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Abstract

Estimating and disentangling epistemic uncertainty, uncertainty that is reducible
with more training data, and aleatoric uncertainty, uncertainty that is inherent to
the task at hand, is critically important when applying machine learning to high-
stakes applications such as medical imaging and weather forecasting. Conditional
diffusion models’ breakthrough ability to accurately and efficiently sample from the
posterior distribution of a dataset now makes uncertainty estimation conceptually
straightforward: One need only train and sample from a large ensemble of diffu-
sion models. Unfortunately, training such an ensemble becomes computationally
intractable as the complexity of the model architecture grows. In this work we in-
troduce a new approach to ensembling, hyper-diffusion models (HyperDM), which
allows one to accurately estimate both epistemic and aleatoric uncertainty with a
single model. Unlike existing single-model uncertainty methods like Monte-Carlo
dropout and Bayesian neural networks, HyperDM offers prediction accuracy on
par with, and in some cases superior to, multi-model ensembles. Furthermore, our
proposed approach scales to modern network architectures such as Attention U-Net
and yields more accurate uncertainty estimates compared to existing methods. We
validate our method on two distinct real-world tasks: x-ray computed tomogra-
phy reconstruction and weather temperature forecasting. Source code is publicly
available at https://github.com/matthewachan/hyperdm.

1 Introduction

Machine learning (ML) based inference and prediction algorithms are being actively adopted in a
range of high-stakes scientific and medical applications: ML is already deployed within modern
computed tomography (CT) scanners [10], ML is actively used to search for new medicines [29], and
over the last year ML has begun to compete with state-of-the-art weather and climate forecasting
systems [46, 36, 7]. In mission-critical tasks like weather forecasting and medical imaging/diagnosis,
the importance of reliable predictions cannot be overstated. The consequences of erroneous decisions
in these domains can range from massive financial costs to, more critically, the loss of human lives.
In this context, understanding and quantifying uncertainty is a pivotal step towards improving the
robustness and reliability of ML models.
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(b) Repeat N times per weight vector.
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(a) Repeat M times to get ensemble of weights.
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(c) Compute aggregate prediction and uncertainty.

Aggregate Prediction Aleatoric UncertaintyEpistemic UncertaintyMxN Predictions

Figure 1: General framework of HyperDM. (a) A Bayesian hyper-network is optimized to generate
diffusion model weights from randomly sampled noise. This process is repeated M times to obtain
an ensemble of M weights. (b) A diffusion model accepts fixed weights from the hyper-network
to stochastically generate a prediction. This process is repeated N times for each set of weights,
yielding a total of M ×N predictions. (c) The ensemble predictions are aggregated to produce a
final prediction and an epistemic / aleatoric uncertainty map.

For an uncertainty estimate to be most useful, it must differentiate between aleatoric and epistemic
uncertainty. Aleatoric uncertainty describes the fundamental variability and ill-posedness of the
inference task. By contrast, epistemic uncertainty describes the inference model’s lack of knowledge
or understandingÐwhich can be reduced with more diverse training data. Distinguishing between
these two types of uncertainty provides valuable insights into the strengths and weaknesses of a
predictive model, offering pathways towards improving its performance. In applications like weather
forecasting, epistemic uncertainty can be used to inform the optimal placement of new weather
stations. Additionally, in medical imaging, decomposition of uncertainty into its aleatoric and
epistemic components is important for identifying out-of-distribution measurements where model
predictions should be verified by trained experts.

This work presents a new approach for estimating aleatoric and epistemic uncertainty using a single
model. Specifically, our approach uses a novel pipeline integrating a conditional diffusion model [23]
and a Bayesian hyper-network [34] to generate an ensemble of predictions. Conditional diffusion
models allow one to sample from an implicit representation of the posterior distribution of an inverse
problem. Meanwhile, hyper-networks allow one to sample over a collection of networks that are
consistent with the training data. Together, these components can efficiently estimate both sources of
uncertainty, without sacrificing inference accuracy. Our specific contributions are summarized below:
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Table 1: Comparison of training and inference times. The time required to train an M = 10
member ensemble on the LUNA16 dataset is shown in the second column. The third column shows
the time required to generate a predictive distribution of size M ×N = 1000 for a single input.

METHOD TRAINING TIME (MINUTES) EVALUATION TIME (MINUTES)

MC-DROPOUT [18] 47.03 3.70
DPS-UQ [14] 441.09 3.31
HYPERDM 48.53 3.18

• We apply Bayesian hyper-networks in a novel setting (i.e., diffusion models) to estimate
both epistemic and aleatoric uncertainties from a single model.

• We conduct a toy experiment with ground truth uncertainties and show that the proposed
method accurately predicts both sources of uncertainty.

• We apply the proposed method on two mission-critical real-world tasks, CT reconstruction
and weather forecasting, and demonstrate that our method achieves a significantly lower
training overhead and better reconstruction quality compared to existing methods.

• We conduct ablation studies investigating the effects of ensemble size and the number of
ensemble predictions on uncertainty quality, which show (i) that larger ensembles improve
out-of-distribution detection and (ii) that additional predictions smooth out irregularities in
aleatoric uncertainty estimates.

2 Related Work

2.1 Uncertainty Quantification

Probabilistic methods are commonly used to estimate uncertainty by first generating an ensemble
of models and subsequently quantifying uncertainty as the variance or entropy over the ensemble’s
predictions [11]. Deep ensembles [35] explicitly train such an ensemble to predict epistemic un-
certainty. However, with modern neural network architectures exceeding a billion parameters, the
computational cost required to train deep ensembles is prohibitively expensive.

Other methods attempt to approximate deep ensembles while circumventing its training overhead.
Bayesian neural networks (BNNs) [40, 44] use variational inference [19, 65] to model the posterior
weight distribution. Monte-Carlo (MC) dropout [18] leverages dropout [57] to stochastically induce
variability in the network’s predictions. Recent works in weather forecasting [7, 46] perturb network
inputs with random noise to similarly generate stochastic predictions. Still, each of these methods
has notable trade-offs preventing their widespread adoption. BNNs incur a runtime cost that scales
proportionally with the number of model parameters, leading to slow inference and training times.
MC dropout and input perturbation introduce noise into the inference process, which adversely affects
model prediction quality. Moreover, perturbing inputs with noise is not equivalent to deep ensembles
(in the Bayesian sense) as these methods optimize the weights of a single, deterministic model.

A separate branch of research [48, 3] explores distribution-free uncertainty estimation, which uses
conformal prediction [4] and quantile regression [32] to estimate bounds on aleatoric uncertainty.
Subsequent works [58] have extended this to additionally estimate epistemic uncertainty; however,
these methods use deep ensembles to do soÐleading to similar issues with computational complexity.

2.2 Hyper-Networks

Hyper-networks [20] employ a unique paradigm where one networkÐthe ªhyper-networkºÐ
generates weights for another ªprimaryº network. This framework circumvents the need to train
multiple task-specific or dataset-specific models. Instead, one need only train a single hyper-network
to cover a range of tasks or datasets. Given an input token representing a specific task, a hyper-network
learns to generate reasonable weights with which the primary network can accomplish that task [61].
Note that, during training, losses are back-propagated such that only the hyper-network’s parameters
are updated while the primary network’s weights are purely generated by the hyper-network.
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(b) Estimating Epistemic Uncertainty(a) Estimating Aleatoric Uncertainty
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Figure 2: Accurate uncertainty estimation using HyperDM. (a) HyperDM is trained on four 1D
datasets with aleatoric uncertainty determined by noise variance σ2

η . Variances across diffusion model
predictions are visualized as one distribution per training dataset. Aleatoric estimates (i.e., the mean
of each distribution) accurately predict σ2

η . (b) HyperDM is trained on four datasets with epistemic
uncertainty determined by dataset size |D|. Prediction means are visualized as one distribution per
training dataset. Epistemic estimates (i.e., the variance of each distribution) grow inversely with |D|.

Bayesian hyper-networks (BHNs) [34, 33] extend hyper-networks to quantify uncertainty. Rather
than accepting task-specific tokens as inputs, BHNs accept random noise and stochastically generate
weights for the primary network. BHNs thus serve as an implicit representation for the true posterior
weight distribution [47, 28]. Epistemic uncertainty is measured as the variance across predictions
yielded by the primary network for different weights sampled from the BHN.

2.3 Diffusion Models

Diffusion models (DMs) [52, 55, 56] represent a class of generative machine learning models that
learns to sample from a target distribution. These models fit to the Stein score function [39] of
the target distribution by iteratively transitioning between an easy-to-sample (typically Gaussian)
distribution and the target distribution. During training, samples from the target distribution are
corrupted by running the forward ªnoisingº diffusion process, and the network learns to estimate the
added noise. To generate samples, the network iteratively denoises images of pure noise until they
looks like they were sampled from the target distribution [23]. DMs have shown success in generating
high-quality, realistic images and capturing diverse data distributions [12]. To date, however, there
has been limited research [6] investigating the use of DMs for uncertainty estimation.

3 Problem Definition

Given measurements y ∼ Y corresponding to signals of interest x ∼ X , our objective is to train a
model which can simultaneously recover x and quantify the aleatoric and epistemic uncertainty of its
predictions. The predictive distribution of a such a model is given by

p(x|y,D) =

∫
p(x|y, ϕ)p(ϕ|D)dϕ (1)

where p(x|y, ϕ) is the likelihood function, and p(ϕ|D) is the posterior over model parameters ϕ for a
training dataset D [59]. Uncertainty on this distribution stems from two distinct sources: aleatoric
uncertainty and epistemic uncertainty [13].

3.1 Aleatoric Uncertainty

Aleatoric uncertainty (AU) arises from inherent randomness in the underlying measurement process
and is represented by the likelihood function in Equation (1). Most notably, this source of uncertainty
is irreducible for a given measurement process [17, 30]. In the context of predictive modeling, AU
represents how ill-posed the task is and is often associated with noise, measurement errors, or inherent
unpredictability in the observed phenomena.
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Consider an inverse problem where the goal is to recover x from measurements

y = F(x) + η, (2)

defined by forward operator F and non-zero measurement noise η ∼ N (0, σ2), by learning the
inverse mapping F−1 : Y → X . Even with a perfect model capable of sampling from the true
likelihood p(x|y), irreducible errors are still present due to the ambiguity η around which x ∼ p(x)
explains the observed measurement y. This ambiguity captures the inherent randomness (i.e., the
aleatoric uncertainty) of the inverse problem and is measured by the variance σ2 of η [27].

3.2 Epistemic Uncertainty

Epistemic uncertainty (EU) relates to a lack of knowledge or incomplete understanding of a problem
and is reducible with additional training data [27]. This type of uncertainty reflects limitations in
a model’s knowledge and its ability to accurately capture underlying patterns in the data. Assume
we initialize M models with random weights {ϕi}

M
i=0 and sufficient capacity to perfectly capture

the inverse model described in Section 3.1. After training, discrepancies (i.e., epistemic uncertainty)
inevitably arise in the final weights learned by each model, due to the random weight initialization pro-
cess. As additional training data is provided, model weights converge more stronglyÐcorresponding
to a reduction in EU [11, 27].

4 Method

We measure uncertainty using variance and apply the law of total variance [11, 60, 50] to decompose
total uncertainty (TU) across model predictions X̂ ∼ p(x|y,D) into its AU and EU components

Var(X̂) = Varφ∼p(φ|D)

[
Ex̂∼p(x|y,φ)

[
X̂
]]

︸ ︷︷ ︸
EU

+Eφ∼p(φ|D)

[
Varx̂∼p(x|y,φ)

[
X̂
]]

︸ ︷︷ ︸
AU

. (3)

The first term captures the explainable uncertainty, given by the variance of sampled weights ϕ ∼
p(ϕ|D) over the expected values of samples x̂ ∼ p(x|y, ϕ) from the likelihood function. This term
ignores variance caused by the ill-posedness of the likelihood function and therefore represents EU.
The second term captures the unexplainable uncertainty and is given by the expectation of sampled
weights ϕ ∼ p(ϕ|D) over the variance of samples x̂ ∼ p(x|y, ϕ) from the likelihood function. This
term ignores variance caused by the sampling of weights from the posterior and therefore represents
AU.

Both the likelihood function p(ϕ|D) and the posterior p(x|y, ϕ) do not have an explicit closed-form,
making computation of (3) intractable. To circumvent this, we instead learn their respective implicit
distributions [28, 47] q(ϕ) and q(x|y).

4.1 Implicit Likelihood Function

As demonstrated in [55], DMs enable sampling from an implicit conditional distribution q(x|y) by
learning to invert a diffusion process that gradually transforms a target data distribution into a simple
(typically Gaussian) data distribution [56]. The forward diffusion process can be described by a T
length Markov chain

q(x(t)|x(t−1)) := N

(
x(t);

√
1− σ2

t x
(t−1), σ2

t

)
(4)

that transforms samples x(0) from the data distribution into samples x(T ) from a Gaussian distribu-
tion [23]. Conversely, the reverse diffusion process

p(x(t−1)|x(t), y) := N (x(t−1);x(t) + σ2
t∇x(t) log p(x(t)|y), σ2

t ) (5)

transforms pure noise into samples from p(x|y) [63].

Since explicit computation of the score function ∇xt
log p(x(t)|y) is intractable [16], a neural network

s(x, t|y, ϕ) is typically trained to approximate it via an L2 minimization objective

E(x,y)∼D

[∥∥∥∇x(t) log p(x(t)|y)− s(x(t), t|y, ϕ)
∥∥∥
2

2

]
(6)
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Figure 3: Weather forecasting on out-of-distribution data. (a) An out-of-distribution measurement
is formed by synthetically inserting a hot spot in the northeastern part of Canada. (b) Epistemic and
aleatoric uncertainty maps are produced by each method on the provided measurement. Compared to
other methods, HyperDM is best able to isolate the abnormal feature in its epistemic estimate.

where D = {(x0, y0), . . . , (xN , yN )} represents the training dataset. Once the DM has finished
training, we can sample from the implicit likelihood function q(x|y) by first sampling random noise
x(T ) ∼ N (0, σ2) and iteratively denoising the image T times following Equation (5) to obtain
x(0) ∼ q(x|y) [42].

4.2 Implicit Posterior Distribution

Similar to the likelihood function, the posterior weight distribution has no explicit closed-form
representation, so we instead make use of an implicit distribution q(ϕ) to approximate p(ϕ|D).
As mentioned in Section 2.2, BHNs [34] enable sampling from q(ϕ) by transforming samples
z ∼ N (0, σ2) into weights ϕ ∼ q(ϕ) for the primary network. In the case of the inverse imaging
problem from Section 3.1, the primary network would be a network f(·|ϕ) with parameters ϕ that
learns the inverse mapping from measurements to signals Y → X .

Training a BHN differs from conventional deep learning methods in that the weights of the primary
network ϕ are generated by a hyper-network and are thus not learnable parameters. Instead, the
weights θ of a BHN hθ are optimized via the minimization objective

E(x,y)∼D,z∼N (0,σ2)

[
∥f(y | hθ(z))− x∥22

]
(7)

where hθ maps random input vectors z ∼ N (0, σ2) to weights ϕ (see Figure 1a). Importantly,
weights produced by the BHN do not collapse to a mode because there are many network weights
which yield plausible predictions with respect to L2 distance. As less data is available during training,
a broader range of network weights reasonably explain that data.

4.3 Estimation of Aleatoric and Epistemic Uncertainty with a Single Model

We leverage DMs and BHNs to implicitly model p(x|y, ϕ) and p(ϕ|D), respectively, thus enabling
sampling from both distributions. Specifically, our framework consists of a BHN hθ that generates
weights ϕi ∼ q(ϕ) for a DM s(·|ϕ), which we collectively refer to as a hyper-diffusion model
(HyperDM). At inference time, we sample i ∈ M weights from hθ and for each weight ϕi generate
j ∈ N samples from s(·|ϕi)Ðyielding a distribution of M × N predictions x̂i,j (see Figure 1).
This framework is a transformation of Equation (1), where both posterior and likelihood have been
replaced with implicit distributions to yield a tractable approximation of the predictive distribution

p(x|y,D) ≈

∫
q(x|y)q(ϕ)dϕ. (8)

6



Table 2: Ensemble prediction quality on real-world data. Baseline image quality assessment
scores are calculated on test data from a CT dataset (i.e., LUNA16) and a weather forecasting dataset
(i.e., ERA5). Best scores are highlighted in red and second best scores are highlighted in blue.

LUNA16 ERA5

METHOD SSIM ↑ PSNR (DB) ↑ CRPS ↓ SSIM ↑ PSNR (DB) ↑ CRPS ↓

MC-DROPOUT [18] 0.77 30.25 0.023 0.93 31.34 0.034
DPS-UQ [14] 0.89 34.95 0.01 0.94 32.83 0.013
HYPERDM 0.87 35.16 0.01 0.95 33.15 0.012

Applying Equation (3), uncertainty over the predictive distribution X̂ = {x̂i,j , . . . , x̂M,N} is decom-
posed into its respective aleatoric and epistemic components,

ÂU = Ei∈M

[
Varj∈N

[
X̂
]]

(9)

ÊU = Vari∈M

[
Ej∈N

[
X̂
]]

, (10)

such that T̂U = ÂU + ÊU. Following existing ensemble methods [35, 46, 7], we compute the
aggregate ensemble prediction as the expectation over X̂ , formally expressed as

Ei∈M,j∈N

[
X̂
]
. (11)

Compared to other aggregation methods (e.g., median, mode), we observe the best performance when
taking the ensemble mean. Please refer to Figure 5 and Table 3 in the supplement for more details.

Unlike deep ensembles which require training M distinct models to compute EU and AU, HyperDM
only requires training a single model (i.e., a BHN)Ðtheoretically consuming up to M -fold fewer
computational resources. Furthermore, unlike many pseudo-ensembling methods [18, 7, 46], Hy-
perDM doesn’t need to exploit randomness caused by perturbations to model p(ϕ|D)Ðavoiding
adverse effects on model performance. Moreover, unlike BNNs, HyperDM is relatively cheap to
sample from in terms of computational runtime and resourcesÐmaking it significantly faster and
more scalable compared to BNN-based uncertainty estimation methods.

Differing from prior work [60], we make no Gaussian assumptions on the predictive distribution
p(x|y,D) nor on the likelihood function p(x|y, ϕ). This is because our method approximates p(x|y, ϕ)
by repeatedly sampling x̂ ∼ q(x|y) from a DM, rather than explicitly modeling the distribution as a
Gaussian with mean µ and variance σ2. Therefore, our aggregate predictive distribution p(x|y,D)
is not restricted to a Gaussian mixture model N (µ∗(x), σ

2
∗(x)) over the collective mean µ∗ and

variance σ2
∗ of all ensemble members.

5 Experiments

Please refer to Appendix A for training details (e.g., network architectures and loss functions).

Baselines. We focus on comparing HyperDM against methods which are similarly capable of
estimating both EU and AU. Our benchmark consists of a state-of-the-art method, deep-posterior
sampling for uncertainty quantification [14] (henceforth referred to as DPS-UQ), and a dropout-based
method (referred to as MC-Dropout). DPS-UQ is implemented as an M -member ensemble of
deep-posterior sampling (DPS) DMs. MC-Dropout is implemented as a single DM with weights
sampled from q(ϕ) using dropout instead of a BHN. Despite its inability to jointly predict EU and
AU, we also include a BNN baseline in our initial experiments to illustrate the advantages of our
method in terms of prediction speed and accuracy.

Metrics. We evaluate the quality of baseline predictions using both full-reference image quality met-
rics and distribution-based metrics. Specifically, we compute peak signal-to-noise ratio (PSNR) [24]
and structural similarity index (SSIM) [62] between mean predictions (see Equation (11)) and their
corresponding ground truth references. We also compute the continuous ranked probability score
(CRPS) [41] as a holistic indicator of the quality of X̂ , given by

CRPS(F, a) =
∫ ∞

−∞

[F (a)− 1a≥x]
2
da, (12)
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where F is the cumulative distribution function of X̂ and 1 is the Heaviside step function.

In our initial experiments, we compare baseline estimates of AU and EU against ground truth
uncertainty. However, extending such validation to more complex tasks and datasets is difficult
because uncertainty is affected by a wide variety of environmental factors (e.g., measurement noise,
sampling rates) which are often unreported. As a result, in subsequent experiments, we follow [14] and
evaluate uncertainty by generating out-of-distribution (OOD) measurements and verifying whether
baseline estimates of ÊU correctly predict OOD pixels.

5.1 Toy Problem

We first evaluate our method on a toy inverse problem to establish the correctness of our uncertainty
estimates under a simple forward model where ground truth uncertainty is explicitly quantifiable.
Training datasets are generated using the function

x = sin(y) + η (13)

where η ∼ N (0, σ2
η) and measurements y ∼ U(−5, 5). We conduct two separate experiments to

validate our method’s ability to estimate uncertainty against ground-truth EU and AU.

Estimating AU. To test our method’s ability to estimate AU, we generate four training datasets using
Equation (13) with ground truth AU characterized by noise variances σ2

η ∈ {0.01, 0.04, 0.16, 0.64}.
Each training dataset has |D| = 500 examples, and a HyperDM is trained on each dataset for 500
epochs. After training, we sample M = 10 weights from hθ and N = 10000 realizations from s(·|ϕ)

to obtain a distribution of M ×N predictions. We compute ÂU for each ensemble member using
Equation (9) and visualize Varj∈N [X̂] across all M weights in Figure 2a. The AU estimates across

the four datasets are ÂU = {0.02, 0.05, 0.21, 0.64}, which closely match the ground-truth.

Estimating EU. We test our method’s ability to estimate EU by generating four training datasets of
varying sizes |D| ∈ {100, 200, 400, 800} and fixed noise variance σ2

η = 0.01. Unlike AU, ground
truth EU cannot be explicitly quantified because it is independent from the training data [5]. As a
result, we follow prior works [35, 13, 38] and validate EU qualitatively. We train a HyperDM on
each dataset for 500 epochs and draw M ×N samples from it where M = 10, N = 10000. We then
calculate ÊU using Equation (10) and plot Ej∈N [X̂] for all M weights in Figure 2b. The EU estimates
across the four datasets are ÊU =

{
1.92× 10−4, 2.20× 10−5, 1.17× 10−5, 1.83× 10−6

}
, ordered

by increasing |D|. As expected, ÊU decreases as |D| grows increasingly larger.

To highlight the key advantages of HyperDM over traditional uncertainty estimation techniques,
we also train a BNN on the same datasets and sample M = 10000 predictions. The resulting
estimates ÊU = {0.091, 0.071, 0.050, 0.012} indicate a similar inversely proportional relationship
with |D|. However, despite having the same backbone architecture and training hyper-parameters, we
observe aggregate predictions of lower individual and mean quality from the BNN when compared to
HyperDM (see Table 4 of the supplement). Moreover, we observe that BNNs take over 2× longer to
train compared to HyperDM (i.e., 70 seconds vs. 30 seconds), and inference is an order of magnitude
slower (i.e., 8.7 seconds vs. 0.7 seconds to generate 10,000 predictions), due to BNN’s need to
sample from the weight distribution at runtime.

5.2 Computed Tomography

In this experiment, we demonstrate our method’s applicability for medical imaging tasks, specifically
CT reconstruction. Using the Lung Nodule Analysis 2016 (LUNA16) [51] dataset, we form a target
image distribution X by extracting 1,200 CT images, applying 4× pixel binning to produce 128×128
resolution images, and normalizing each image by mapping pixel values between [−1000, 3000]
Hounsfield units to the interval [−1, 1]. We subsequently compute the sparse Radon transform with
45 projected views and add Gaussian noise with variance σ2 = 0.16 to the resulting sinograms. Using
filtered back-projection (FBP) [25], we obtain low-quality reconstructions Y of original images X .
The dataset is finally split into a training dataset comprised of 1,000 image-measurement pairs and
a validation dataset of 200 data pairs. Following the training procedure described in Appendix A,
we train MC-Dropout, DPS-UQ, and HyperDM on LUNA16. For fair comparison, all baselines are
sampled from using M = 10 and N = 100 for a total of M ×N = 1000 predictions. We refrain
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Figure 4: CT reconstruction on out-of-distribution data. (a) An out-of-distribution CT measure-
ment formed by synthetically inserting metal implants along the spine. (b) Epistemic and aleatoric
uncertainty maps are produced by each method on the out-of-distribution measurement. Both DPS-
UQ and HyperDM are able to distinguish the abnormal feature in their epistemic prediction.

from training a BNN baseline on this dataset due to the high computational resources and runtime
required to scale to the image domain.

In Table 2, we show average CRPS, PSNR, and SSIM scores computed over the test dataset. The rel-
atively low image quality scores obtained by MC-Dropout are indicative of the adverse effects caused
by randomly dropping network weights at inference time. Meanwhile, DPS-UQ reconstructions
achieve a 15.5% higher average PSNR than MC-Dropout, but at the cost of an eight-fold increase
in training time (see Table 1). On the other hand, HyperDM yields predictions of similarÐand
sometimes betterÐquality than DPS-UQ while only adding a 3% overhead in training time compared
to MC-Dropout. Note that the discrepancy in training times between DPS-UQ and HyperDM will
continually widen as we scale the ensemble size beyond M = 10. However, due to the high computa-
tional costs required to train M > 10 member deep ensembles, we limited baselines to ten-member
ensembles for this experiment.

To evaluate the quality of baseline uncertainty predictions, we first select a random in-distribution
image x ∈ X and generate its corresponding OOD measurement by first artificially inserting an
abnormal feature (i.e., metal implants along the spinal column) and subsequently computing the
corresponding FBP measurement y. Results in Figure 4 show that DPS-UQ and HyperDM yield
comparable results in that their ÊU predictions successfully highlight the OOD implant. In contrast,
MC-Dropout fails to highlight OOD pixels in its ÊU prediction. While prior work [43] suggests that
AU estimates are unreliableÐand should be subsequently disregardedÐwhenever EU is high, we
nonetheless include ÂU results in Figure 4 to demonstrate that HyperDM produces ÂU predictions
similar to that of a deep ensemble.

5.3 Weather Forecasting

In this experiment, we demonstrate the applicability of HyperDM for climate scienceÐspecifically
two-meter surface temperature forecasting. Using the European Centre for Medium-Range Weather
Forecasts Reanalysis v5 (ERA5) dataset [22], we generate a dataset comprised of 1,240 surface air
temperature maps sampled at six-hour time intervals (i.e., 00, 06, 12, 18 UTC) in January between
2009-2018. Images are binned down to 128× 128 resolution and normalized such that pixel values
between [210, 313] Kelvin map to the interval [−1, 1]. Following experiments done in [46], we form
data pairs (x, y) using historical temperature data at time t as the initial measurement image y and
data at time t + 6 hours as the target image x. A total of 200 images are held-out and used for
validation and testing purposes.

Using the same training procedure as Section 5.2, we train MC-Dropout, DPS-UQ, and HyperDM on
ERA5 and generate predictions with sampling rates M = 10 and N = 100. Baseline PSNR, SSIM,
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and CRPS scores are reported in Table 2, where we observe trends similar to the prior experiment:
DPS-UQ achieves a 5% higher average PSNR score compared to MC-Dropout, and HyperDM
achieves 1% higher average PSNR score compared to DPS-UQ. Training overhead for DPS-UQ
remains around 8× that of MC-Dropout and HyperDM due to the need to repeat training M times.

To generate OOD measurements, we first obtain an in-distribution measurement and subsequently
insert an anomalous hot spot over northeastern Canada. Inspecting results in Figure 3, we observe
that HyperDM’s ÊU prediction more accurately identifies OOD pixels than DPS-UQ. In contrast,
MC-Dropout fails to identify the hot spot in its ÊU prediction and instead incorrectly identifies
regions in the central United States as OOD. Interestingly, all methods predict lower ÂU over the
ocean versus the North American continent, which aligns with our expectations, as water has less
temperature variability compared to land due to its higher specific heat. Additional qualitative results
showing the decomposition of T̂U into its ÊU and ÂU components are provided in Figure 8 of the
supplement.

6 Limitations and Future Work

We acknowledge two main limitations of our approach and identify potential avenues for improvement.
Firstly, as a consequence of their iterative denoising process, inference on DMs is slow compared to
inference on classical neural network architectures. However, recent advances in accelerated sampling
strategies have largely mitigated this issue and allow for few [53] (and in some cases single [54])
step sampling from DMs. Secondly, hyper-networks suffer from a scalability problem in that their
number of parameters scales with the number of primary network parameters. This stems from the
fact that the dimensionality of the hyper-network’s output layer is (in most cases) proportional to the
number of parameters in the primary network [9]. Several works address this issue by proposing more
efficient weight generation strategies [61, 2, 26]. Nonetheless, these problems remain a promising
avenue for future research.

7 Conclusion

The growing application of ML to impactful scientific and medical problems has made accurate
estimation of uncertainty more important than ever. Unfortunately, the gold standard for uncertainty
estimationÐdeep ensemblesÐis prohibitively expensive to train, especially on modern network
architectures containing billions of parameters. In this work, we propose HyperDM, a framework
capable of approximating deep ensembles at a fraction of the computational training cost. Specifically,
we combine Bayesian hyper-networks and diffusion models to generate a distribution of predictions
with which we can estimate total uncertainty and its epistemic and aleatoric sub-components. Our
experiments on weather forecasting and CT reconstruction demonstrate that HyperDM significantly
outperforms pseudo-ensembling techniques like Bayesian neural networks and Monte Carlo dropout
in terms of prediction quality. Moreover, when compared against deep ensembles, HyperDM achieves
up to an M× reduction in training time while yielding predictions of similar (if not superior) quality,
where M is the ensemble size. This work thus makes a major stride towards developing accurate and
scalable estimates of uncertainty.
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A Training Details

All baselines are trained on a single NVIDIA RTX A6000 using a batch size of 32, an Adam [31]
optimizer, and a learning rate of 1× 10−4. Training is run over 500 epochs in our initial experiment
and 400 epochs in our CT and weather experiments. DMs are trained using a Markov chain of
T = 100 timesteps.

A.1 Network Architecture

The backbone architecture for all baselines (i.e., BNN, DPS-UQ, HyperDM) in the toy experiment
from Section 5.1 is a multi-layer perceptron (MLP) [49] with five linear layers and rectified linear
unit (ReLU) [1] activation functions. For experiments described in Sections 5.2 and 5.3, we scale
the DM’s backbone architecture up to an Attention U-Net [45] for all baselines. The U-Net consists
of an initial 2D convolutional layer, followed by four 2× downsampling ResNet [21] blocks, two
middle ResNet blocks, four 2× upsampling ResNet blocks, and a final 2D convolutional layer. Each
ResNet block consists of two 2D convolutional layersÐwith group normalization [64] and Sigmoid
Linear Units (SiLU) [15] activation functionÐas well an additional attention layer.

A.2 Loss Functions

The training procedure for HyperDM is identical to that of a standard DM, except that the DM’s
weights are sampled from a BHN hθ. For each training pair (x, y), we sample DM weights by first
sampling random noise z ∼ N (0, σ2

z), z ∈ R
8 and then computing ϕ ∼ hθ(z). We manually set the

DM weights equal to ϕ and compute the loss function

LHyperDM = ∥ϵ− s(x(t), t|y, hθ(z))∥
2
2, (14)

where ϵ ∼ N (0, σ2) is the noise added to x at time step t and s(·|ϕ) represents the DM. In general,
we found HyperDM training to be stable across a variety of training hyper-parameters and did not
encounter any over-fitting issues.

We follow [37] and train our BNN baseline b(·|ϕ) by minimizing the loss function

LBNN = ∥x− b(y|ϕ)∥22 + λKL(q(ϕ) ∥ p(ϕ|D)), (15)

which consists of a data fidelity term and an additional Kullback-Leibler (KL) divergence term
between the true posterior p(ϕ|D) and the implicit distribution q(ϕ)Ðapproximated using Bayes by
Backprop [8]. The weights of each BNN layer are sampled from a zero-mean normal distribution with
standard deviation σ = 0.1, and the KL component of the loss term is down-weighted by λ = 0.01.

The training procedure for DPS-UQ and MC-Dropout are identical in that they share the same loss
objective

LDPS-UQ = LMC-Dropout = ∥ϵ− s(x(t), t|y, ϕ)∥22, (16)

where the weights ϕ are randomly initialized at the start of training and updated via backpropagation.
However, we train M separate DM instances for DPS-UQ, whereas only a single DM is trained for
MC-Dropout.

MedianMean Mode

Figure 5: Aggregation of ensemble predictions. Ensemble predictions are aggregated using
conventional methods (e.g., mean, median, mode). Mean and median aggregation results are similar,
while mode aggregation results are noticeably more noisy.
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Table 3: Reconstruction quality of different ensemble aggregation methods. HyperDM recon-
struction results on the ERA5 test set are shown for three different ensemble aggregation strategies:
mean, median, and mode. Best scores are highlighted in red and second best scores are highlighted in
blue.

AGGREGATION SSIM ↑ PSNR (DB) ↑ L1 ↓ CRPS ↓

MEAN 0.9455 32.93 0.018 0.01292
MEDIAN 0.9452 33.06 0.017 0.01294
MODE 0.6690 25.54 0.044 0.01293

To build a predictive distribution of size M ×N with MC-Dropout, we first seed a pseudo-random
number generator (RNG), which we use to deterministically sample dropout masks from a Bernoulli
distribution. These masks are used to zero-out input tensor elements at each network layer. We
then reset the RNG using the same initial seedÐfixing the drop-out configurationÐand continually
sample from the DM until we obtain N predictions for that seed. This process is repeated across M
different seeds for a total of M ×N predictions. In all experiments, we train and test MC-Dropout
with dropout probability p = 0.3.

B Ablation Studies

B.1 Sampling Rates

HyperDM provides flexibility at inference time to arbitrarily choose the number of network weights
M to sampleÐanalogous to the number of ensemble members in a deep ensembleÐand the number
of predictions N to generate per sampled weight. In this study, we examine the effect of sampling
rates M,N on ÊU and ÂU on our OOD experiment from Section 5.3.

In our first test, we estimate EU on an OOD measurement for fixed N = 100 and variable M =
{2, 4, 8, 16}. Results in Figure 6 indicate that under-sampling weights (i.e., M ≤ 4) leads to
uncertainty maps which underestimate uncertainty around OOD features and overestimate uncertainty
around in-distribution features. However, as we continue to sample additional network weights,
we observe increased uncertainty in areas around the abnormal feature and suppressed uncertainty
around in-distribution features. This result indicates the importance of large ensembles in correctly
isolating OOD features from in-distribution features for EU estimation.

In our second test, we repeat the same process but instead fix M = 10 and sample N = {2, 4, 8, 16}
predictions from the DM. Examining the results shown in Figure 7, we observe irregular peaks in
the predicted AU at low sampling rates N ≤ 4. However, as we sample more from the DM and the
sample mean converges, ÂU becomes more uniformly spread across the entire continental landmass.
This result suggests the importance of sampling a large number of predictions for adequately capturing
the characteristics of the true likelihood distribution.

M=2 M=4 M=8 M=16

Figure 6: Effect of sampling more weights on epistemic uncertainty. As we increase the number
M of sampled weights from the hyper-network, uncertainty around out-of-distribution features (i.e.,
the hot spot in the upper-right) grows and uncertainty around in-distribution features (i.e., everything
else in the image) shrinks.

16



N=2 N=4 N=8 N=16

Figure 7: Effect of sampling more predictions on aleatoric uncertainty. As we increase the
number N of sampled predictions from the diffusion model, aleatoric uncertainty predictions smooth
out more evenly.

Table 4: Ensemble prediction quality versus BNNs. When trained on four datasets of various sizes,
we observe that HyperDM produces more accurate mean predictions (as indicated by PSNR scores)
and higher quality predictive distributions (as indicated by CRPS) than BNNs, except in the extreme
low data regime. Highest scores are displayed in boldface.

DATASET SIZE 100 200 400 800 100 200 400 800

METHOD PSNR (DB) ↑ CRPS ↓

BNN 10.34 11.09 13.53 13.78 0.20 0.18 0.14 0.13
HYPERDM 8.47 18.43 20.28 20.44 0.23 0.09 0.07 0.07

Dropout

DPS-UQ

HyperDM

AU EU TU L2

Figure 8: Uncertainty decomposition on temperature data. Total uncertainty and its decomposition
into epistemic and aleatoric components is shown in the left three columns. The L2 error between the
aggregated mean ensemble prediction and the ground truth is shown in the rightmost column. We
observe higher total uncertainty around the North American continent, which corresponds with the
increased L2 errors around the same areas.
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Dropout

DPS-UQ

HyperDM

AU EU TU L2

Figure 9: Uncertainty decomposition on CT data. Total uncertainty is high near strong features
such as the spine and lining of the thoracic cavity, which corresponds to the noisy spots in L2 error
map around those areas.
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Figure 10: Varying epistemic uncertainty. Aleatoric and epistemic uncertainty estimates predicted
by (a) DPS-UQ and (b) HyperDM when trained on dataset sizes |D| = [100, 200, 400, 800].
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Figure 11: Varying aleatoric uncertainty. Aleatoric and epistemic uncertainty estimates predicted
by (a) DPS-UQ and (b) HyperDM when trained on noisy datasets σ2

η = [0.01, 0.04, 0.16, 0.64].
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