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Abstract
In the context of pressing climate change challenges and the significant biodiversity

loss among arthropods, automated taxonomic classification from organismal images is a
subject of intense research. However, traditional AI pipelines based on deep neural visual
architectures such as CNNs or ViTs face limitations such as degraded performance on
the long-tail of classes and the inability to reason about their predictions. We integrate
image captioning and retrieval-augmented generation (RAG) with large language models
(LLMs) to enhance biodiversity monitoring, showing particular promise for characteriz-
ing rare and unknown arthropod species. While a naïve Vision-Language Model (VLM)
excels in classifying images of common species, the RAG model enables classification of
rarer taxa by matching explicit textual descriptions of taxonomic features to contextual
biodiversity text data from external sources. The RAG model shows promise in reducing
overconfidence and enhancing accuracy relative to naïve LLMs, suggesting its viability in
capturing the nuances of taxonomic hierarchy, particularly at the challenging family and
genus levels. Our findings highlight the potential for modern vision-language AI pipelines
to support biodiversity conservation initiatives, emphasizing the role of comprehensive
data curation and collaboration with citizen science platforms to improve species identi-
fication, unknown species characterization and ultimately inform conservation strategies.
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1. Introduction

The ongoing global climate change polycrisis contributes significantly to the loss of biodi-
versity worldwide, particularly in Arthropoda [1]. Arthropods are found in every habitat on
Earth, playing a myriad of ecological roles [2]. They contribute significantly to the health
of a given ecosystem [3] and they are the most diverse phylum, making up approximately
84% of known animal species [4]. Despite their diversity, many more species are unknown
than known to science [5] [6], making the monitoring of species diversity, distributions,
and phenology challenging. Arthropods’ overrepresentation among invasive species further
threatens biodiversity conservation. The precise taxonomic classification of known and un-
known species of arthropods is fundamental for biodiversity conservation and to limiting
the negative impacts of climate change for all life on Earth.

Taxonomic classification using DNA-based methods is the primary driver to recent break-
throughs in biodiversity understanding, initiated by the characterization of DNA barcodes
and the adoption of species-like clusters called Barcode Index Numbers (BINs) that dra-
matically expanded our biodiversity catalogue [7, 8]. Recent improvements in deep learning
have provided new opportunities for automated DNA-based classification at scale such as
the Nucleotide Transformer [9] and HyenaDNA [10]. Unimodal automated taxonomic sys-
tems optimized for and trained on DNA barcodes have emerged, including BarcodeBERT
[11], MycoAI [12] and BarcodeMAMBA [13]. Jain et al. [14] and Bjerge et al. [15] trained
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Module I

Caption:
The image features a large arachnid, prominently positioned at the center of its web. The spider's 
body is strikingly patterned, with a robust, oval-shaped abdomen that displays a vivid yellow 
coloration interspersed with bold black markings. These markings form a symmetrical pattern, with 
a series of black spots and lines running longitudinally along the abdomen. The cephalothorax is 
smaller and less vividly colored, appearing more muted in comparison to the abdomen.

The spider has eight long, slender legs that are banded with alternating segments of black and 
yellow, providing a stark contrast against the web. The legs are covered with fine hairs, which may 
aid in sensing vibrations on the web. The spider's legs are splayed outwards, anchoring it securely to 
the web's radial threads.

The web itself is a classic orb-web, intricately woven with concentric circles and radiating spokes. A 
distinctive feature of the web is the presence of a zigzag pattern, known as a stabilimentum, located 
directly below the spider. This structure is made of thicker, white silk and is thought to provide 
additional stability to the web or to serve as a visual signal to larger animals to avoid the web.

The background is a dark, blurred green, suggesting a natural setting, possibly a garden or forested 
area, which provides a contrasting backdrop that highlights the spider and its web. The lighting is 
soft, allowing the colors and patterns of the spider to stand out vividly against the darker 
background.

Module II

Taxonomic Classification:
K: Animalia, P: Arthropoda, C: Arachnida, O: Araneae, F: Araneidae, G: Argiope

Ancestral Features:
The spider described in the caption shares the trait of building a classic orb-web with 
a stabilimentum, which is common among orb-weaving spiders in the family 
Araneidae, as discussed in the context. This includes a zigzag pattern of silk for 
additional stability or as a visual signal, a trait seen in genera like Argiope
Organism Features:
The specific trait of this spider is the vivid yellow coloration with bold black markings 
on its abdomen, forming a symmetrical pattern. Additionally, the banded legs with 
alternating segments of black and yellow are noteworthy. These traits, while 
indicative of Argiope, are specific enough to suggest potential species-level 
identification but require further investigation.
Other Biodiversity Knowledge:
Orb-weaving spiders like those in the genus Argiope play a crucial role in ecosystems 
as predators of insects, helping to control pest populations. Their webs are 
engineering marvels, constructed with precision to maximize prey capture while 
minimizing silk use. The presence of stabilimenta in their webs is a fascinating aspect 
of arachnid behavior and ecology, possibly serving multiple functions from prey 
attraction to predator deterrence. The vivid coloration of some Argiope species may 
serve as a warning to potential predators, a phenomenon known as aposematism. 
Understanding the biodiversity and ecological roles of these spiders can inform 
conservation efforts and highlight the intricate balance of natural ecosystems.
Commentary:
The classification to the family  Araneidae is supported by the presence of an orb-web 
with a stabilimentum, a characteristic feature of this family. The specific traits of vivid 
coloration and banded legs suggest a genus level classification to Argiope, known for 
such features. However, without specific details on the reproductive structures or 
more detailed ecological behavior, it is not possible to confidently assign a species 
name. Additional information such as reproductive anatomy or geographic location 
could help refine the classification further.

Figure 1. Example output from Module I (light blue) and Module II (light green) for
an image of a yellow garden spider (Photo attribution: David Illig). In taxonomic
classification: K=Kingdom, P=Phylum, C=Class, O=Order, F=Family, G=Genus. The
RAG model generated accurate taxonomic labels to the genus level and refrained from
providing a species level classification.

unimodal automated taxonomic systems using images from camera traps. In multimodal
approaches, CLIBD [16] extends BioCLIP’s [17] contrastive learning of text and image
embeddings to include DNA, addressing the difficulty of obtaining comprehensive expert
taxonomic labels at fine scale. These two models and others [18] also mention the charac-
terization of unknown species as a motivation for their architecture and learning strategies.
These models have facilitated biodiversity monitoring at scale and reduce the manual labour
of domain experts. Yet, to ecologists, they are effectively black boxes.

Prior to DNA’s widespread adoption, taxonomists relied on detailed textual descriptions
and references to classify specimens and identify new species. In contrast, today’s automated
taxonomic systems typically process raw DNA sequences or images in isolation, without
incorporating this rich contextual knowledge. Citizen science resources like iNaturalist [19],
Wikipedia and Wikispecies are well maintained and continually updated, allowing them to
play a key role in data collection and curation for biodiversity research. While DNA-based
methods like Barcode Index Numbers (BINs) have expanded our biodiversity catalogue,
newly discovered species often lack the dense trait descriptions that traditionally accompany
taxonomic classification. The combination of untapped text-based biodiversity resources and
the success of Large Language Models (LLMs) at text-based reasoning enables automated
taxonomic classification using LLMs that leverage visual features.

Retrieval Augmented Generation (RAG), which can provide additional context to LLMs
at inference has been shown to help in overcoming knowledge limitations in training data,
obfuscation of reasoning processes and hallucinations seen in LLM responses [20–22]. In the
biological domain, RAG has been deployed in exploration of protein-protein interactions
[23] but there are no known applications of RAG in taxonomic classification. Additionally,
multimodal LLMs show promise in augmenting human biological research [24] and have
been used to generate text captions of scientific figures [25]. Images of living arthropods
can provide additional context clues that assist in taxonomic classification like habitat,
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interactions and behaviour. These supplementary context clues are present in taxonomy
literature for retrieval and mostly missing from specimen images common to large arthropod
image datasets like TOL-10M [17] and BIOSCAN-5M [26]. The following exploration pairs
multimodal LLMs as an image captioning tool with RAG systems to reason over curated
biodiversity databases with the aim to generate taxonomic classifications and accelerated
biodiversity knowledge for images of arthropods (Figure 1).

Automated taxonomic classification of organismal images using captioning paired with
RAG against a vector database built from rich text-based knowledge bases enables minimally
invasive and scalable zero-shot classification at fine-grained taxonomic levels. Our approach
brings a generalization benefit to moving beyond traditional fixed-class datasets, especially
when many classes remain unknown, as is common in biodiversity research [27]. Combin-
ing computer vision, natural language processing, and biodiversity informatics can address
taxonomic classification challenges, strengthen citizen science platforms, and support global
biodiversity efforts like BIOSCAN [28] and Biodiversity Genomics Europe [29].

2. Methods

Figure 2 summarizes our pipeline, detailing data source preprocessing, Module I - Image
Captioning, and Module II - RAG System, used for generating taxonomic classifications and
supplemental knowledge from organismal images. We now discuss each step in detail.

In-context 
Image

Dense
Biocaption

Wikipedia + Wikispecies
Phylum -> Species
>280K Documents

Uninformative
>330K “Chunks”

VLM 

Embedding 
Model

LLM

Vectorstore

Semantic 
Matches

Taxonomic Classification
Supplementary Knowledge

Informative
> 550K “Chunks”
≤ 1024 Tokens
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Preprocessing (ChromaDB)

Figure 2. Preprocessing of Wikipedia and Wikispecies text data includes chunking, fil-
tering and contextualization before generating a vector database of embeddings. In-
context images of Arthropoda are inputs to the RAG model. They are initially fed
through a VLM (Module I) to generate dense image biocaptions which are the subject
of RAG queries to the vector database in Module II. In Module II, the Simple RAG and
Advanced RAG models differ by search criterion and additional LLM passes for rerank-
ing and multi-query; see subsection 2.3 for more detail. Both RAG models generate
taxonomic classifications, accelerated biodiversity knowledge and commentary on LLM
confidence for each image.
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2.1. Data Collection and Preprocessing

Work with VLMs and LLMs is carried out using LangChain [30], instructor [31], and cus-
tom prompts (Appendix B, Appendix C, Appendix D) that also contain thinking dots [32].

2.1.1. Image Datasets

Living Arthropods: We curated a development dataset of 240 arthropod images pho-
tographed primarily in their natural habitats from Wikimedia and Ontario Nature Maga-
zine. We used this dataset to validate our approach and optimize hyperparameters while
managing computational costs. Every image has comprehensive taxonomic labels spanning
5 classes, 18 orders, 65 families, 120 genera, and 153 species within the Phylum Arthropoda
with significant Class Insecta representation reflecting typical phylum distributions.
Rare Species subset: We selected all 951 Arthropoda images from the Rare Species
dataset [17], including both in-situ habitat photographs and laboratory specimen images.
These species are classified by the IUCN Red List [33] as Near Threatened, Vulnerable,
Endangered, Critically, Endangered, or Extinct in the Wild. Each image has complete
taxonomic labels across 4 classes, 9 orders, 17 families, 26 genera, and 32 species within the
Phylum Arthropoda, again with Class Insecta being most represented. We provide detailed
taxonomic counts for both datasets in Appendix A.

2.1.2. Text-based Knowledge Sources

We tokenized all text from Wikipedia and Wikispecies articles within the Kingdom An-
imalia, (280,120 documents) using Byte-Pair Encoding and recursively split it into chunks
using whitespace as delimiters, generating 879,611 total starting chunks. We then performed
semantic filtering of uninformative chunks, reducing the total to 550,711 chunks. For each
remaining chunk, we used custom LLM prompts (Appendix B) to generate contextualizing
text [34], processing each chunk along with its full corresponding source document where
all chunks post-processing were <= 1024 tokens.

2.1.3. RAG Vectorstore

We generated embeddings with ChromaDB [35] using the stella_en_1.5B_v5 model [36].
We normalized all embedding vectors to length unity and tagged each chunk with metadata
containing taxonomic rank, data source (Wikipedia or Wikispecies) and taxonomic name.

2.2. Module I - Image Captioning

Traditional captioners are trained to generate short descriptions for generic scenes and
lack the detail required to produce detailed biologically-informed captions (biocaptions).
Image-caption datasets are also generic and there are no known datasets geared towards
this producing biocaptions. To pair well with the RAG task, biocaptions should exclusively
describe visible features without inappropriate inference that could cloud taxonomic classifi-
cation. Instead, each image in the dataset is passed to OpenAI’s multimodal GPT-4o model
[37] with custom prompting for a dense descriptive caption that could be informative for
the taxonomic classification task (Appendix C), including all visible features of the primary
organism and its surroundings. Negative prompting helps prevent unnecessary inference
about taxonomic classification, unseen behaviour or non-visible body parts.
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2.3. Module II - RAG System

Query construction: We used the dense descriptive captions from Module I to query
the vector database. Our querying process begins by generating a normalized semantic
embedding query vector using the same stella_en_1.5B_v5 embedding model.
Retrieval: We built two retrieval pipelines to test the impact of advanced retrieval methods
on model performance. In the ‘Simple RAG’ model, we use dense search, maximizing cosine
similarity to retrieve chunks that semantically match the query. We use default search
parameters except for top k (30 chunks per query). In the ‘Advanced RAG’ model, we
use multiquery retrieval with an instance of GPT-4o-mini to generate multiple artificial
semantically similar queries. We use dense search selecting by Maximal Marginal Relevance
(MMR) to obtain diverse chunks matching these queries. The set of unique chunks retrieved
is passed to Cohere’s reranking model rerank-english-v3.0 [38] and the top 10 chunks
are provided as context for response generation.
Response generation: We passed the dense descriptive caption of the image, along with
the text and metadata from the retrieved chunks, to another instance of GPT-4o with a
custom prompt (Appendix D). This prompt instructed the model to generate taxonomic
classifications at each rank, but only when confident in its classifications. We instructed
the model to refrain from making classifications at or below any rank where the evidence
in the caption and context was insufficient. In the same pass, we also prompted the model
to generate biodiversity knowledge for the organism based on the caption, context and
classification, along with commentary on its confidence and choices.

2.3.1. Naïve VLMs and Naïve LLM

To evaluate the contribution of each component in our pipeline, we implemented two
baseline variants. Another instance of the same GPT-4o model used in Module I (known
here as ‘Naïve VLM’) generates responses from images alone without Module I’s captioning
or Module II’s retrieval of additional context from the database. Another instance of the
same GPT-4o model used in Module II (known here as ‘Naïve LLM’) generates responses
directly from dense captions alone without retrieval of additional context from the database.
In evaluations on the Rare Species subset, we test the ‘Naïve VLM’ and an instance of Google
DeepMind’s Gemini 2.0 Flash [39] (known here as ‘Naïve Gemini Flash 2.0’). As a result,
‘Naïve VLM’ is replaced with ‘Naïve GPT-4o’ to disambiguate.

2.4. Evaluation

2.4.1. Classification

To evaluate our hypothesis that RAG-based classification would perform better on rare
taxa by leveraging external knowledge, we organized the Living Arthropod samples into
rare taxa and common taxa based on the cumulative distribution of number of species
observations (nobs) in the iNaturalist database [40]. Rare taxa (n = 109) with nobs above
the 95th percentile of the cumulative distribution (nobs < 6699) and common taxa (n =
24) with nobs below the median of the cumulative distribution, (nobs > 60,562). We then
evaluated classification macro accuracy of predicted labels at each taxonomic level for each
of the Naïve VLM, Naïve LLM and Simple RAG Model. Since models were instructed
to refrain from classification when uncertain, we also tracked the number of classification
attempts made by each model — this helps distinguish models that achieve high accuracy
by being selective from those that maintain accuracy while attempting more classifications.
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2.4.2. RAG

Retrieval augmented generation of accelerated biodiversity knowledge was evaluated using
two custom measures: answer relevancy and faithfulness, provided by RAGAS [41] that use
instances of GPT-4o-mini. We compared the Simple RAG model with the Advanced RAG
model (both described in subsection 2.3).

To assess answer relevancy, an LLM generates artificial questions based on the model’s
final output, then takes the mean of cosine similarities between embeddings of each artificial
question and the model input query. To assess faithfulness, an LLM determines the total
number of factual claims in the response and the number of context-supported claims. The
ratio of context-supported claims to total claims is the faithfulness score. Both of these
measures generate a score between 0 and 1 from each response.

3. Results

Example output from Module I and the Module II (Simple RAG) is shown in Figure 1.

3.1. Validation: Image Captioning

Module I was able to sufficiently describe visible features of arthropods including informed
morphology, behaviour and contextualization. However, despite negative prompting, not
all speculation or inferences about function not immediately evident in the image were
eliminated during captioning. For example, in an example caption (Figure 1) the description
“...and is thought to provide additional stability to the web or to serve as a visual signal to
larger animals to avoid the web” is inappropriate speculation about the function that should
be left to Module II during context comparison.

faithfulness answer relevancy
Measure
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Figure 3. Faithfulness and answer relevancy score distributions for accelerated biodi-
versity knowledge for Simple and Advanced RAG models. Medians (red lines), Inter
quartile ranges (colour-filled boxes), maxima, minima as well as outliers more than 1.5
IQR outside the 1st and 3rd quartiles are shown. The Advanced RAG model uses MMR
search criterion, multi-query and reranking while the Simple RAG model uses cosine
similarity search criterion, no multiquery and no reranking.
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3.2. Validation: Retrieval Augmented Generation

Figure 3 shows distributions of the two key RAG metrics: answer relevancy and faith-
fulness, for the Simple RAG and Advanced RAG models. Both methods maintain high
median faithfulness and answer relevancy. Multiple ablations of advanced RAG methods
like reranking, alternative search criterion, and multi-query as well as variation in hyperpa-
rameters showed minimal impact on RAG performance (Figure 3) indicating a simpler RAG
system was sufficient to maximize context retrieval of data available in the vector database.

High median faithfulness and median answer relevancy (Figure 3) with minimal outliers
indicates the generated biodiversity knowledge aligns with the assigned task and factually
aligns with the retrieved context. This supports effective retrieval of context as well as
effective text generation based on context.

Table 1. Model classification attempts and classification macro accuracy (Acc.) for the
Simple RAG model, Naïve LLM and Naïve VLM. Best performing models at each rank
are in bold unless all models performed equally. Second best model is underlined.

(a) All 240 arthropod images.

Phylum Class Order
Model Attempts (%) Acc. Attempts (%) Acc. Attempts (%) Acc.

Simple RAG 240 (100%) 1.00 240 (100%) 0.971 217 (90.4%) 0.977
Naïve LLM 240 (100%) 1.00 240 (100%) 0.971 225 (93.8%) 0.942
Naïve VLM 240 (100%) 1.00 240 (100%) 0.971 240 (100%) 0.983

Family Genus Species
Model Attempts (%) Acc. Attempts (%) Acc. Attempts (%) Acc.

Simple RAG 35 (14.6%) 0.657 3 (1.3%) 1.00 0 (0%) –
Naïve LLM 61 (25.4%) 0.541 11 (4.6%) 0.364 0 (0%) –
Naïve VLM 240 (100%) 0.746 240 (100%) 0.442 230 (95.8%) 0.248

(b) Common taxa (n = 24, nobs > 60562).

Phylum Class Order
Model Attempts (%) Acc. Attempts (%) Acc. Attempts (%) Acc.

Simple RAG 24 (100%) 1.00 24 (100%) 1.00 24 (100%) 1.00
Naïve LLM 24 (100%) 1.00 24 (100%) 1.00 24 (100%) 1.00
Naïve VLM 24 (100%) 1.00 24 (100%) 1.00 24 (100%) 1.00

Family Genus Species
Model Attempts (%) Acc. Attempts (%) Acc. Attempts (%) Acc.

Simple RAG 5 (20.8%) 0.600 1 (4.2%) 1.00 0 (0%) –
Naïve LLM 12 (50.0%) 0.750 3 (12.5%) 0.667 0 (0%) –
Naïve VLM 24 (100%) 0.958 24 (100%) 0.729 24 (100%) 0.792

(c) Rare taxa (n = 109, nobs > 6699).

Phylum Class Order
Model Attempts (%) Acc. Attempts (%) Acc. Attempts (%) Acc.

Simple RAG 109 (100%) 1.00 109 (100%) 0.982 99 (90.8%) 0.970
Naïve LLM 109 (100%) 1.00 109 (100%) 0.982 100 (91.7%) 0.930
Naïve VLM 109 (100%) 1.00 109 (100%) 0.982 109 (100%) 0.982

Family Genus Species
Model Attempts (%) Acc. Attempts (%) Acc. Attempts (%) Acc.

Simple RAG 18 (16.5%) 0.556 2 (1.8%) 1.00 0 (0%) –
Naïve LLM 24 (22.0%) 0.458 3 (2.8%) 0 0 (0%) –
Naïve VLM 109 (100%) 0.651 109 (100%) 0.275 109 (100%) 0.028

3.3. Validation: Taxonomic Classification

Table 1(a) shows classification accuracy as well as number of taxonomic classification
attempts made by the Naïve VLM, Naïve LLM, and RAG models at each taxonomic rank
in the Living Arthropod dataset. The RAG model and Naïve VLM perform similarly at the
phylum, class, and order levels, both achieving higher accuracy and lower overconfidence
than the Naïve LLM. At the family level, Naïve VLM outperforms the RAG model with
both exceeding the Naïve LLM in accuracy. The RAG model obtains perfect performance
on its three genus-level attempts but is likely too conservative. At the species level, only
the Naïve VLM makes classification attempts and shows a drop in accuracy despite little
change to its confidence. For rare taxa (Table 1(c)), however, the RAG model maintained
its performance better than both Naïve LLM and Naïve VLM, which showed significant
accuracy drops compared to their performance on common species (Table 1(b)).
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Table 2. Model classification attempts, classification macro accuracy (Acc.) and F1
scores for the Simple RAG model, Advanced RAG model, Naïve GPT-4o and Naïve
Gemini 2.0 Flash on 951 Rare Species arthropod images. Best performing models at each
rank are in bold unless all models performed equally. Second best model is underlined.
We count accuracy and F1 scores within ± 0.001 as ties.

Phylum Class Order
Model Attempts (%) Acc. F1 Attempts (%) Acc. F1 Attempts (%) Acc. F1

Simple RAG 936 (98.4%) 0.994 0.997 928 (97.6%) 0.976 0.979 860 (90.4%) 0.900 0.919
Advanced RAG 932 (98.0%) 0.995 0.997 926 (97.4%) 0.976 0.978 835 (87.8%) 0.923 0.935
Naïve GPT-4o 922 (96.9%) 0.985 0.992 922 (96.9%) 0.976 0.983 921 (96.9%) 0.921 0.933
Naïve Gemini 2.0 Flash 949 (99.8%) 0.985 0.993 949 (99.8%) 0.976 0.984 948 (99.7%) 0.929 0.942

Family Genus Species
Model Attempts (%) Acc. F1 Attempts (%) Acc. F1 Attempts (%) Acc. F1

Simple RAG 419 (44.1%) 0.928 0.934 89 (9.4%) 0.843 0.904 43 (4.5%) 0.512 0.547
Advanced RAG 420 (44.1%) 0.924 0.927 82 (8.6%) 0.854 0.919 47 (4.9%) 0.468 0.544
Naïve GPT-4o 849 (89.3%) 0.873 0.909 459 (48.3%) 0.534 0.598 159 (16.7%) 0.157 0.223
Naïve Gemini 2.0 Flash 944 (99.3%) 0.798 0.836 763 (80.2%) 0.329 0.406 369 (38.8%) 0.195 0.265

3.4. Evaluation on IUCN Rare Species Dataset

Having validated our approach on the smaller development dataset, we conducted our
primary evaluation on the more challenging IUCN Rare Species Dataset (Arthropod subset).
Table 2 shows classification attempts, accuracy and F1 scores for the Simple RAG, Advanced
RAG, Naïve GPT-4o and Naïve Gemini 2.0 Flash models on all 951 rare species images.
Both RAG models consistently outperform both Naïve VLMs at the family, genus and
species level. Both RAG pipelines show higher F1 scores compared to accuracy at the
family, genus and species level, indicating elevated performance on minority classes. The
Advanced RAG model’s more sophisticated retrieval techniques (multiquery, MMR, and
reranking) did not yield significant improvements over the Simple RAG model, suggesting
that simpler retrieval methods are sufficient for the available knowledge base. Processing
951 rare-species images, the Simple and Advanced RAG models accrued API costs totalling
$30.45 and $19.98 (amounts in USD), respectively. These modest costs—together with the
fact that key steps such as image captioning and retrieval are trivially parallelizable—make
the system practical to scale for low-latency, large-volume biodiversity monitoring.

4. Discussion

In Table 1(a) we see that the classification performance of the RAG model relative to the
Naïve LLM shows reasoning over the additional retrieved context provides a small boost
to LLM confidence and a modest gain in classification accuracy, particularly at the family
and genus level where it is most needed. However, the improved classification performance
of the Naïve VLM indicates many taxa present in the Living Arthropod image dataset
were likely seen during pre-training. Table 1(b) and Table 1(c) support this idea with high
performance in more common taxa classification and poorer performance classifying more
rare taxa. The RAG models did not see the same sharp decrease in accuracy and confidence
as the Naïve LLM and Naïve VLMs in the rare taxa subset nor in the Rare Species subset
Table 2, signalling the RAG model could be a viable method for rare and unknown species
identification, particularly as more curated text-based knowledge sources become available.

Our RAG-based approach to taxonomic classification represents a promising new para-
digm that leverages explicit textual descriptions rather than relying solely on visual patterns.
While our current implementation using Wikimedia and Wikispecies data showed modest
improvements over the Naïve LLM, the approach has significant untapped potential.
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As citizen science initiatives develop and species trait characterization become more com-
prehensive, there is potential for our RAG pipeline to harness those improvements to better
assist in identification and characterization of unknown species. Additionally, LLMs have
recently been recruited to mine and curate data sources for biodiversity research [42] which
would automate data curation and could soon boost the relevancy of RAG systems in
Arthropoda taxonomy.

Complex retrieval methods like multi-query and reranking provided only modest im-
provements to classification and our efforts to improve the embedding space using semantic
filtering of uninformative source chunks and contextualizing text did not yield marked im-
provements. This suggests that the current limiting factor is the breadth and depth of
curated taxonomic text data, particularly at the genus and species levels. Alternative em-
bedding structures such as GraphRAG [43] could improve retrieval, as demonstrated in
other biological domains [23]. Additionally, many models have demonstrated the classifica-
tion benefits of multimodal over unimodal embedding spaces [16, 17, 44], suggesting that
RAG systems could similarly benefit from multimodal embeddings of images paired with
text.

Our approach first converts visual features into text through image captioning, creating
an abstraction layer for taxonomic classification. While our prompting strategy reduced
inappropriate inferences during captioning (Appendix C), developing an organismal image-
caption dataset with domain experts could enable fine-tuning of VLMs specifically for biolog-
ical image captioning. Fine-tuning would help ensure captions contain only visually-evident
features and could provide a tool to generate image-biocaption datasets. A fine-tuned cap-
tioner would, on its own, be valuable for automated trait descriptions of potentially novel
taxa (i.e. BINs), aiding in both indexing of operational taxonomic units and functional in-
ference. These detailed descriptions would in turn contribute to expanding the contextual
knowledge bases available for taxonomic classification.

Recent work has shown VLMs can exhibit shape and texture biases [45], potentially
limiting their inference to species seen during pre-training. By reasoning over explicit visible
traits in captions combined with retrieved contextual knowledge, our RAG approach can
better identify novel species compared to direct image classification. This advantage is
particularly evident through evaluation on the Rare Species subset of uncommon species
and could be extended by evaluation on the full Rare Species dataset [17]. Additionally,
incorporating human feedback during fine-tuning, which has proven successful for calibrating
LLM confidence scores [46], could further improve the quality of our generated biodiversity
knowledge.

5. Conclusion

We have demonstrated that pairing RAG models with VLMs offers a promising ap-
proach to taxonomic classification of unknown Arthropoda species, particularly as biodiver-
sity knowledge bases continue to improve. While Naïve VLMs excelled in identifying familiar
species, our RAG approach can leverage contextual information to classify rare and unknown
taxa. The growing integration of citizen science data will further enhance species identifica-
tion and inform conservation strategies. We envision future work expanding these models to
more diverse datasets, especially those including underrepresented species. Our work estab-
lishes a novel bridge between modern AI tools and traditional text-based knowledge bases
in biodiversity conservation, combining advanced RAG techniques, complex LLM-tooling,
and LLM-based evaluation. By adapting and incorporating emerging AI techniques, we can
significantly advance our understanding and conservation of biodiversity.
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Code can be found at https://github.com/uoguelph-mlrg/taxonomic-rag-system.

Appendix A. Dataset Summary Tables

Table 3. Summary of taxonomic counts by rank in Living Arthropod dataset

Class Order Count Family Count Genus Count Species Count
Arachnida 3 16 27 32
Chilopoda 2 2 2 2
Diplopoda 3 3 3 4
Insecta 8 37 81 108
Malacostraca 2 7 7 7

Table 4. Summary of taxonomic counts by rank in Rare Species subset

Class Order Count Family Count Genus Count Species Count
Arachnida 1 2 2 3
Branchiopoda 1 1 1 1
Insecta 6 13 22 28
Malacostraca 1 1 1 1

Appendix B. Contextualizing Chunks Prompt

You are an expert AI assistant to a taxonomist. You can determine if a user-provided
chunk of textual context is useful for a taxonomist and if it is, contextualize it for retrieval
in the context of a larger document.

You are analyzing text from documents about organisms. For each chunk: 1. First
determine if the chunk (alone) contains actual descriptive content about organisms. A chunk
with just a citation, header, references, or other non-descriptive text should be marked as
not useful. 2. If the chunk contains descriptive content about organisms, please give a
short succinct context to situate this chunk within the overall document for the purposes
of improving search retrieval of the chunk. Also include taxonomic classification from the
document. 3. If the chunk does NOT contain descriptive content, briefly state what type of
content it contains instead (e.g. "citation", "references header", etc).

You do not need to give an overview starting statement such as "This document provides
a detailed description of the phylum Chordata" but rather, get right into what is being said
about Chordata in the chunk.

Format your response as a parsable JSON with: - useful: boolean indicating if descrip-
tive organism content is present - contextual_text: string containing either the descriptive
contextualization or content type explanation

<document> {doc_content} </document>
Here is the chunk we want to situate within the whole document
<chunk> {chunk_content} </chunk>
Note: 256 thinking dot tokens are appended to the prompt above.

Appendix C. Module I Prompt

You are an expert AI vision assistant to a taxonomist that describes animals in images.
Your task is to describe in extensive detail all the physical features (body and head shape,

appendages, colour pattern, shape, texture, etc) of any organism(s) observable in the image.

https://github.com/uoguelph-mlrg/taxonomic-rag-system
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Ensure each feature is elaborated upon wherever possible. Elaborate on the visual traits
and morphology of subsections of the organism such as any appendages (such as limbs,
wings etc) that are visible in the image — aim to describe them thoroughly.

Additionally, include a comprehensive description of the current state and/or life stage
of the organism, with nuances in coloration, wear, or any distinctive features.

Please describe the environmental context surrounding the animal in detail. For example,
if a butterfly is resting on flowers, you should also delve into the unique characteristics of
the flowers, such as their shape, color, and arrangement.

Avoid using species common names (such as ’Monarch’ for a butterfly).
Aim for a detailed analysis of at least 7 sentences with no upper limit if the detail demands

it.
Do not include emotional descriptors (such as ’peaceful setting’) or any other non-visible

descriptors. Everything you mention should be evident in the image to an observer. Your
response must rely solely on visual cues from the image, avoiding any inferences that are
not evident.

Write a extremely detailed caption for the organism in the image and without commenting
on the contrast or ’feeling’ of the image.

An example of the type of caption you should produce is: Insecta with 4 visible jointed
legs, partially translucent wings and compound eyes. There is a three-part body with a
head, thorax and abdomen. An anterior lateral view of an adult fly with an abdomen
that is mostly black and has a black tail-like taper. The wings have streaks of white as
does the thorax and are black elsewhere. The prescutum and scutum are brown and in
addition to the head, have small shiny hairs. The wings attach at the middle of the thorax,
as do the legs. The legs have an initial black segment but are mostly coppery-brown and
terminate into a triangular base. The wings are not as long as the length of the body and
lay relatively flat at an angle away from the body with 2 segmented translucent halteres.
The head is copper, orange and brown with white bordering. The head is visibly segmented
from the thorax but the thorax and abdomen appear continuous and not visibly segmented.
One brownish-orange eye with a white border is fully visible and the other eye is partially
visible. There are two coppery kidney-shaped mouth parts protruding from the lower front
of the head. A single shiny antennae is visible. The fly is standing on a green leaf that has
pointed edges.

Note: 256 thinking dot tokens are appended to the prompt above.

Appendix D. Module II Prompt

You are an expert AI taxonomist. Your task is to use the organisms discussed in the
caption of a new organism to generate a taxonomic classification for the new organism.

You will also be provided with some context that could or could not match the caption,
if there is information in the context that matches the caption, you can use that info to
inform your decision about the taxonomic classification, otherwise, if information does not
match the details provided in the caption, disregard it.

You will be provided with context and a caption, provide in your response: 1. A Tax-
onomic classification 2. A description pairing physical traits common to both the new
organism described in the caption and other organisms described in the context that in-
dicate and support the choice made in the taxonomic classification. 3. A description of
physical traits particular to this new organism described in the caption. These traits may
set it apart from other organisms, may suggest it has unique features, and/or contain traits
that may be candidates to investigate for a more specific taxonomic classification. 4. Com-
mentary on your choice, including discussion of confidence, what new information about the
new organism would help support the taxonomic classification and what new information
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would dispute the taxonomic classification. 5. A few paragraphs describing the features
present (from the caption) and how they could relate to the biodiversity knowledge that is
relevant to the taxa chosen.

Do not include a taxonomic classification for a certain rank unless you are confident from
the caption (and/or context) about the classification.

<context> {context} </context>
<caption> {caption} </caption>
Note: 256 thinking dot tokens are appended to the prompt above.
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