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Abstract. Decentralized Federated Learning (DFL) has emerged as a
powerful paradigm for collaborative model training across distributed
devices. However, this distributed nature introduces new security chal-
lenges, including the threat of selection attacks via neighbor deception
(SAND). In this paper, we investigate vulnerabilities arising from mali-
cious clients seeking to manipulate both the neighbor selection process
and the data distribution of other participants. Employing a neighbor
selection mechanism that utilizes a similarity metric, clients exchange
statistical information to identify correlated neighbors. Our analysis re-
veals that a malicious client can exploit this mechanism by imitating a
victim’s statistical profile to maximize their similarity score, thereby se-
curing their position as neighbors. Subsequently, they gain direct access
to the victim’s model update process. With this access, a malicious user
can facilitate the injection of corrupted updates that result in misclas-
sifications during the victim’s training process. Our study underscores
the importance of robust security measures in DFL and shed lights on
potential countermeasures to mitigate the impact of SANDs.
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1 Introduction

Federated Learning (FL) has emerged as a transformative paradigm in the do-
main of machine learning, enabling the collaborative training of models across
distributed devices while preserving data privacy. In traditional machine learn-
ing approaches, data is centralized for model training, raising concerns about
privacy breaches and data silos. FL addresses these concerns by allowing devices
to collaboratively train models while keeping their data localized. This decen-
tralized approach offers several compelling advantages, such as enhanced privacy
preservation, reduced communication overhead, and the potential for improved
model generalization. Because of these benefits, FL has encouraged the growth
of numerous domains such as healthcare, autonomous driving, and mobile ap-
plication development.
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A natural progression from traditional FL is the evolution into Decentralized
Federated Learning (DFL). In this advanced paradigm, devices not only con-
tribute to model training but also play a role in network governance. The net-
work forms a dynamic, interconnected graph where devices engage in localized
model updates and information exchange. This decentralized structure ampli-
fies the advantages of FL by enhancing scalability, robustness, and autonomy.
Each device operates as an independent node, enabling efficient and distributed
model training while reducing the reliance on central authorities. Although the
employment of a DFL system mitigates server-based threats common in tradi-
tional FL [1–4], this decentralized architecture introduces new security challenges
that need to be thoroughly explored and addressed.

As DFL gains traction, a crucial consideration is the emergence of novel
security threats that exploit the inherent vulnerabilities of distributed systems.
While traditional FL has laid the foundation for data privacy and model security,
the decentralized variant introduces new avenues for potential attacks. One such
uncharted territory is the Selection Attack via Neighbor Deception (SAND). In
this attack scenario, a malicious participant manipulates the neighbor selection
process and mimics the statistical attributes of legitimate users to secure a place
within their network. By infiltrating their neighbors’ circle, the attacker can
unleash adversarial updates, undermining not only individual model training
but also the collective learning process of the entire network. The implications
of such attacks on model integrity and system performance are substantial and
warrant comprehensive investigation and mitigation strategies. This paper delves
into these unexplored attack scenarios, shedding light on their implications and
proposing strategies to safeguard the integrity of decentralized FL systems.
Contributions. Our key contributions are as follows:

– We introduce and characterize SAND, a novel threat specific to decentralized
FL. This attack exposes an unexplored vulnerability, wherein adversaries
manipulate the neighbor selection process to compromise the collaborative
learning environment. To the best of our knowledge, this is the first attack
proposed within the context of decentralized FL.

– We thoroughly analyze the consequences of SAND on a victims’ model while
emphasizing the severity of the attack’s impact as tainted updates propagate
through the broader network.

– Building upon our analysis, the paper provides a general discussion regarding
current robust defense mechanisms designed to mitigate backdoor attacks in
FL. While discussing the possible limitations of these current methods, we
also propose potential defenses designed specifically for DFL.

Organization. The paper’s structure is as follows: Section 2 provides a primer
on traditional FL and DFL. Section 3 presents our threat model, problem setup,
and our proposed SAND attack. Section 4 presents an in-depth experimental
analysis and results supporting our claims. Section 5 discusses related research
on DFL and attacks mentioned in this paper. Section 6 is a brief discussion
about possible countermeasures for our SAND attack. Section 7 concludes the
paper, summarizing our key findings.
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2 Preliminaries

2.1 Centralized Federated Learning

In traditional Federated Learning (FL), a centralized server is used to orchestrate
the training of a global model between many clients. FL can be implemented
horizontally (hFL) or vertically (vFL) depending on how the data is partitioned
between clients. In a horizontal setting, clients maintain data consisting of the
same features, but different samples (Figure 1a). The opposite is true for the
vertical setting where clients maintain data consisting of the same samples, but
different features (Figure 1b). Each style has been thoroughly challenged with
attack scenarios such as client selection [1, 5], membership inference [6, 7], and
data reconstruction [8, 9] that all undermine FL’s privacy guarantee.
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Figure 1: Two common styles of centralized FL.

2.2 Decentralized Federated Learning

Decentralized Federated Learning (DFL) offers a distributed approach to collab-
orative model training, differing from centralized FL. In a decentralized frame-
work, clients collaboratively train a global model without relying on a central
server for coordination. This approach enhances privacy by mitigating the need
to share any information with a central entity. Moreover, DFL is inherently more
robust to failures since there is no single point of control. DFL thus emerges as
a privacy-preserving, fault-tolerant, and scalable paradigm that addresses some
limitations of centralized FL [10].

In particular, each client independently initializes its local model and refines
it through iterative updates based on its local dataset. The training process in-
volves two key steps. Firstly, clients selectively communicate with a subset of
the network, sharing information like model parameters. This communication is
governed by metrics such as client performance, data distribution, or network
relationships. Secondly, each client aggregates the information received from its
chosen neighbors to update its local model. Common methods of FL aggregation,
similar to centralized FL, are Federated Stochastic Gradient Descent (FedSGD)
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or Federated Averaging (FedAvg). This decentralized process repeats iteratively
until the models across clients converge to a collectively improved state, show-
casing the power of collaborative learning without centralized control.

3 SAND - A Proposed Attack

3.1 Threat Model

We consider a decentralized Federated Learning (FL) scenario where K clients
engage in communication within a network spanning T rounds. Each client,
indexed as i, holds a private training data distribution denoted as Di, comprising
model inputs x and corresponding training labels y. Furthermore, every client
maintains a neural network fi governed by parameters θi ∈ R

d. The training loss
for client i is characterized by L(fi(θi, x), y) : R

d → R. The primary objective for
clients is to leverage their individual data and models from fellow clients across
the T communication rounds to converge towards a solution for the following
optimization problem:

min
θ∈Rd

LDi
(fi(θ)) := min

θ∈Rd
Exi,yi∼Di

[L(fi(θ, xi), yi)] (1)

for all i = 1, · · · ,K.
To attain the optimization defined in Equation 1, a client i in decentral-

ized FL must identify suitable neighbors for collaborative training. Ideally, these
neighbors should exhibit data distributions similar to that of client i. In this
work, we consider two decentralized protocols that hinge on this fundamental
principle, decentralized adaptive clustering (DAC) [11], and Random Gossip [12].

Following [11], DAC aims to elevate communication efficiency among clients
sharing similar local data distributions. In this approach, each client computes
a probability vector using a similarity measure, and this vector guides weighted
sampling to select neighbors during each communication round. The inverse
of the training loss serves as a proxy for similarity, and the resulting score S

undergoes continual updates over T iterations, defined as follows:

stij =
1

L(fi(θi, xi)t, dj)
(2)

Here, dj represents the data of a client j. DAC encompasses a dynamic pro-
cess that involves sampling a subset of clients, updating similarity probabilities,
and aggregating models using the FedAvg algorithm. To address the presence of
unsampled clients, an approximated similarity score is defined based on two-hop
neighbors. The models are subsequently aggregated and trained locally through
an iterative process. This strategic approach optimizes communication by foster-
ing collaboration primarily between clients with comparable data distributions.

In contrast, the well-established Random Gossip communication method fol-
lows a different paradigm. Each client initiates with a randomly initialized model,
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subject to updates through stochastic gradient descent on local data for a prede-
fined number of local epochs. After completing its local update process, a client
communicates its model parameters to a randomly chosen neighboring client.
The receiving client patiently awaits a predefined number of models before per-
forming averaging using the FedAvg algorithm. This communication cycle per-
sists across all clients until convergence is achieved.

In our threat model, we designate one client out of the K clients within a
DAC or Random Gossip-based network as malicious. The primary objective of
this malicious client is to compromise the local model of a specific victim client
situated within the network. Adding complexity to the scenario, the victim client
is not obligated to select the malicious client as its neighbor during the collabora-
tive learning process. Consequently, the malicious client faces a dual challenge–it
must not only tamper with the model parameters but also manipulate the se-
lection process itself. This implies that, beyond the tampering objectives, the
attacker must meticulously design the parameters θ to mimic the victim’s data
distribution convincingly. In the subsequent sections, we will delve further into
the details of our devised attack and explain how it accomplishes this goal.

3.2 Attack Principle

The attacker strategically aims to target and manipulate the local model of a vic-
tim client within the network. Specifically, the attacker is focused on tampering
and compromising the victim’s model through the injection of a backdoor.

In the context of a backdoor injection attack, the objective is to introduce a
trigger into the victim’s local model, causing it to exhibit a predefined behavior
when presented with inputs containing the trigger. This form of backdoor attack
within FL can be conceptualized as a multi-objective optimization problem, as
expressed in the following formulation:

θa = arg min
θ∈Rd

LD(f(θ, x), y) + LDp
(f(θ, x), y), (3)

where D and Dp denote the clean and poisoned datasets, respectively.

In decentralized FL, it is important to note that the victim client is not
obligated to select the attacker’s parameters for its model’s update. Therefore,
a successful attack must go beyond merely tampering with the parameters; it
must induce the victim’s model to opt for the manipulated parameters during
the update. Given that the selection hinges on the performance of the attacker’s
parameters θa on the victim’s dataDi, the attacker aims to minimize LDi

(fi(θa)).
Since the attacker does not have access to Di, it minimizes LDi

(fi(θa)) by relying
on the victim’s parameters shared during the training.

The most direct approach is to directly copy the victim’s parameters, setting
θa = θi, but such a strategy falls short of achieving the attack objective since it
does not compromise the victim. Thus, our proposed attack injects the backdoor
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by iteratively updating on top of the victim’s parameters in each round:

θ0a = θ
(t)
i (4)

θ(e+1)
a = θ(e)a − µ∇

θ
(e)
a

LDp
(f(θ(e)a , x), y), (5)

where Dp represents the poisoning dataset and e is the local epoch’s index,
respectively. The pseudocode of our proposed attack is provided in Algorithm 1.

Algorithm 1 Selection Attack via Neighbor Deception

Input: The poisoning dataset Dp, victim’s parameters θ
(t)
i , the number of local epochs

E, and the learning rate µ

1: θa = θ
(t)
i

2: for epoch 1 to E do

3: θa = θa − µ∇θaLDp(f(θa, x), y)
4: end for

5: return θa

For illustrative purposes, Algorithm 2 describes the behavior of the victim in
one round of training with DAC. Due to the copy step in Equation 4, the simi-
larity stia between the attacker’s model and the victim’s local model is expected
to be high. This results in a high sampling probability ptia used in the next round
of DAC. This translates to a higher chance that the tampered parameters of our
attacker gets selected.

Algorithm 2 Victim in one communication round of DAC under SAND

Given: The prior probability pt−1
i , The number of local epochs E, the number of

neighbors M , and the parameters of other clients.

1: for epoch 1 to E do

2: θi = θi − µ∇θiLDi
(f(θi, x), y)

3: end for

4: Sample M clients among K clients with probabilities pt−1
i

5: Compute similarity scores using (Eq. 2):
sti = [sti1, s

t
i2, . . . , s

t
iK ] // Due to (4), stia should be high

6: Update the sampling probability:

ptij = eτs
t
i/

(

∑K

k=1 e
τstik

)

7: θi ←− FedAvg ({θj , j is in M sampled clients})
8: return θi

To effectively realize the attack, we need to design the poisoning dataset Dp,
select the attacker local epochs E and fine-tune the learning rate µ. Intuitively,
the higher the number of epochs and the learning rate, the more backdoors we
inject into the malicious model θa. The trade-off is that it would make θa diverge
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from θi, which results in a lower similarity and less chance of getting selected.
We will elaborate in more details in the next experimental section.

4 Experimental Analysis

4.1 Experimental Setup

To rigorously assess the efficacy of our proposed attack, we conducted extensive
experiments using 2 high-performance NVIDIA A100 and GeForce GPUs paired
with 2 CPUs, each equipped with 40GB of RAM. In showcasing the versatility
and robustness of our attack strategies, we strategically opted for widely recog-
nized datasets within the realm of image classification. Our evaluation specif-
ically leverages the CIFAR-10 dataset [13], a well-established benchmark for
image recognition tasks featuring 10 classes and a total of 60,000 images. Addi-
tionally, we included the Fashion-MNIST dataset [14], comprising 10 classes and
a diverse set of 70,000 fashion-related images. By applying our methodologies
across these distinct datasets, our goal is to not only rigorously test the efficacy
but also to showcase the scalability and applicability of our proposed attack
strategies in diverse contexts within the realm of image classification.

4.2 Attack Configurations

To embrace the adversarial capabilities within our network, our attack is meticu-
lously configured to empower the adversary. This strategic configuration enables
the adversary to dynamically (1) scale up or down its training data, (2) modify
its local learning rate, and (3) extend its training duration beyond the standard
limit imposed on regular clients similar to an adversary in centralized FL [15].
These modifications easily integrate into the decentralized FL protocols, and
their presence does not disrupt the normal behavior of the system; thus, we
deem them as acceptable enhancements.

In our comprehensive experiments, we systematically vary the number of
clients from 20 to 100, ensuring the presence of a single adversary in each case.
Each experiment spans 100 rounds, maintaining a consistent learning rate of
0.0001. Notably, the adversary is granted the flexibility to extend its training
duration by 10 additional epochs compared to the regular clients, all while ad-
hering to the protocol. This nuanced approach allows us to thoroughly explore
the impact of adversarial manipulations on the system’s dynamics, ensuring a
robust evaluation of our proposed attack strategies.

4.3 Evaluation Metrics

To comprehensively evaluate the effectiveness of our attack, we frame our as-
sessment around two pivotal questions that form the foundation for our chosen
metrics:
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1. Relative Selection Frequency? We assess the average selection frequency
of a malicious client in comparison to that of an arbitrary client. A higher av-
erage selection frequency suggests the successful compromise of the neighbor
selection protocol by the malicious client, thereby enhancing its opportunities to
propagate manipulated model updates to a victim.
2. Accuracy of Backdoor Model Updates? We measure the accuracy of
the backdoor’s integration into the victim’s model. This metric serves as a key
indicator of the attack’s success rate, with higher accuracy values obviously
signifying more effective incorporation of tampered updates.

Beyond these primary considerations, our analysis extends to the impact of
specific hyperparameters, such as the ratio of backdoored data injected and the
amount of training data utilized by the attacker.

4.4 Experimental Results

In each experiment, we track how often the malicious client is selected as a
neighbor compared to an arbitrary client in the network. Preliminary results
are presented in Table 1 showing that even with varying numbers of clients, the
malicious client is selected as a neighbor more times than an arbitrary client.
We would like to emphasize that the malicious client is selected as a neighbor
to the targeted victim, but the number of times selected that are presented are
for the entire network. Therefore, we show that the malicious client can become
a neighbor to a targeted victim and get selected by other clients in the network
more times than an arbitrary client. As previously stated, the Gossip protocol
is completely random so it is expected for the selections to differ each run which
is why in some cases an arbitrary client may be selected more times than our
malicious client.

No. of Clients MS (CIFAR-10) AS (CIFAR-10) MS (F-MNIST) AS (F-MNIST)

20 D:392, G:528 D:335, G:504 D:419, G:493 D:296, G:507

40 D:5,459, G:519 D:4,052, G:471 D:5,306, G:493 D:3,929, G:506

60 D:17,581, G:535 D:16,349, G:501 D:22,094, G:478 D:19,073, G:472

80 D:46,406, G:501 D:45,409, G:515 D:48,358, G:498 D:37,461, G:515

100 D:101,792, G:486 D:82,816, G:504 D:96,723, G:520 D:93,254, G:508

Table 1: Malicious Selection (MS) vs. Arbitrary Selection (AS) w.r.t CIFAR-10
and FashionMNIST. Note: D = DAC and G = Gossip.

Initial Configurations: Figures 2 and 3 illustrate the effectiveness of our at-
tacker injecting the backdoor into a victims’ models through propagated updates,
showcasing outcomes under varying numbers of clients and our initial attack con-
figurations detailed in Section 4.2. Experimenting with 20, 40, 60, 80, and 100
clients, employing the DAC and Gossip protocols for CIFAR-10 and FashionM-
NIST, respectively, provides a comprehensive view of our attack’s initial impact.
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(a) DAC protocol.

(b) Gossip protocol.

Figure 2: Backdoor Accuracy with Varying Number of Clients on CIFAR-10.
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(a) DAC protocol.

(b) Gossip protocol.

Figure 3: Backdoor Accuracy with Varying Number of Clients on FashionMNIST.
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For CIFAR-10, our results indicate that the injected backdoor by an attacker
achieves testing accuracy exceeding 60%, with instances approaching or reaching
100%. This high misclassification rate underscores the success of the attack. For
FashionMNIST, the injected backdoor attains 100% testing accuracy initially.
However, as the rounds progress, the main task accuracy gradually rises, even-
tually surpassing the backdoor accuracy. This suggests that the global model
eventually memorizes the main task at a higher rate before converging.

In both cases, the backdoor accuracy exhibits fluctuations over time due
to the malicious client’s interactions with other neighbors. Despite not being
selected by the victim every round, our results demonstrate the backdoor’s per-
sistent presence within the network, highlighting the resilience of our attack
strategy.

Effects of Training Set Size: Adhering to the decentralized network protocol,
our adversary possesses the capability to expand its training data, intensifying
the memorization of its backdoor by the victim’s model. To evaluate these effects
systematically, we incrementally increase the adversary’s training set size by 200,
300, 400, and 500 data points, respectively. The outcomes, depicted in Figure 4,
within the DAC protocol reveal two key observations:

1. The backdoor attains 100% accuracy at a faster rate with larger training
datasets.

2. The backdoor persists in the model with higher accuracy in later rounds
than previously before on both CIFAR-10 and FashionMNIST.

Notably, when expanding the FashionMNIST training dataset by an addi-
tional 500 data points, the main task accuracy fails to surpass the backdoor
accuracy. This significant enhancement ensures the consistent dominance of our
backdoor over the main task, as demonstrated in contrast to Figure 3 with our
initial configurations.

Effects of Backdoor Ratio and l2 Norm: To ensure a comprehensive evalu-
ation of the attack’s optimal performance, we utilize 500 additional data points
from the previous experiment when investigating the impact of the backdoor ra-
tio. In these experiments, we examine the backdoor accuracy across ratios of 0.1,
0.3, 0.5, 0.7, and 0.9. Modifying the attack further, we leverage the l2 norm to
enforce smaller and more consistent magnitudes in the weights of the attacker.
The results, depicted in Figures 5 and 6, showcase the attack’s effectiveness
within the DAC and Gossip protocols at various injection levels.

In particular, we observe a consistent behavior of the backdoor within the
Gossip protocol on the CIFAR-10 and FashionMNIST, where its persistence re-
mains virtually identical across each injection level. Despite fluctuations in back-
door accuracy in later rounds, it consistently dominates the main classification
task in the victims’ model. Additionally, Figure 6 demonstrates that even with
the adversary utilizing only 10% injected backdoor data for training in DAC,
the backdoor achieves 100% accuracy and maintains relatively high accuracy
throughout the training process compared to the main task on FashionMNIST.
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(a) CIFAR-10

(b) FashionMNIST

Figure 4: Effects of Increasing Training Size on Backdoor Accuracy within DAC.
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5 Related Works

Decentralized Federated Learning. Despite the prevalent assumption in
numerous recent works that their decentralized networks exhibit a ring topol-
ogy [16–20], we argue that relying solely on the assumption of a specific topology
in a decentralized network may lead to suboptimal performance. This oversight
arises from neglecting the critical aspect of the neighbor selection process, which
forms the basis for the assumed topology. We meticulously consider and ac-
count for the behavior of the neighbor selection process, recognizing that the
effectiveness of a decentralized system is inherently tied to how neighbors are
strategically chosen.
Backdoor Attacks in FL. A multitude of backdoor attacks have been intro-
duced in the context of federated learning (FL), addressing various complexities
such as model replacement [15, 21], model poisoning [22], relationships between
model parameters and backdoors [23,24], and the utilization of distributed frame-
works for backdoor dissemination [25]. Despite their diversity, these backdoor
attack variants primarily target the centralized FL setting.

In contrast, our work emphasizes a backdoor attack in the domain of decen-
tralized FL, eliminating the reliance on a central server. While the fundamental
concepts of these attacks could be adapted to our decentralized setting, the
translation is not necessarily straightforward due to factors such as the neighbor
selection process. We have shown that only by precise application of the back-
door can the attacker (1) be selected as a neighbor to the the targeted victim
and (2) affect the victims’ model update process with the backdoor injected
model updates. Another significant departure from recent works is our use of a
single attacker instead of many. Even in the presence of a single attacker, our
scenario has demonstrated remarkable effectiveness in disrupting the training
of a targeted victim, showcasing the robustness and impact of our proposed
approach.

6 Countermeasures Discussion

Current Defenses. Existing defenses in centralized FL predominantly delve
into techniques such as clipping and smoothing applied to a global model and its
parameters. These methods enable the detection of backdoors, offering certifiable
robustness guarantees [26]. Complementary defense strategies in the centralized
FL landscape involve a comprehensive blend of techniques, including clipping,
smoothing, noise addition, and clustering. These combined approaches aim to
not only identify but also eliminate backdoors [27, 28].

Transitioning to a decentralized FL context, the integration of these defenses
exposes the distinct challenges arising from the absence of a central server and
the decentralized nature of the network. Notably, strategies like clipping and
smoothing, which were conventionally applied at the central server, must now
be adapted and implemented across each individual client within the decentral-
ized network. Numerous factors come into play in determining the success of
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(a) CIFAR-10

(b) FashionMNIST

Figure 5: Effects of Backdoor Ratio on Backdoor Accuracy within Gossip.
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Figure 6: Effects of Backdoor Ratio on Backdoor Accuracy in DAC on Fashion-
MNIST.

these defenses within a decentralized environment. Local capabilities of indi-
vidual clients, the potential impact of defenses on data distributions, and the
reciprocal influence of possibly altered distributions on neighbor selections are
pivotal considerations. The combination of these factors emphasizes the com-
plexity of translating and optimizing defenses for the decentralized setting. It
is evident that a straightforward translation from centralized to decentralized
is not feasible, and ensuring the efficacy of these defenses in the decentralized
context requires a more thoughtful adaptation process.
Our Proposal. We propose a holistic defense strategy utilizing randomness and
network reshuffling. Incorporating randomness into the neighbor selection pro-
cess disrupts an adversary’s ability to guarantee proximity to a targeted victim.
A central challenge in implementing this randomness is the need to preserve
the similarity between neighboring users while introducing the necessary degree
of unpredictability. This method strategically optimizes the neighbor selection
process, finding a balance that enhances system performance while preventing
adversarial manipulation.

Additionally, reshuffling neighbors at defined epochs counteracts an adver-
sary’s potential isolation attacks on a targeted victim. The frequency of reshuf-
fling, denoted by the number of epochs, plays a pivotal role in balancing the
impact of adversarial attacks with the stability of the network. Opting for a
smaller number of epochs to trigger reshuffling may diminish the effectiveness
of adversarial attacks but risks network destabilization due to frequent adjust-
ments. On the other hand, a larger number of epochs may maintain stability,
but could inadvertently create more opportunities for successful attacks. Deter-
mining the optimal number of epochs to trigger reshuffling, thereby striking a
delicate balance between network stability and defense against attacks, stands
as a crucial aspect of implementing this robust defense mechanism.
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7 Conclusion

In conclusion, our exploration into Decentralized Federated Learning (DFL) has
exposed a novel backdoor attack scenario that challenges the conventional as-
sumptions and defenses within this domain. By meticulously examining the vul-
nerabilities stemming from a malicious client manipulating the neighbor selection
process, our study sheds light on the complexities of security challenges in DFL.
The Selection Attack via Neighbor Deception (SAND) represents a significant
threat, allowing adversaries to compromise both the neighbor selection process
and the data distribution of other participants. Our extensive experiments pro-
vide compelling evidence of the effectiveness and robustness of the proposed
SAND attack. The attacker’s ability to strategically become a neighbor to a tar-
geted victim, coupled with the injection of corrupted updates, leads to a domino
effect that undermines the victim’s model training and, subsequently, the quality
of the global model. Furthermore, the comprehensive analysis of SAND’s conse-
quences underscores the severity of this attack and the need for robust security
measures in DFL. As our work unveils a new dimension of security challenges
in FL, it prompts a reevaluation of existing assumptions and defenses, inspiring
further exploration into the landscape of DFL security.
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