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Abstract. Writing declarative models has numerous benefits, rang-
ing from automated reasoning and correction of design-level properties
before systems are built, to automated testing and debugging of their
implementations after they are built. Alloy is a declarative modeling
language that is well-suited for verifying system designs. A key strength
of Alloy is its scenario-finding toolset, the Analyzer, which allows users
to explore all valid scenarios that adhere to the model’s constraints up
to a user-provided scope. However, even with visualized scenarios, it is
difficult to write correct Alloy models. This paper presents an empirical
study of over 93,000 models written mainly by users trying to learn Alloy
to form a comprehensive series of observations to guide the growing body
of debugging and educational efforts for Alloy model development.

1 Introduction

In today’s society, we are becoming increasingly dependent on software systems.
However, we also constantly witness the negative impacts of buggy software.
One way to help develop better software systems is to leverage software models.
Alloy [17] is a relational modeling language. A key strength of Alloy is the ability
to develop models in the Analyzer [2|, an automatic analysis engine based on
off-the-shelf SAT solvers, which the Analyzer uses to generate scenarios that
highlight how the modeled properties either hold or are refuted, as desired.
The user is able to iterate over these scenarios one by one, inspecting them for
correctness. Alloy has been used to verify software system designs [6,11,34,36],
and to perform various forms of analyses over the corresponding implementation,
including deep static checking [14,18|, systematic testing [24], data structure
repair [35], automated debugging [15] and to generate security attacks [1,25,29].

However, to gain the many benefits that come from utilizing software models,
the model itself needs to be correct. For Alloy models, there are two types of
errors that can appear: (1) underconstrained errors in which the model allows
scenarios it should prevent, and (2) overconstrained errors in which the model
prevents scenarios it should allow. To detect an underconstrained error, during
scenario enumeration, the user needs to observe a scenario that they did not
expect to see. Unfortunately, even if the user notices something is wrong with a
scenario, according to a recent user study, both novice and expert Alloy modelers
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struggle to refine a faulty formula given an incorrectly produced scenario [23].
To detect an overconstrained error, after enumeration, the user needs to realize
that an expected scenario was never present. Since Alloy commands can produce
hundreds of scenarios, this places a high burden on the user.

Given these difficulties, there is a growing body of work looking at how to
debug faulty Alloy models. AUnit is a unit testing framework [27,28], which
enables users to check if a specific scenario is allowed or prevented. AUnit has
been used for mutation testing [20,31], fault localization [32], and automated
repair [16,30]. Since then, fault localization and repair of Alloy models has
become an active research area [9,10,38,39]. As this field grows, we believe it is
important to understand what mistakes developers actually make when writing
models so that these techniques can be effective for the majority of mistakes
made.

In addition, Alloy has a reputation for being a user friendly formal method,
mainly due to its IDE the Analyzer. As a result, over the years, there have been
several efforts to build introductory formal methods courses centered around
Alloy and the Analyzer [5,8,21,22,26]. Unfortunately, these studies have revealed
that even with the Analyzer, new users still feel overwhelmed trying to learn the
language. Therefore, to improve debugging and educational efforts for Alloy,
this paper presents an empirical study that explores 93,283 submissions made
by students learning Alloy to Alloy4Fun, an online educational website for Alloy.
In this paper, we make the following contributions:

Empirical Study: We present a systematic study of models written by Alloy
users with revision histories that capture back-to-back incremental changes. We
explore questions spanning correct and incorrect models, including: how hard is
it for users to make a model that compiles, how do user’s correct answers differ
from expert oracles, what common mistakes do users make, and how often are
users actually close to a correct formula.

Practical Impacts: We distill our observations into practical guidelines for
future work in debugging models and building educational material.

Benchmarks for Alloy: We reorganize the dataset into two benchmarks: (1)
a collection of faulty models broken down by type of fault and (2) a collection
of models that tracks incremental changes, which can be used to evaluate and
improve incremental analysis techniques for Alloy [7,19,33,37].

Open Source: We release our benchmarks and analysis at: https://github.com/
AlloyUserStudy/Alloy4FunDataAnalysis.

2 Background

In this section, we describe the key concepts of Alloy and Alloy4Fun.
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var sig File { var link : lone File } FO F1 Fo TrF;;:slh’
var sig Trash in File {} Trash PYotected
var sig Protected in File {}
//protected file is never sent to trash ¢li“k ¢1i“k
pred prop9 { no Protected & Trash }
//SECRET F2 F2
pred prop9 { always no Protected & Trash }| |Protected Protected
check prop90k { (prop9 and not prop9o)
implies (prop9o iff prop9) }
(State 0) (State 1)
(a) (b)

Fig. 1. Faulty Submission of an Alloy Model of a File System Trash Can

2.1 Alloy

Figure 1 (a) displays a faulty temporal model of a file system trash can from the
Alloy4Fun dataset [4]. Signature paragraphs introduce named sets and can define
relations, which outline relationships between elements of sets. Line 1 introduces
a named set File and establishes that each File atom connects to zero or one
(Lone) File atoms through the link relation. Lines 2 and 3 introduce the named
sets Trash and Protected as subsets (in) of File. Signatures and relations can
be declared mutable (var), which means that the elements of these sets can vary
across different states in the same scenario. In our example, all 3 signatures and
the one relation are mutable.

Predicates introduce named formulas that can be invoked elsewhere. The
predicate prop9 on line 5 uses empty set (‘no’) and set intersection (‘&) to incor-
rectly attempt to establish that a protected file is never sent to the trash. How-
ever, since the signatures are mutable, the incorrect version is true as long as no
protected files are in the trash for the first state but does not require the con-
straint to be true in every state. To correct this, the linear temporal operator
always can be appended to the start.

2.2 Alloy4Fun Exercises

Alloy4Fun is an educational platform for Alloy where users can write and com-
pile Alloy models through an online interface. Alloy4Fun contains several starter
models in which the signature paragraphs are given. Each starter model contains
a varying number of empty predicates with a corresponding English description
of the property that the user can attempt to encode into formal logic. To check
their answer for a given predicate, Alloy4Fun will compare if their written sub-
mission is equivalent to a hidden oracle. If their submission is not equivalent to
the oracle, the user will be presented with a counterexample: a scenario that
depicts a situation where the user’s formula behaves differently than the oracle.
The user can then continue to iterate on their formula until it is correct.

To illustrate, in Fig. 1 (a), every line after the SECRET comment is hidden from
the user. The check command (lines 8-9) compares if a submission is equivalent
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to the oracle. Commands indicate which formulas to invoke and what scope to
explore. The scope places an upper bound on the size of all signature sets and the
number of state transitions. The command on line 8 instructs the Analyzer to
search for an assignment to all sets in the model using up to 3 File atoms and up
to 10 state transitions by default. Figure 1 (b) displays the first counterexample
scenario found by the Analyzer, which informs the user that their model is
incorrect: in state 1, F1 is both in the trash and protected.

3 Experiment SetUp

In this paper, we will use the following terminology. A submission consists of
the base model, the user’s current attempt for a specific exercise, and any helper
predicates invoked. An edit path is the series of submissions a user makes starting
with the starter model and ending with their last submission. Edit paths can
contain submissions across multiple different exercises but are all within the
same base model. An attempt is the series of submissions within an edit path
that the user makes for a specific exercise.

3.1 Experimental Data

In our study, we use the publicly released Alloy4Fun dataset, which contains real-
world models obtained from master’s students submissions from the University
of Minho (UM) and the University of Porto (UP) in the academic period from
Fall 2019 to Spring 2023 [4]. In total, there are 97,755 submissions that span 17
different Alloy models and 183 predicates to be filled in (exercises). Of these,
we filtered out 2,024 submissions that change the model’s structure or are only
changes to the theme settings for visualization. In addition, we filtered 2,448
submissions that are empty. Empty submissions are underconstrained faults.
However, since empty submissions do not fundamentally illustrate any effort by
the user, we removed them to avoid skewing the conclusions. As a result, we end
up with 93,283 submissions, all of which have tangible user content.

Table 1 gives an overview of the complexity of the models used in our study in
terms of the universe of discourse each model creates. Column #8Sig is the total
number of signatures in the model, # Abs is the number of abstract signatures,
#Ext is the number of signatures that extend another signature, #Rel is the
number of relations, Arity is the average arity of all relations in the model (2
indicates a binary relation), #Exe is the number of exercises and #AST is the
average number of abstract syntax tree (AST) nodes in the oracle solutions for
all exercises of that model. Models with an underscore in their name represent
models that have multiple versions in the dataset. Between versions, the number
of exercises, instructional text, and/or the type of logic can change.

For the 183 exercises, we classify them into one of the following categories:
relational logic (RL), predicate logic (PL), first-order logic (FOL), and linear
temporal logic (LTL). PL and LTL contain their traditional operators as sup-
ported within Alloy’s grammar [3]. RL operators contain all set theory operators,
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comparison operators, and multiplicity operators from Alloy’s grammar. FOL
contains both quantifier operators and comprehension operators. Exercises were
classified based on the highest operator present in the oracle solution according
to the partial order of RL — PL — FOL — LTL. In total, 51 are RL exercises, 1
is a PL exercise, 95 are FOL exercises and 36 are LTL exercises.

Table 1. Complexity of Base Models

#Sig #Abs #Ext #Rel Arity #Exe #AST
classroom _ fol 5 0 2 3 233 15 10.00

classroom rl 5 0 2 3 233 15 10.13
courses_v1 6 0 2 5 22 15 16.87
courses v2 6 0 2 5 22 15 16.87
ev_vi 5 1 2 4 2 4 19.75
cv_v2 5 1 2 4 2 4 21.75
graphs 1 0 0 1 2 8 7.63
Its 3 0 1 1 3 6 19.71
productionLine _v1 5 0 2 3 2 4 14.25
productionLine_ v2 10 1 7 4 2 10 14.90
productionLine_v3 10 1 7 4 2 10 14.90
socialMedia 5 0 2 5 2 8 15.75
trainstation_ fol 7 0 5 2 2 10 13.40
trainstation _ 1t1 6 0 4 3 2 17 23.44
trash rl 3 0 2 1 2 10 4.80
trash_ltl 3 0 2 1 2 20 855
trash _fol 3 0 2 1 2 10 4.80
AVG 5.18 0.24 2.71 2.94 2.12 10.65 13.97

3.2 Classification of Submissions

Within our dataset, a submission falls into one of the following categories: cor-
rect, overconstrained (over), underconstrained (under), both over- and undercon-
strained (both), type error (type), and syntax error (syntax). Correct submis-
sions are semantically equivalent to the oracle, overconstrained submissions pre-
vent valid scenarios from being generated, underconstrained submissions allow
invalid scenarios to be generated, both submissions allow a combination of over-
and underconstrained behaviors, type errors are formulas that fail to typecheck,
and syntax errors are formulas that fail to adhere to the grammar rules. To deter-
mine which category a submission falls under, we use Alloy4Fun’s hidden oracle
check command for correctness. If not correct, we use the following command
templates to determine the type of fault:

under: check {prop9 and !prop9o}
over: check {!prop9 and prop9o}

In addition, if the model fails to compile, we use the generated error message to
determine if there was a type or a syntax error.

3.3 Recreating Submission Revision Histories

When a student checks an exercise, Alloy4Fun logs the student submission with
a unique id key and a “derivationOf” parameter that contains the unique id
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of the parent entry that is either the original Alloy4Fun example model or a
previous submission. We use this information to re-build edit paths that capture
the series of edits a user makes. As an example, the following is the edit path for
our example in Fig.1 where U means underconstrained and C means correct:

inv9 U: no Protected & Trash
inv9 C: always no Protected & Trash

For edit paths, we do include empty submissions. While empty submissions
do not hold much value as individual submissions, in the middle of an edit path,
an empty submission can convey when users reset their attempt on an exercise.

3.4 Methodology

We first explore general trends across all submissions (RQ1-RQ2) before explor-
ing how users write invalid submissions (RQ3), correct submissions (RQ4), and
incorrect submissions (RQ5-RQ6). Finally, we consider how users incrementally
problem solve (RQT).

For RQ1 and RQ2, we analyze submissions based on their classification. For
RQ2, we additionally separate submissions into unique versus duplicate buck-
ets. We consider two forms of equivalence: syntactic and semantic. Syntactical
duplicates covey the rate at which users literally write the same exact formula,
while semantic duplicates allow us to explore the rate at which users express
the same underlying concept. To determine if two submissions are syntactically
equivalent, we used a PrettyStringVisitor to reprint formulas in a consistent
format that removes trivial differences in formatting, such as white spaces. For
semantically equivalent, we used the Analyzer to check for logical equivalence.

For RQ3, we investigate attempts that have invalid (syntax and type errors)
submissions. We also pull out back to back edits in attempts in which the user
repeatedly makes 5 or more invalid submissions in a row, in order to manually
inspect these edits to determine what aspects of the Analyzer’s error reports
may be preventing users from correcting the structure of their formula.

For RQ4, we consider only correct submissions. We rank correct submissions
from most repeated submission to least per exercise. From there, we then man-
ually analyze attributes of the top submitted formulas’ structure and compare
different AST properties to explore how user submissions differ from the oracle
formula. Similarly, for RQ5, we focus on “hot hit” submissions in which the same
syntactic faulty submission is made at least 10 times. As with correct submis-
sions, we manually investigated each “hot hit” and label it with core tenants of
the mistake. In addition, for all faulty submissions, we also we use MuAlloy, a
mutation testing tool [20], to generate all first-order mutants. We then check
if any of the mutated models are equivalent to the oracle submission. If so, we
classify the submission as “one mistake away” and explore different attributes of
these fixable models in RQ6.

Finally, for RQ7, we analyze the changes in classifications that happen within
back to back edits for each edit path.



Right or Wrong — Understanding How Users Write Software Models in Alloy 315

4 Empirical Evaluation

4.1 RQ1: What Classification of Submissions Do Users Make?

To get a general overview of the submissions made, Fig. 2 shows pie charts depict-
ing the breakdown in the classification of submissions, ranging from all submis-
sions to a breakdown per type of logic. Submissions were sorted into different
types of logic based on the logic in the user’s submission.

As the pie charts indicate, users are the most effective at writing relational
logic properties, which users express correctly 37.05% of the time. In contrast,
users struggle more with FOL and LTL properties, in which less than a fourth
of the submissions are correct: 23.62% and 24.13% respectively. This decrease in
accuracy for FOL and LTL exercises is expected, as the introduction of quantified
formulas and temporal constraints is non-trivial.

O Corr

O Over

O Both

@ Under

B Type

M Syntax
(ALL) (RL) (PL) (FOL) (LTL)

Fig. 2. Breakdown of Submission Results

While correct submissions are the largest individual chunk at 25.4%, faulty
submissions (both, over and under) combine to account for 45.3% of all submis-
sions. Faults that are both over- and underconstrained account for the largest
portion of mistakes at 23.28% of all submissions. As RQ6 will highlight, this
implies that faulty models are not likely to have small, simple corrections. In
addition, as the complexity of the formula structure increases (FOL and LTL),
users are also more likely to write properties that are accidentally too permissive.
Notably, most Alloy fault localization and repair techniques struggle to perform
when the issue is that constraints are missing [9,30].

Invalid submissions combine to account for 29.28% of all submissions and are
almost evenly split between syntax errors (14.64%) and type errors (14.65%).
While the rate of syntax errors is relatively consistent across types of logic, LTL
formulas do have notably less type errors.

Finding 1: For LTL formulas, only some of the signatures and relations
are mutable, which narrows down for the user which elements should appear
in temporal constraints. This could be the reason for LTL formula’s reduc-
tion in type errors. FOL formulas could benefit from this, as educators can
emphasize that the domain of the quantified formula also limits the types
that should be reasoned over. In addition, if a quantified formulas trivially
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reasons over sets with different types than the domain, debugging efforts
should focus on modifying these sets to match the type of the domain.

4.2 RQ2: How Often Do Users Make the Same Submission?

If users often repeat the same submission, then this represents underlying com-
mon approaches that users take to modeling. Therefore, we investigate how often
new users make duplicate submissions. Table2 show the rate at which submis-
sions are syntactically and semantically unique broken down by classification
(Clx) and additionally type of logic for syntactic. Column #Sub is the total
number of submissions, column #Uni is the number of submissions that are
unique syntactically or semantically, %Uni is the percentage of total submis-
sions that are unique. Syntax and Type submissions do not have semantically
equivalent values since they do not compile.

Finding 2: Users do have common approaches to modeling — only 55.55%
of submissions are syntactically unique and 16.55% are semantically unique.
Therefore, there are lessons to be learned about these commonalities that
can inturn improve education and debugging techniques.

There are two trends that impact this. First, there is high redundancy in
correct submissions, which is expected as semantically, all correct submissions
are equivalent. Second, there is notably less redundancy in type and syntax
errors, meaning that users make a broader range of mistakes when incorrectly
structuring a formula compared to writing a formula that is wrong.

Table 2. Rate of Syntactically Unique Submissions

RL PL
Cx #Sub Syntatic Semantic | Cx #Sub Syntatic | Semantic
#Uni %Uni #Uni %Uni #Uni %Uni #Uni %Uni
Correct 4418; 397 15.70 51 0.56| Correct 390: 60 13.93; 1 0.36
Both 2029/ 1139 62.32| 1061 37.29 ‘Both ‘ 294 208 72.49; 103 44.98
Over 1091 558 51.52 293 18.16| Over 177 100 44.00 22 22.00
Under 880: 434 65.89 212 17.01 ‘Under ‘ 105 77 80.85 9 19.15
Syntax 1503| 1150 84.88: Syntax 227 199 78.63
Type 2004| 1460 77.07 |Type | 356 279 83.64
SUM/AVG| 11925 5138 43.09 1617 19.2175UM/AVG 1549 923 59.59| 135 13.98
FOL I LTL
Cx #Sub Syntatic Semantic || Cx #Sub Syntatic | Semantic
#Uni %Uni #Uni %Uni #Uni %Uni #Uni %Uni
Correct 17373 3800 21.85 94 0.73| Correct 1513 205 12.58 30 2.06
Both 17561| 11592 65.47, 5946 35.33 ‘Both ‘ 1831 1191 64.70: 744 41.10
Over 6081 3672 61.61) 1135 20.07) Over 748! 420 53.64 209 28.67
Under 10459 5422 50.06 857 8.45 ‘Under ‘ 1015 522 50.68 147 14.33
Syntax 11188 9361 82.50 Syntax 736/ 643 87.03
Type 10878| 8596 78.33 [Type | 426] 330 76.64
SUM/AVG| 73540, 42443 57.71 8032 15,6075UM/AVG 6269 3311 52.82| 1130 22.13




Right or Wrong — Understanding How Users Write Software Models in Alloy 317

4.3 RQ3: How Effective Is the Analyzer’s Compilation Error
Reports?

Nearly a third of the time, a user will create a submission that fails to compile.
Therefore, we investigate the effectiveness of Alloy’s current compiler-based error
reporting, by looking at the rate at which users fix these errors.

This is summarized in Table 3. For

Table 3. Details for Invalid Attempts each model, column 2 reports the per-

% % Nvr Subpath Len.
Model Tt vae Avebo s sax  centage of attempts that have at least
classroom fol 30.44 [2.75  [1.93[7.50 11 : : Lo
classroom _rl 38.68 [4.44  2.04 8.63 |15 one invalid submission, and column 3
courses vl 48.89 |1.79 |2.10 [8.89 22
TR e ame [2l0]88 2 presents the percentage of attempts
cv_ vl 41.90 5.93 ‘1.81 ‘2.91 18 1 1
o aeo 5.93  |L81J2.61 |1 that never t.urned into valid formulzjms.
graphs 2618 [2.09 |1.76[4.29 |9 The remaining three columns quantify
Its 40.95 8.62 2.34 |10.11 |17 . .
productionLine_v1(32.91 |1.28 |2.10 8.7 |15 how a user goes from an invalid sub-
productionLive v2|41.43 |1.00 1.84 5.15 37 .. . ..
productionLine _v3(36.38 |1.54 |1.84 |4.65 |11 mission to a valid submission. We first
socialMedia 48.27 |4.19 2.06 8.56 23 . . .
trainStation_fol  |50.25 [0.98 |1.91[6.20 |11 collected all invalid subpaths, which
trianStation:ltl 37.73 |4.09 1.98 6.85 12 h . f h
trash_fol 26.40 |4.40  [1.96 [8.67 |11 are the portions of attempts that con-
trash 1tl 32.35 |0.67 1.91 (7.71 9 . - 4
trashrl 2881|317  |2.10 [s.67 |15 sist of only type or syntax error edits.
SUM/BVE 42:06 [ 2"85 - 08 7-AB N[ 8T Then, we report the average length,

the percentage of subpaths that have a length of 5 or more, and the max length.
Compilation errors are prevalent - over 40% of attempts have them, but error
reports do help users correct an error within 2 attempts on average.

Mishandling Primitive Type Errors. While our results highlight that users
are often able to work through compilation mistakes, there is still the 7.88% of
attempts that fall into long edit chains to try and make the model compile and
the 2.88% of attempts in which the users give up. Looking into these attempts, we
discovered that the Analyzer’s current error reporting does not handle primitive
type errors well. A primitive type error occurs when the user creates a formula
that produces a set when a boolean is expected, or vice versa. To demonstrate,
consider the following chain of edits for courses_v1 invi2:

inv12 T: all s:Student | s.enrolled.grades
invi2 T: all s:Student | s.enrolled.grades.s

inv12 T: all s:Student | s.(s.enrolled.grades)

With each edit, the user is informed that the highlighted text must “be a
formula expression.,” There is no definition of a “formula expression” and no
mention of the expectation that this formula needs to evaluate to a boolean. As
a result, this user keeps trying to edit the highlighted formula as if the type error
is within the highlight. However, the highlighted formulas typecheck individually.
In the end, the user never realizes that the issue is that the quantified formula
encompassing the highlighted formulas expects a boolean not a set subformula.
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Finding 3: The fact that Alloy formulas inherently produce a set or a
boolean result is a subtle feature of the language that is not well highlighted
in Alloy’s own compiler-based error reports. Since users are able to better
resolve other syntax and type errors, updating error reports to directly
call out the primitive type error could help prevent the long error chains,
especially if the highlighted formula ambiguously compiles in isolation.

4.4 RQ4: How Do Users’ Correct Answers Differ from the Oracle?

The oracle solution often represents one of

Table 4. Location of Oracle several ways in which the property could be

Type Top 1 Top 5 Top 10 Nil

RL 122 141 19 5 expressed. Therefore, we wanted to explore the
PL |1 1 1 0 ways novice users’ thinking may differ from the
FOL |25 |58 |65 24 . .

LTL |12 |21 29 9 expert-written oracles. Table4 displays the loca-
SUM 60 (156 |169 |36 tion of the oracle submission derived by ranking

all syntactically unique correct submissions in decreasing order from most to
least duplicate submissions. Column Type displays the type of exercises under
consideration based on the oracle. The remaining columns show the number of
exercises for that type in which the oracle is in the Top 1 location, Top 5, Top
10, or never submitted (Nil).

For RL exercises, the oracle is frequently submitted by users. RL exercise use
the smallest subset of operators, and this seems to translate to less diversity in
how a property can be correctly expressed. This is further supported by Table 2,
in which only 15.7% of correct RL submissions are syntactically unique. However,
there is a notable dropoff in users creating the oracle solution for FOL and LTL
exercises. By location 10, the oracle is only present in 68.42% and 61.11% of
these exercises respectively. Moreover, a forth of the time, the oracle is never
submitted for these exercises.

Finding 4: In conjunction with Table 2, it is clear that correct FOL exer-
cises simply have a lot of syntactic diversity. The structure of a FOL formula
introduces a lot of opportunities for user’s to make design choices, such as
selecting the quantifier and selecting the domain, leading to wide variability
and loweing the oracle’s presence. However, correct LTL submissions lack
diversity but also fail to utilize the structure of the oracle.

Top Submission Differences With Oracle. To build a better understanding
of why LTL exercises often do not contain the oracle submission, and to further
investigate the differences users make compared to the oracle, we manually inves-
tigated the differences between the top 1 correct solution and the oracle. Table5
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displays for each identified difference the number of top 1 correct submissions
that have this difference (column # Occ) and the percentage that this accounts
for out of all top 1 submissions (column Rate).

35 submissions are similar (sim)

Table 5. Differences - Oracle and Top 1 but involve minor differences, such

Difference # Occ Rate :

Upsealod quantification st 905e  swapping the order of operands. Many
Downscaled quantification 21 1117 of these submissions are LTL exercises
Different quantification domains 11 5.85 . . .

Sim, Different order of operands 12 6.38 in which the location of the tempO—
Sim, Formed different sets 7 3.72 L. fp
Sim., Difforent operator 10 1011 Tral operator always varies. In addition,
Sim, Additional trivial operator 1 053  the three of the four “additional trivial
Expanded out formula 2 1.06 5 LTL . . h h
No Change 60 31.91 operator” are exercises in whic

the user appends an unnecessary lead-
ing always operator. Together, these similar submissions highlight common mod-
eling preferences that result in the oracle being less present for LTL exercises.

Finding 5: Users prefer leading with temporal operators, while the ora-
cle solutions insert them close to the subformula of interest. For instance,
a user will write “always all a: A | F’ while the oracle will use “all a :
A | always F.” However, this preference does not always create equivalent
formulas. Debugging techniques should consider patch steps that relocate
temporal operators closer to the subformula of interest.

Size of Correct Solutions. Overall, the most prevalent difference in Table5
is that users increase the degree of quantification in the formula, which is seen in
55 of the top 1 solutions. For instance, consider the following for inv1 from the
productionLine_v2. Only 21 correct submissions match the oracle (o) (8.71%)
while 101 correct submissions (41.91%) use the quantified formula (s).

o: Worker = Human + Robot // Workers are either human or robots
s: all w: Worker | w in Human or w in Robot

To quantify this impact, Table6 displays the Abstract Syntax Tree (AST)
difference between the oracle solution and all of the correct submissions. Column
Difp,; displays the average difference in total number of AST nodes between the
oracle and all correct submissions. The next four columns display the average
difference in total number of AST nodes of each type of logic. For these columns,
a negative number means the oracle had less AST nodes. To give context to how
significant the difference in nodes is, column Dif /.4 displays average magnitude
in difference between the oracle and correct submissions.

RL and PL exercises see the largest increase in size, with the oracle being on
average a 0.38x smaller formula. This is not surprising, as users writing FOL
versions instead would naturally increase the size. However, even FOL exercises,
which already have a quantified formula, also see a large increase in the number



320 A. Jovanovic and A. Sullivan

of AST nodes. Therefore, even when quantification is expected, users add more
nested quantification than the oracle formulation.

Finding 6: Users are not likely to rely on condensed relational logic to
express properties, and will often write verbose formulas that apply first
order logic more than is actually needed to express the constraint. Since
this can impede execution runtime, it is worthwhile investing in discovering
refactoring strategies to reduce quantification.

Table 6. AST Differences Between Oracle and Corr. Subs

Type DifTot DifRL DifPL DifFOL DifLTL DifMag
RL |-11.53)—2.49 —0.69 —1.16 —0.02| 0.38
PL |-10.74 —1.79 —0.03 —1.26  0.00  0.38
FOL | —8.17 —1.87 —0.82 —0.52  0.00|  0.81
LTL | —3.70, —0.89 —0.43 —0.24 —0.07  0.77
AVG| —9.08/-2.03 —0.76 —0.72 —0.01  0.66

4.5 RQ5: What Mistakes Do Users Make When Writing Formulas?

As indicated by Table 2, users often repeat the same mistake. To learn what these
mistakes are, we manually investigate and label each “hot hit” faulty submission
with the main aspects of the mistake. Correspondingly, Table7 displays the
common mistakes made broken down by classification of submission and type
of logic. Column #Occ represent the number of unique “hot hit” submissions
of that mistake and column #Sub represents the total number of submissions
with duplicates included. In green, we highlight the top 4 mistakes.

Across all logic types, the single most common mistake is the incorrect use
of an operator. Our dataset includes a detailed breakdown of which operators
are incorrectly applied and at what rates. Expectedly, several of these mis-
takes involve users making the wrong choice between two similar operators,
i.e. transitive closure (‘~’) instead of reflexive transitive closure (‘*’). However,
there were also several mistakes that reflect users picking operators that are not
within the same grammar division, but are used to capture two different but
similar ideas. To illustrate, consider the following submission (s) to invé from
productionLine_v2 that 20 users submitted and the closest correct solution (c):

// Components built of dangerous parts are also dangerous
s: all c: Component | c.parts in Dangerous => ¢ in Dangerous
c: all c: Component | some c.parts & Dangerous => ¢ in Dangerous

As shown, several users choose to encode this by checking some set intersection
instead of a subset check. For their formulas, these two operators behave the
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Table 7. Common Mistakes Made by Users (subs with at least 10 repeats)

. RL FOL LTL Total
Difference

#O0cc #Sub #0cc #Sub #0cc #Sub| #O0cc #Sub
More complex quant. domain ‘ 0 0 4 64 0 0 4 64
Narrowed quant. domain 0 0 70 1338 0 0) 70 1338
Different quant. domain | 0 0 6 183 0 0 6 183
Upscaled quant. level trying to state relationships 0 0 101 1990 8 159 109 2149
Incorrect order of nested quant. [ o 0 4078 0 0 4078
Nested quant. disjoint mistake 0 0 17 413 0 0 17 413
Downscaled quant. level leading to incorr. expr range| 23 378 15 264 2 34 40 676
Tried to inverted concept 2 37 6 144 2 38| 10 219
Trying to explictly outline steps ‘ 0 0 0 0 2 24| 2 24
Incorrect use of operator 14 238 130 2438 12 208 156 2884
Operator not commumitative ‘ 1 14 16 294 3 71 20 379
Missing operator 1 10 7 175 8 146 16 331
Incorrectly scoped expr, missing parentheses [ o 0 123 0 0 123
Incorrect application of extensi ignat 3 46 65 1181 1 23| 69 1250
Subportion of total concept | 5 128 23 492 3 46/ 31 666
Wrong understanding of exercise 4 61 3 55 3 53 10 169
Total 53 912 468 9132 44 802 565 10846

same except for when the left-hand side of the operator is empty. In this case, if
c.parts is empty, then c.parts in Dangerous evaluates to true, which prevents
scenarios from being generated in which there are no dangerous components.

Finding 7: While users make the wrong choice between two closely related
operators, it is also clear that users make mistakes by encoding incorrect
but closely related concepts. Both of these modeling mistakes often show up
as a subtle bug in which only a few scenarios, usually involving corner cases
like an empty set, differentiate the formulas. Users should explore corner
case scenarios to ensure the proper boundary behavior of their constraints.

FOL submissions are prevalent in Table7, accounting for 468 of the 565
hot hit submissions. In addition, half of the frequently repeated classification of
mistakes (column Mistakes) involve errors related to quantification. Therefore,
there are fundamental misunderstandings users have about how and when to use
quantification. The most common quantifier mistake is that users try to upscale
the level of quantification in an attempt to explicitly outline relationships, where
upscale means the submission inserted more quantifiers than the oracle.

As an example, consider the following submission for classroom_rl inv5:

s: all t:Teacher| some t.Teaches
c: some Teacher.Teaches //There are classes assigned to teachers.

that accounts for 30 (35.29%) of the both over- and underconstrained submis-
sions. In this case, the subformula is correct, but the quantifier is wrong. While
there are often ways to express a RL formula with an equivalent FOL formula,
the increase in complexity of the formula structure introduces more opportuni-
ties for users to make a mistake. Hand in hand with upscaling, downscaling the
level of quantification is also a common mistake that often results in a constraint
being satisfied incorrectly if at least one element of the set satisfies it.
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Finding 8: Debugging techniques should consider transformations that
change the degree of quantification, knowing that users frequently pick the
wrong quantification level. Moreover, educators should emphasize when the
use of quantification is appropriate to express the relationship per atom
versus when not to use quantification to express the relationship per type.

Users also make mistakes picking the right domain to reason over, often by
making the domain of a quantified formula too narrow. A narrower quantification
domain almost always occurred on models that had extension signatures and the
user used an extension signature for the domain in place of the base signature.
As an example, consider the following submission for inv3 for model courses_v2
which accounts for 65 (40.37%) of the underconstrained submissions:

s: all ¢ : Course | some p : Professor | c in p.teaches
c: all ¢ : Course | some p : Person | ¢ in p.teaches // Courses must have teachers.

Finding 9: Users can write the right subformula but use the wrong domain
in quantified formulas. Debugging techniques should explore changes to the
domain, with a focus on making the domain more restrictive.

4.6 RQ6: How Often Are Users “One” Mistake Away?

Our results in RQ5 indicate that users often make mistakes by encoding a sim-
ilar but different concepts. However, similar concepts can be represented with
notably different logic. Therefore, we wanted to explore how often users are actu-
ally close to the correct solution using MuAlloy to find submissions that are “one
mistake away.” Table8 depicts the frequency at which mutants fix submissions
broken down by the type of logic present in the submission and the classification
of the submission. Column #Fixes displays the total number of mutants that
fixed a submission, column # Sub; shows the number of submissions that were
fixed and column % Sub; shows what percentage of submissions # Suby is.
The number of fixes is more than the number of submissions fixed because some
submissions could be fixed by multiple different mutations.

Overall, only 10.86% of submis-

Table 8. Frequency of Mutant Corrections sions can be corrected by the cur-

Clx/Type # Fixes # Suby % Sub; :

Both — - — rent mutant operators. The 'rat.e is
Over 1456 871 18.34 notably lowest for RL submissions,
Under 1527 999 15.48 :

- 517 109 s 61 bgt is nearly quadrupled for LTL sub

PL 47 29 11.69 missions. One reason for this is that
FOL 3092 2120 [10.83

LTL 686 11 1971 mutant operators not do ten(.i to create
SUM 4072 (2752 |10.86 fundamentally new constraints, even
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when insertion operators are applied. While LTL submissions can often be fixed
with inserting or deleting temporal operators, RL submissions often need to fun-
damentally change the sets being formed. Case in point, only 6.24% of both over-
and underconstrained faults can be fixed with mutants. This is expected as these
formulas are sometimes too permissive and sometimes too restrictive, which is
likely to lead to multi-step edits not captured by first-order mutants.

Finding 10: The overall low fix rate is in line with observations from RQ5
in which users often make small encoding mistakes, but the difference in
logic is often multiple edit steps away, not one. For instance, there is no
first order mutation operator that transforms “a in b,” into “some a & b.”
While blanket generation of second-order mutants would have scalability
issues, the results from RQ5 should be utilized to produce a select subset
of higher order mutants that reflects common mistakes.

Although the fix rate is low, we still
want to learn about the mutant oper-
ators that do correct models. Table9

Table 9. Breakdown of Mutant Operators
That Fixed Subs

Mutant Op # Fixes Percent

Unary Operator Insertion 1269 |31.16 displays the rate at which individual
32:3 82:?3? ggrlt:genment iig \232 mutant operators fixed submissions.
Binery Operator Replacoment  |s10  |10.89 Column #Fixes is the number of
RS Lo ‘fg faulty submissions fixed and Percent-
ot D e e oment 101|115 age Is what percentage of fixed sub-
Prime Operator Insertion 55 1.35 missions the preceding #Fixes rep-

resents. A majority of the fixes come
from replacement (47.32%) and insertions (32.51%). The high rate of replace-
ment fixes is supported by observations from our common mistakes (RQ5), where
we found that the most frequent mistake is that users incorrectly select between
similar but different operators. For insertions, Unary Operator Insertion (UOI)
fixes are dominant. UOI fixes for LTL formulas almost always involve inserting
temporal operators later in a formula, which is not unexpected as RQ4 highlights
that users tend to push temporal operators to the front of formulas.

Finding 11: Mutant operators that aligned with common mistakes are
correlated with the ability to fix more faulty submissions. Therefore, it is
worth investing in refining existing and creating new mutant operators based
the patterns in RQ5.

4.7 RQT7: How Do Users Respond to Their Mistakes?

As users incrementally work towards a correct solution, users make changes that
may move their submission from one classification to the next. Table 10 displays
the classification change, or lack thereof, produced by back to back edits. The
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letter E represents empty submissions. Row # Edit ¢ ?’ represents the number
of edits that start as one classification and move to a new one based on the
corresponding column, while Row % Edit ¢?’ represents what percentage this
number is out of the total edits that start as classification ‘?’. For instance,
there are 4,133 edits in which the user starts with an overconstrained formula
and produces an overconstrained formula (0-0).

Based on Table10, a user is sig-
Table 10. Details of Back-to-Back Edits . . -
nificantly more likely to make an edit

Change O-O O-U O-B O-S O-T O-C O-E

# Edits O| 4133 526 1484 7062 877 2339 84  that does not change the classification,
% Edits O|40.50 5.15 14.54 7.47 8.59 22.92 0.82 . . s

Change U0 U-U U-B Uss U.T U.c u:g  Wwhich implies that users often make
# Edits U| 548 9472 2884 1464 1248 2603 110 3 143 _
% Bdits U 299 51.68 1573 799 6.81 1120 oeo  Small edits. In addition, users do fre

Change |B-O B-U B-B B-S BT B-C BE  quently go from an overconstrained to
# Edits B| 1918 3952 19261 2871 2545 2855 178

% Edits B| 5.71 1177 57.36 855 758 850 053 & correct formula (22.92%), which is in

Change S-O S-U S-B S-S S-T S-C S-E . . @ ” .
# Edits S | 1214 2116 3731 8371 2239 2814 203 line with our “one step away” results in
% Edits S| 5.87 10.23 18.03 40.46 10.82 13.60 0.98 : :

Change |T-O T-U T-B T-S T-T T-C T-E which overconstrained formulas were
# Edits T| 1116 1647 3233 1720 10528 2402 184 Often Close to a correct model. In con-
% Edits T| 5.36 7.91 15.52 8.26 50.54 11.53 0.88

Change [C-O C-U C-B C-S C-T C-C C-E trast, syntax errors, type errors and

% Baite ©| 466 510 4t 557 447 7795 045  both submissions are the most likely
e paes oo e B Be BLECED to lead to a student resetting their
% Edits E| 5.83 9.50 11.81 13.70 10.60 18.06 30.50 attempt by erasing dOWn to an empty
submission, which indicates for these categories users are more likely to feel as if
they ended up far off from the solution. Interestingly, users do go from a correct
submission to all the other classifications. There are two main reasons for this.
First, some of the exercises ask for an answer using a specific type of logic, but
Alloy4Fun does not restrict the available operators. Therefore, users will create
a correct submission and attempt to re-write it into the required logic. Second,

users refine their submission, often trying to create a more condense formula.

Finding 12: Given the active research around automated repair, repair
techniques should consider that users are not likely to buy into a large
change to their formula. However, given RQ6 results, repair patches are
likely to need to make multiple changes. Therefore, repair tools should focus
on providing users with supporting evidence of the validity of larger patches,
such as counterexamples with explanation templates.

5 Threats to Validity

There exist several threats to the validity of our results. First, the dataset we use
does not contain any information related to what users were thinking. Therefore,
we are limited in some of the conclusions we can form. Second, the users are all
master’s students from the University of Minho (UM) and the University of
Porto (UP) between 2019 and 2023. While there is breadth to the date range
of the study, we do not know the details of the educational performance and
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background of the master’s students, which may lack diversity. Third, MuAlloy,
and the Analyzer itself, do not support higher-order quantification. In theory, a
higher order formula could be correct. However, since the current tools cannot
evaluate them, we do not factor them into our one step away calculations. Lastly,
students could have collaborated together, resulting in higher duplication rates.

6 Related Work

Alloy4Fun. The creators of the Alloy4Fun dataset have published an experi-
ence paper outlining the first semester that they used Alloy4Fun in their class-
room [22]. This paper focuses largely on lessons learned utilizing Alloy4Fun in
the classroom but does contain some preliminary analysis of the data collected,
such as the rate of correct versus incorrect submissions and commonly reported
error messages. This data is from an early benchmark and consists of 9 models
and only 5000 executions. Our analysis is more in-depth and spans the signifi-
cantly larger version of the dataset.

User Studies and Empirical Studies Over Alloy. There have been a few
user studies exploring how developers work with Alloy [12,13,23]. The most
recent study explored the debugging behavior of novice and expert users and
discovered that users struggle to refine Alloy predicates using only the visual
representation of scenarios [23]. Another recent study found that if users are
shown a small collection of valid and invalid scenarios before writing a predicate,
then users better understand what behavior the user should be trying to codify
into a constraint [13]. In addition, there was a user study that explored how users
interact with different enumeration strategies [12]. While our efforts focus on how
to better teach and debug constraints, these user studies highlight best practices
for how to present and guide users through the output of these constraints.

Tangent to our work, there is a static profile of 1,652 publicly available Alloy
models pulled from GitHub that investigates how often users engage with dif-
ferent parts of Alloy’s grammar and explores the average size and complexity
of Alloy models. This study is not concerned with the accuracy of the con-
straints, but does give suggestions for education based on frequently used and
underutilized features. These recommendations are complementary to our rec-
ommendations.

7 Conclusion

Given Alloy’s popularity and well supported toolset, there is a growing body
of work to debug faulty models and to use the Alloy in an educational setting.
To help guide future research directions for both of these avenues, this paper
explores a dataset of over 93,000 submissions made by new users. We highlight
several key findings, including common patterns in correct and incorrect sub-
missions and the realistic effectiveness of existing mutant operators.
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