mechanism M with ε parameter on the data D

θ̇ ← ∇θLΦ(D
′) # Gradients are computed on the protected data

b′ ← AD
GUESS(T, θ̇)

Ret [b′ = b]

Figure 12. The AMI threat model under LDP mechanism as a security game.

AMI on LDP-protected data ExpAMI
LDP(AD): This security game describes the AMI threat model when the data is protected

by LDP mechanisms. The work (Nguyen et al., 2023) extends ExpAMI
NONE(AD) to obtain the formulation of ExpAMI

LDP(AD). In
this game, the client independently perturbs its training data sample D using an LDP-preserving mechanismM to obtain a
randomized local training set D′ =Mε(D) = {Mε(X)}X∈D. This randomized data D′ is then used for the local training
instead of D. As a result, the gradients that the FL server receives are computed on the protected data D′ instead of D.
Fig. 12 is the pseudo-code of this security game.

14



Theoretically Unmasking Inference Attack Against LDP-Protected Clients in Federated Vision Models

C. FC-based and Attention-based AMI Attacks
This appendix reports the details of FC-based and Attention-based AMI Attacks. In Appx. C.1, we provide the descriptions
of the FC-based AMI adversary proposed by (Vu et al., 2024) used in our analysis. Appx. C.2 presents the details of the
Attention-based AMI adversary (Vu et al., 2024).

C.1. FC-Based Adversary for AMI in FL

We now describe the AMI FC-based adversary AD
FC proposed by (Vu et al., 2024) and mentioned in Sect. 3.2. The adversary

consists of 3 components AD
FC−INIT, AD

FC−ATTACK and AD
FC−GUESS.

Algorithm 1 AD
FC−ATTACK(T ) exploiting fully-connected layer in AMI

Hyper-parameters: τD ∈ R+

1 # Configuring W1 ∈ R2dX×dX and b1 ∈ R2dX of the first FC

W1 ←
[
IdX

−IdX

]
, b1 ←

[
−T
T

]
2 # Configuring the first row of W2 ∈ Rd×2dX and the first entry of b2 ∈ Rd of the second FC
W2[1, :]← −1⊤2dX

, b2[1]← τD

3 Ret all weights and biases

Algorithm 2 AD
FC−GUESS(T, θ̇) exploiting fully-connected layer in AMI

# If the gradient of b2[1] is non-zero, returns 1
if |θ̇(b2[1])| > 0 then

Ret 1
end
Ret 0

AMI initialization AD
FC−INIT: The adversary’s model employs fully connected (FC) layers for its first two layers. Given an

input X ∈ RdX , the attacker computes ReLU(WlX + bl) = max(0,WlX + bl), where Wl and bl denote the weights and
biases of layer l, respectively. The dimensions of W1 and b1 are set to 2dX ×dX and 2dX , respectively. For the second layer,
the attack only analyzes a single output neuron, thus, requiring W2 to have only 2dX columns. We denote the parameters
associated with this neuron as W2[1, :] and b2[1]. Models with additional parameters can still works, as surplus parameters
can simply be disregarded.

AMI attack AD
FC−ATTACK: The weights and biases of the first two FC layers are set as:

W1 ←
[
IdX

−IdX

]
, b1 ←

[
−T
T

]
, W2[1, :]← −1⊤dX

, b2[1]← τD (7)

where IdX
is the identity matrix and 1dX

is the all-ones vector of size dX . The hyperparameter τD controls the total
allowable distance between an input X and the target T , which can be determined from the distribution statistics. The
pseudo-code of the attack is presented in Algo. 1.

AMI guess AD
FC−GUESS: In the guessing phase, the AMI server returns 1 if the gradient of b2[1] is non-zero, and returns 0

otherwise. The pseudo-code of this step is shown in Algo. 2.

C.2. Attention-Based Adversary for AMI in FL

We now describe the AMI attention-based adversary AD
Attn introduced in (Vu et al., 2024) and discussed in Sect. 3.3. The 3

components of it are AD
Attn−INIT, AD

Attn−ATTACK and AD
Attn−GUESS, detailed as follows:

AMI initialization AD
Attn−INIT: The model initiated by the dishonest server has self-attention as its first layer. We set the

number of attention heads H to 4. The attention dimension is dattn = dX − 1, where dX is the one-hot encoding dimension.
The hidden and output dimensions are dhid = dX and dY = 2dX , respectively. Any configurations with a higher number of
parameters can adopt the proposed attack because the extra parameters can simply be ignored.
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Algorithm 3 AD
Attn−ATTACK(v) using self-attention in AMI

Hyper-parameters: β, γ ∈ R+

4 Randomly initialize Wh
Q,W

h
K ,Wh

V ,WO and bO for all heads h
5 Randomly initialize a matrix W ∈ RdX×dX

6 W [:, 1]← v # Set the first column of W to v

7 Q,R← QR(W ) # QR-factorization W

8 W 1
Q ← Q[2 : dX ]⊤ # Set W 1

Q to the last dX − 1 rows of Q⊤

9 W 1
K ← βW 1

Q
†⊤

# Set head 1 to memorization mode

10 W 2
K ← βW 2

Q
†⊤

# Set head 2 to memorization mode
11 W 3

Q ←W 1
Q, W 3

K ←W 1
K # Copy Head 1 to Head 3

12 W 4
Q ←W 2

Q, W 4
K ←W 2

K # Copy Head 2 to Head 4
13 W 1

V ← IdX
, W 2

V ← IdX
, W 3

V ← IdX
, W 4

V ← IdX
# Setup for detection

14 WO ←
[
IdX

−IdX
0dX

0dX

0dX
0dX

−IdX
IdX

]
# Setup for detection

15 bOi = −γ,∀i ∈ {1, · · · , dY } # Setup biases
16 Ret all weights and biases

Algorithm 4 AD
Attn−GUESS(v, θ̇) using self-attention in AMI

# If the any gradients of WO is non-zero, returns 1
if ∥θ̇1(WO)∥∞ > 0 then

Ret 1
end
Ret 0

AMI attack AD
Attn−ATTACK: The attack component AD

Attn−ATTACK determines the self-attention weights including
Wh

Q,W
h
K ,Wh

V ,WO and bO, where h is the head’s index. There are two hyper-parameters, β and γ ∈ R+, in AD
Attn−ATTACK.

Intuitively, β controls how much the attention heads memorize their input patterns xh
i and γ adjusts a cut-off threshold

deciding between v ∈ D and v /∈ D (depicted in Fig. 3). Given a target pattern v for detection, the weights of the first
attention head is chosen such that:

W 1⊤
K W 1

Q ≈ βIdX
and W 1

Qv ≈ 0 (8)

To enforce condition (8), dX − 1 vectors orthogonal to v ∈ RdX are assigned to W 1
Q using QR-factorization. Subsequently,

W 1
K is defined as the transpose of βW 1†

Q , where † represents the pseudo-inverse. In contrast, the second head initializes W 2
Q

randomly and sets W 2
K as its pseudo-inverse. As a result, the second condition of (8) does not hold for W 2

Q and W 2
K . The

remaining parameters of the two heads are configured such that the first dX rows of Y compute max{0, Z1 − Z2 − γ1⊤}.
The third and fourth heads are designed to produce the negation of the first and second heads, respectively, meaning the last
dX rows of Y compute max{0, Z2 − Z1 − γ1⊤}. For simplicity in analysis, Wh

V and WO are constructed using identity
and zero matrices. The pseudo-code of the attack is provided in Algo. 3.

AMI guessAD
Attn−GUESS: In the guessing phase, the AMI server checks if any of the weights in WO have non-zero gradients.

Algo. 4 shows the pseudo-code of this step.

Attack strategy. We analyze the attack strategy of AD
Attn against unprotected data. The attention-based attacks exploit the

memorization capability of the attention layer (Ramsauer et al., 2021): the attacks determine the layer’s weights so that
if a pattern ξ similar to a stored pattern x ∈ X feed to the layer, the returned signal will be similar to the stored pattern
x. X can be considered as the Key and the Value, while ξ is the Query in the attention mechanism. The memorization
is imposed by the condition W 1⊤

K W 1
Q ≈ βIdX

in (8). For an input X that does not contain the target pattern v, we have
1/βX⊤W 1⊤

K W 1
QX ≈ X⊤X , which is the matrix of correlations of patterns in X . The output of the softmax, therefore,

approximates INX
since the diagonal entries of X⊤X are significantly larger than the non-diagonal entries. The head’s

output Z1 ≈ X , i.e., z1i ≈ xi, as a result. Since the second head is the same as the first for x ̸= v, we also have Z2 ≈ xi.
When X contains the target pattern v, i.e., there exists an xi such that xi = v, due to the second condition of Eq.(8), we have
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x⊤
i W

1⊤
K W 1

Qxi ≈ 0. This makes the softmax’s output uniform, which can be interpreted as the attention being distributed
equally among all patterns. Consequentially, the attention’s output of the first head is the pattern’s average X̄ . Since the
second head does not filter v, its output approximates xi. By computing the difference between the two heads |z1i − z2i | and
offset it by γ, the adversary can infer the presence of v in X . While the attack strategy of AD

Attn against LDP-protected data
follows the same principle, the main difference is the input of the attention heads is now the protected version xε

i instead
of xi like in the case of unprotected data. The introduced noise means that (xε

i )
⊤W 1⊤

K W 1
Qx

ε
i might not be ≈ 0, making

the softmax’s output non-uniform, and the attention’s output is no longer the pattern’s average. We analyze in-depth the
behavior of AD

Attn under LDP in Appendix D.4.

D. Vulnerability of FL under LDP to AMI
This appendix provides the details of our theoretical results on AMI in FL under LDP. Appendix D.1 shows the proof of
Theorem 1, which is about the vulnerability of LDP-protected data against FC-based AMI attack. Appendix D.2 analyzes
the memorization capabilities of attention layers. An example demonstrating the impact of LDP mechanisms on the
data’s separation is provided in Appendix D.3. Finally, Appendix D.4 shows the proof of Theorem 3, which is about the
vulnerability of LDP-protected data against attention-based AMI attack.

D.1. Proof of Theorem 1 on the Vulnerability of LDP-Protected Data to AMI in FL

This appendix provides the proof of Theorem 1, which is restated below:

Theorem. Given the security game ExpAMI
LDP, there exists an AMI adversary AD

FC whose time complexity is O(d2X) such
that AdvAMI

LDP(AD
FC) = 1− n+|X |−1

|X |−1 PMε , where n is the size of the dataset D, |X | is the cardinality of the possible output
values of the LDP-mechanism and PMε is the probability that the LDP-mechanism makes the protected version of data
point inside the neighborhood of another data point.

Proof. Given D = {Xi}ni=1, where Xi ∈ X , and X ⊆ RdX , the LDP-protected version of the input X isMε(X). For the
model specified by AD

FC as discussed in Subsection 3.2 and described in Appendix C.1, its first layer computes:

ReLU
([

IdX

−IdX

]
Mε(X) +

[
−T
T

])
= ReLU

([
Mε(X)− T
T −Mε(X)

])
(9)

The first row of the second layer then computes:

z0 :=ReLU

(
−

dX∑
i=1

ReLU ((xε
i − ti) + ReLU (ti − xε

i )) + τD

)
= max

{
τD − ∥Mε(X)− T∥L1 , 0

}
(10)

This implies the gradient of b2[1] = τD is non-zero if and only if τD > ∥Mε(X) − T∥L1 . Thus, for a small enough
τD, T ∈ D is equivalent to a non-zero gradient. We set τD = ∆X . Intuitively, the attack fails if either: (1) T /∈ D, but
∃X ∈ D such thatM(X) ∈ B1(T,∆

X ) or (2) T ∈ D, butM(X) /∈ B1(T,∆
X ) for all X ∈ D. This insight is illustrated

in Fig. 2.

Given a data D and a randomly sampled point T /∈ D, the probability thatMε(X) belongs to B1(T,∆
X ) is upper bounded

by:

Pr
[
Mε(X) ∈ B1(T,∆

X )
]
= Pr

[
Mε(X) ∈ B1(T,∆

X ) andMε(X) /∈ B1(X,∆X )
]

(11)

= Pr
[
Mε(X) ∈ B1(T,∆

X )|Mε(X) /∈ B1(X,∆X )
]
Pr
[
Mε(X) /∈ B1(X,∆X )

]
(12)

≤ 1

|X | − 1
Pr
[
Mε(X) /∈ B1(X,∆X )

]
=

1

|X | − 1
PMε (13)

(11) is from the fact thatMε(X) ∈ B1(T,∆
X ) impliesMε(X) /∈ B1(X,∆X ) as the balls are disjoint. (12) is from the

conditional probability formula. For (13), givenMε(X) /∈ B1(X,∆X ), since all the balls B1(X,∆X ) for X ∈ D and
B1(T,∆

X ) are disjoint,Mε(X) can either be in one of the other |X | − 1 balls of radius ∆X or be outside of all those balls.
As T are chosen randomly, the probability thatMε(X) is in one of the |X | − 1 balls is bounded by 1/(|X | − 1).
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If b = 0, the probability that z0 is activated is:

Pr [z0 > 0|b = 0] = Pr
[
∃X ∈ D such thatM(X) ∈ B1(T,∆

X )|b = 0
]

(14)

≤
∑
X∈D

1

|X | − 1
PMε ≤ n

|X | − 1
PMε (15)

where (14) is from (10) and the inequalities in (15) are from the union bound and (13).

On the other hand, if b = 1, the probability that z0 is not activated is bounded by:

Pr [z0 = 0|b = 1] = Pr
[
M(X) /∈ B1(T,∆

X ) for all X ∈ D|b = 1
]

(16)
≤ Pr [M(T ) /∈ B1(T,∆)|b = 1] = Pr [M(T ) /∈ B1(T,∆)] = PMε (17)

where inequality (17) uses the fact that, conditioned on b = 1, T ∈ D.

Thus, we have the advantage of AD
FC:

AdvAMI
LDP(AD

FC) = Pr[b′ = 1|b = 1] + Pr[b′ = 0|b = 0]− 1 (18)
= (1− Pr[z0 = 0|b = 1]) + (1− Pr[z0 > 0|b = 0])− 1 (19)

≥ (1− PMε) +

(
1− n

|X | − 1
PMε

)
− 1 = 1− n+ |X | − 1

|X | − 1
PMε (20)

where (20) uses (15) and (17). Since AD
FC can be constructed in O(d2X), we have the Theorem.

D.2. Memorization capabilities of Attention layers.

We now state Lemma 1 bounding the error of the self-attention layer in memorization mode (Vu et al., 2024). The Lemma
can be considered as a specific case of Theorem 5 of (Ramsauer et al., 2021). In the context of that work, they use the term
for well-separated pattern in their main manuscript to indicate the condition that the Theorem holds. In fact, the condition
(21) stated in Lemma 1 is a sufficient condition for that Theorem of (Ramsauer et al., 2021).

Lemma 1. Given a data X , a constant α > 0 large enough such that, for an xi ∈ X:

∆i ≥
2

αNX
+

1

α
log(2(NX − 1)NXαM2) (21)

then, for any ξ such that ∥ξ − xi∥ ≤ 1
αNXM , we have∥∥xi −Xsoftmax

(
αX⊤ξ

)∥∥ ≤ 2M(NX − 1) exp (2/NX − α∆i)

Proof. See Lemma 3 (Vu et al., 2024) for proof or Theorem 5 (Ramsauer et al., 2021) for proof of general case.

Intuitively, Lemma 1 claims that, if we have a pattern ξ near xi, Xsoftmax
(
αX⊤ξ

)
is exponentially near ξ as a function

of ∆i. Another key remark of the Lemma is that
∥∥xi −Xsoftmax

(
αX⊤ξ

)∥∥ exponentially approaches 0 as the input
dimension increases (Ramsauer et al., 2021).

We now consider the iteration ξnew = f(ξ) = Xp = X softmax(βXT ξ). We now state Lemma 2 (Lemma A3 (Ramsauer
et al., 2021)) that provide the bound on the Jacobian of the fixed point iteration:

Lemma 2. The following bound on the norm ∥J∥2 of the Jacobian of the fixed point iteration f holds independent of p or
the query ξ:

∥J∥2 ≤ βm2
max, (22)

Proof. See Lemma A3 (Ramsauer et al., 2021).
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D.3. The Separation of LDP-Protected Data

To give an intuition that the LDP mechanism generally increases the separation of the data, we consider the LDP mechanism
in which each ri is i.i.d sampled and independently added to each input pattern. We have the expected value of the separation
between two patterns is:

E
[
xε
i
⊤xε

i − xε
i
⊤xε

j

]
= E

[
(xi + ri)

⊤
(xi + ri)− (xi + ri)

⊤
(xj + rj)

]
(23)

=E
[
x⊤
i xi − x⊤

i xj

]
+ 2E

[
x⊤
i ri
]
−E

[
r⊤i xj

]
−E

[
r⊤j xi

]
+E

[
r⊤i ri

]
−E

[
r⊤i rj

]
(24)

=E
[
x⊤
i xi − x⊤

i xj

]
+ Var(ri) (25)

As we can see, the last expression is the expectation of the separation of the data D plus the variance of the noise. Thus, we
can assume that ∆ε resulting from the defense mechanism is to be at least similar to the separation ∆ of the original data D.

D.4. Proof of Theorem 3 on the Vulnerability of LDP-Protected Data to Attention-based AMI in FL

We are now ready to state the proof of Theorem 3. We restate the Theorem below.
Theorem. Given a ∆ε-separated data DMε (the LDP-protected version of the data D) with i.i.d patterns of the security
game ExpAMI

LDP, for any β > 0 large enough such that:

∆ε ≥ 2

βNX
+

1

β
log(2(NX − 1)NXβMε2) (26)

then there exists an AMI adversary that exploits the self-attention layer AD
Attn whose complexity is O(d3X) of the threat

model ExpAMI
LDP such that AdvAMI

LDP(AD
Attn) is lower bounded by:

AdvAMI
LDP(AD

Attn) ≥ PDMε

proj

(
1

βNXMε

)
+ PDMε

proj

(
1

βNXMε

)2nNX

− PDMε

box

(
3∆̄ε + β(mε

max)
2Rε

)
− 1 (27)

where ∆̄ε := 2Mε(NX − 1) exp (2/NX − β∆ε) and DMε is the distribution of the protected data DMε induced by the
original data distribution D and the LDP-mechanismMε. mε

x = 1
NX

∑NX

i=1 x
ε
i is the arithmetic mean of all LDP-protected

patterns and mε
max = max1≤i≤NX

∥xi −mε
x∥. Here, PDMε

proj (δ) is the probability that the projected component between

two independent patterns drawn from DMε is smaller than δ and PDMε

box (δ) is the probability that a random pattern drawn
from DMε is in the cube of size 2δ centering at the arithmetic mean of the patterns in DMε .

Proof. We represent the victim’s dataset as D = {Xi}ni=1, where Xi ∈ X , and X ⊆ RdX×NX . For any 2-dimensional
array X , each column xj ∈ RdX is referred to as a pattern. The distortion imposed by LDP is modeled by a noise ri added
to each pattern: Xε =Mε(X) = {xi + ri}NX

i=1 = {xε
i}

NX
i=1. For brevity, we first consider the following notation of the

output of one attention head under LDP without the head indexing h:

Xεsoftmax
(
1/
√

dattn(X
ε)⊤WK

⊤WQX
ε
)

(28)

Notice that we omit WV because they are all set to identity ( line 14 Algo. 3).

To show the Theorem, we consider the AMI adversary AD
Attn specified in Subsection 4.2. Since W ∈ RdX×dX (line 5

in Algorithm 3) is initialized randomly, it has a high probability of being non-singular, even after assigning v to its first
column (line 6 in Algorithm 3). For simplicity of analysis, we assume that W has full rank. If this assumption does not
hold, we can re-run the two corresponding lines of the algorithm. Similarly, we also assume that all Wh

Q and Wh
K have rank

dattn = dX − 1.

For all heads, we set WK = β(W⊤
Q )† (lines 9 and 10 in Algorithm 3). Consequently, 1

βW
⊤
KWQ = W †

QWQ is the projection
matrix onto the column space of W⊤

Q . By defining [ξ1, · · · , ξNx ] = Ξ = 1
βWK

⊤WQX
ε, it follows that ξj is the projection

of the pattern xε
j onto this space.

For head 1 and head 3, as a result of line 6 in Algorithm 3, we can express W = [v, w2, · · · , wdX
]. Based on the QR

factorization (line 7), we have:

QR = [v, w2, · · ·wdX
] −→ R = Q⊤[v, w2, · · ·wdX

] (29)
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Since R is an upper triangular matrix, v is orthogonal to all rows Qi for i ∈ {2, · · · , dX} of Q⊤. Additionally, due to the
assignment at line 8 in Algorithm 3, the column space of W⊤

Q is the linear span of {Qi}dX
i=2, all of which are orthogonal to v.

As a result, the difference between Xε and Ξ corresponds to the component of Xε in the direction of v:

Xε − Ξh = [xε
1 − ξh1 , · · · , xε

NX
− ξhNX

] = [Projv(x
ε
1), · · · ,Projv(x

ε
NX

)], h ∈ {1, 3} (30)

where Projv(x
ε
j) is the component of pattern xε

j ∈ RdX along v.

For head 2 and head 4, although QR-factorization is not performed, 1
βW

⊤
KWQ for these heads also acts as projection

matrices, but onto different column spaces. These spaces are likewise of rank dX−1, and each omits one direction. Denoting
this direction as u, we can express the difference between Xε and Ξ for these heads as:

Xε − Ξh = [xε
1 − ξh1 , · · · , xε

NX
− ξhNX

] = [Proju(x
ε
1), · · · ,Proju(x

ε
NX

)], h ∈ {2, 4} (31)

We now denote fα : RdX×Nx → RdX×Nx as:

Ξ′ = fα(Ξ) = Xεsoftmax
(
α(Xε)⊤Ξ

)
(32)

For brevity, we also abuse the notation and write ξ′ = fα(ξ) = Xεsoftmax
(
α(Xε)⊤ξ

)
for ξ and ξ′ ∈ RdX .

With this, the output of the layer before the ReLU activation can be expressed as:

Z =

[
fβ(Ξ

1)− fβ(Ξ
2)− γ1⊤

fβ(Ξ
4)− fβ(Ξ

3)− γ1⊤

]
=

[
fβ(Ξ

1)− fβ(Ξ
2)− γ1⊤

fβ(Ξ
2)− fβ(Ξ

1)− γ1⊤

]
(33)

=

[
fβ(ξ

1
1)− fβ(ξ

2
1)− γ, · · · , fβ(ξ

1
NX

)− fβ(ξ
2
NX

)− γ
fβ(ξ

2
1)− fβ(ξ

1
1)− γ, · · · , fβ(ξ

2
NX

)− fβ(ξ
1
NX

)− γ

]
(34)

where β = β/
√
dattn and γ is defined as in Algorithm 3. From the above expressions, it follows that Z has non-zero entries

if and only if:

∃i such that ∥fβ(ξ1i )− fβ(ξ
2
i )∥∞ > γ (35)

Note that heads 3 and 4 are used to handle cases where the entries of fβ(ξ1i ) are smaller than those in fβ(ξ
2
i ). The condition

(35) can also be rewritten as:

∥fβ(Ξ1)− fβ(Ξ
2)∥∞ > γ (36)

For a given pattern xi, we now examine two cases: xi ̸= v and xi = v.

Case 1. For a pattern xi ∈ X such that xi ̸= v, from Lemma 1, we have∥∥xε
i − fβ(ξ

1
i )
∥∥ ≤ 2Mε(NX − 1) exp (2/NX − β∆ε

i ) (37)∥∥xε
i − fβ(ξ

2
i )
∥∥ ≤ 2Mε(NX − 1) exp (2/NX − β∆ε

i ) (38)

when ∥xε
i − ξ1i ∥ = ∥Projv(x

ε
i )∥ ≤ 1/(βNXMε) and ∥Proju(x

ε
i )∥ ≤ 1/(βNXMε), respectively. Note that it is necessary

to select a sufficiently large β to ensure that Lemma 1 holds. We denote these events by A1
i and A2

i .

Using triangle inequality, we have:

∥fβ(ξ1i )− fβ(ξ
2
i )∥ ≤

∥∥fβ(ξ1i )− xε
i

∥∥+ ∥∥xε
i − fβ(ξ

2
i )
∥∥ ≤ 4Mε(NX − 1) exp (2/NX − β∆ε

i ) := 2∆̄ε
i (39)

with a probability of Pr
[
A1

i ∩A2
i

]
. Here, we define ∆̄ε

i := 2Mε(NX − 1) exp (2/NX − β∆ε
i ). We further relax the

inequality using the infinity-norm, which bounds the maximum absolute difference in the pattern’s feature:

∥fβ(ξ1i )− fβ(ξ
2
i )∥∞ ≤ 2∆̄ε

i (40)

Since the data point Xε is ∆ε-separated, i.e., ∆ε ≤ ∆ε
i , we further obtain:

∥fβ(ξ1i )− fβ(ξ
2
i )∥∞ ≤ 2∆̄ε (41)
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where ∆̄ε := 2Mε(NX − 1) exp (2/NX − β∆ε).

We now analyze the event A1
i . Essentially, this event occurs when the component of xε

i along v is smaller than a constant
determined by the data distribution D. Moreover, since both v and xi are independently drawn from the distribution (as
specified in the experiment ExpAMI

LDP (Fig. 12)), and ri is the random noise introduced by the LDP mechanism, v and xε
i can

be treated as two random patterns sampled from the input distribution. Consequently, the probability of Ai
1 corresponds to

the probability that the projected component between two random patterns is less than or equal to 1
βNXMε . Formally, for

an input distribution DMε , we denote PDMε

proj (δ) as the probability that the projected component between any independent
patterns drawn from DMε is at most δ. We then have:

Pr
[
A1

i

]
= Pr [∥Projv(x

ε
i )∥ ≤ 1/(βNXMε)] = PDMε

proj

(
1

βNXMε

)
(42)

by definition. Similarly, for A2
i , we have:

Pr
[
A2

i

]
= Pr [∥Proju(x

ε
i )∥ ≤ 1/(βNXMε)] = PDMε

proj

(
1

βNXMε

)
(43)

Since v and u are independent, we obtain:

Pr
[
A1

i ∩A2
i

]
≥ PDMε

proj

(
1

βNXMε

)2

(44)

Case 2. On the other hand, when xi = v, we have the output of head 1 is:

Xεsoftmax
(
βXε⊤ξ1i

)
(45)

=Xεsoftmax
(
βXε⊤ (xε

i − Projv(x
ε
i ))
)

(46)

=Xεsoftmax
(
βXε⊤ (v + ri − Projv(v + ri))

)
(47)

=Xεsoftmax
(
βXε⊤ (ri − r̄vi )

)
(48)

Thus, the difference between the output of head 1 with X̄ε := 1
Nx

∑NX

j=1 x
ε
j can be bounded by:

=
∥∥∥Xεsoftmax

(
βXε⊤ξ1i

)
− X̄ε

∥∥∥ (49)

=
∥∥∥Xεsoftmax

(
βXε⊤ξ1i

)
−Xεsoftmax

(
βXε⊤0

)∥∥∥ (50)

=
∥∥∥Xεsoftmax

(
βXε⊤ (ri − r̄vi )

)
−Xεsoftmax

(
βXε⊤0

)∥∥∥ (51)

≤
∥∥∥∥max

ξ

∂fβ(ξ)

∂ξ

∥∥∥∥ ∥ri − r̄vi ∥ ≤
∥∥∥∥max

ξ

∂fβ(ξ)

∂ξ

∥∥∥∥ ∥ri∥ ≤ β(mε
max)

2Rε (52)

where the inequalities are due to the mean value theorem (Lemma A32 (Ramsauer et al., 2021)) and from the fact that the
Jacobian of fβ , i.e., ∂fβ(ξ)

∂ξ , is bounded by β(mε
max)

2 (Lemma 2). Thus, from triangle inequality, we have∥∥fβ(ξ1i )− fβ(ξ
2
i )
∥∥
∞ =

∥∥fβ(ξ1i )− X̄ε + X̄ε − v − ri + v + ri − fβ(ξ
2
i )
∥∥
∞ (53)

≥
∥∥X̄ε − v − ri

∥∥
∞ −

∥∥fβ(ξ1i )− X̄ε
∥∥
∞ −

∥∥v + ri − fβ(ξ
2
i )
∥∥
∞ (54)

≥
∥∥X̄ε − v − ri

∥∥
∞ − β(mε

max)
2Rε − ∆̄ε

i (55)

when A2
i happens (so that ∆̄ε

i ≥
∥∥v + ri − fβ(ξ

2
i )
∥∥
∞), whose probability is PDMε

proj

(
1

βNXMε

)
.
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We have the probability that
∥∥fβ(ξ1i )− fβ(ξ

2
i )
∥∥
∞ > 2∆̄ε is bounded by:

Pr
[∥∥fβ(ξ1i )− fβ(ξ

2
i )
∥∥
∞ > 2∆̄ε

]
(56)

=1− Pr
[∥∥fβ(ξ1i )− fβ(ξ

2
i )
∥∥
∞ ≤ 2∆̄ε

]
(57)

=1− Pr
[∥∥fβ(ξ1i )− fβ(ξ

2
i )
∥∥
∞ ≤ 2∆̄ε|A2

i

]
Pr
[
A2

i

]
−Pr

[∥∥fβ(ξ1i )− fβ(ξ
2
i )
∥∥
∞ ≤ 2∆̄ε|¬A2

i

]
Pr
[
¬A2

i

]
(58)

≥1− Pr
[∥∥fβ(ξ1i )− fβ(ξ

2
i )
∥∥
∞ ≤ 2∆̄ε|A2

i

]
− Pr

[
¬A2

i

]
(59)

≥1− Pr
[∥∥X̄ε − v − ri

∥∥
∞ − β(mε

max)
2Rε − ∆̄ε ≤ 2∆̄ε|A2

i

]
− Pr

[
¬A2

i

]
(60)

=1− Pr
[∥∥X̄ε − v − ri

∥∥
∞ ≤ β(mε

max)
2Rε + 3∆̄ε

]
− Pr

[
¬A2

i

]
(61)

=PDMε

proj

(
1

βNXMε

)
− Pr

[
v + ri ∈ Box

(
X̄ε, β(mε

max)
2Rε + 3∆̄ε

)]
(62)

where Box(x, δ) is the cube of size 2δ centering at x. The inequality (60) is due to (55) and (61) is from the fact that u is
independent from X and v.

We now consider Pr
[
v + ri ∈ Box

(
X̄ε, β(mε

max)
2Rε + 3∆̄ε

)]
, which is the probability that the pattern v + ri belongs to

the cube of size 2β(mε
max)

2Rε +6∆̄ε around the sampled mean of the LDP protected patterns in Xε. We denote PDMε

box (δ)
is the probability that a random pattern drawn from DMε is in the cube of size 2δ centering at the arithmetic mean of the
patterns in DMε . If the length NX of X is large enough, we have the sampled mean X̄ε is near the arithmetic mean of the
patterns and obtain Pr

[
v + ri ∈ Box

(
X̄ε, β(mε

max)
2Rε + 3∆̄ε

)]
≈ PDMε

box (β(mε
max)

2Rε + 3∆̄ε).

Back to main analysis. From the analysis of the two cases, if v /∈ X , we have:

Pr
[
∥fβ(ξ1i )− fβ(ξ

2
i )∥∞ ≤ 2∆̄

]
≥ PDMε

proj

(
1

βNXMε

)2

, ∀i ∈ {1, · · · , NX}

Based on the analysis of the two cases, when v is not an element of X , it follows that:

Pr
[
∥fβ(Ξ1)− fβ(Ξ

2)∥∞ ≤ 2∆̄
]
=

NX∏
i=1

Pr
[
∥fβ(ξ1i )− fβ(ξ

2
i )∥∞ ≤ 2∆̄

]
≥ PDMε

proj

(
1

βNXMε

)2NX

Since the data points in D are sampled independently, if v does not appear in D, we obtain:

Pr
[
∥fβ(Ξ1)− fβ(Ξ

2)∥∞ ≤ 2∆̄ for all X ∈ D
]
≥ PDMε

proj

(
1

βNXMε

)2nNX

On the other hand, if v ∈ X , we have:

∃i ∈ {1, · · · , NX} such that Pr
[
∥fβ(ξ1i )− fβ(ξ

2
i )∥∞ > 2∆̄

]
≥ 1− PDMε

box (β(mε
max)

2Rε + 3∆̄ε)

⇒Pr
[
∥fβ(Ξ1)− fβ(Ξ

2)∥∞ > 2∆̄
]
≥ Pr

[
∥fβ(Ξ1)− fβ(Ξ

2)∥∞ ≤ 2∆̄ for all X ∈ D
]

≥ PDMε

proj

(
1

βNXMε

)
− PDMε

box (β(mε
max)

2Rε + 3∆̄ε)

Thus, if pattern v appears in D, we have:

Pr
[
∃X ∈ D such that ∥fβ(Ξ1)− fβ(Ξ

2)∥∞ > 2∆̄
]
≥ PDMε

proj

(
1

βNXMε

)
− PDMε

box (β(mε
max)

2Rε + 3∆̄ε)
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By choosing γ = 2∆̄ε, we have the probability that the adversary wins is:

PW =Pr [v ∈ D] Pr
[
∥θ̇1(WO)∥∞ > 0|v ∈ D

]
+ Pr [v /∈ D] Pr

[
∥θ̇1(WO)∥∞ = 0|v /∈ D

]
(63)

=
1

2
Pr
[
∃X ∈ D such that ∥fβ(Ξ1)− fβ(Ξ

2)∥∞ > 2∆̄|v ∈ D
]

+
1

2
Pr
[
∥fβ(Ξ1)− fβ(Ξ

2)∥∞ ≤ 2∆̄ for all X ∈ D|v /∈ D
]

(64)

≥1

2

(
PDMε

proj

(
1

βNXMε

)
− PDMε

box (β(mε
max)

2Rε + 3∆̄ε)

)
+

1

2
PDMε

proj

(
1

βNXMε

)2nNX

(65)

Thus, the advantage of the adversary AD
Attn in Algo. 3 can be lower bounded by:

AdvAMI
LDP(AD

Attn) = 2PW − 1 ≥ PDMε

proj

(
1

βNXMε

)
+ PDMε

proj

(
1

βNXMε

)2nNX

− PDMε

box (β(mε
max)

2Rε + 3∆̄ε)− 1

(66)

Since the complexity of the adversary AD
Attn is O(d3X) (determined by lines 9 and 10, Algo. 3), we have the Theorem 3.

E. Proof of lower bound of AdvAMI
GRR-LDP(AD

FC)

Theorem 4. There exists an AMI adversary AD
FC against data protected by Generalized Randomized Response (GRR)

LDP algorithm whose time complexity isO(d2X) of the threat model ExpAMI
GRR-LDP such that AdvAMI

GRR-LDP(AD
FC) ≥ eε−n

eε+|X |−1 .
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Figure 13. Visualization of the theoretical upperbound (Theorem. 2) and lower bound of AdvAMI
GRR-LDP(AD

FC). (Theorem. 4)

Generalized Randomized Response (GRR). Given an user with a value v ∈ X . A random variable, denoted by X̂ ,
represents the response of the user on a value x also in X . The generalized randomized response works as follows:

Pr
[
X̂ = v

]
=

{
eε

eε+d−1 , if x = v
1

eε+d−1 , if x ̸= v
(67)

where d := |X |. Thus, we have PMε
GRR

= d−1
eε+d−1 .

From (20), we have

AdvAMI
GRR-LDP(AD) ≥ 1− n+ d− 1

d− 1
PMε

GRR
= 1− n+ d− 1

d− 1

d− 1

eε + d− 1
(68)

=
eε + d− 1− n− d+ 1

eε + d− 1
=

eε − n

eε + d− 1
(69)

It is clear that this advantage is smaller than the upper bound (4):

eε − n

eε + d− 1
≤ eε − 1

eε + d− 1
≤ eε − 1

eε + 1
(70)
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F. Proof of upper bound of AdvAMI
LDP(AD

FC)

We now restate Theorem 2 on the theoretical upper bound of AdvAMI
LDP(AD

FC).

Theorem. For all AMI adversary A of the game ExpFCLDP, we have

AdvFC
LDP(AD

FC) ≤
eϵ − 1

eϵ + 1

Proof. For clarity, we denote t1 the instance of D that is sampled in case b = 1 and t0 the random sample of the input
distribution D in case b = 0. Let D1 = D and D2 = D \ {t1} ∪ {t0}. With this notations, we can think the adversary needs
to differentiate D1 to D2 instead of t or t′.

Using the notations as denoted in Lemma 3, the probability the adversary wins is:

PW =Pr [S = D1] Pr
[
Mϵ(S) ∈ TMϵ

1 |S = D1

]
+ Pr [S = D2] Pr

[
Mϵ(S) ∈ TMϵ

0 |S = D2

]
(71)

=
1

2

(
Pr
[
Mϵ(D1) ∈ TMϵ

1

]
+ Pr

[
Mϵ(D2) ∈ TMϵ

0

])
(72)

Here, S is a dummy variable representing which datasets, i.e., D1 or D2 is chosen by the experiment. Similarly, we have the
probability the adversary loses is:

PL =
1

2

(
Pr
[
Mϵ(D1) ∈ TMϵ

0

]
+ Pr

[
Mϵ(D2) ∈ TMϵ

1

])
(73)

From Lemma 3, we have:

Pr
[
Mϵ(D1) ∈ TMϵ

1

]
≤ eϵ Pr

[
Mϵ(D2) ∈ TMϵ

1

]
(74)

Pr
[
Mϵ(D2) ∈ TMϵ

0

]
≤ eϵ Pr

[
Mϵ(D1) ∈ TMϵ

0

]
(75)

Combining (72), (73), (74) and (75), we have

PW =
1

2

(
Pr
[
Mϵ(D1) ∈ TMϵ

1

]
+ Pr

[
Mϵ(D2) ∈ TMϵ

0

])
(76)

≤eϵ 1
2

(
Pr
[
Mϵ(D1) ∈ TMϵ

0

]
+ Pr

[
Mϵ(D2) ∈ TMϵ

1

])
= eϵPL (77)

We then have:

PW (1 + eϵ) ≤ eϵ(PW + PL)⇒ PW ≤ eϵ/(1 + eϵ) (78)

Thus, the advantage of the adversary can be bounded by:

AdvAMI
ϵ−DP(A) = 2PW − 1 ≤ eϵ − 1

eϵ + 1
(79)

We then have the Theorem.

Lemma 3. DenoteMϵ : X → X a randomized function satisfied ϵ-LDP. For a database D ∈ Xn, we denoteMϵ(D) :=
{Mϵ(x) : x ∈ D}. Then, for all database D1 and D2 different by one entry, we have:

Pr
[
Mϵ(D1) ∈ TMϵ

b′

]
≤ eϵ Pr

[
Mϵ(D2) ∈ TMϵ

b′

]
,

where TMϵ

b′ is the set of all database D such that the adversarial return b′ on that realization ofMϵ.

Proof. Let S be an arbitrary subset of X . For a pair t, t′ ∈ X \ S, consider the sets D1 = S ∪ {t} and D2 = S ∪ {t′}.
SinceMϵ satisfies ϵ-LDP, we have:

Pr [Mϵ(t) = O] ≤ eϵ Pr [Mϵ(t
′) = O] , ∀O ∈ X (80)
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From the post-processing property of ϵ-LDP, we have:

Pr [g(Mϵ(t)) = O′] ≤ eϵ Pr [g(Mϵ(t
′)) = O′] , ∀O′ ∈ Range(g), (81)

for all function g : X → Range(g).

In the AMI experiment, the guessing of the adversarial A, i.e., AD
GUESS(t, θ̇), can be considered as a function on Dϵ−DLP =

Mϵ(D) as θ̇ is the result of some computations ofMϵ(D). We describe this as A(Mϵ(D)) = b′.

We now show that

Pr [A(Mϵ(D1)) = b′] ≤ eϵ Pr [A(Mϵ(D2)) = b′] (82)

We show (82) by contradiction. Suppose there exists D1 and D2 such that the condition does not hold. We can construct a
function g : X → {0, 1} as follow:

g(Mϵ(x)) = A (Mϵ(S) ∪ {Mϵ(x)}) (83)

With this, we have

Pr [g(Mϵ(t)) = b′] = Pr [A (Mϵ(S) ∪ {Mϵ(t)}) = b′] = Pr [A (Mϵ(D1)) = b′] (84)
>eϵ Pr [A (Mϵ(D2)) = b′] = eϵ Pr [A (Mϵ(S) ∪ {Mϵ(t

′)}) = b′] = eϵ Pr [g(Mϵ(t
′)) = b′] (85)

which contradicts (80).

Since condition (82) is equivalent to the condition stated in the Lemma, we then have the Lemma.

G. Experimental Settings
This appendix outlines the experimental setup and implementation details of our work. Our experiments are implemented
using Python 3.8 and executed on a single GPU-enabled compute node running a Linux 64-bit operating system. The node
is allocated 36 CPU cores with 2 threads per core and 384GB of RAM. Additionally, the node is equipped with 2 RTX
A6000 GPUs, each with 48GB of memory.

Table 1. General information of our reported experiments in the main manuscript.

Experiments No. runs Adversary Hyper-parameters Dataset Embedding LDP Mechanism

Fig. 5, 6 1000 AD
Attn β, γ One-hot / Spherical No -

Fig. 7,8 20× 200 AD
FC τD, ϵ CIFAR10 / CIFAR100 ResNet BitRand/ GRR/ RAPPOR/ dBitFlipPM

Fig. 9 a,b 20× 200 AD
Attn β, γ, ϵ CIFAR10 ViT-Base BitRand/ GRR/ RAPPOR/ dBitFlipPM

Fig. 9 c 40× 100 AD
Attn β, γ, ϵ ImageNet ViT-Base BitRand/ GRR/ RAPPOR/ dBitFlipPM

Table 1 shows the general information of our experiments reported in the main manuscripts. The hyper-parameters column
refers to those of the adversaries, and ϵ refers to the privacy budget. The embedding specifies how the dataset is transformed
to obtain the data D for our testing of inference attacks. The No. runs indicates the total number of simulated security games
for each point plotted in our figures. For instance, the number 20× 200 means we conduct 20 trials of the experiment. Each
trial consists of 200 games. The attack success rate is measured as 1

2 (Pr[b
′ = 1|b = 1] + Pr[b′ = 0|b = 0]). For each trial,

everything is reset. In each trial, only the LDP mechanism is re-run. Using equation 1 as well as lower (Theorem 1) and
upper (Theorem 2) bound of AdvAMI

LDP(AD
FC), we can derive the theoretical lower and upper bound of the attack success rate.

The reported model accuracies (black lines) in all of our figures are obtained by evaluating the model on classification tasks.
Particularly, for AD

FC, we use ResNet’s embedding combined with a Multilayer Perceptron to generate classifications. For
AD

FC, we use the native classification tasks and the original models published along with the datasets. To implement LDP,
we add noise directly to ResNet’s embedding. For ViTs, we add noise to the patch embeddings of the image. Since no
pre-train model for ViT-B-32-224 on CIFAR10/CIFAR100 are available, we fine-tune the model that was pre-trained on
ImageNet-21k on CIFAR10. The labels for classification in CIFAR10 are from the original dataset.

In the following appendices, we discuss more on the dataset and their embedding, the implementation of the adversaries,
and the implementation of the LDP mechanisms. Those contents are in Appx. G.1, G.2, G.3 and G.4, respectively.
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G.1. Dataset and embedding

In total, our experiments are conducted on 2 synthetic datasets, 3 real-world datasets and 4 LDP mechanisms. The synthetic
datasets are one-hot encoded data and Spherical data (data on the boundary of a unit ball). The real-world datasets are
CIFAR10 (Krizhevsky et al., 2009) and ImageNet (Krizhevsky et al., 2012). The real-world datasets are pre-processed with
practical pre-trained embedding modules to obtain the data D in the threat models. For ResNet, we use Img2Vec (Safka,
2021) to extract the feature embeddings of images and for ViTs, we use pretrained foundation models published on
HuggingFace by the authors. The parameters of D in each experiment are given in Table 2.

For the synthetic datasets, we use a batch size of 1 since it does not affect the results of one-hot encoding. Furthermore,
the setting also provides better intuition on the asymptotic behaviors of other datasets in Fig. 5 and Fig. 6. For ViTs, the
number of patterns NX is equal to the number of image patches. Details on how AD

Attn works on ViTs are given in G.2. The
embedding dimensions dX are determined by the choice of the embedding modules.

Table 2. Information of the data D in each testing dataset.

Dataset Embedding Tested batch dimension n× dX ×NX

One-hot N/A 1× [10, · · · , 1000]× [5, 10, 15]
Spherical N/A 1× [10000, · · · , 35000]× [5, 10, 15]
CIFAR10 ResNet-18 64× 512× 1
CIFAR100 ResNet-18 64× 512× 1
CIFAR10 ViT-B-32-224 [10, 20, 40]× 768× 49
ImageNet ViT-B-32-384 [10, 20, 40]× 768× 144

G.2. Implementation of AD
Attn on Vision Transformer.

First we describe the architecture of ViT, which was first proposed in (Dosovitskiy et al., 2021). First, the image is divided
into L fixed-size patches (e.g., 16× 16 pixels or 32× 32 pixels), which are flattened into vectors. Each patch is projected
into a lower-dimensional embedding using a linear layer. Position embeddings are added to retain spatial information, and a
learnable [class] embedding is included for global context. The sequence of embeddings is processed by L Transformer
encoder layers. The output corresponding to the [class] embedding is passed through an MLP head to predict the
image class. In summary. ViT treats image patches like words in a sentence, using the Transformer architecture to model
relationships between patches and perform tasks like image classification. For naming scheme, ViT-B-32-224 means the
model is ViT-Base, the image size is 224 and the patch size is 32. Figure 14 describes ViT’s architecture.

Figure 14. Architecture of Vision Transformer model. Image adapted from (Dosovitskiy et al., 2021).

Recall we represent the victim’s dataset as D = {Xi}ni=1, where Xi ∈ X , and X ⊆ RdX×NX . For any 2-dimensional array
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X , each column xj ∈ RdX is referred to as a pattern. In the context of AD
Attn on ViT, since AD

Attn operates on the pattern
level, it operates directly on the Patch+Position Embedding vectors. Given the image is divided into L patches, NX = L in
the attack, and dx the dimension of each embedding vector. When we add LDP noise to the data, we add it directly to these
vectors as well. For example, in the case of ViT-B-32-384, there are in total 384

32 ×
384
32 = 12× 12 = 144 image patches,

corresponding to NX = 144.

G.3. Implementation of the Adversaries

In our theoretical analysis of AD
FC and AD

Attn, we have specified how their hyper-parameters should be chosen so that
theoretical guarantees can be achieved. For convenience reference, we restate those setting here:

• For Theorem 1, τD is set to ∆X . The argument is made at Subsect. 4.1.

• For Theorem 3, β is chosen such that condition of the Theorem holds and γ is set to 2∆̄ε. The argument is made at
Appx. D.4.

Table 3. Note on the values of β in experiments.

Dataset Note on β Min β Max β

One-hot / Spherical β is is set to a constant 10 10
CIFAR10/100 The more noise, the smaller β 0.01 0.07

ImageNet The more noise, the smaller β 0.01 0.07

However, as the adversaries generally know the data distribution and the LDP mechanism in practice, they can simulate the
data as well as its protected version. We integrate these simulations into our implementations of AD

FC and AD
Attn to tune τD

and γ before the security games. In fact, for a given LDP mechanism and an ε privacy budget, the server uses a dataset from
the data distribution D and collects the layers’ outputs before the ReLU activation. Then, a linear regression model is fitted
on those outputs to estimate the biases τD and γ that will be used in the security games. Regarding the hyper-parameter β,
while it cannot be tuned with linear regression, for each privacy budget of a security game, we try several values of β based
on the statistic of D before the game and settle with a look-up table for it. An example of possible values of β are given in
Table 3. However, we found that simply setting β = 0.01 usually give satisfactory results. We use β = 0.01 for all NLP
experiments.

G.4. Details of LDP mechanisms

Generalized Randomized Response (GRR). Given an user with a value v ∈ X . A random variable, denoted by X̂ ,
represents the response of the user on a value x also in X . The generalized randomized response works as follows:

Pr
[
X̂ = v

]
=

{
eε

eε+d−1 , if x = v
1

eε+d−1 , if x ̸= v
(86)

where d := |X |.

RAPPOR (Randomized Aggregatable Privacy-Preserving Ordinal Response). Each user has a value v encoded as a
Bloom filter vector B ∈ {0, 1}k using h hash functions. A permanent randomized response B′ is generated as:

B′
i =


1 with prob. 1

2f (flip to 1)
0 with prob. 1

2f (flip to 0)
Bi with prob. 1− f (keep original bit)

Then, the instantaneous randomized response S ∈ {0, 1}k is sampled from B′ as:

Pr[Si = 1] =

{
q if B′

i = 1

p if B′
i = 0

27



Theoretically Unmasking Inference Attack Against LDP-Protected Clients in Federated Vision Models

dBitFlipPM. Given a user with a value v ∈ [k], the mechanism proceeds as follows:

• The user selects d random buckets {j1, . . . , jd} ⊂ [k] without replacement.

• For each selected jp, the user responds with a bit bjp ∈ {0, 1} such that:

Pr[bjp = 1] =

{
eε/2

eε/2+1
if v = jp

1
eε/2+1

if v ̸= jp

The data collector reconstructs the histogram using:

ĥt(v) =
k

nd

n∑
i=1

bi,v(t) ·
eε/2 + 1

eε/2 − 1
− 1

eε/2 − 1

This mechanism guarantees ε-LDP with reduced communication cost and supports memoization for repeated collection.

In bit-flipping mechanisms like OME and BitRand, the original data or embedding features are first converted into binary
vectors. The LDP mechanisms are then applied on top of those binary representations of the signal. After that, the protected
binary signals are converted back to the original domain of the data before the training of the machine learning models.

In OME, each bit i of the binary representation is randomized based on the following probabilities:

∀i ∈ [0, rl − 1] : P (v′x(i) = 1) :=



p1X =
α

1 + α
, if i ∈ 2j, vx(i) = 1

p2X =
1

1 + α3
, if i ∈ 2j + 1, vx(i) = 1

qX =
1

1 + α exp( ε
rl )

, if vx(i) = 0

(87)

where vx(i) ∈ {0, 1} is the value of the bit i in the binary representation, v′x is the perturbed binary vector, ε is the privacy
budget, and α is a parameter of the algorithm.

On the other hand, BitRand introduces the bit-aware term i%l
l to control the randomization probabilities. That bit-aware

term helps the mechanism take the location of the bit into consideration for randomization. Intuitively, BitRand aims to
apply less noise to bits that have more impact on the model utility. Particularly, the probabilities of perturbation are defined
as:

∀i ∈ [0, rl − 1] : P (v′x(i) = 1) =


pX =

1

1 + α exp( i%l
l ε)

, if vx(i) = 1

qX =
α exp( i%l

l ε)

1 + α exp( i%l
l ε)

, if vx(i) = 0

(88)

H. Additional Experiments
H.1. Experiments using OME mechanism

We observe that models trained on OME-protected data have almost constant performance across the tested range of the
privacy budget ε, as illustrated in Fig. 15. The same phenomenon of OME is observed and reported in multiple previous
works (Arachchige et al., 2019; Lyu et al., 2020; Nguyen et al., 2023). The reason lies in the large sensitivity of the encoded
binary representation in OME weakens the effect of ϵ on the randomization probabilities (Lyu et al., 2020). With the
exception of ImageNet, even with high loss in model utility, AMI adversaries still achieve a high successful inference rate.

H.2. Empirical results on NLP datasets

Table 4, 5, 6 show the average accuracies, F1, and AUCs of AMI attacks on NLP datasets under GRR, RAPPOR and
dBitFlipPM, respectively. Given the same privacy budget, AD

FC has higher accuracy than AD
Attn. GRR also usually performs

worse as a defense mechanism compared to RAPPOR or dBitFlipM. Attention-based AMI also performed worse on LLM
data compared to vision data. This could be due to the fact that it hard to bound the norm budget Rε of noise ri due to the
discrete nature of LDP noise when applied to NLP domain.
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(a) (b) (c) (d)

Figure 15. Success rates of AMI adversaries against datasets protected by OME.

Table 4. Average Accuracies, F1, and AUCs of AMI attacks under GRR defense.

ε Method BERT RoBERTa DistilBERT GPT1
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

∞ AD
FC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AD
Attn 1.00 1.00 1.00 0.96 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00

8 AD
FC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AD
Attn 0.99 0.99 1.00 0.89 0.88 0.95 0.99 0.98 1.00 0.97 0.97 0.99

6 AD
FC 0.99 0.99 1.00 0.97 0.97 1.00 0.97 0.97 1.00 0.99 0.99 1.00

AD
Attn 0.86 0.84 0.94 0.75 0.72 0.82 0.86 0.83 0.94 0.86 0.84 0.93

4 AD
FC 0.86 0.83 0.91 0.86 0.85 0.90 0.83 0.80 0.87 0.78 0.75 0.82

AD
Attn 0.56 0.52 0.59 0.56 0.53 0.55 0.57 0.52 0.60 0.57 0.53 0.60

2 AD
FC 0.59 0.57 0.63 0.59 0.55 0.62 0.50 0.50 0.50 0.55 0.52 0.52

AD
Attn 0.55 0.50 0.54 0.50 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.52

Table 5. Average Accuracies, F1, and AUCs of AMI attacks under RAPPOR defense.

ε Method BERT RoBERTa DistilBERT GPT1
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

∞ AD
FC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AD
Attn 1.00 1.00 1.00 0.96 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00

8 AD
FC 0.98 0.98 1.00 0.98 0.98 1.00 0.96 0.96 0.99 0.98 0.97 1.00

AD
Attn 0.73 0.69 0.79 0.52 0.49 0.54 0.79 0.77 0.86 0.66 0.61 0.72

6 AD
FC 0.81 0.79 0.89 0.88 0.87 0.94 0.73 0.72 0.80 0.76 0.73 0.83

AD
Attn 0.54 0.50 0.56 0.53 0.50 0.51 0.55 0.51 0.56 0.52 0.50 0.53

4 AD
FC 0.61 0.59 0.68 0.66 0.65 0.70 0.56 0.54 0.64 0.68 0.66 0.77

AD
Attn 0.50 0.50 0.50 0.50 0.50 0.52 0.50 0.50 0.50 0.50 0.50 0.50

2 AD
FC 0.61 0.58 0.67 0.58 0.56 0.58 0.60 0.58 0.65 0.61 0.60 0.60

AD
Attn 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

H.3. ROC analysis

We also conduct an ROC analysis of the attack success rates (on IMDB dataset). GRR shows the worst privacy with
attack AUCs of 0.946 (ε = 6) and 1.0 (ε = 8), while RAPPOR and dBitFlipPM provide stronger protection—achieving
near-random performance at and moderate resistance at. Zoomed-in plots show that GRR leaks sensitive signals even at low
FPRs and high TPRs, while RAPPOR and dBitFlipPM maintain partial robustness in these critical regions. Details are given
in Fig. 16.

I. Alternative privacy-preserving techniques beyond LDP
Other works have pursued cryptography-based techniques such as secure multi-party computation (SMPC) or homomorphic
encryption (HE) that preserve privacy without adding excessive noise, hence preserving utility. SMPC-based FL systems
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Table 6. Average Accuracies, F1, and AUCs of AMI attacks under dBitFlipPM defense.

ε Method BERT RoBERTa DistilBERT GPT1
ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC

∞ AD
FC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AD
Attn 1.00 1.00 1.00 0.96 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00

8 AD
FC 0.96 0.96 0.99 0.98 0.98 1.00 0.96 0.95 1.00 0.98 0.97 0.99

AD
Attn 0.76 0.72 0.84 0.65 0.59 0.73 0.76 0.72 0.84 0.65 0.59 0.73

6 AD
FC 0.79 0.77 0.87 0.84 0.82 0.92 0.69 0.67 0.76 0.77 0.75 0.82

AD
Attn 0.55 0.50 0.55 0.53 0.50 0.51 0.55 0.50 0.59 0.52 0.50 0.53

4 AD
FC 0.65 0.65 0.74 0.69 0.68 0.75 0.50 0.50 0.51 0.65 0.63 0.68

AD
Attn 0.50 0.50 0.50 0.50 0.50 0.52 0.50 0.50 0.50 0.50 0.50 0.50

2 AD
FC 0.61 0.59 0.64 0.56 0.53 0.59 0.59 0.56 0.59 0.63 0.61 0.67

AD
Attn 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Figure 16. ROC analysis of Attention-based AMI on LDP-protected IMDB dataset.

offer strong privacy guarantees by ensuring no party learns individual updates via secure aggregation protocols (Ma et al.,
2023; Bonawitz et al., 2017), but they incur high communication overhead, especially as the number of participants grows.
On the other hand, HE provides end-to-end encryption in FL, allowing computations directly on encrypted data, but it
introduces significant computational costs due to the complexity of cryptographic operations (Nguyen & Thai, 2023; Pan
et al., 2024). Furthermore, encryption alone does not protect against inference from the final global model: if an adversary
obtains the trained model, they could still perform membership inference or other attacks. Recent works combine LDP and
HE/SMPC, potentially providing a comprehensive solution (Aziz et al., 2023). Additionally, we note that due to the high
communication and computation overhead, secure aggregation might not be feasible in certain FL applications.

It is worth noting that secure aggregation (e.g., Secure Multi-Party Computation, Homomorphic Encryption) and Local
Differential Privacy (LDP) are orthogonal research directions. SMPC/HE primarily aims to conceal local gradients from
the server during aggregation, ensuring no individual gradient is exposed. LDP focuses on preventing local gradients from
revealing membership information about specific data points by adding noise to the local data/ gradient.

Our threat model assumes an actively dishonest server that has access to the local gradients of clients, and conducts the
proposed AMI attacks based on the local gradients. Even though using SMPC or HE could potentially conceal such info from
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the server, previous research has shown that an actively dishonest adversary can circumvent secure aggregation protocols
(Ngo et al., 2024; Gao et al., 2021; Liu et al., 2023; Pasquini et al., 2022; Kariyappa et al., 2023; Nguyen et al., 2022) to
reconstruct the targeted client’s gradients. Hence, even with secure aggregation, our threat model is still applicable when
the server uses the above attacks to get around it and access local gradients before conducting the AMI attacks. Therefore,
assuming that the dishonest server successfully circumvents secure aggregation, such techniques as SMPC or HE do not
impact the success rates or the theoretical analysis of our proposed AMI attacks.
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