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A B S T R A C T   

Currently, deep learning has achieved remarkable success in estimating plant disease from unmanned aerial 
system (UAS) images. However, two critical challenges remain unexplored: spatiotemporal variations in disease 
symptoms and the domain shift between source and target datasets. To overcome these challenges, this paper 
proposes an approach that incorporates temporal aspects of disease progression using time series analysis. 
Spatiotemporal information is integrated by combining convolutional neural networks and bidirectional long- 
short term memory (CNN-BiLSTM) to classify the disease into five severity levels. Various feature extraction 
methods, including both handcrafted and CNN-based feature extractors, are evaluated. Furthermore, to tackle 
the problem of domain shift, a feature-level domain adaptation method is proposed. This method aims to learn 
transferable feature representations that remain consistent despite variations between source and target datasets. 
This approach enhances the spatiotemporal transferability of the CNN-BiLSTM model, enabling the effective 
utilisation of historical datasets. The study demonstrates that the CNN-BiLSTM model outperforms traditional 
time-independent machine-learning methods that rely on handcrafted features. Specifically, the Resnet101- 
BiLSTM model achieves the highest overall classification accuracy of 89.7% among all tested models evalu
ated on a one-year dataset. Moreover, it shows superior generalisation with 72.7% accuracy for cross- 
spatiotemporal disease severity classification using domain adaptation, as demonstrated through two-year ex
periments. By reducing the domain shift of source and target datasets and harnessing time series high-resolution 
images obtained throughout the crop growing season, this hybrid approach has substantial potential to advance 
the assessment of crop disease severity in field conditions.   

1. Introduction 

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a fungal 
pathogen that causes an early-season disease called fusarium wilt where 
the fungus invades the root vascular system of plants, leading to wilting, 
necrosis, and plant death (Zhang, Abdelraheem, et al., 2022). It is a 
soil-borne disease where the fungus can survive in the soil for many 
years, making it difficult to control (Zhang, Zhu, et al., 2022). In many 
cotton-producing countries, Fusarium wilt (multiple fungal races) cau
ses significant yield and economic losses for farmers (Blasingame & 
Patel, 2013, pp. 1242–1245). However, race 4, which is only found in 

California, New Mexico, and Texas in the U.S.A., is very aggressive and 
can cause significant stand loss virtually every year in infested fields. 
Other races of FOV found in the U.S.A., cause damage more sporadically, 
and usually to a much lesser degree than FOV4. Other FOV races also 
typically cause damage later in the season (45–90 days after planting) 
than FOV4 that will kill emerging and young seedlings. Accurate and 
timely assessment of fusarium wilt disease caused by FOV4 can help 
farmers make informed decisions about preventative measures and 
mitigation strategies and can also help plant breeders identify and select 
cultivars with resistance or tolerance to the disease (Ulloa et al., 2023; 
Zhu et al., 2022). Traditionally, cotton FOV4 disease severity has been 
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assessed by visual inspection of plants for symptoms of wilting and root 
necrosis (Zhu et al., 2021), which is time-consuming, labour-intensive, 
and subjective, leading to potential inconsistencies in disease severity 
assessment. Therefore, it is essential to develop more efficient and 
reliable methods of assessing FOV4 disease severity. 

The rapid advancement of computer vision and machine-learning 
(ML) has opened new possibilities for monitoring the health status of 
plants and detecting and assessing plant disease severity. Nevertheless, 
applying these techniques in outdoor field environments presents sig
nificant challenges that demand advanced feature extraction techniques 
and sophisticated ML classifiers. One approach to using ML for plant 
disease severity assessment is to extract handcrafted (HC) features from 
images of plants and use these features as input to a classifier. For 
instance, Aqel et al. (2021) proposed an approach that uses a gray-level 
co-occurrence matrix (GLCM) to extract texture features from images, 
and these features were passed to an extreme learning machine for plant 
disease classification. Similarly, Harakannanavar et al. (2022) applied 
wavelet transform, principal component analysis, and GLCM to extract 
features from tomato leaves to detect the disease using the support 
vector machine (SVM) and k-nearest neighbour (k-NN). Kaur (2021) 
presented a ML approach for the classification of plant diseases. The 
approach involved utilizing various feature extraction algorithms, such 
as local binary pattern, GLCM, shift-invariant feature transform, and 
Gabor, to extract features from input images. Several ML classifiers, 
namely, SVM, k-NN, artificial neural network, and random forest (RF), 
were trained to perform the task of categorizing plant diseases. 

However, FOV4 disease symptoms primarily manifest in the roots, 
making infection not immediately visible in the plant canopy. This can 
result in wilting and necrosis in the above-ground tissues during the later 
stages, particularly with susceptible Pima cotton. In such cases, relying 
on HC features to detect these symptoms may not be effective for disease 
assessment. This is because HC features may need expert knowledge to 
identify and extract all the relevant information from an input image. 
Alternatively, convolutional neural networks (CNNs) can automatically 
learn features from raw pixel data through a process known as convo
lution. CNNs can learn features in a hierarchical manner, enabling them 
to capture more complex and abstract representations of the image. This 
makes CNNs flexible and effective for various image-based agricultural 
tasks, including disease detection, plant image segmentation (Abdalla 
et al., 2019a, 2019b), Abdalla, Cen, Wan, et al., 2019nd nutrient status 
diagnosis (Abdalla et al., 2021). 

Several studies have reported satisfactory results in identifying 
different types of plant diseases using CNNs (Bao et al., 2022; Borhani 
et al., 2022; Krizhevsky, Sutskever, & Hinton, 2012; Nawaz et al., 2022; 
Qian et al., 2022). These studies have demonstrated that CNNs can be 
trained to recognise specific patterns of damage, such as leaf spots, 
wilting, or discoloration, which can help identify the type of disease 
with high accuracy. In contrast, accurate assessment of disease severity 
can be challenging because it involves quantifying the degree of damage 
caused by the disease on the plant, which requires a more detailed 
analysis of the overall condition of plants, including the extent and 
severity of symptoms, disease progression, and the impact on plant 
growth (Shi et al., 2023). This can make it difficult to accurately identify 
and quantify the severity of a disease using CNNs. An automatic method 
for assessing the severity of plant diseases using CNNs was first proposed 
by Wang et al. (2017). They employed various CNN models to classify 
images of apple black rot into four levels of severity and obtained an 
overall accuracy of 90.4%, suggesting that CNNs have great potential for 
fully automating the classification of plant disease severity. In a recent 
study by Patil et al. (2023), a CNN-based approach was used to estimate 
the severity of three rice diseases (brown spot, blast, and bacterial 
blight). The authors manually annotated a dataset of images of diseased 
leaves with disease zones and trained a CNN to predict the severity scale 
of a given image. Similarly, Divyanth et al. (2022) developed a deep 
learning model to categorise images of pea roots into three groups based 
on the severity of Aphanomyces root rot disease. The disease severity 

was rated using a scale ranging from 0.0 to 5.0, which was determined 
by visually examining root discoloration and the softness of the hypo
cotyl. In another study, Verma et al. (2022) proposed a method for 
accurately detecting the severity of late blight disease in tomato crops 
using deep learning techniques. The method combined squeeze and 
excitation networks with capsule networks to improve feature compu
tation and classification accuracy. The proposed approach achieved high 
accuracy measures and is robust with noisy datasets. 

Current CNN-based disease severity estimation methods rely on 
ground-based images, such as PlantVillage datasets (Hughes & Salathé, 
2015), or images acquired under controlled environments (Esgario 
et al., 2020), which may not capture spatiotemporal changes that occur 
in crop diseases. To overcome this limitation, unmanned aerial systems 
(UASs) have been found to provide a more comprehensive view of crops, 
enabling deep learning models to capture spatial and temporal varia
tions (Bouguettaya et al., 2023). By combining UASs with deep learning, 
automated disease severity assessment can be achieved, reducing the 
need for human intervention and enabling quicker and more accurate 
decisions. However, models trained on controlled images may have 
reduced accuracy when used to predict images collected under natural 
environments (Thapa et al., 2020; Zeng et al., 2018, pp. 1–5). 

FOV4 root disease manifests differently depending on the growth 
stage of the plant canopy, with unique symptom sets exhibited by 
different developmental stages. For example, younger plants may 
display stunted growth, yellowing leaves, and wilting, while older plants 
may exhibit chlorosis, browning of vascular tissue, and defoliation. As 
such, the severity and presentation of FOV4 root disease is highly 
influenced by the plant growth stage (Zhu et al., 2023). Although CNNs 
have demonstrated excellent performance in detecting plant disease 
symptoms from images, they may not be suitable for capturing temporal 
dependencies in disease progression over time. On the other hand, 
bidirectional long short-term memory (BiLSTM) networks have 
demonstrated great potential for analyzing dynamic systems in various 
applications, such as fault diagnosis in water management systems (Liu 
et al., 2019), medical imaging processing (Hwang et al., 2022) and mood 
recognition (Son, 2017). The BiLSTM has the ability to remember in
formation over long periods of time, making it well-suited for modeling 
time-series data. In a study conducted by Crisóstomo de Castro Filho 
et al. (2020), the application of time-series analysis in agricultural im
aging was investigated. The study utilised both long short-term memory 
(LSTM) and BiLSTM models for crop classification, and the results 
revealed that the BiLSTM model was the most effective. To date, BiLSTM 
has not yet been applied to assess plant disease severity levels. The 
hypothesis of this study is that BiLSTM can effectively capture temporal 
changes in disease severity over time. 

Despite the success of BiLSTM models, their performance may be 
hindered when they are trained solely on the source domain, as their 
ability to generalise to the target domain, characterised by dissimilar 
data distributions, can be compromised. This phenomenon, known as 
domain shift, arises due to a range of factors, including variations in field 
conditions, crop phenology, and agricultural management practices. 
Such diversities across domains make it challenging to develop deep 
learning models capable of effectively generalising across diverse real- 
world scenarios. Consequently, the manifestation and severity of dis
eases may vary significantly in different agricultural management 
contexts. 

The main objective of this study is to develop an effective deep 
learning time series model to predict the severity of cotton FOV4 disease 
accurately and efficiently from UAS images. The main contributions of 
this article are as follows. Firstly, to investigate the effectiveness of 
different CNN-based feature extractors in comparison to traditional 
handcrafted (HC) features for describing the visual symptoms associated 
with FOV4 disease in UAS images. Secondly, to monitor the progression 
of the disease in cotton plants, the BiLSTM model was employed. This 
model is designed to capture temporal dependencies within UAS images 
by processing data in both forward and backward directions, facilitating 
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a more comprehensive understanding of the disease development over 
time. Lastly, to address the challenge of domain shift and enhance the 
generalisation capability of the proposed model, a domain adaptation 
technique is introduced to improve the transferability of feature repre
sentations across diverse datasets. The proposed approach shows 
promise in providing more accurate and consistent disease severity es
timates, reducing manual inspections, and enabling efficient crop 
management practices. 

2. Materials and methods 

2.1. Experimental site and image acquisition 

An experiment was carried out during the summer seasons of 2020 
and 2021 at a commercial field located 10 km northwest of Fabens, 
Texas (31◦31′42.03″ N and 106◦11′42.76″ W, Fig. 1). This region has an 
arid to semi-arid climate with hot summers, warm and dry winters, and 
low precipitation. Soil classification information was obtained from the 
NRCS Soil Survey Geographic Database (SSURGO). The soils in this field 
are dominated by the Glendale silty clay (Fine-silty, mixed, superactive, 
calcareous, thermic Typic Torrifluvents), approximately 90% of the area 
on the north side of the field. On the south side, the soil is Harkey silty 
clay loam (Coarse-silty, mixed, superactive, calcareous, thermic Typic 
Torrifluvents). The surface texture of this soil is very fine sandy loam. 

The field was known to be infested with FOV4 and had been in test 
plots since 2018. The field was planted on May 4th in both 2020 and 
2021. The experiment was implemented using a randomised complete 
block design with three replications. Plots were one row wide (1 m 
centres), 4.88 m in length, with a 1.21 m alley between blocks. 
Throughout the experiment, surface irrigation was employed, starting 
from three weeks prior to the planting date, and then from mid-June 
onwards at approximately 3 weeks intervals until September. 

A DJI Phantom Pro 4 (DJI Technology Co., Ltd., Shenzhen, Guang
dong, China) UAS was employed to acquire high-resolution images. The 
camera on this UAS has a focal length of 35 mm and an aperture range 
between f/2.8 and f/11. The camera captured RGB images at a resolu
tion of 5472 × 3078 pixels at a height of 25 m with 80% front and side 
overlaps. In 2020, images were acquired on June 10, July 1, July 29, and 
August 31, 2020. In 2021, images were acquired on June 9, July 1, 
August 2, and September 28, 2021 (Table 1). An automated flight plan 

was created using a pre-prepared shapefile made in Pix4Dcapture, and 
the flight duration was approximately 15 min. Ground control panels 
were placed at 12 locations within the field for georeferencing images 
during each flight. The raw UAS images were stitched using Pix4D
mapper (Version 4.3.3, Pix4D, Lausanne, Switzerland). A polygon 
shapefile was created and overlaid on each stitched image, with each 
polygon representing a plot of a genotype entry. This shapefile was then 
used to clip the images into individual plot images, such that each plot 
was saved as a file in the jpg format. The total number of sample images 
corresponding to the number of plots and the dates of image acquisition 
for the two-year experiment are summarised in Table 1. 

2.2. FOV4 disease severity rating and image labeling 

The process of image labeling was based on the severity of plant 
disease at the plot level. Each plot was assigned a label ranging from 1 to 
5, reflecting the level of disease severity in the plants. To assess the 
severity of FOV4 disease in cotton plants, a qualitative evaluation of the 
root systems from the plots was performed after the cotton had been 
harvested on December 14–15, 2020, and December 8–10, 2021. The 
damage to the vascular system of roots was cumulative and could be 
observed as early as late June. However, end-of-season ratings provide a 
maximum estimate of the damage that developed throughout the sea
son. The taproots were excavated and subsequently sectioned down the 
centre to expose the vascular system. The root ratings followed a scale 
ranging from 0 to 5, with 0 indicating no discoloration of the root centre, 
1 indicating limited discoloration that did not run the length of the 
taproot, 2 representing discoloration that is relatively narrow in width 
but runs the length of the root system core, and 3 to 4, which is similar to 
a 2 but with progressively wider discoloration across the vascular sys
tem, and 5 indicating a dead taproot. To determine the disease severity 
of each lot, five root samples were rated and the average score was 
obtained from the samples. Class 5 had few samples and was combined 
with class 4 to train the deep learning model, which requires a large 
dataset for each class. Additionally, the UAS images of the plots were 
labeled and categorised according to the disease severity scale assigned 
to each plot. 

2.3. Data pre-processing 

Several pre-processing techniques were employed to prepare the 
images before feeding them to the final prediction model. Image seg
mentation, which separates the plant canopy from the soil background, 
was a critical step in this process. To achieve this, an encoder model 
based on VGG16 was utilised, as described in the work of Abdalla, Cen, 
Wan, et al. (2019). Fig. 2 depicts examples of segmented images at each 
imaging time and the corresponding FOV4 disease severity. In addition, 
the 2020 and 2021 datasets presented a class imbalance, with the mild 
class having a substantially higher number of instances than the other 
classes. This imbalance posed a challenge in generating effective 
learning patterns in the less frequent classes and could lead to poor 
performance when predicting samples from those classes. To address 
this issue, median frequency balancing was employed, as proposed by 
Eigen and Fergus (2015, pp. 2650–2658). This technique involves 
adjusting the weights in the cross-entropy loss function to account for 

Fig. 1. Location of the experimental field near Fabens, Texas (indicated by star 
in the state map of Texas), and a sample UAS image of the field captured on 
July 29, 2020. 

Table 1 
UAS image datasets obtained from a field near Fabens, Texas, in 2020 and 2021.  

Year Sampling date No. of plots Total 

2020 06/10 741 2964 
07/01 741 
07/29 741 
08/31 741 

2021 06/09 240 720 
08/02 240 
09/28 240  
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class imbalances. The weight assigned to each image for a given class c is 
determined by the formula: 

αc =
median frequency

frequency (c)

Here, frequency (c) is the frequency of class c, calculated as the 
number of images of class c divided by the total number of images. The 
term median frequency represents the median of these frequencies across 
all classes. By employing this technique, the loss function is weighted in 
a manner that gives more emphasis to classes that are under-represented 
in the dataset. This is achieved by increasing the loss contribution of less 

frequent classes during training. 

2.4. CNN-BiLSTM for disease severity classification 

The proposed hybrid CNN-BiLSTM approach for assessing disease 
severity involved a multi-step process. Firstly, CNNs were employed to 
extract features from the pre-processed images. These features were then 
fed into a BiLSTM network that was responsible for analyzing the 
sequence of features over time and predicting the severity of the disease. 
Fig. 3 illustrates how this approach combined the strengths of CNNs and 
the sequential BiLSTM model to achieve an accurate assessment of 

Fig. 2. Sequences of images that depict the growth stages of the cotton canopy at different times. Each image represents the severity of FOV4 disease at the respective 
time point. 

Fig. 3. A schematic of a domain adaptation model for time-series data using deep learning. (A) The domain adaptation process using a Gaussian kernel-based 
maximum mean discrepancy (GK-MMD) to align the feature distributions of the source domain (XS) and target domain (XT). (B) outlines a convolutional neural 
network (CNN) feature extraction (xcs) followed by a bidirectional long short-term memory (BiLSTM) network for processing sequential data. (C) illustrates the 
internal structure of a single LSTM unit, including the input gate (it), forget gate (ft), output gate (ot), the previous cell state (Ct-1), the current cell state (Ct), the 
previous hidden state (ht-1), and the current hidden state (ht). 
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disease severity based on the distribution and progression of symptoms 
over time. The following provides a more detailed explanation of each 
step. 

2.4.1. Feature extraction using CNNs 
CNNs are powerful tools for extracting informative and efficient 

features from images through fine-tuning of pretrained models. To 
determine the most appropriate CNN architecture to extract features 
from pre-processed images, a comparative analysis of the performance 
of five popular pretrained models, namely Alexnet ((Krizhevsky et al., 
2012), Inceptionv3 (Szegedy et al., 2016, pp. 2818–2826), VGG 
(Simonyan & Zisserman, 2015), Resnet18, and ResNet101 (He et al., 
2016, pp. 770–778) was conducted. These networks were modified by 
replacing their final classification layers with five neurons to classify 
UAS images into five FOV4 disease severity classes. A transfer learning 
approach was employed that fine-tuned the weights of pretrained 
models, using a stochastic gradient descent optimiser with a learning 
rate of 0.0005, a momentum of 0.09, and a mini-batch size of 40 images 
to optimise the model parameters. The training was stopped after a 
maximum of 10 epochs or when there was no improvement in validation 
loss over four consecutive epochs. These features were extracted from 
the last fully connected layers of the CNN model and utilised as input for 
the BiLSTM network in a sequential manner, as described in section 
2.4.2. It is important to note that, in this stage, the CNN architectures 
were only utilised to extract features and did not incorporate the tem
poral aspect of the image datasets or the potential temporal correlations, 
which were incorporated in the subsequent step using a BiLSTM model. 

2.4.2. Feature-level domain adaptation 
Domain adaptation plays a critical role in training models on a 

source domain and deploying them on a target domain, where the un
derlying data distributions may exhibit dissimilarities. Let’s consider a 
source domain feature denoted as Xs = [xs1, xs2, …,xsn], consisting of n 
samples, and a target domain feature denoted as Xt = [xt1, xt2, …,xtm], 
consisting of m samples. These features are characterised by probability 
distributions P and Q, respectively. Notably, P ∕= Q due to environmental 
conditions and variations in crop phenology. Consequently, a model 
trained on the dataset Xs exhibits reduced performance when directly 
applied to the dataset from Xt. To quantitatively measure the dissimi
larity between the distributions P and Q, Gaussian kernel-based 
maximum mean discrepancy (GK-MMD) is employed within a repro
ducing kernel Hilbert space (RKHS). The fundamental principle behind 
GK-MMD is rooted in the notion that if P and Q are identical, then the 
expected value of any function computed from samples drawn from 
these distributions should be equal. Given samples generated indepen
dently from P and Q, the GK-MMD can be calculated using the following 
Eq. (1) 

The first term in the equation represents the mean kernel value be
tween samples from P; the second term represents the mean kernel value 
between samples from Q, and the third represents the mean kernel value 
between samples from P and Q. The kernel k is the positive definite 
kernel function that defines the RKHS associated with the distributions. 
The choice of the kernel function depends on the problem at hand and 
the characteristics of the data. This study employed a Gaussian kernel as 
one of the most widely used kernel functions. It is defined as: 

K(x, y) = exp
( (

−
⃦
⃦Xs−Xt‖

2

2σ2

)

(2)  

Where ||Xs-Xt|| represents the Euclidean distance, and σ is the band
width parameter controlling the width of the kernel. 

By utilizing the GK-MMD, the dissimilarity between the source and 
target domains can be precisely quantified, enabling effective domain 
adaptation to address the performance degradation observed when 
directly applying models trained on Xs to Xt. 

To mitigate the domain shift and reduce the dissimilarity between 
the source and target domains, a feature-level domain adaptation 
approach called correlation alignment (CORAL) is proposed. The pri
mary objective of CORAL is to enhance the transferability of feature 
representations across diverse datasets by aligning the second-order 
statistics or covariances of the source and target domains, denoted as 
Cs and Ct, respectively. Given the source domain features Xs and target 
domain features Xt, CORAL aims to transform the source domain fea
tures (Xs) to reduce the domain shift and align them with the target 
domain (Xt), using Eqs. (3)–(5). 

Xcoral
s = (Xs − μs) × DsDt + μt (3)  

Ds = (Cs + λI)
−1

2 (4)  

Dt = (Ct + λI)
1
2 (5)  

Where Xcoral
s represents the CORAL-transformed source domain samples, 

μs and μt denote the mean vectors of Xs and Xt, respectively, Ds is the 
square root of the inverse of the source domain covariance matrix plus a 
regularization term (in this study λ = 1e-2) added to avoid singularities, 
and √Ct represents the square root of the target domain covariance 
matrix, and I represents the identity matrix which has the same size as 
Cs. By applying this transformation, the aim is to align the second-order 
statistics of the source and target domains, enabling the learning of more 
transferable feature representations that effectively bridge the gap be
tween different datasets. The effectiveness of CORAL is demonstrated 
through experimental evaluations, i.e., CNN-BiLSTM trained on one 
dataset (source domain) and tested on another dataset (target domain) 
before and after applying CORAL, illustrating its potential for mitigating 
the effects of domain shift. 

2.4.3. BiLSTM model 
To classify sequential images of the cotton plots based on disease 

severity and to account for temporal aspects, the BiLSTM network was 
utilised. The BiLSTM network is a type of recurrent neural network 
(RNN) that incorporates two LSTM units. One of the LSTM units pro
cesses the input sequence in the forward direction, while the other 

processes it in the backward direction, followed by concatenating their 
outputs at each time step. This design allows BiLSTM to update the cell 
state using both past and future time steps. The LSTM architecture was 
originally proposed by Hochreiter and Schmidhuber (1997) to address 
the problems of vanishing and exploding gradients encountered in 
traditional RNN. The LSTM overcomes these issues by introducing a 
gating mechanism and memory cells in the hidden layers of the network, 
which enhances its memory and storage capabilities. As shown in 
Fig. 3C, each LSTM unit has a cell state (c) and a hidden state (output 
state, h), which are controlled by four gates: forget gate (f), candidate 

GK − MMD(P, Q) =

⃦
⃦
⃦
⃦
⃦

1
n(n − 1)

∑

i∕=j
k
(
Xsi, Xsj

)
+

1
m(m − 1)

∑

i∕=j
k
(
Xti, Xtj

)
−

2
mn

∑

i,j
k
(
Xsi, Xtj

)
⃦
⃦
⃦
⃦
⃦

H

(1)   
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gate (g), input gate (i), and output gate (o). These gates concatenate the 
input of the current time step (xt) with the hidden state of the previous 
time step (ht-1). The forget gate determines which information to discard 
from the cell state, while the input and candidate gates decide what new 
information should be stored in the cell state. The output gate de
termines what information should be passed to the next time step. 

Extracted features can be mathematically represented by a vector D 
composed of a cell array containing T time steps. Each time step within 
this vector is represented by a matrix XT with dimensions of (N, M), 
where N represents the total number of instances and M represents the 
number of features for a given instance. The values within each element 
of this vector denote the specific feature value at a particular time step 
for a given instance. To train the BiLSTM model on these features, an 
end-to-end backpropagation strategy is employed, using cross-entropy 
loss as the loss function. After training, the final hidden state, ht-s, en
codes the most important information for sequential data. The ht-s is 
utilised as a representative vector, which is transformed into a vector of 
the same length as the number of classes using a fully connected layer. A 
softmax layer is then attached to the end of the BiLSTM, with the number 
of neurons in the softmax layer set to match the number of classes. This 
ensures that the output of the model is compatible with the classification 
task. 

To comprehensively assess the efficacy of the proposed framework, 
three separate evaluations were conducted. The first evaluation 
involved randomly dividing the features extracted from the 2020 data
set, which consists of 2,964 images, using a 70:30 ratio for training and 
testing, respectively. This means that 2,075 images were used for 
training and 889 images for testing. The second evaluation aimed to 
demonstrate the generalisation ability of the model to new data by 
training it on the features extracted from the complete 2020 dataset 
(2,964 images) and testing it on the features derived from the entire 
2021 dataset, comprising 720 images. The third evaluation involved 
comparing the performance of this framework with other ML methods. 
These evaluations were conducted to demonstrate the effectiveness and 
superiority of the proposed approach. The frameworks were imple
mented in MATLAB R2023a (MathWorks, Inc., Natick, MA, USA) on an 
NVIDIA Quadro M5000 GPU with 2048 CUDA Cores and memory of 8 
GB GDDR5. 

2.5. Hand-crafted features 

HC features refer to manually selected visual attributes of the plant 
canopy, which are used to estimate the severity of the disease. Typically, 
these features are identified by domain experts with specialised 
knowledge of plant diseases. In this study, three HC features were 
extracted from segmented images, including vegetation fraction, color, 
and texture. The vegetation fraction was calculated by determining the 
ratio of canopy pixels to the total number of image pixels, expressed as a 
percentage. Tthe average of the red, green, and blue color intensities 
from the segmented images were computed. Additionally, four textural 
features were extracted using the GLCM, namely energy, homogeneity, 
contrast, and entropy. To create high-dimensional HC features, the 
textural, vegetation fraction, and color features were combined. These 
HC features were then compared with deep learning-based features to 
assess their efficacy in classification models. 

2.6. Performance evaluation of the proposed method 

A study was conducted to evaluate the impact of image segmentation 
as a pre-processing step in FOV4 cotton disease assessment. Addition
ally, the study compared the performance of several pre-trained CNN 
architectures (Alexnet, Inceptionv3, VGG, Resnet) to determine the most 
suitable deep CNN for feature extraction. To assess the contribution of 
deep features in evaluating FOV4 disease severity in cotton plants, they 
were compared with well-known high-dimensional HC features. The 
effectiveness of the feature extractors was evaluated visually by 

projecting high-dimensional features into three dimensions using t- 
distributed stochastic neighbour embedding (t-SNE) (Van der Maaten & 
Hinton, 2008). Additionally, the proposed time-series model, BiLSTM, 
was compared with a well-known standard SVM to highlight its capa
bility in understanding the temporal relationships in the datasets. The 
best model configuration was then combined with domain adaptation 
CORAL and utilised to test the generalisation capability and reliability of 
the proposed framework. For this purpose, the classification model was 
trained on the entire dataset of 2020 and evaluated on the dataset of 
2021. 

To evaluate the performance of the competing methods, evaluation 
metrics including accuracy (Ac), precision (Pr), recall (Re), and F-score 
(Fs) were used. The prediction time (PT) of deep learning models was 
also compared since they were intended for real-time application. The 
PT of hybrid models, such as CNN-BiLSTM and CNN-SVM, was measured 
for both classification and feature extraction processes. For single 
models, such as CNN, and HC feature-based BiLSTM or SVM, only the PT 
for classification was measured since no feature extraction process was 
incorporated, and the time required for calculating HC features was 
negligible. The training time required for all network implementations 
was not considered in this study, as it can be conducted offline and may 
not need to be frequently repeated. 

3. Results 

3.1. Impact of image segmentation on the prediction accuracy 

Image segmentation was found to be a crucial pre-processing step in 
accurately estimating plant disease severity, as it noticeably impacted 
the performance of different learning models (Table 2). It should be 
noted that the effect of segmentation varied across the models used, but 
in general, it was found to enhance the performance of the tested models 
when compared using different performance metrics. For instance, 
CNNs, commonly used for image classification, were particularly effec
tive for plant disease detection when segmentation was applied. Other 
models, such as BiLSTM and SVM, also benefited from the use of seg
mentation. This is because segmentation can improve the extraction of 
relevant features from the image, leading to more robust and accurate 
predictions. By eliminating the irrelevant background information and 
focusing on the plants, segmentation not only enhances the feature 
extraction process but also improves the accuracy of disease severity 
predictions. For the subsequent discussions, focus will only be on the 
model that incorporated image segmentation as a pre-processing step. 

3.2. Training and validation processes 

The training and validation loss and accuracy of six models are 
shown in Fig. 4. The results showed that the training accuracy of the 
models fluctuated to a certain extent. Models A, B, C, D, and E achieved 
high accuracy on both the training and validation sets. Among the 
models, model E (Resnet101-BiLSTM) achieved the highest accuracy on 
the validation set, and it was relatively stable compared to the other 
models. The stability in the training accuracy and losses was observed to 
have an impact on the final predicted outputs of the model (Table 2). 
However, it was observed that model E exhibited overfitting behavior, 
as the validation loss started to increase after 150 iterations while the 
training loss kept decreasing. This indicated that the model that used HC 
features did not generalise well to unseen data and provided lower 
training and validation accuracy compared to BiLSTM models that relied 
on deep learning-based features. This phenomenon could be explained 
by the lowest level of discriminability of HC features between each class 
(Fig. 4F). 

3.3. Visualizing features extracted from CNN using t-SNE 

An evaluation was conducted to assess the discriminability of 
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features extracted from different layers of several CNN architectures, 
namely AlexNet, Inceptionv3, VGG16, VGG19, ResNet18, and 
ResNet101. The analysis focused on the early max pooling layer, final 
convolutional layer, and softmax layer of each architecture. The most 
effective layer for distinguishing between different classes was identified 
by utilizing a t-SNE-based visualisation technique in a three-dimensional 
feature space. The results of the study revealed that the features 
extracted from the final convolutional layer of ResNet101 exhibited the 
highest level of discriminability (Fig. 5F, last column). This finding 
suggests that the deeper architecture of ResNet101 captured more 
discriminative information, enabling improved differentiation between 
classes. Consequently, selecting the appropriate layer for feature 
extraction was crucial in deep learning models, with the final convolu
tional layer of ResNet101 showing particular promise in achieving high 
discriminability. It was also observed that AlexNet, one of the early deep 

learning architectures, demonstrated competitive performance in the 
analysis. This can be attributed to its successful application in various 
image classification tasks and its ability to extract meaningful features at 
different layers. However, compared to ResNet101, AlexNet has a rela
tively shallower structure, potentially limiting its capacity to model 
complex patterns and intricate details. Inceptionv3, known for its 
inception modules and auxiliary classifiers, also performed well in the 
experiments. The capability of architecture to capture multi-scale fea
tures through its inception modules facilitates effective representation 
learning. Although Inceptionv3 did not surpass ResNet101 in this study, 
its strong performance suggests its suitability for tasks where multi-scale 
information is crucial. The VGG architectures (VGG16 and VGG19) have 
a simple and uniform structure comprising repeated convolutional 
layers. While VGG16 and VGG19 did not exhibit the same level of dis
criminability as ResNet101 in this study, they have been extensively 

Table 2 
Performance comparison of various classification models for assessing FOV4 cotton disease severity. The best performances are highlighted in bold. The metrics 
include Ac for accuracy, Pr for precision, Re for recall, Fs for the F-score, and PT for prediction time.  

Feature extractor Classifier Original images Segmented images PT (sec/image) 

Ac (%) Pr (%) Re (%) Fs (%) Ac (%) Pr (%) Re (%) Fs (%) 

Alexnet BiLSTM 58.7 65.7 65.3 65.5 73.1 76.5 75.7 76.1 0.10 
Inceptionv3 61.9 61.7 71.8 66.4 74.8 82.0 71.2 76.2 0.14 
Mobilenetv2 69.2 70.6 72.1 71.4 77.1 91.2 81.1 85.8 0.13 
Resnet18 77.3 81.8 82.6 82.2 86.7 93.1 93.4 93.3 0.11 
Resnet101 81.8 86.0 86.1 86.0 89.7 87.5 87.9 87.7 0.13 
HC 39.6 52.6 50.0 51.3 41.5 65.2 71.0 68.0 0.15 

Alexnet SVM 44.7 55.9 84.9 67.4 50.6 56.4 79.2 65.9 0.10 
Inceptionv3 43.6 54.9 77.4 64.2 50.7 57.2 78.5 66.1 0.16 
Mobilenetv2 45.4 57.0 82.9 67.6 56.5 63.5 83.8 72.2 0.14 
Resnet18 53.2 65.2 85.6 74.0 65.6 72.1 85.4 78.2 0.10 
Resnet101 60.9 66.3 86.9 75.2 74.5 74.5 89.4 81.2 0.14 
HC 24.9 44.3 77.7 56.5 27.9 47.2 45.4 46.3 0.18 

Alexnet  27.0 32.2 27.2 29.5 30.3 26.2 45.8 33.4 0.02 
Inceptionv3 35.1 50.0 50.1 50.1 35.8 33.3 31.5 32.4 0.08 
Mobilenetv2 23.7 28.3 18.5 22.4 31.4 31.1 30.2 30.7 0.04 
Resnet18 25.7 16.0 29.2 20.6 30.1 51.3 39.6 44.7 0.04 
Resnet101 27.1 17.9 33.3 23.3 33.7 20.3 50.3 28.9 0.11  

Fig. 4. Training progress of five different models ((A) Alexnet–BiLSTM, (B) Inceptionv3–BiLSTM, (C) VGG16–BiLSTM, (D) Resnet18–BiLSTM, (E) 
ResNet101–BiLSTM, and (F) HC-BiLSTM) on the 2020 dataset, as measured by training accuracy (TAccuracy), validation accuracy (VAccuracy) training loss (TLoss), 
and validation loss (VLoss) metrics over the course of training. 
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utilised in various image classification tasks due to their simplicity and 
interpretability. The VGG architectures are often preferred when 
computational resources are limited or when interpretability is a key 
consideration. ResNet18, despite being a shallower version of ResNet, 
demonstrated notable performance in this analysis. Although it may not 
capture intricate details as effectively as ResNet101, ResNet18 can be a 
suitable choice for tasks where a balance between model complexity and 
computational efficiency is desired. Generally, the findings emphasised 
the critical role of selecting the appropriate CNN architecture for feature 
extraction and discriminability. 

To gain a better understanding of the role of deep features in 
assessing the FOV4 cotton disease, a comparative experiment and 
quantitative analysis was conducted based on four performance metrics: 
Ac, Pr, Re, and Fs. Despite efforts to incorporate many HC descriptors, 
the deep feature-based models outperformed the classification models 
that relied on these descriptors (as shown in Table 2). Specifically, when 
the HC features were replaced with deep features in the same classifi
cation model (i.e., Resnet101-BiLSTM), substantial improvements were 
observed in Ac, Pr, Re, and Fs, by 116.3%, 34.3%, 23.8%, and 29.0%, 

respectively. These findings demonstrated the effectiveness of deep 
features for image classification, which was also supported by the t-SNE 
visualisation analysis as shown in Fig. 5. 

3.4. Traditional machine-learning versus BiLSTM 

This study also investigated the importance of considering temporal 
dependence in the analysis of UAS image datasets for FOV4 cotton dis
ease severity assessment. To this end, the performance of the BiLSTM 
model was compared with a static ML model, specifically an SVM, for 
assessing the severity of FOV4 cotton disease. The results indicated that 
the BiLSTM model outperformed the SVM in all classification metrics, 
regardless of the type of features used as input. The Resnet101-BiLSTM 
model achieved the highest Ac of 89.7%, Pr of 87.5%, Re of 87.9%, and 
Fs of 87.7% among all models tested. In contrsast, the HC-SVM model 
exhibited the lowest Ac of 27.9%, Pr of 47.2%, Re of 45.4%, and Fs of 
46.3%. The reported results were based on an average performance of 
over 10 different experimental dataset executions, with the training and 
testing sets randomly selected each time. The findings of this study 

Fig. 5. t-SNE maps of six different feature extraction methods: (A) Alexnet, (B) Inceptionv3, (C) VGG16, (D) VGG19, (E) Resnet18, and (F) Resnet101. The features 
were extracted from the early max pooling layer, final convolutional layer, and softmax layer of each architecture. 
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suggest that the proposed BiLSTM model is highly effective for assessing 
the severity of FOV4 cotton disease and holds significant potential as a 
valuable tool for disease assessment. 

Furthermore, the impact of using a pure CNN-based classifier was 
evaluated and compared to an approach with BiLSTM to capture tem
poral information in the image datasets. It was found that the use of a 
pure CNN-based classifier (i.e., Resnet101) without a sequence learning 
module resulted in a lower classification Ac of 33.7% compared to the 
approach with BiLSTM. The study highlights the significance of 
considering temporal dependence in the analysis of image datasets for 
disease severity assessment, particularly in cases where plant disease 
evolves over time. The findings suggested that the proposed BiLSTM 
model was a highly effective tool for assessing the severity of FOV4 
cotton disease, which has significant potential for disease assessment. 

3.5. Domain adaptation and generalisation capabilities of the proposed 
model 

Fig. 6 presents a quantitative analysis of the distributions before and 
after CORAL transformation. The results of applying the CORAL tech
nique to the source and target domains are promising, as evidenced by 
the observed reduction in the dissimilarity between their distributions. 
Prior to applying CORAL, the normal distributions of the two domains 
exhibited noticeable disparities, suggesting a pronounced domain shift 
(Fig. 6A). However, after the CORAL transformation, the distributions of 
the source and target domains became more aligned, suggesting a suc
cessful reduction in the domain shift (Fig. 6B). GK-MMD values were 
calculated as a measure of dissimilarity between the distributions. A 
comparison of the GK-MMD values before and after applying CORAL 
(0.221 and 0.075, respectively) indicated a substantial reduction in the 
domain shift after applying CORAL. 

To further investigate the impact of reduced distribution differences 
between domains on the generalisation capabilities of the proposed 
model, experiments were conducted to evaluate the performance of the 
ResNet101-BiLSTM models trained on the source domain (2020 dataset) 
and tested on the target domain (2021 dataset), both with and without 
CORAL. As shown in Fig. 7, the results revealed that the ResNet101- 
BiLSTM model with CORAL exhibited superior generalisation perfor
mance compared to the model without CORAL. The model with CORAL 
achieved an Ac of 72.7%, Pr of 75.2%, Re of 77.8%, and Fs of 76.5%. 
These metrics indicated that the model with CORAL was able to accu
rately classify the severity levels of cotton diseases in the target domain, 
even though it was trained on data from a different year. This finding has 
significant implications for real-world applications, where deploying a 
model trained on one dataset to classify instances in a different dataset is 
a common scenario. 

To further assess the implications of the reduced distribution 

difference between the two domains on the generalisation capabilities of 
the proposed model, a receiver operating characteristic (ROC) curve 
analysis was performed that compared the performance of ResNet101- 
BiLSTM models with (Fig. 8A) and without (Fig. 8B) domain adapta
tion using CORAL. The results, as demonstrated by the ROC curve 
analysis, showed that the ResNet101-BiLSTM model with CORAL ach
ieved a superior generalisation performance. This is supported by the 
higher area under the ROC curve obtained for the model with CORAL 
compared to the model without CORAL, indicating improved classifi
cation performance across the severity levels of cotton diseases in the 
target domain. Nonetheless, a relatively lower AUC was observed for 
Class 2; this may be attributed to inherent complexities associated with 
distinguishing this class, imbalanced class distribution, and limited 
training samples. 

4. Discussion 

Assessing the severity of FOV4 cotton disease from UAS images is a 
complex task that requires advanced techniques capable of capturing 
temporal and spatial variations in disease symptoms. Temporal varia
tions arise due to disease progression over time, which can take several 
days to fully manifest, and capturing these variations is crucial for ac
curate disease severity assessment. Spatial variations occur due to the 

Fig. 6. Comparison of normal distributions of the source and target domains before (A) and after (B) applying the correlation alignment (CORAL) technique.  

Fig. 7. The cross-domains performance results of a model that was trained on 
the 2020 dataset and tested on the 2021 dataset. The metrics include Ac 
standing for accuracy, Pr for precision, Re for recall, and Fs for the F-score. 
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disease affecting different parts of the cotton plant, making it chal
lenging to assess disease severity accurately. Consequently, a sophisti
cated technique that combined CNNs, BiLSTM, and UAS images was 
developed in this study to overcome these challenges. It was shown that 
the combination of these techniques can lead to a more accurate disease 
severity assessment than using any single technique alone. CNNs are 
good at extracting features from images, while BiLSTM networks can 
capture temporal dependencies in the data. Using both techniques 
together can help capture both spatial and temporal information from 
the images, leading to better accuracy. To the best of the athours’ 
knowledge, this is the first research to leverage the strength of both CNN 
and BiLSTM to exploit both spatial and temporal information from the 
UAS images to estimate the FOV4 disease severity. 

Current state-of-the-art methods employed for disease detection and 
classification can be categorised into two categories: classical CNN 
frameworks and CNN-based feature extraction coupled with traditional 
ML models. The first category includes the use of pretrained CNN models 
like VGG, DenseNet, InceptionV3, and various versions of ResNet, as 
introduced in studies by Haque et al. (2022) and Tang et al. (2023). The 
second category focuses on using CNN only for feature extraction, fol
lowed by the application of traditional ML models, as demonstrated in 
research by Saeed et al. (2021). This study presented a comparative 
analysis of these methods. In Table 2 of the study, the proposed 
approach, which integrated various feature extractors, was first 
compared with BiLSTM. The second part of the table examines the most 
prevalent CNN-based feature extraction methods combined with tradi
tional ML models (e.g., SVM), while the final section compares classical 
CNN frameworks. 

To support the claim of advancements being made by CNNs to 
identify complex symptom patterns of FOV4 disease, this study 
compared the effectiveness of CNN-based deep features with traditional 
HC feature extraction methods. The findings revealed that CNN-based 
deep features outperformed HC features in terms of capturing intricate 
patterns in plant images. As a result, the CNN-based approach was more 
effective at accurately assessing disease severity. This finding has sig
nificant implications, as it suggests that CNNs offer a more efficient and 
accurate approach to assessing plant disease severity compared to 
traditional HC feature extraction methods. The reason for this is that 
CNNs can automatically learn discriminative features directly from raw 
input data. This eliminates the need for manual feature engineering and 
makes the method more robust to variations in illumination conditions 
and image scale. By leveraging CNN-based deep features, human error 
can be reduced and classification accuracy improved, which is crucial 
for the efficient detection and monitoring of plant diseases in field 

conditions. This study identified ResNet101 as the most effective CNN- 
based feature extraction method among those tested. This model 
demonstrated the highest degree of discriminability and was more 
effective than traditional HC features in detecting FOV4 disease severity. 
This finding is consistent with previous research that has demonstrated 
the effectiveness of ResNet101 in various computer vision tasks, 
including object recognition and segmentation. To further confirm the 
claim of improvements being made by using CNNs, it is necessary to 
compare various deep learning techniques. However, it may not be 
appropriate to associate the previously reported methods with the cur
rent study as they have primarily been utilised to predict diseases from 
images captured under controlled conditions or using ground-based 
platforms (Chen et al., 2020; Haque et al., 2022; Saeed et al., 2021), 
which may not accurately capture subtle changes in disease symptoms. 
By leveraging UAS images in conjunction with CNN and BiLSTM models, 
this study can offer a more comprehensive understanding of crops than 
conventional ground-based methods. UAS images, which have 
high-resolution capabilities, can capture nuanced changes in crops that 
may go unnoticed by the human eye or proximal sensing techniques. 
Maes and Steppe (2019) also reported that high-resolution time-series 
UAS imagery, when combined with deep learning, can automate disease 
severity assessment, reducing the need for human intervention and 
enabling quicker and more accurate decisions. 

While CNNs have demonstrated proficiency in extracting features 
from images, they lack the ability to capture the temporal dynamics of 
disease progression over time. This observation motivated us to incor
porate BiLSTM model that considers multiple growth stages to address 
this limitation. The results of the comparison suggest that the BiLSTM 
model is a more effective approach than the SVM model for FOV4 dis
ease severity detection, particularly when using deep learning-based 
features. The BiLSTM model consistently outperformed the SVM 
model in all classification metrics, regardless of the type of features used. 
This is because the BiLSTM captures the temporal dependencies within 
the UAS images, enabling the model to track the progression of the 
disease over time. This is critical as FOV4 disease severity can vary over 
time, and an accurate assessment of disease severity requires monitoring 
the temporal changes in the disease symptoms. In contrast, the SVM 
model is a static ML model that does not consider temporal de
pendencies. Although the challenges of multitemporal data analysis 
have been documented for land-cover observation and dynamic changes 
detection (Belward & Skøien, 2015), the use of BiLSTM and deep 
learning-based features for multitemporal analysis to estimate disease 
severity in plants has not been reported in the literature. 

The accurate segmentation of plants from their background is crucial 

Fig. 8. Receiver operating characteristic (ROC) curve analysis comparing the performance of ResNet101-BiLSTM models with (A) and without (B) domain adap
tation using CORAL. 
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for precise disease severity assessment. In this study, an advanced deep 
learning method was employed to segment cotton plants from their 
background. This approach notably improved the accuracy of various 
learning models in estimating plant disease severity. The findings indi
cated that image segmentation facilitated the extraction of relevant 
features from plant images while eliminating irrelevant background 
information, leading to more focused inputs for deep learning models. 
Consequently, CNN-BiLSTM models can better capture the spatial and 
temporal features of the disease, resulting in more robust and accurate 
predictions. The CNN-BiLSTM models with image segmentation 
demonstrated superior performance compared to the CNN-BiLSTM 
model without image segmentation. 

The implications of these research findings have noteworthy prac
tical implications for the assessment of cotton disease severity in real- 
world applications. The capability of the model to analyze datasets 
with inter-annual variations highlights its potential for use in other 
domains where data may vary over time. By reducing the distribution 
discrepancy between the source and target domains, the Resnet101- 
BiLSTM model becomes more robust and capable of accurately classi
fying cotton disease severity levels in unseen data, demonstrating su
perior performance in cross-dataset evaluation and suggesting that 
domain adaptation using CORAL can effectively mitigate the adverse 
effects of domain shift and enhance the usability and effectiveness of 
trained models in practical applications. The ability of the hybrid 
approach (i.e. Resnet101-CORAL-BiLSTM) to perform well on new and 
unseen data is crucial for deploying vision-guided autonomous field 
robots with variable-rate fungicides. However, future research could 
explore additional domain adaptation techniques and investigate their 
effectiveness in addressing the challenges posed by domain shift in 
agricultural applications. It would be beneficial to evaluate the perfor
mance of the proposed model on larger and more diverse datasets to 
ascertain its scalability and effectiveness across different geographical 
regions and cotton disease populations. 

It is interesting to note that Class 2 was the most challenging to 
distinguish. This suggests that further improvements may be necessary 
in distinguishing between this class and other classes. Additionally, 
environmental factors, such as weather conditions, can result in 
misclassification. Therefore, it is crucial to consider these factors in 
developing and training ML models for crop disease severity assessment. 
The findings of this study emphasise the need for continued research and 
development in improving the accuracy and reliability of ML models for 
crop disease severity assessment. Additionally, further research is 
needed to explore the capabilities of the model and its limitations and to 
optimise its performance for other relevant applications. 

5. Conclusions 

In this study, a hybrid approach combining the strengths of CNNs 
and BiLSTM architectures was leveraged to assess the severity of cotton 
FOV4 disease using UAS images. The results showed that the hybrid 
approach outperformed single architecture or HC feature-based 
methods, indicating the significance of deep learning-based feature 
extraction techniques for complex disease severity evaluation in outdoor 
field conditions. The study also highlighted the effectiveness of the 
BiLSTM model in capturing temporal dependencies among UAS image 
datasets compared to static ML models like SVM, resulting in improved 
disease severity assessment accuracy. The Resnet101-BiLSTM model 
achieved the highest overall accuracy of 89.7%, demonstrating the ef
ficacy of the hybrid CNN-BiLSTM approach in accurately estimating the 
severity of cotton FOV4 disease from UAS images. Furthermore, the 
application of the CORAL approach successfully aligned the distribu
tions and reduced the domain shift, as evidenced by quantitative anal
ysis using GK-MMD values. This alignment of distributions resulted in 
superior performance in classifying cotton diseases in the target domain, 
even when trained and tested on a different dataset. The overall accu
racy of the model with CORAL was 72.7%, highlighting its high 

generalisation capability and practical significance in real-world appli
cations with diverse datasets. In summary, this study demonstrates that 
hybrid CNN-BiLSTM techniques combined with domain adaptation are 
effective for evaluating plant disease severity. Our findings provide a 
strong foundation for future research in this field, leading to the 
development of more effective and efficient disease monitoring and 
management. 
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