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Abstract. Writing declarative models has numerous benets, rang-
ing from automated reasoning and correction of design-level properties
before systems are built, to automated testing and debugging of their
implementations after they are built. Alloy is a declarative modeling
language that is well-suited for verifying system designs. A key strength
of Alloy is its scenario-nding toolset, the Analyzer, which allows users
to explore all valid scenarios that adhere to the model’s constraints up
to a user-provided scope. However, even with visualized scenarios, it is
dicult to write correct Alloy models. This paper presents an empirical
study of over 93,000 models written mainly by users trying to learn Alloy
to form a comprehensive series of observations to guide the growing body
of debugging and educational eorts for Alloy model development.

1 Introduction

In today’s society, we are becoming increasingly dependent on software systems.
However, we also constantly witness the negative impacts of buggy software.
One way to help develop better software systems is to leverage software models.
Alloy [17] is a relational modeling language. A key strength of Alloy is the ability
to develop models in the Analyzer [2], an automatic analysis engine based on
o-the-shelf SAT solvers, which the Analyzer uses to generate scenarios that
highlight how the modeled properties either hold or are refuted, as desired.
The user is able to iterate over these scenarios one by one, inspecting them for
correctness. Alloy has been used to verify software system designs [6,11,34,36],
and to perform various forms of analyses over the corresponding implementation,
including deep static checking [14,18], systematic testing [24], data structure
repair [35], automated debugging [15] and to generate security attacks [1,25,29].

However, to gain the many benets that come from utilizing software models,
the model itself needs to be correct. For Alloy models, there are two types of
errors that can appear: (1) underconstrained errors in which the model allows
scenarios it should prevent, and (2) overconstrained errors in which the model
prevents scenarios it should allow. To detect an underconstrained error, during
scenario enumeration, the user needs to observe a scenario that they did not
expect to see. Unfortunately, even if the user notices something is wrong with a
scenario, according to a recent user study, both novice and expert Alloy modelers
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struggle to rene a faulty formula given an incorrectly produced scenario [23].
To detect an overconstrained error, after enumeration, the user needs to realize
that an expected scenario was never present. Since Alloy commands can produce
hundreds of scenarios, this places a high burden on the user.

Given these diculties, there is a growing body of work looking at how to
debug faulty Alloy models. AUnit is a unit testing framework [27,28], which
enables users to check if a specic scenario is allowed or prevented. AUnit has
been used for mutation testing [20,31], fault localization [32], and automated
repair [16,30]. Since then, fault localization and repair of Alloy models has
become an active research area [9,10,38,39]. As this eld grows, we believe it is
important to understand what mistakes developers actually make when writing
models so that these techniques can be eective for the majority of mistakes
made.

In addition, Alloy has a reputation for being a user friendly formal method,
mainly due to its IDE the Analyzer. As a result, over the years, there have been
several eorts to build introductory formal methods courses centered around
Alloy and the Analyzer [5,8,21,22,26]. Unfortunately, these studies have revealed
that even with the Analyzer, new users still feel overwhelmed trying to learn the
language. Therefore, to improve debugging and educational eorts for Alloy,
this paper presents an empirical study that explores 93,283 submissions made
by students learning Alloy to Alloy4Fun, an online educational website for Alloy.
In this paper, we make the following contributions:

Empirical Study: We present a systematic study of models written by Alloy
users with revision histories that capture back-to-back incremental changes. We
explore questions spanning correct and incorrect models, including: how hard is
it for users to make a model that compiles, how do user’s correct answers dier
from expert oracles, what common mistakes do users make, and how often are
users actually close to a correct formula.

Practical Impacts: We distill our observations into practical guidelines for
future work in debugging models and building educational material.

Benchmarks for Alloy: We reorganize the dataset into two benchmarks: (1)
a collection of faulty models broken down by type of fault and (2) a collection
of models that tracks incremental changes, which can be used to evaluate and
improve incremental analysis techniques for Alloy [7,19,33,37].

Open Source: We release our benchmarks and analysis at: https://github.com/
AlloyUserStudy/Alloy4FunDataAnalysis.

2 Background

In this section, we describe the key concepts of Alloy and Alloy4Fun.
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Fig. 1. Faulty Submission of an Alloy Model of a File System Trash Can

2.1 Alloy

Figure 1 (a) displays a faulty temporal model of a le system trash can from the
Alloy4Fun dataset [4]. Signature paragraphs introduce named sets and can dene
relations, which outline relationships between elements of sets. Line 1 introduces
a named set File and establishes that each File atom connects to zero or one
(lone) File atoms through the link relation. Lines 2 and 3 introduce the named
sets Trash and Protected as subsets (in) of File. Signatures and relations can
be declared mutable (var), which means that the elements of these sets can vary
across dierent states in the same scenario. In our example, all 3 signatures and
the one relation are mutable.

Predicates introduce named formulas that can be invoked elsewhere. The
predicate prop9 on line 5 uses empty set (‘no’) and set intersection (‘&’) to incor-
rectly attempt to establish that a protected le is never sent to the trash. How-
ever, since the signatures are mutable, the incorrect version is true as long as no
protected les are in the trash for the first state but does not require the con-
straint to be true in every state. To correct this, the linear temporal operator
always can be appended to the start.

2.2 Alloy4Fun Exercises

Alloy4Fun is an educational platform for Alloy where users can write and com-
pile Alloy models through an online interface. Alloy4Fun contains several starter
models in which the signature paragraphs are given. Each starter model contains
a varying number of empty predicates with a corresponding English description
of the property that the user can attempt to encode into formal logic. To check
their answer for a given predicate, Alloy4Fun will compare if their written sub-
mission is equivalent to a hidden oracle. If their submission is not equivalent to
the oracle, the user will be presented with a counterexample: a scenario that
depicts a situation where the user’s formula behaves dierently than the oracle.
The user can then continue to iterate on their formula until it is correct.

To illustrate, in Fig. 1 (a), every line after the SECRET comment is hidden from
the user. The check command (lines 8–9) compares if a submission is equivalent
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to the oracle. Commands indicate which formulas to invoke and what scope to
explore. The scope places an upper bound on the size of all signature sets and the
number of state transitions. The command on line 8 instructs the Analyzer to
search for an assignment to all sets in the model using up to 3 File atoms and up
to 10 state transitions by default. Figure 1 (b) displays the rst counterexample
scenario found by the Analyzer, which informs the user that their model is
incorrect: in state 1, F1 is both in the trash and protected.

3 Experiment SetUp

In this paper, we will use the following terminology. A submission consists of
the base model, the user’s current attempt for a specic exercise, and any helper
predicates invoked. An edit path is the series of submissions a user makes starting
with the starter model and ending with their last submission. Edit paths can
contain submissions across multiple dierent exercises but are all within the
same base model. An attempt is the series of submissions within an edit path
that the user makes for a specic exercise.

3.1 Experimental Data

In our study, we use the publicly released Alloy4Fun dataset, which contains real-
world models obtained from master’s students submissions from the University
of Minho (UM) and the University of Porto (UP) in the academic period from
Fall 2019 to Spring 2023 [4]. In total, there are 97,755 submissions that span 17
dierent Alloy models and 183 predicates to be lled in (exercises). Of these,
we ltered out 2,024 submissions that change the model’s structure or are only
changes to the theme settings for visualization. In addition, we ltered 2,448
submissions that are empty. Empty submissions are underconstrained faults.
However, since empty submissions do not fundamentally illustrate any eort by
the user, we removed them to avoid skewing the conclusions. As a result, we end
up with 93,283 submissions, all of which have tangible user content.

Table 1 gives an overview of the complexity of the models used in our study in
terms of the universe of discourse each model creates. Column #Sig is the total
number of signatures in the model, #Abs is the number of abstract signatures,
#Ext is the number of signatures that extend another signature, #Rel is the
number of relations, Arity is the average arity of all relations in the model (2
indicates a binary relation), #Exe is the number of exercises and #AST is the
average number of abstract syntax tree (AST) nodes in the oracle solutions for
all exercises of that model. Models with an underscore in their name represent
models that have multiple versions in the dataset. Between versions, the number
of exercises, instructional text, and/or the type of logic can change.

For the 183 exercises, we classify them into one of the following categories:
relational logic (RL), predicate logic (PL), rst-order logic (FOL), and linear
temporal logic (LTL). PL and LTL contain their traditional operators as sup-
ported within Alloy’s grammar [3]. RL operators contain all set theory operators,
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comparison operators, and multiplicity operators from Alloy’s grammar. FOL
contains both quantier operators and comprehension operators. Exercises were
classied based on the highest operator present in the oracle solution according
to the partial order of RL → PL → FOL → LTL. In total, 51 are RL exercises, 1
is a PL exercise, 95 are FOL exercises and 36 are LTL exercises.

Table 1. Complexity of Base Models

#Sig#Abs#Ext#RelArity#Exe#AST

classroom_fol 5 0 2 3 2.33 15 10.00

classroom_rl 5 0 2 3 2.33 15 10.13

courses_v1 6 0 2 5 2.2 15 16.87

courses_v2 6 0 2 5 2.2 15 16.87

cv_v1 5 1 2 4 2 4 19.75

cv_v2 5 1 2 4 2 4 21.75

graphs 1 0 0 1 2 8 7.63

lts 3 0 1 1 3 6 19.71

productionLine_v1 5 0 2 3 2 4 14.25

productionLine_v2 10 1 7 4 2 10 14.90

productionLine_v3 10 1 7 4 2 10 14.90

socialMedia 5 0 2 5 2 8 15.75

trainstation_fol 7 0 5 2 2 10 13.40

trainstation_ltl 6 0 4 3 2 17 23.44

trash_rl 3 0 2 1 2 10 4.80

trash_ltl 3 0 2 1 2 20 8.55

trash_fol 3 0 2 1 2 10 4.80

AVG 5.18 0.24 2.71 2.94 2.12 10.65 13.97

3.2 Classication of Submissions

Within our dataset, a submission falls into one of the following categories: cor-
rect, overconstrained (over), underconstrained (under), both over- and undercon-
strained (both), type error (type), and syntax error (syntax). Correct submis-
sions are semantically equivalent to the oracle, overconstrained submissions pre-
vent valid scenarios from being generated, underconstrained submissions allow
invalid scenarios to be generated, both submissions allow a combination of over-
and underconstrained behaviors, type errors are formulas that fail to typecheck,
and syntax errors are formulas that fail to adhere to the grammar rules. To deter-
mine which category a submission falls under, we use Alloy4Fun’s hidden oracle
check command for correctness. If not correct, we use the following command
templates to determine the type of fault:

under: check {prop9 and !prop9o}
over: check {!prop9 and prop9o}

In addition, if the model fails to compile, we use the generated error message to
determine if there was a type or a syntax error.

3.3 Recreating Submission Revision Histories

When a student checks an exercise, Alloy4Fun logs the student submission with
a unique id key and a “derivationOf” parameter that contains the unique id
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of the parent entry that is either the original Alloy4Fun example model or a
previous submission. We use this information to re-build edit paths that capture
the series of edits a user makes. As an example, the following is the edit path for
our example in Fig. 1 where U means underconstrained and C means correct:

inv9 U: no Protected & Trash
inv9 C: always no Protected & Trash

For edit paths, we do include empty submissions. While empty submissions
do not hold much value as individual submissions, in the middle of an edit path,
an empty submission can convey when users reset their attempt on an exercise.

3.4 Methodology

We rst explore general trends across all submissions (RQ1-RQ2) before explor-
ing how users write invalid submissions (RQ3), correct submissions (RQ4), and
incorrect submissions (RQ5-RQ6). Finally, we consider how users incrementally
problem solve (RQ7).

For RQ1 and RQ2, we analyze submissions based on their classication. For
RQ2, we additionally separate submissions into unique versus duplicate buck-
ets. We consider two forms of equivalence: syntactic and semantic. Syntactical
duplicates covey the rate at which users literally write the same exact formula,
while semantic duplicates allow us to explore the rate at which users express
the same underlying concept. To determine if two submissions are syntactically
equivalent, we used a PrettyStringVisitor to reprint formulas in a consistent
format that removes trivial dierences in formatting, such as white spaces. For
semantically equivalent, we used the Analyzer to check for logical equivalence.

For RQ3, we investigate attempts that have invalid (syntax and type errors)
submissions. We also pull out back to back edits in attempts in which the user
repeatedly makes 5 or more invalid submissions in a row, in order to manually
inspect these edits to determine what aspects of the Analyzer’s error reports
may be preventing users from correcting the structure of their formula.

For RQ4, we consider only correct submissions. We rank correct submissions
from most repeated submission to least per exercise. From there, we then man-
ually analyze attributes of the top submitted formulas’ structure and compare
dierent AST properties to explore how user submissions dier from the oracle
formula. Similarly, for RQ5, we focus on “hot hit” submissions in which the same
syntactic faulty submission is made at least 10 times. As with correct submis-
sions, we manually investigated each “hot hit” and label it with core tenants of
the mistake. In addition, for all faulty submissions, we also we use MuAlloy, a
mutation testing tool [20], to generate all rst-order mutants. We then check
if any of the mutated models are equivalent to the oracle submission. If so, we
classify the submission as “one mistake away” and explore dierent attributes of
these xable models in RQ6.

Finally, for RQ7, we analyze the changes in classications that happen within
back to back edits for each edit path.
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4 Empirical Evaluation

4.1 RQ1: What Classication of Submissions Do Users Make?

To get a general overview of the submissions made, Fig. 2 shows pie charts depict-
ing the breakdown in the classication of submissions, ranging from all submis-
sions to a breakdown per type of logic. Submissions were sorted into dierent
types of logic based on the logic in the user’s submission.

As the pie charts indicate, users are the most eective at writing relational
logic properties, which users express correctly 37.05% of the time. In contrast,
users struggle more with FOL and LTL properties, in which less than a fourth
of the submissions are correct: 23.62% and 24.13% respectively. This decrease in
accuracy for FOL and LTL exercises is expected, as the introduction of quantied
formulas and temporal constraints is non-trivial.

Fig. 2. Breakdown of Submission Results

While correct submissions are the largest individual chunk at 25.4%, faulty
submissions (both, over and under) combine to account for 45.3% of all submis-
sions. Faults that are both over- and underconstrained account for the largest
portion of mistakes at 23.28% of all submissions. As RQ6 will highlight, this
implies that faulty models are not likely to have small, simple corrections. In
addition, as the complexity of the formula structure increases (FOL and LTL),
users are also more likely to write properties that are accidentally too permissive.
Notably, most Alloy fault localization and repair techniques struggle to perform
when the issue is that constraints are missing [9,30].

Invalid submissions combine to account for 29.28% of all submissions and are
almost evenly split between syntax errors (14.64%) and type errors (14.65%).
While the rate of syntax errors is relatively consistent across types of logic, LTL
formulas do have notably less type errors.

Finding 1: For LTL formulas, only some of the signatures and relations
are mutable, which narrows down for the user which elements should appear
in temporal constraints. This could be the reason for LTL formula’s reduc-
tion in type errors. FOL formulas could benet from this, as educators can
emphasize that the domain of the quantied formula also limits the types
that should be reasoned over. In addition, if a quantied formulas trivially
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reasons over sets with dierent types than the domain, debugging eorts
should focus on modifying these sets to match the type of the domain.

4.2 RQ2: How Often Do Users Make the Same Submission?

If users often repeat the same submission, then this represents underlying com-
mon approaches that users take to modeling. Therefore, we investigate how often
new users make duplicate submissions. Table 2 show the rate at which submis-
sions are syntactically and semantically unique broken down by classication
(Clx) and additionally type of logic for syntactic. Column #Sub is the total
number of submissions, column #Uni is the number of submissions that are
unique syntactically or semantically, %Uni is the percentage of total submis-
sions that are unique. Syntax and Type submissions do not have semantically
equivalent values since they do not compile.

Finding 2: Users do have common approaches to modeling – only 55.55%
of submissions are syntactically unique and 16.55% are semantically unique.
Therefore, there are lessons to be learned about these commonalities that
can inturn improve education and debugging techniques.

There are two trends that impact this. First, there is high redundancy in
correct submissions, which is expected as semantically, all correct submissions
are equivalent. Second, there is notably less redundancy in type and syntax
errors, meaning that users make a broader range of mistakes when incorrectly
structuring a formula compared to writing a formula that is wrong.

Table 2. Rate of Syntactically Unique Submissions

RL PL

Syntatic Semantic Syntatic Semantic
Cx #Sub

#Uni%Uni #Uni%Uni
Cx #Sub

#Uni%Uni #Uni%Uni

Correct 4418 397 15.70 51 0.56 Correct 390 60 13.93 1 0.36

Both 2029 1139 62.32 1061 37.29 Both 294 208 72.49 103 44.98

Over 1091 558 51.52 293 18.16 Over 177 100 44.00 22 22.00

Under 880 434 65.89 212 17.01 Under 105 77 80.85 9 19.15

Syntax 1503 1150 84.88 Syntax 227 199 78.63

Type 2004 1460 77.07 Type 356 279 83.64

SUM/AVG 11925 5138 43.09 1617 19.21 SUM/AVG 1549 923 59.59 135 13.98

FOL LTL

Syntatic Semantic Syntatic Semantic
Cx #Sub

#Uni%Uni #Uni%Uni
Cx #Sub

#Uni%Uni #Uni%Uni

Correct 17373 3800 21.85 94 0.73 Correct 1513 205 12.58 30 2.06

Both 17561 11592 65.47 5946 35.33 Both 1831 1191 64.70 744 41.10

Over 6081 3672 61.61 1135 20.07 Over 748 420 53.64 209 28.67

Under 10459 5422 50.06 857 8.45 Under 1015 522 50.68 147 14.33

Syntax 11188 9361 82.50 Syntax 736 643 87.03

Type 10878 8596 78.33 Type 426 330 76.64

SUM/AVG 73540 42443 57.71 8032 15.60 SUM/AVG 6269 3311 52.82 1130 22.13
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4.3 RQ3: How Eective Is the Analyzer’s Compilation Error

Reports?

Nearly a third of the time, a user will create a submission that fails to compile.
Therefore, we investigate the eectiveness of Alloy’s current compiler-based error
reporting, by looking at the rate at which users x these errors.

Table 3. Details for Invalid Attempts

Subpath Len.
Model

% w/
Invalid

% Nvr
Valid Avg % ≥ 5 Max

classroom_fol 30.44 2.75 1.93 7.50 11
classroom_rl 38.68 4.44 2.04 8.63 15
courses_v1 48.89 1.79 2.10 8.89 22
courses_v2 50.28 2.71 1.81 4.57 20
cv_v1 41.90 5.93 1.81 2.91 18
cv_v2 43.48 0.00 1.87 5.66 9
graphs 26.18 2.09 1.76 4.29 9
lts 40.95 8.62 2.34 10.11 17
productionLine_v1 32.91 1.28 2.10 8.77 15
productionLive_v2 41.43 1.00 1.84 5.15 37
productionLine_v3 36.38 1.54 1.84 4.65 11
socialMedia 48.27 4.19 2.06 8.56 23
trainStation_fol 50.25 0.98 1.91 6.20 11
trianStation_ltl 37.73 4.09 1.98 6.85 12
trash_fol 26.40 4.40 1.96 8.67 11
trash_ltl 32.35 0.67 1.91 7.71 9
trash_rl 28.81 3.17 2.10 8.67 15
SUM/AVG 42.06 2.88 1.99 7.48 37

This is summarized in Table 3. For
each model, column 2 reports the per-
centage of attempts that have at least
one invalid submission, and column 3
presents the percentage of attempts
that never turned into valid formulas.
The remaining three columns quantify
how a user goes from an invalid sub-
mission to a valid submission. We rst
collected all invalid subpaths, which
are the portions of attempts that con-
sist of only type or syntax error edits.
Then, we report the average length,

the percentage of subpaths that have a length of 5 or more, and the max length.
Compilation errors are prevalent - over 40% of attempts have them, but error
reports do help users correct an error within 2 attempts on average.

Mishandling Primitive Type Errors. While our results highlight that users
are often able to work through compilation mistakes, there is still the 7.88% of
attempts that fall into long edit chains to try and make the model compile and
the 2.88% of attempts in which the users give up. Looking into these attempts, we
discovered that the Analyzer’s current error reporting does not handle primitive
type errors well. A primitive type error occurs when the user creates a formula
that produces a set when a boolean is expected, or vice versa. To demonstrate,
consider the following chain of edits for courses_v1 inv12:

inv12 T: all s:Student | s.enrolled.grades
inv12 T: all s:Student | s.enrolled.grades.s

inv12 T: all s:Student | s.(s.enrolled.grades)

With each edit, the user is informed that the highlighted text must “be a

formula expression.,” There is no denition of a “formula expression” and no
mention of the expectation that this formula needs to evaluate to a boolean. As
a result, this user keeps trying to edit the highlighted formula as if the type error
is within the highlight. However, the highlighted formulas typecheck individually.
In the end, the user never realizes that the issue is that the quantied formula
encompassing the highlighted formulas expects a boolean not a set subformula.
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Finding 3: The fact that Alloy formulas inherently produce a set or a
boolean result is a subtle feature of the language that is not well highlighted
in Alloy’s own compiler-based error reports. Since users are able to better
resolve other syntax and type errors, updating error reports to directly
call out the primitive type error could help prevent the long error chains,
especially if the highlighted formula ambiguously compiles in isolation.

4.4 RQ4: How Do Users’ Correct Answers Dier from the Oracle?

Table 4. Location of Oracle

Type Top 1 Top 5 Top 10 Nil
RL 22 44 49 3
PL 1 1 1 0
FOL 25 58 65 24
LTL 12 21 22 9
SUM 60 156 169 36

The oracle solution often represents one of
several ways in which the property could be
expressed. Therefore, we wanted to explore the
ways novice users’ thinking may dier from the
expert-written oracles. Table 4 displays the loca-
tion of the oracle submission derived by ranking

all syntactically unique correct submissions in decreasing order from most to
least duplicate submissions. Column Type displays the type of exercises under
consideration based on the oracle. The remaining columns show the number of
exercises for that type in which the oracle is in the Top 1 location, Top 5, Top

10, or never submitted (Nil).
For RL exercises, the oracle is frequently submitted by users. RL exercise use

the smallest subset of operators, and this seems to translate to less diversity in
how a property can be correctly expressed. This is further supported by Table 2,
in which only 15.7% of correct RL submissions are syntactically unique. However,
there is a notable dropo in users creating the oracle solution for FOL and LTL
exercises. By location 10, the oracle is only present in 68.42% and 61.11% of
these exercises respectively. Moreover, a forth of the time, the oracle is never
submitted for these exercises.

Finding 4: In conjunction with Table 2, it is clear that correct FOL exer-
cises simply have a lot of syntactic diversity. The structure of a FOL formula
introduces a lot of opportunities for user’s to make design choices, such as
selecting the quantier and selecting the domain, leading to wide variability
and loweing the oracle’s presence. However, correct LTL submissions lack
diversity but also fail to utilize the structure of the oracle.

Top Submission Dierences With Oracle. To build a better understanding
of why LTL exercises often do not contain the oracle submission, and to further
investigate the dierences users make compared to the oracle, we manually inves-
tigated the dierences between the top 1 correct solution and the oracle. Table 5
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displays for each identied dierence the number of top 1 correct submissions
that have this dierence (column # Occ) and the percentage that this accounts
for out of all top 1 submissions (column Rate).

Table 5. Dierences - Oracle and Top 1

Dierence # Occ Rate
Upscaled quantication 55 29.25
Downscaled quantication 21 11.17
Dierent quantication domains 11 5.85
Sim, Dierent order of operands 12 6.38
Sim, Formed dierent sets 7 3.72
Sim, Dierent operator 19 10.11
Sim, Additional trivial operator 1 0.53
Expanded out formula 2 1.06
No Change 60 31.91

35 submissions are similar (sim)
but involve minor dierences, such
swapping the order of operands. Many
of these submissions are LTL exercises
in which the location of the tempo-
ral operator always varies. In addition,
the three of the four “additional trivial
operator” are LTL exercises in which
the user appends an unnecessary lead-

ing always operator. Together, these similar submissions highlight common mod-
eling preferences that result in the oracle being less present for LTL exercises.

Finding 5: Users prefer leading with temporal operators, while the ora-
cle solutions insert them close to the subformula of interest. For instance,
a user will write “always all a: A | F” while the oracle will use “all a :

A | always F.” However, this preference does not always create equivalent
formulas. Debugging techniques should consider patch steps that relocate
temporal operators closer to the subformula of interest.

Size of Correct Solutions. Overall, the most prevalent dierence in Table 5
is that users increase the degree of quantication in the formula, which is seen in
55 of the top 1 solutions. For instance, consider the following for inv1 from the
productionLine_v2. Only 21 correct submissions match the oracle (o) (8.71%)
while 101 correct submissions (41.91%) use the quantied formula (s).

o: Worker = Human + Robot // Workers are either human or robots
s: all w: Worker | w in Human or w in Robot

To quantify this impact, Table 6 displays the Abstract Syntax Tree (AST)
dierence between the oracle solution and all of the correct submissions. Column
DifTot displays the average dierence in total number of AST nodes between the
oracle and all correct submissions. The next four columns display the average
dierence in total number of AST nodes of each type of logic. For these columns,
a negative number means the oracle had less AST nodes. To give context to how
signicant the dierence in nodes is, column DifMag displays average magnitude
in dierence between the oracle and correct submissions.

RL and PL exercises see the largest increase in size, with the oracle being on
average a 0.38× smaller formula. This is not surprising, as users writing FOL
versions instead would naturally increase the size. However, even FOL exercises,
which already have a quantied formula, also see a large increase in the number



320 A. Jovanovic and A. Sullivan

of AST nodes. Therefore, even when quantication is expected, users add more
nested quantication than the oracle formulation.

Finding 6: Users are not likely to rely on condensed relational logic to
express properties, and will often write verbose formulas that apply rst
order logic more than is actually needed to express the constraint. Since
this can impede execution runtime, it is worthwhile investing in discovering
refactoring strategies to reduce quantication.

Table 6. AST Dierences Between Oracle and Corr. Subs

Type DifT ot DifRL DifP L DifF OL DifLT L DifMag

RL −11.53 −2.49 −0.69 −1.16 −0.02 0.38

PL −10.74 −1.79 −0.03 −1.26 0.00 0.38

FOL −8.17 −1.87 −0.82 −0.52 0.00 0.81

LTL −3.70 −0.89 −0.43 −0.24 −0.07 0.77

AVG −9.08 −2.03 −0.76 −0.72 −0.01 0.66

4.5 RQ5: What Mistakes Do Users Make When Writing Formulas?

As indicated by Table 2, users often repeat the same mistake. To learn what these
mistakes are, we manually investigate and label each “hot hit” faulty submission
with the main aspects of the mistake. Correspondingly, Table 7 displays the
common mistakes made broken down by classication of submission and type
of logic. Column #Occ represent the number of unique “hot hit” submissions
of that mistake and column #Sub represents the total number of submissions
with duplicates included. In green, we highlight the top 4 mistakes.

Across all logic types, the single most common mistake is the incorrect use
of an operator. Our dataset includes a detailed breakdown of which operators
are incorrectly applied and at what rates. Expectedly, several of these mis-
takes involve users making the wrong choice between two similar operators,
i.e. transitive closure (‘^’) instead of reexive transitive closure (‘*’). However,
there were also several mistakes that reect users picking operators that are not
within the same grammar division, but are used to capture two dierent but
similar ideas. To illustrate, consider the following submission (s) to inv6 from
productionLine_v2 that 20 users submitted and the closest correct solution (c):

// Components built of dangerous parts are also dangerous
s: all c: Component | c.parts in Dangerous => c in Dangerous
c: all c: Component | some c.parts & Dangerous => c in Dangerous

As shown, several users choose to encode this by checking some set intersection
instead of a subset check. For their formulas, these two operators behave the
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Table 7. Common Mistakes Made by Users (subs with at least 10 repeats)

RL FOL LTL Total
Dierence

#Occ#Sub#Occ#Sub#Occ#Sub #Occ#Sub

More complex quant. domain 0 0 4 64 0 0 4 64

Narrowed quant. domain 0 0 70 1338 0 0 70 1338

Dierent quant. domain 0 0 6 183 0 0 6 183

Upscaled quant. level trying to state relationships 0 0 101 1990 8 159 109 2149

Incorrect order of nested quant. 0 0 4 78 0 0 4 78

Nested quant. disjoint mistake 0 0 17 413 0 0 17 413

Downscaled quant. level leading to incorr. expr range 23 378 15 264 2 34 40 676

Tried to inverted concept 2 37 6 144 2 38 10 219

Trying to explictly outline steps 0 0 0 0 2 24 2 24

Incorrect use of operator 14 238 130 2438 12 208 156 2884

Operator not commumtative 1 14 16 294 3 71 20 379

Missing operator 1 10 7 175 8 146 16 331

Incorrectly scoped expr, missing parentheses 0 0 1 23 0 0 1 23

Incorrect application of extension signature 3 46 65 1181 1 23 69 1250

Subportion of total concept 5 128 23 492 3 46 31 666

Wrong understanding of exercise 4 61 3 55 3 53 10 169

Total 53 912 468 9132 44 802 565 10846

same except for when the left-hand side of the operator is empty. In this case, if
c.parts is empty, then c.parts in Dangerous evaluates to true, which prevents
scenarios from being generated in which there are no dangerous components.

Finding 7: While users make the wrong choice between two closely related
operators, it is also clear that users make mistakes by encoding incorrect
but closely related concepts. Both of these modeling mistakes often show up
as a subtle bug in which only a few scenarios, usually involving corner cases
like an empty set, dierentiate the formulas. Users should explore corner
case scenarios to ensure the proper boundary behavior of their constraints.

FOL submissions are prevalent in Table 7, accounting for 468 of the 565
hot hit submissions. In addition, half of the frequently repeated classication of
mistakes (column Mistakes) involve errors related to quantication. Therefore,
there are fundamental misunderstandings users have about how and when to use
quantication. The most common quantier mistake is that users try to upscale
the level of quantication in an attempt to explicitly outline relationships, where
upscale means the submission inserted more quantiers than the oracle.

As an example, consider the following submission for classroom_rl inv5:

s: all t:Teacher| some t.Teaches
c: some Teacher.Teaches //There are classes assigned to teachers.

that accounts for 30 (35.29%) of the both over- and underconstrained submis-
sions. In this case, the subformula is correct, but the quantier is wrong. While
there are often ways to express a RL formula with an equivalent FOL formula,
the increase in complexity of the formula structure introduces more opportuni-
ties for users to make a mistake. Hand in hand with upscaling, downscaling the
level of quantication is also a common mistake that often results in a constraint
being satised incorrectly if at least one element of the set satises it.
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Finding 8: Debugging techniques should consider transformations that
change the degree of quantication, knowing that users frequently pick the
wrong quantication level. Moreover, educators should emphasize when the
use of quantication is appropriate to express the relationship per atom

versus when not to use quantication to express the relationship per type.

Users also make mistakes picking the right domain to reason over, often by
making the domain of a quantied formula too narrow. A narrower quantication
domain almost always occurred on models that had extension signatures and the
user used an extension signature for the domain in place of the base signature.
As an example, consider the following submission for inv3 for model courses_v2
which accounts for 65 (40.37%) of the underconstrained submissions:

s: all c : Course | some p : Professor | c in p.teaches
c: all c : Course | some p : Person | c in p.teaches // Courses must have teachers.

Finding 9: Users can write the right subformula but use the wrong domain
in quantied formulas. Debugging techniques should explore changes to the
domain, with a focus on making the domain more restrictive.

4.6 RQ6: How Often Are Users “One” Mistake Away?

Our results in RQ5 indicate that users often make mistakes by encoding a sim-
ilar but dierent concepts. However, similar concepts can be represented with
notably dierent logic. Therefore, we wanted to explore how often users are actu-
ally close to the correct solution using MuAlloy to nd submissions that are “one
mistake away.” Table 8 depicts the frequency at which mutants x submissions
broken down by the type of logic present in the submission and the classication
of the submission. Column #Fixes displays the total number of mutants that
xed a submission, column # Subf shows the number of submissions that were
xed and column % Subf shows what percentage of submissions # Subf is.
The number of xes is more than the number of submissions xed because some
submissions could be xed by multiple dierent mutations.

Table 8. Frequency of Mutant Corrections

Clx/Type # Fixes # Subf % Subf

Both 1089 882 6.24
Over 1456 871 18.34
Under 1527 999 15.48
RL 247 192 5.61
PL 47 29 11.69
FOL 3092 2120 10.83
LTL 686 411 19.74
SUM 4072 2752 10.86

Overall, only 10.86% of submis-
sions can be corrected by the cur-
rent mutant operators. The rate is
notably lowest for RL submissions,
but is nearly quadrupled for LTL sub-
missions. One reason for this is that
mutant operators not do tend to create
fundamentally new constraints, even
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when insertion operators are applied. While LTL submissions can often be xed
with inserting or deleting temporal operators, RL submissions often need to fun-
damentally change the sets being formed. Case in point, only 6.24% of both over-
and underconstrained faults can be xed with mutants. This is expected as these
formulas are sometimes too permissive and sometimes too restrictive, which is
likely to lead to multi-step edits not captured by rst-order mutants.

Finding 10: The overall low x rate is in line with observations from RQ5
in which users often make small encoding mistakes, but the dierence in
logic is often multiple edit steps away, not one. For instance, there is no
rst order mutation operator that transforms “a in b,” into “some a & b.”
While blanket generation of second-order mutants would have scalability
issues, the results from RQ5 should be utilized to produce a select subset
of higher order mutants that reects common mistakes.

Table 9. Breakdown of Mutant Operators
That Fixed Subs
Mutant Op # Fixes Percent
Unary Operator Insertion 1269 31.16
Unary Operator Deletion 160 3.93
Unary Operator Replacement 340 8.35
Binary Operator Deletion 272 6.68
Binary Operator Replacement 810 19.89
Binary Operator Exchange 167 4.10
List Operator Deletion 221 5.43
List Operator Replacement 53 1.30
Quantier Operator Replacement 724 17.78
Prime Operator Insertion 55 1.35

Although the x rate is low, we still
want to learn about the mutant oper-
ators that do correct models. Table 9
displays the rate at which individual
mutant operators xed submissions.
Column #Fixes is the number of
faulty submissions xed and Percent-

age is what percentage of xed sub-
missions the preceding #Fixes rep-
resents. A majority of the xes come

from replacement (47.32%) and insertions (32.51%). The high rate of replace-
ment xes is supported by observations from our common mistakes (RQ5), where
we found that the most frequent mistake is that users incorrectly select between
similar but dierent operators. For insertions, Unary Operator Insertion (UOI)
xes are dominant. UOI xes for LTL formulas almost always involve inserting
temporal operators later in a formula, which is not unexpected as RQ4 highlights
that users tend to push temporal operators to the front of formulas.

Finding 11: Mutant operators that aligned with common mistakes are
correlated with the ability to x more faulty submissions. Therefore, it is
worth investing in rening existing and creating new mutant operators based
the patterns in RQ5.

4.7 RQ7: How Do Users Respond to Their Mistakes?

As users incrementally work towards a correct solution, users make changes that
may move their submission from one classication to the next. Table 10 displays
the classication change, or lack thereof, produced by back to back edits. The
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letter E represents empty submissions. Row # Edit ‘?’ represents the number
of edits that start as one classication and move to a new one based on the
corresponding column, while Row % Edit ‘?’ represents what percentage this
number is out of the total edits that start as classication ‘?’. For instance,
there are 4,133 edits in which the user starts with an overconstrained formula
and produces an overconstrained formula (O-O).

Table 10. Details of Back-to-Back Edits
Change O-O O-U O-B O-S O-T O-C O-E

# Edits O 4133 526 1484 762 877 2339 84
% Edits O 40.50 5.15 14.54 7.47 8.59 22.92 0.82
Change U-O U-U U-B U-S U-T U-C U-E

# Edits U 548 9472 2884 1464 1248 2603 110
% Edits U 2.99 51.68 15.73 7.99 6.81 14.20 0.60
Change B-O B-U B-B B-S B-T B-C B-E

# Edits B 1918 3952 19261 2871 2545 2855 178
% Edits B 5.71 11.77 57.36 8.55 7.58 8.50 0.53
Change S-O S-U S-B S-S S-T S-C S-E

# Edits S 1214 2116 3731 8371 2239 2814 203
% Edits S 5.87 10.23 18.03 40.46 10.82 13.60 0.98
Change T-O T-U T-B T-S T-T T-C T-E

# Edits T 1116 1647 3233 1720 10528 2402 184
% Edits T 5.36 7.91 15.52 8.26 50.54 11.53 0.88
Change C-O C-U C-B C-S C-T C-C C-E

# Edits C 692 752 676 526 659 11395 51
% Edits C 4.69 5.10 4.58 3.57 4.47 77.25 0.35
Change E-O E-U E-B E-S E-T E-C E-E

# Edits E 111 181 225 261 202 344 581
% Edits E 5.83 9.50 11.81 13.70 10.60 18.06 30.50

Based on Table 10, a user is sig-
nicantly more likely to make an edit
that does not change the classication,
which implies that users often make
small edits. In addition, users do fre-
quently go from an overconstrained to
a correct formula (22.92%), which is in
line with our “one step away” results in
which overconstrained formulas were
often close to a correct model. In con-
trast, syntax errors, type errors and
both submissions are the most likely
to lead to a student resetting their
attempt by erasing down to an empty

submission, which indicates for these categories users are more likely to feel as if
they ended up far o from the solution. Interestingly, users do go from a correct
submission to all the other classications. There are two main reasons for this.
First, some of the exercises ask for an answer using a specic type of logic, but
Alloy4Fun does not restrict the available operators. Therefore, users will create
a correct submission and attempt to re-write it into the required logic. Second,
users rene their submission, often trying to create a more condense formula.

Finding 12: Given the active research around automated repair, repair
techniques should consider that users are not likely to buy into a large
change to their formula. However, given RQ6 results, repair patches are
likely to need to make multiple changes. Therefore, repair tools should focus
on providing users with supporting evidence of the validity of larger patches,
such as counterexamples with explanation templates.

5 Threats to Validity

There exist several threats to the validity of our results. First, the dataset we use
does not contain any information related to what users were thinking. Therefore,
we are limited in some of the conclusions we can form. Second, the users are all
master’s students from the University of Minho (UM) and the University of
Porto (UP) between 2019 and 2023. While there is breadth to the date range
of the study, we do not know the details of the educational performance and
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background of the master’s students, which may lack diversity. Third, MuAlloy,
and the Analyzer itself, do not support higher-order quantication. In theory, a
higher order formula could be correct. However, since the current tools cannot
evaluate them, we do not factor them into our one step away calculations. Lastly,
students could have collaborated together, resulting in higher duplication rates.

6 Related Work

Alloy4Fun. The creators of the Alloy4Fun dataset have published an experi-
ence paper outlining the rst semester that they used Alloy4Fun in their class-
room [22]. This paper focuses largely on lessons learned utilizing Alloy4Fun in
the classroom but does contain some preliminary analysis of the data collected,
such as the rate of correct versus incorrect submissions and commonly reported
error messages. This data is from an early benchmark and consists of 9 models
and only 5000 executions. Our analysis is more in-depth and spans the signi-
cantly larger version of the dataset.

User Studies and Empirical Studies Over Alloy. There have been a few
user studies exploring how developers work with Alloy [12,13,23]. The most
recent study explored the debugging behavior of novice and expert users and
discovered that users struggle to rene Alloy predicates using only the visual
representation of scenarios [23]. Another recent study found that if users are
shown a small collection of valid and invalid scenarios before writing a predicate,
then users better understand what behavior the user should be trying to codify
into a constraint [13]. In addition, there was a user study that explored how users
interact with dierent enumeration strategies [12]. While our eorts focus on how
to better teach and debug constraints, these user studies highlight best practices
for how to present and guide users through the output of these constraints.

Tangent to our work, there is a static prole of 1,652 publicly available Alloy
models pulled from GitHub that investigates how often users engage with dif-
ferent parts of Alloy’s grammar and explores the average size and complexity
of Alloy models. This study is not concerned with the accuracy of the con-
straints, but does give suggestions for education based on frequently used and
underutilized features. These recommendations are complementary to our rec-
ommendations.

7 Conclusion

Given Alloy’s popularity and well supported toolset, there is a growing body
of work to debug faulty models and to use the Alloy in an educational setting.
To help guide future research directions for both of these avenues, this paper
explores a dataset of over 93,000 submissions made by new users. We highlight
several key ndings, including common patterns in correct and incorrect sub-
missions and the realistic eectiveness of existing mutant operators.
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