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ARTICLE INFO ABSTRACT

Keywords: Currently, deep learning has achieved remarkable success in estimating plant disease from unmanned aerial

Fov4 system (UAS) images. However, two critical challenges remain unexplored: spatiotemporal variations in disease

Spatiotemporal information symptoms and the domain shift between source and target datasets. To overcome these challenges, this paper

Domain adaptation . . . . . . .

Bidirectional long.short term memory prop.oses an apl?roach t1.1at '1nc.orporates temporal. éspects of dl.sease progression using tlm.e ?eﬂe? analysis.

Deep features Spatiotemporal information is integrated by combining convolutional neural networks and bidirectional long-
short term memory (CNN-BiLSTM) to classify the disease into five severity levels. Various feature extraction
methods, including both handcrafted and CNN-based feature extractors, are evaluated. Furthermore, to tackle
the problem of domain shift, a feature-level domain adaptation method is proposed. This method aims to learn
transferable feature representations that remain consistent despite variations between source and target datasets.
This approach enhances the spatiotemporal transferability of the CNN-BiLSTM model, enabling the effective
utilisation of historical datasets. The study demonstrates that the CNN-BiLSTM model outperforms traditional
time-independent machine-learning methods that rely on handcrafted features. Specifically, the Resnet101-
BiLSTM model achieves the highest overall classification accuracy of 89.7% among all tested models evalu-
ated on a one-year dataset. Moreover, it shows superior generalisation with 72.7% accuracy for cross-
spatiotemporal disease severity classification using domain adaptation, as demonstrated through two-year ex-
periments. By reducing the domain shift of source and target datasets and harnessing time series high-resolution
images obtained throughout the crop growing season, this hybrid approach has substantial potential to advance
the assessment of crop disease severity in field conditions.

1. Introduction California, New Mexico, and Texas in the U.S.A., is very aggressive and

can cause significant stand loss virtually every year in infested fields.

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a fungal
pathogen that causes an early-season disease called fusarium wilt where
the fungus invades the root vascular system of plants, leading to wilting,
necrosis, and plant death (Zhang, Abdelraheem, et al., 2022). It is a
soil-borne disease where the fungus can survive in the soil for many
years, making it difficult to control (Zhang, Zhu, et al., 2022). In many
cotton-producing countries, Fusarium wilt (multiple fungal races) cau-
ses significant yield and economic losses for farmers (Blasingame &
Patel, 2013, pp. 1242-1245). However, race 4, which is only found in

Other races of FOV found in the U.S.A., cause damage more sporadically,
and usually to a much lesser degree than FOV4. Other FOV races also
typically cause damage later in the season (45-90 days after planting)
than FOV4 that will kill emerging and young seedlings. Accurate and
timely assessment of fusarium wilt disease caused by FOV4 can help
farmers make informed decisions about preventative measures and
mitigation strategies and can also help plant breeders identify and select
cultivars with resistance or tolerance to the disease (Ulloa et al., 2023;
Zhu et al., 2022). Traditionally, cotton FOV4 disease severity has been
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assessed by visual inspection of plants for symptoms of wilting and root
necrosis (Zhu et al., 2021), which is time-consuming, labour-intensive,
and subjective, leading to potential inconsistencies in disease severity
assessment. Therefore, it is essential to develop more efficient and
reliable methods of assessing FOV4 disease severity.

The rapid advancement of computer vision and machine-learning
(ML) has opened new possibilities for monitoring the health status of
plants and detecting and assessing plant disease severity. Nevertheless,
applying these techniques in outdoor field environments presents sig-
nificant challenges that demand advanced feature extraction techniques
and sophisticated ML classifiers. One approach to using ML for plant
disease severity assessment is to extract handcrafted (HC) features from
images of plants and use these features as input to a classifier. For
instance, Agel et al. (2021) proposed an approach that uses a gray-level
co-occurrence matrix (GLCM) to extract texture features from images,
and these features were passed to an extreme learning machine for plant
disease classification. Similarly, Harakannanavar et al. (2022) applied
wavelet transform, principal component analysis, and GLCM to extract
features from tomato leaves to detect the disease using the support
vector machine (SVM) and k-nearest neighbour (k-NN). Kaur (2021)
presented a ML approach for the classification of plant diseases. The
approach involved utilizing various feature extraction algorithms, such
as local binary pattern, GLCM, shift-invariant feature transform, and
Gabor, to extract features from input images. Several ML classifiers,
namely, SVM, k-NN, artificial neural network, and random forest (RF),
were trained to perform the task of categorizing plant diseases.

However, FOV4 disease symptoms primarily manifest in the roots,
making infection not immediately visible in the plant canopy. This can
result in wilting and necrosis in the above-ground tissues during the later
stages, particularly with susceptible Pima cotton. In such cases, relying
on HC features to detect these symptoms may not be effective for disease
assessment. This is because HC features may need expert knowledge to
identify and extract all the relevant information from an input image.
Alternatively, convolutional neural networks (CNNs) can automatically
learn features from raw pixel data through a process known as convo-
lution. CNNs can learn features in a hierarchical manner, enabling them
to capture more complex and abstract representations of the image. This
makes CNNs flexible and effective for various image-based agricultural
tasks, including disease detection, plant image segmentation (Abdalla
et al., 2019a, 2019b), Abdalla, Cen, Wan, et al., 2019nd nutrient status
diagnosis (Abdalla et al., 2021).

Several studies have reported satisfactory results in identifying
different types of plant diseases using CNNs (Bao et al., 2022; Borhani
et al., 2022; Krizhevsky, Sutskever, & Hinton, 2012; Nawaz et al., 2022;
Qian et al., 2022). These studies have demonstrated that CNNs can be
trained to recognise specific patterns of damage, such as leaf spots,
wilting, or discoloration, which can help identify the type of disease
with high accuracy. In contrast, accurate assessment of disease severity
can be challenging because it involves quantifying the degree of damage
caused by the disease on the plant, which requires a more detailed
analysis of the overall condition of plants, including the extent and
severity of symptoms, disease progression, and the impact on plant
growth (Shi et al., 2023). This can make it difficult to accurately identify
and quantify the severity of a disease using CNNs. An automatic method
for assessing the severity of plant diseases using CNNs was first proposed
by Wang et al. (2017). They employed various CNN models to classify
images of apple black rot into four levels of severity and obtained an
overall accuracy of 90.4%, suggesting that CNNs have great potential for
fully automating the classification of plant disease severity. In a recent
study by Patil et al. (2023), a CNN-based approach was used to estimate
the severity of three rice diseases (brown spot, blast, and bacterial
blight). The authors manually annotated a dataset of images of diseased
leaves with disease zones and trained a CNN to predict the severity scale
of a given image. Similarly, Divyanth et al. (2022) developed a deep
learning model to categorise images of pea roots into three groups based
on the severity of Aphanomyces root rot disease. The disease severity
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was rated using a scale ranging from 0.0 to 5.0, which was determined
by visually examining root discoloration and the softness of the hypo-
cotyl. In another study, Verma et al. (2022) proposed a method for
accurately detecting the severity of late blight disease in tomato crops
using deep learning techniques. The method combined squeeze and
excitation networks with capsule networks to improve feature compu-
tation and classification accuracy. The proposed approach achieved high
accuracy measures and is robust with noisy datasets.

Current CNN-based disease severity estimation methods rely on
ground-based images, such as PlantVillage datasets (Hughes & Salathé,
2015), or images acquired under controlled environments (Esgario
et al., 2020), which may not capture spatiotemporal changes that occur
in crop diseases. To overcome this limitation, unmanned aerial systems
(UASs) have been found to provide a more comprehensive view of crops,
enabling deep learning models to capture spatial and temporal varia-
tions (Bouguettaya et al., 2023). By combining UASs with deep learning,
automated disease severity assessment can be achieved, reducing the
need for human intervention and enabling quicker and more accurate
decisions. However, models trained on controlled images may have
reduced accuracy when used to predict images collected under natural
environments (Thapa et al., 2020; Zeng et al., 2018, pp. 1-5).

FOV4 root disease manifests differently depending on the growth
stage of the plant canopy, with unique symptom sets exhibited by
different developmental stages. For example, younger plants may
display stunted growth, yellowing leaves, and wilting, while older plants
may exhibit chlorosis, browning of vascular tissue, and defoliation. As
such, the severity and presentation of FOV4 root disease is highly
influenced by the plant growth stage (Zhu et al., 2023). Although CNNs
have demonstrated excellent performance in detecting plant disease
symptoms from images, they may not be suitable for capturing temporal
dependencies in disease progression over time. On the other hand,
bidirectional long short-term memory (BiLSTM) networks have
demonstrated great potential for analyzing dynamic systems in various
applications, such as fault diagnosis in water management systems (Liu
etal., 2019), medical imaging processing (Hwang et al., 2022) and mood
recognition (Son, 2017). The BiLSTM has the ability to remember in-
formation over long periods of time, making it well-suited for modeling
time-series data. In a study conducted by Criséstomo de Castro Filho
et al. (2020), the application of time-series analysis in agricultural im-
aging was investigated. The study utilised both long short-term memory
(LSTM) and BiLSTM models for crop classification, and the results
revealed that the BiLSTM model was the most effective. To date, BILSTM
has not yet been applied to assess plant disease severity levels. The
hypothesis of this study is that BiLSTM can effectively capture temporal
changes in disease severity over time.

Despite the success of BiLSTM models, their performance may be
hindered when they are trained solely on the source domain, as their
ability to generalise to the target domain, characterised by dissimilar
data distributions, can be compromised. This phenomenon, known as
domain shift, arises due to a range of factors, including variations in field
conditions, crop phenology, and agricultural management practices.
Such diversities across domains make it challenging to develop deep
learning models capable of effectively generalising across diverse real-
world scenarios. Consequently, the manifestation and severity of dis-
eases may vary significantly in different agricultural management
contexts.

The main objective of this study is to develop an effective deep
learning time series model to predict the severity of cotton FOV4 disease
accurately and efficiently from UAS images. The main contributions of
this article are as follows. Firstly, to investigate the effectiveness of
different CNN-based feature extractors in comparison to traditional
handcrafted (HC) features for describing the visual symptoms associated
with FOV4 disease in UAS images. Secondly, to monitor the progression
of the disease in cotton plants, the BILSTM model was employed. This
model is designed to capture temporal dependencies within UAS images
by processing data in both forward and backward directions, facilitating



A. Abdalla et al.

a more comprehensive understanding of the disease development over
time. Lastly, to address the challenge of domain shift and enhance the
generalisation capability of the proposed model, a domain adaptation
technique is introduced to improve the transferability of feature repre-
sentations across diverse datasets. The proposed approach shows
promise in providing more accurate and consistent disease severity es-
timates, reducing manual inspections, and enabling efficient crop
management practices.

2. Materials and methods
2.1. Experimental site and image acquisition

An experiment was carried out during the summer seasons of 2020
and 2021 at a commercial field located 10 km northwest of Fabens,
Texas (31°31'42.03" N and 106°11'42.76" W, Fig. 1). This region has an
arid to semi-arid climate with hot summers, warm and dry winters, and
low precipitation. Soil classification information was obtained from the
NRCS Soil Survey Geographic Database (SSURGO). The soils in this field
are dominated by the Glendale silty clay (Fine-silty, mixed, superactive,
calcareous, thermic Typic Torrifluvents), approximately 90% of the area
on the north side of the field. On the south side, the soil is Harkey silty
clay loam (Coarse-silty, mixed, superactive, calcareous, thermic Typic
Torrifluvents). The surface texture of this soil is very fine sandy loam.

The field was known to be infested with FOV4 and had been in test
plots since 2018. The field was planted on May 4th in both 2020 and
2021. The experiment was implemented using a randomised complete
block design with three replications. Plots were one row wide (1 m
centres), 4.88 m in length, with a 1.21 m alley between blocks.
Throughout the experiment, surface irrigation was employed, starting
from three weeks prior to the planting date, and then from mid-June
onwards at approximately 3 weeks intervals until September.

A DJI Phantom Pro 4 (DJI Technology Co., Ltd., Shenzhen, Guang-
dong, China) UAS was employed to acquire high-resolution images. The
camera on this UAS has a focal length of 35 mm and an aperture range
between f/2.8 and f/11. The camera captured RGB images at a resolu-
tion of 5472 x 3078 pixels at a height of 25 m with 80% front and side
overlaps. In 2020, images were acquired on June 10, July 1, July 29, and
August 31, 2020. In 2021, images were acquired on June 9, July 1,
August 2, and September 28, 2021 (Table 1). An automated flight plan
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Fig. 1. Location of the experimental field near Fabens, Texas (indicated by star
in the state map of Texas), and a sample UAS image of the field captured on
July 29, 2020.
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Table 1
UAS image datasets obtained from a field near Fabens, Texas, in 2020 and 2021.
Year Sampling date No. of plots Total
2020 06/10 741 2964
07/01 741
07/29 741
08/31 741
2021 06/09 240 720
08/02 240
09/28 240

was created using a pre-prepared shapefile made in Pix4Dcapture, and
the flight duration was approximately 15 min. Ground control panels
were placed at 12 locations within the field for georeferencing images
during each flight. The raw UAS images were stitched using Pix4D-
mapper (Version 4.3.3, Pix4D, Lausanne, Switzerland). A polygon
shapefile was created and overlaid on each stitched image, with each
polygon representing a plot of a genotype entry. This shapefile was then
used to clip the images into individual plot images, such that each plot
was saved as a file in the jpg format. The total number of sample images
corresponding to the number of plots and the dates of image acquisition
for the two-year experiment are summarised in Table 1.

2.2. FOV4 disease severity rating and image labeling

The process of image labeling was based on the severity of plant
disease at the plot level. Each plot was assigned a label ranging from 1 to
5, reflecting the level of disease severity in the plants. To assess the
severity of FOV4 disease in cotton plants, a qualitative evaluation of the
root systems from the plots was performed after the cotton had been
harvested on December 14-15, 2020, and December 8-10, 2021. The
damage to the vascular system of roots was cumulative and could be
observed as early as late June. However, end-of-season ratings provide a
maximum estimate of the damage that developed throughout the sea-
son. The taproots were excavated and subsequently sectioned down the
centre to expose the vascular system. The root ratings followed a scale
ranging from 0 to 5, with 0 indicating no discoloration of the root centre,
1 indicating limited discoloration that did not run the length of the
taproot, 2 representing discoloration that is relatively narrow in width
but runs the length of the root system core, and 3 to 4, which is similar to
a 2 but with progressively wider discoloration across the vascular sys-
tem, and 5 indicating a dead taproot. To determine the disease severity
of each lot, five root samples were rated and the average score was
obtained from the samples. Class 5 had few samples and was combined
with class 4 to train the deep learning model, which requires a large
dataset for each class. Additionally, the UAS images of the plots were
labeled and categorised according to the disease severity scale assigned
to each plot.

2.3. Data pre-processing

Several pre-processing techniques were employed to prepare the
images before feeding them to the final prediction model. Image seg-
mentation, which separates the plant canopy from the soil background,
was a critical step in this process. To achieve this, an encoder model
based on VGG16 was utilised, as described in the work of Abdalla, Cen,
Wan, et al. (2019). Fig. 2 depicts examples of segmented images at each
imaging time and the corresponding FOV4 disease severity. In addition,
the 2020 and 2021 datasets presented a class imbalance, with the mild
class having a substantially higher number of instances than the other
classes. This imbalance posed a challenge in generating effective
learning patterns in the less frequent classes and could lead to poor
performance when predicting samples from those classes. To address
this issue, median frequency balancing was employed, as proposed by
Eigen and Fergus (2015, pp. 2650-2658). This technique involves
adjusting the weights in the cross-entropy loss function to account for
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Fig. 2. Sequences of images that depict the growth stages of the cotton canopy at different times. Each image represents the severity of FOV4 disease at the respective

time point.

class imbalances. The weight assigned to each image for a given class c is
determined by the formula:

__median frequency
frequency (c)

Here, frequency (c) is the frequency of class c, calculated as the
number of images of class ¢ divided by the total number of images. The
term median frequency represents the median of these frequencies across
all classes. By employing this technique, the loss function is weighted in
a manner that gives more emphasis to classes that are under-represented
in the dataset. This is achieved by increasing the loss contribution of less

frequent classes during training.
2.4. CNN-BILSTM for disease severity classification

The proposed hybrid CNN-BiLSTM approach for assessing disease
severity involved a multi-step process. Firstly, CNNs were employed to
extract features from the pre-processed images. These features were then
fed into a BiLSTM network that was responsible for analyzing the
sequence of features over time and predicting the severity of the disease.
Fig. 3 illustrates how this approach combined the strengths of CNNs and
the sequential BiLSTM model to achieve an accurate assessment of
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Fig. 3. A schematic of a domain adaptation model for time-series data using deep learning. (A) The domain adaptation process using a Gaussian kernel-based
maximum mean discrepancy (GK-MMD) to align the feature distributions of the source domain %) and target domain x"). (B) outlines a convolutional neural
network (CNN) feature extraction (x.) followed by a bidirectional long short-term memory (BiLSTM) network for processing sequential data. (C) illustrates the
internal structure of a single LSTM unit, including the input gate (i,), forget gate (f,), output gate (0,), the previous cell state (C,.;), the current cell state (C), the

previous hidden state (h.;), and the current hidden state (hy).
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disease severity based on the distribution and progression of symptoms
over time. The following provides a more detailed explanation of each
step.

2.4.1. Feature extraction using CNNs

CNNs are powerful tools for extracting informative and efficient
features from images through fine-tuning of pretrained models. To
determine the most appropriate CNN architecture to extract features
from pre-processed images, a comparative analysis of the performance
of five popular pretrained models, namely Alexnet ((Krizhevsky et al.,
2012), Inceptionv3 (Szegedy et al., 2016, pp. 2818-2826), VGG
(Simonyan & Zisserman, 2015), Resnetl8, and ResNet101 (He et al.,
2016, pp. 770-778) was conducted. These networks were modified by
replacing their final classification layers with five neurons to classify
UAS images into five FOV4 disease severity classes. A transfer learning
approach was employed that fine-tuned the weights of pretrained
models, using a stochastic gradient descent optimiser with a learning
rate of 0.0005, a momentum of 0.09, and a mini-batch size of 40 images
to optimise the model parameters. The training was stopped after a
maximum of 10 epochs or when there was no improvement in validation
loss over four consecutive epochs. These features were extracted from
the last fully connected layers of the CNN model and utilised as input for
the BiLSTM network in a sequential manner, as described in section
2.4.2. It is important to note that, in this stage, the CNN architectures
were only utilised to extract features and did not incorporate the tem-
poral aspect of the image datasets or the potential temporal correlations,
which were incorporated in the subsequent step using a BILSTM model.

2.4.2. Feature-level domain adaptation

Domain adaptation plays a critical role in training models on a
source domain and deploying them on a target domain, where the un-
derlying data distributions may exhibit dissimilarities. Let’s consider a
source domain feature denoted as X; = [X;s1, Xs2, -..,Xsn], consisting of n
samples, and a target domain feature denoted as X; = [xy1, Xt2, ..., Xtml,
consisting of m samples. These features are characterised by probability
distributions P and Q, respectively. Notably, P # Q due to environmental
conditions and variations in crop phenology. Consequently, a model
trained on the dataset X; exhibits reduced performance when directly
applied to the dataset from X;. To quantitatively measure the dissimi-
larity between the distributions P and Q, Gaussian kernel-based
maximum mean discrepancy (GK-MMD) is employed within a repro-
ducing kernel Hilbert space (RKHS). The fundamental principle behind
GK-MMD is rooted in the notion that if P and Q are identical, then the
expected value of any function computed from samples drawn from
these distributions should be equal. Given samples generated indepen-
dently from P and Q, the GK-MMD can be calculated using the following
Eq. (1)

1 1

2
GK — MMD(P, Q) = ‘m Zi#k(xmxv) +mzi#k(xmxzi) _%Zuk(xmxfj)

The first term in the equation represents the mean kernel value be-
tween samples from P; the second term represents the mean kernel value
between samples from Q, and the third represents the mean kernel value
between samples from P and Q. The kernel k is the positive definite
kernel function that defines the RKHS associated with the distributions.
The choice of the kernel function depends on the problem at hand and
the characteristics of the data. This study employed a Gaussian kernel as
one of the most widely used kernel functions. It is defined as:
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Where ||Xs-X;|| represents the Euclidean distance, and ¢ is the band-
width parameter controlling the width of the kernel.

By utilizing the GK-MMD, the dissimilarity between the source and
target domains can be precisely quantified, enabling effective domain
adaptation to address the performance degradation observed when
directly applying models trained on X; to X;

To mitigate the domain shift and reduce the dissimilarity between
the source and target domains, a feature-level domain adaptation
approach called correlation alignment (CORAL) is proposed. The pri-
mary objective of CORAL is to enhance the transferability of feature
representations across diverse datasets by aligning the second-order
statistics or covariances of the source and target domains, denoted as
Cs and Gy, respectively. Given the source domain features X; and target
domain features X;, CORAL aims to transform the source domain fea-
tures (X;) to reduce the domain shift and align them with the target
domain (Xy), using Egs. (3)-(5).

X = (X, — p,) x DyD; + 1, 3
D,=(C,+ A1)} ?

Where X¢® represents the CORAL-transformed source domain samples,
us and u, denote the mean vectors of X; and X,, respectively, Ds is the
square root of the inverse of the source domain covariance matrix plus a
regularization term (in this study A = 1e-2) added to avoid singularities,
and \/Ct represents the square root of the target domain covariance
matrix, and I represents the identity matrix which has the same size as
C,. By applying this transformation, the aim is to align the second-order
statistics of the source and target domains, enabling the learning of more
transferable feature representations that effectively bridge the gap be-
tween different datasets. The effectiveness of CORAL is demonstrated
through experimental evaluations, i.e., CNN-BiLSTM trained on one
dataset (source domain) and tested on another dataset (target domain)
before and after applying CORAL, illustrating its potential for mitigating
the effects of domain shift.

2.4.3. BILSTM model

To classify sequential images of the cotton plots based on disease
severity and to account for temporal aspects, the BiLSTM network was
utilised. The BiLSTM network is a type of recurrent neural network
(RNN) that incorporates two LSTM units. One of the LSTM units pro-
cesses the input sequence in the forward direction, while the other

@

H

processes it in the backward direction, followed by concatenating their
outputs at each time step. This design allows BiLSTM to update the cell
state using both past and future time steps. The LSTM architecture was
originally proposed by Hochreiter and Schmidhuber (1997) to address
the problems of vanishing and exploding gradients encountered in
traditional RNN. The LSTM overcomes these issues by introducing a
gating mechanism and memory cells in the hidden layers of the network,
which enhances its memory and storage capabilities. As shown in
Fig. 3C, each LSTM unit has a cell state (c) and a hidden state (output
state, h), which are controlled by four gates: forget gate (f), candidate
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gate (g), input gate (i), and output gate (0). These gates concatenate the
input of the current time step (x;) with the hidden state of the previous
time step (h;.1). The forget gate determines which information to discard
from the cell state, while the input and candidate gates decide what new
information should be stored in the cell state. The output gate de-
termines what information should be passed to the next time step.

Extracted features can be mathematically represented by a vector D
composed of a cell array containing T time steps. Each time step within
this vector is represented by a matrix Xr with dimensions of (N, M),
where N represents the total number of instances and M represents the
number of features for a given instance. The values within each element
of this vector denote the specific feature value at a particular time step
for a given instance. To train the BiLSTM model on these features, an
end-to-end backpropagation strategy is employed, using cross-entropy
loss as the loss function. After training, the final hidden state, h.s, en-
codes the most important information for sequential data. The h; is
utilised as a representative vector, which is transformed into a vector of
the same length as the number of classes using a fully connected layer. A
softmax layer is then attached to the end of the BiLSTM, with the number
of neurons in the softmax layer set to match the number of classes. This
ensures that the output of the model is compatible with the classification
task.

To comprehensively assess the efficacy of the proposed framework,
three separate evaluations were conducted. The first evaluation
involved randomly dividing the features extracted from the 2020 data-
set, which consists of 2,964 images, using a 70:30 ratio for training and
testing, respectively. This means that 2,075 images were used for
training and 889 images for testing. The second evaluation aimed to
demonstrate the generalisation ability of the model to new data by
training it on the features extracted from the complete 2020 dataset
(2,964 images) and testing it on the features derived from the entire
2021 dataset, comprising 720 images. The third evaluation involved
comparing the performance of this framework with other ML methods.
These evaluations were conducted to demonstrate the effectiveness and
superiority of the proposed approach. The frameworks were imple-
mented in MATLAB R2023a (MathWorks, Inc., Natick, MA, USA) on an
NVIDIA Quadro M5000 GPU with 2048 CUDA Cores and memory of 8
GB GDDRS5.

2.5. Hand-crafted features

HC features refer to manually selected visual attributes of the plant
canopy, which are used to estimate the severity of the disease. Typically,
these features are identified by domain experts with specialised
knowledge of plant diseases. In this study, three HC features were
extracted from segmented images, including vegetation fraction, color,
and texture. The vegetation fraction was calculated by determining the
ratio of canopy pixels to the total number of image pixels, expressed as a
percentage. Tthe average of the red, green, and blue color intensities
from the segmented images were computed. Additionally, four textural
features were extracted using the GLCM, namely energy, homogeneity,
contrast, and entropy. To create high-dimensional HC features, the
textural, vegetation fraction, and color features were combined. These
HC features were then compared with deep learning-based features to
assess their efficacy in classification models.

2.6. Performance evaluation of the proposed method

A study was conducted to evaluate the impact of image segmentation
as a pre-processing step in FOV4 cotton disease assessment. Addition-
ally, the study compared the performance of several pre-trained CNN
architectures (Alexnet, Inceptionv3, VGG, Resnet) to determine the most
suitable deep CNN for feature extraction. To assess the contribution of
deep features in evaluating FOV4 disease severity in cotton plants, they
were compared with well-known high-dimensional HC features. The
effectiveness of the feature extractors was evaluated visually by
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projecting high-dimensional features into three dimensions using t-
distributed stochastic neighbour embedding (t-SNE) (Van der Maaten &
Hinton, 2008). Additionally, the proposed time-series model, BiLSTM,
was compared with a well-known standard SVM to highlight its capa-
bility in understanding the temporal relationships in the datasets. The
best model configuration was then combined with domain adaptation
CORAL and utilised to test the generalisation capability and reliability of
the proposed framework. For this purpose, the classification model was
trained on the entire dataset of 2020 and evaluated on the dataset of
2021.

To evaluate the performance of the competing methods, evaluation
metrics including accuracy (Ac), precision (Pr), recall (Re), and F-score
(Fs) were used. The prediction time (PT) of deep learning models was
also compared since they were intended for real-time application. The
PT of hybrid models, such as CNN-BiLSTM and CNN-SVM, was measured
for both classification and feature extraction processes. For single
models, such as CNN, and HC feature-based BiLSTM or SVM, only the PT
for classification was measured since no feature extraction process was
incorporated, and the time required for calculating HC features was
negligible. The training time required for all network implementations
was not considered in this study, as it can be conducted offline and may
not need to be frequently repeated.

3. Results
3.1. Impact of image segmentation on the prediction accuracy

Image segmentation was found to be a crucial pre-processing step in
accurately estimating plant disease severity, as it noticeably impacted
the performance of different learning models (Table 2). It should be
noted that the effect of segmentation varied across the models used, but
in general, it was found to enhance the performance of the tested models
when compared using different performance metrics. For instance,
CNNs, commonly used for image classification, were particularly effec-
tive for plant disease detection when segmentation was applied. Other
models, such as BiLSTM and SVM, also benefited from the use of seg-
mentation. This is because segmentation can improve the extraction of
relevant features from the image, leading to more robust and accurate
predictions. By eliminating the irrelevant background information and
focusing on the plants, segmentation not only enhances the feature
extraction process but also improves the accuracy of disease severity
predictions. For the subsequent discussions, focus will only be on the
model that incorporated image segmentation as a pre-processing step.

3.2. Training and validation processes

The training and validation loss and accuracy of six models are
shown in Fig. 4. The results showed that the training accuracy of the
models fluctuated to a certain extent. Models A, B, C, D, and E achieved
high accuracy on both the training and validation sets. Among the
models, model E (Resnet101-BiLSTM) achieved the highest accuracy on
the validation set, and it was relatively stable compared to the other
models. The stability in the training accuracy and losses was observed to
have an impact on the final predicted outputs of the model (Table 2).
However, it was observed that model E exhibited overfitting behavior,
as the validation loss started to increase after 150 iterations while the
training loss kept decreasing. This indicated that the model that used HC
features did not generalise well to unseen data and provided lower
training and validation accuracy compared to BILSTM models that relied
on deep learning-based features. This phenomenon could be explained
by the lowest level of discriminability of HC features between each class
(Fig. 4F).

3.3. Visualizing features extracted from CNN using t-SNE

An evaluation was conducted to assess the discriminability of
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Table 2
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Performance comparison of various classification models for assessing FOV4 cotton disease severity. The best performances are highlighted in bold. The metrics
include Ac for accuracy, Pr for precision, Re for recall, Fs for the F-score, and PT for prediction time.

Feature extractor Classifier Original images Segmented images PT (sec/image)
Ac (%) Pr (%) Re (%) Fs (%) Ac (%) Pr (%) Re (%) Fs (%)
Alexnet BiLSTM 58.7 65.7 65.3 65.5 73.1 76.5 75.7 76.1 0.10
Inceptionv3 61.9 61.7 71.8 66.4 74.8 82.0 71.2 76.2 0.14
Mobilenetv2 69.2 70.6 72.1 71.4 77.1 91.2 81.1 85.8 0.13
Resnet18 77.3 81.8 82.6 82.2 86.7 93.1 93.4 93.3 0.11
Resnet101 81.8 86.0 86.1 86.0 89.7 87.5 87.9 87.7 0.13
HC 39.6 52.6 50.0 51.3 41.5 65.2 71.0 68.0 0.15
Alexnet SVM 44.7 55.9 84.9 67.4 50.6 56.4 79.2 65.9 0.10
Inceptionv3 43.6 54.9 77.4 64.2 50.7 57.2 78.5 66.1 0.16
Mobilenetv2 45.4 57.0 82.9 67.6 56.5 63.5 83.8 72.2 0.14
Resnet18 53.2 65.2 85.6 74.0 65.6 72.1 85.4 78.2 0.10
Resnet101 60.9 66.3 86.9 75.2 74.5 74.5 89.4 81.2 0.14
HC 24.9 44.3 77.7 56.5 27.9 47.2 45.4 46.3 0.18
Alexnet 27.0 32.2 27.2 29.5 30.3 26.2 45.8 33.4 0.02
Inceptionv3 35.1 50.0 50.1 50.1 35.8 33.3 31.5 32.4 0.08
Mobilenetv2 23.7 28.3 18.5 22.4 31.4 31.1 30.2 30.7 0.04
Resnet18 25.7 16.0 29.2 20.6 30.1 51.3 39.6 44.7 0.04
Resnet101 27.1 17.9 33.3 23.3 33.7 20.3 50.3 28.9 0.11
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Fig. 4. Training progress of five different models ((A) Alexnet-BiLSTM, (B) Inceptionv3-BiLSTM, (C) VGG16-BiLSTM, (D) Resnet18-BiLSTM, (E)
ResNet101-BiLSTM, and (F) HC-BiLSTM) on the 2020 dataset, as measured by training accuracy (TAccuracy), validation accuracy (VAccuracy) training loss (TLoss),

and validation loss (VLoss) metrics over the course of training.

features extracted from different layers of several CNN architectures,
namely AlexNet, Inceptionv3, VGG16, VGG19, ResNetl8, and
ResNet101. The analysis focused on the early max pooling layer, final
convolutional layer, and softmax layer of each architecture. The most
effective layer for distinguishing between different classes was identified
by utilizing a t-SNE-based visualisation technique in a three-dimensional
feature space. The results of the study revealed that the features
extracted from the final convolutional layer of ResNet101 exhibited the
highest level of discriminability (Fig. 5F, last column). This finding
suggests that the deeper architecture of ResNet101 captured more
discriminative information, enabling improved differentiation between
classes. Consequently, selecting the appropriate layer for feature
extraction was crucial in deep learning models, with the final convolu-
tional layer of ResNet101 showing particular promise in achieving high
discriminability. It was also observed that AlexNet, one of the early deep
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learning architectures, demonstrated competitive performance in the
analysis. This can be attributed to its successful application in various
image classification tasks and its ability to extract meaningful features at
different layers. However, compared to ResNet101, AlexNet has a rela-
tively shallower structure, potentially limiting its capacity to model
complex patterns and intricate details. Inceptionv3, known for its
inception modules and auxiliary classifiers, also performed well in the
experiments. The capability of architecture to capture multi-scale fea-
tures through its inception modules facilitates effective representation
learning. Although Inceptionv3 did not surpass ResNet101 in this study,
its strong performance suggests its suitability for tasks where multi-scale
information is crucial. The VGG architectures (VGG16 and VGG19) have
a simple and uniform structure comprising repeated convolutional
layers. While VGG16 and VGG19 did not exhibit the same level of dis-
criminability as ResNet101 in this study, they have been extensively
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Fig. 5. t-SNE maps of six different feature extraction methods: (A) Alexnet, (B) Inceptionv3, (C) VGG16, (D) VGG19, (E) Resnet18, and (F) Resnet101. The features
were extracted from the early max pooling layer, final convolutional layer, and softmax layer of each architecture.

utilised in various image classification tasks due to their simplicity and
interpretability. The VGG architectures are often preferred when
computational resources are limited or when interpretability is a key
consideration. ResNet18, despite being a shallower version of ResNet,
demonstrated notable performance in this analysis. Although it may not
capture intricate details as effectively as ResNet101, ResNet18 can be a
suitable choice for tasks where a balance between model complexity and
computational efficiency is desired. Generally, the findings emphasised
the critical role of selecting the appropriate CNN architecture for feature
extraction and discriminability.

To gain a better understanding of the role of deep features in
assessing the FOV4 cotton disease, a comparative experiment and
quantitative analysis was conducted based on four performance metrics:
Ac, Pr, Re, and Fs. Despite efforts to incorporate many HC descriptors,
the deep feature-based models outperformed the classification models
that relied on these descriptors (as shown in Table 2). Specifically, when
the HC features were replaced with deep features in the same classifi-
cation model (i.e., Resnet101-BiLSTM), substantial improvements were
observed in Ac, Pr, Re, and Fs, by 116.3%, 34.3%, 23.8%, and 29.0%,
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respectively. These findings demonstrated the effectiveness of deep
features for image classification, which was also supported by the t-SNE
visualisation analysis as shown in Fig. 5.

3.4. Traditional machine-learning versus BiLSTM

This study also investigated the importance of considering temporal
dependence in the analysis of UAS image datasets for FOV4 cotton dis-
ease severity assessment. To this end, the performance of the BiLSTM
model was compared with a static ML model, specifically an SVM, for
assessing the severity of FOV4 cotton disease. The results indicated that
the BiLSTM model outperformed the SVM in all classification metrics,
regardless of the type of features used as input. The Resnet101-BiLSTM
model achieved the highest Ac of 89.7%, Pr of 87.5%, Re of 87.9%, and
Fs of 87.7% among all models tested. In contrsast, the HC-SVM model
exhibited the lowest Ac of 27.9%, Pr of 47.2%, Re of 45.4%, and Fs of
46.3%. The reported results were based on an average performance of
over 10 different experimental dataset executions, with the training and
testing sets randomly selected each time. The findings of this study
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suggest that the proposed BiLSTM model is highly effective for assessing
the severity of FOV4 cotton disease and holds significant potential as a
valuable tool for disease assessment.

Furthermore, the impact of using a pure CNN-based classifier was
evaluated and compared to an approach with BiLSTM to capture tem-
poral information in the image datasets. It was found that the use of a
pure CNN-based classifier (i.e., Resnet101) without a sequence learning
module resulted in a lower classification Ac of 33.7% compared to the
approach with BiLSTM. The study highlights the significance of
considering temporal dependence in the analysis of image datasets for
disease severity assessment, particularly in cases where plant disease
evolves over time. The findings suggested that the proposed BiLSTM
model was a highly effective tool for assessing the severity of FOV4
cotton disease, which has significant potential for disease assessment.

3.5. Domain adaptation and generalisation capabilities of the proposed
model

Fig. 6 presents a quantitative analysis of the distributions before and
after CORAL transformation. The results of applying the CORAL tech-
nique to the source and target domains are promising, as evidenced by
the observed reduction in the dissimilarity between their distributions.
Prior to applying CORAL, the normal distributions of the two domains
exhibited noticeable disparities, suggesting a pronounced domain shift
(Fig. 6A). However, after the CORAL transformation, the distributions of
the source and target domains became more aligned, suggesting a suc-
cessful reduction in the domain shift (Fig. 6B). GK-MMD values were
calculated as a measure of dissimilarity between the distributions. A
comparison of the GK-MMD values before and after applying CORAL
(0.221 and 0.075, respectively) indicated a substantial reduction in the
domain shift after applying CORAL.

To further investigate the impact of reduced distribution differences
between domains on the generalisation capabilities of the proposed
model, experiments were conducted to evaluate the performance of the
ResNet101-BiLSTM models trained on the source domain (2020 dataset)
and tested on the target domain (2021 dataset), both with and without
CORAL. As shown in Fig. 7, the results revealed that the ResNet101-
BiLSTM model with CORAL exhibited superior generalisation perfor-
mance compared to the model without CORAL. The model with CORAL
achieved an Ac of 72.7%, Pr of 75.2%, Re of 77.8%, and Fs of 76.5%.
These metrics indicated that the model with CORAL was able to accu-
rately classify the severity levels of cotton diseases in the target domain,
even though it was trained on data from a different year. This finding has
significant implications for real-world applications, where deploying a
model trained on one dataset to classify instances in a different dataset is
a common scenario.

To further assess the implications of the reduced distribution
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Fig. 7. The cross-domains performance results of a model that was trained on
the 2020 dataset and tested on the 2021 dataset. The metrics include Ac
standing for accuracy, Pr for precision, Re for recall, and Fs for the F-score.

difference between the two domains on the generalisation capabilities of
the proposed model, a receiver operating characteristic (ROC) curve
analysis was performed that compared the performance of ResNet101-
BiLSTM models with (Fig. 8A) and without (Fig. 8B) domain adapta-
tion using CORAL. The results, as demonstrated by the ROC curve
analysis, showed that the ResNet101-BiLSTM model with CORAL ach-
ieved a superior generalisation performance. This is supported by the
higher area under the ROC curve obtained for the model with CORAL
compared to the model without CORAL, indicating improved classifi-
cation performance across the severity levels of cotton diseases in the
target domain. Nonetheless, a relatively lower AUC was observed for
Class 2; this may be attributed to inherent complexities associated with
distinguishing this class, imbalanced class distribution, and limited
training samples.

4. Discussion

Assessing the severity of FOV4 cotton disease from UAS images is a
complex task that requires advanced techniques capable of capturing
temporal and spatial variations in disease symptoms. Temporal varia-
tions arise due to disease progression over time, which can take several
days to fully manifest, and capturing these variations is crucial for ac-
curate disease severity assessment. Spatial variations occur due to the
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Fig. 6. Comparison of normal distributions of the source and target domains before (A) and after (B) applying the correlation alignment (CORAL) technique.
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Fig. 8. Receiver operating characteristic (ROC) curve analysis comparing the performance of ResNet101-BiLSTM models with (A) and without (B) domain adap-

tation using CORAL.

disease affecting different parts of the cotton plant, making it chal-
lenging to assess disease severity accurately. Consequently, a sophisti-
cated technique that combined CNNs, BiLSTM, and UAS images was
developed in this study to overcome these challenges. It was shown that
the combination of these techniques can lead to a more accurate disease
severity assessment than using any single technique alone. CNNs are
good at extracting features from images, while BiLSTM networks can
capture temporal dependencies in the data. Using both techniques
together can help capture both spatial and temporal information from
the images, leading to better accuracy. To the best of the athours’
knowledge, this is the first research to leverage the strength of both CNN
and BiLSTM to exploit both spatial and temporal information from the
UAS images to estimate the FOV4 disease severity.

Current state-of-the-art methods employed for disease detection and
classification can be categorised into two categories: classical CNN
frameworks and CNN-based feature extraction coupled with traditional
ML models. The first category includes the use of pretrained CNN models
like VGG, DenseNet, InceptionV3, and various versions of ResNet, as
introduced in studies by Haque et al. (2022) and Tang et al. (2023). The
second category focuses on using CNN only for feature extraction, fol-
lowed by the application of traditional ML models, as demonstrated in
research by Saeed et al. (2021). This study presented a comparative
analysis of these methods. In Table 2 of the study, the proposed
approach, which integrated various feature extractors, was first
compared with BiLSTM. The second part of the table examines the most
prevalent CNN-based feature extraction methods combined with tradi-
tional ML models (e.g., SVM), while the final section compares classical
CNN frameworks.

To support the claim of advancements being made by CNNs to
identify complex symptom patterns of FOV4 disease, this study
compared the effectiveness of CNN-based deep features with traditional
HC feature extraction methods. The findings revealed that CNN-based
deep features outperformed HC features in terms of capturing intricate
patterns in plant images. As a result, the CNN-based approach was more
effective at accurately assessing disease severity. This finding has sig-
nificant implications, as it suggests that CNNs offer a more efficient and
accurate approach to assessing plant disease severity compared to
traditional HC feature extraction methods. The reason for this is that
CNNs can automatically learn discriminative features directly from raw
input data. This eliminates the need for manual feature engineering and
makes the method more robust to variations in illumination conditions
and image scale. By leveraging CNN-based deep features, human error
can be reduced and classification accuracy improved, which is crucial
for the efficient detection and monitoring of plant diseases in field
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conditions. This study identified ResNet101 as the most effective CNN-
based feature extraction method among those tested. This model
demonstrated the highest degree of discriminability and was more
effective than traditional HC features in detecting FOV4 disease severity.
This finding is consistent with previous research that has demonstrated
the effectiveness of ResNetlOl in various computer vision tasks,
including object recognition and segmentation. To further confirm the
claim of improvements being made by using CNN, it is necessary to
compare various deep learning techniques. However, it may not be
appropriate to associate the previously reported methods with the cur-
rent study as they have primarily been utilised to predict diseases from
images captured under controlled conditions or using ground-based
platforms (Chen et al., 2020; Haque et al., 2022; Saeed et al., 2021),
which may not accurately capture subtle changes in disease symptoms.
By leveraging UAS images in conjunction with CNN and BiLSTM models,
this study can offer a more comprehensive understanding of crops than
conventional ground-based methods. UAS images, which have
high-resolution capabilities, can capture nuanced changes in crops that
may go unnoticed by the human eye or proximal sensing techniques.
Maes and Steppe (2019) also reported that high-resolution time-series
UAS imagery, when combined with deep learning, can automate disease
severity assessment, reducing the need for human intervention and
enabling quicker and more accurate decisions.

While CNNs have demonstrated proficiency in extracting features
from images, they lack the ability to capture the temporal dynamics of
disease progression over time. This observation motivated us to incor-
porate BiLSTM model that considers multiple growth stages to address
this limitation. The results of the comparison suggest that the BiLSTM
model is a more effective approach than the SVM model for FOV4 dis-
ease severity detection, particularly when using deep learning-based
features. The BiLSTM model consistently outperformed the SVM
model in all classification metrics, regardless of the type of features used.
This is because the BiLSTM captures the temporal dependencies within
the UAS images, enabling the model to track the progression of the
disease over time. This is critical as FOV4 disease severity can vary over
time, and an accurate assessment of disease severity requires monitoring
the temporal changes in the disease symptoms. In contrast, the SVM
model is a static ML model that does not consider temporal de-
pendencies. Although the challenges of multitemporal data analysis
have been documented for land-cover observation and dynamic changes
detection (Belward & Skgien, 2015), the use of BiLSTM and deep
learning-based features for multitemporal analysis to estimate disease
severity in plants has not been reported in the literature.

The accurate segmentation of plants from their background is crucial
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for precise disease severity assessment. In this study, an advanced deep
learning method was employed to segment cotton plants from their
background. This approach notably improved the accuracy of various
learning models in estimating plant disease severity. The findings indi-
cated that image segmentation facilitated the extraction of relevant
features from plant images while eliminating irrelevant background
information, leading to more focused inputs for deep learning models.
Consequently, CNN-BiLSTM models can better capture the spatial and
temporal features of the disease, resulting in more robust and accurate
predictions. The CNN-BiLSTM models with image segmentation
demonstrated superior performance compared to the CNN-BiLSTM
model without image segmentation.

The implications of these research findings have noteworthy prac-
tical implications for the assessment of cotton disease severity in real-
world applications. The capability of the model to analyze datasets
with inter-annual variations highlights its potential for use in other
domains where data may vary over time. By reducing the distribution
discrepancy between the source and target domains, the Resnet101-
BiLSTM model becomes more robust and capable of accurately classi-
fying cotton disease severity levels in unseen data, demonstrating su-
perior performance in cross-dataset evaluation and suggesting that
domain adaptation using CORAL can effectively mitigate the adverse
effects of domain shift and enhance the usability and effectiveness of
trained models in practical applications. The ability of the hybrid
approach (i.e. Resnet101-CORAL-BiLSTM) to perform well on new and
unseen data is crucial for deploying vision-guided autonomous field
robots with variable-rate fungicides. However, future research could
explore additional domain adaptation techniques and investigate their
effectiveness in addressing the challenges posed by domain shift in
agricultural applications. It would be beneficial to evaluate the perfor-
mance of the proposed model on larger and more diverse datasets to
ascertain its scalability and effectiveness across different geographical
regions and cotton disease populations.

It is interesting to note that Class 2 was the most challenging to
distinguish. This suggests that further improvements may be necessary
in distinguishing between this class and other classes. Additionally,
environmental factors, such as weather conditions, can result in
misclassification. Therefore, it is crucial to consider these factors in
developing and training ML models for crop disease severity assessment.
The findings of this study emphasise the need for continued research and
development in improving the accuracy and reliability of ML models for
crop disease severity assessment. Additionally, further research is
needed to explore the capabilities of the model and its limitations and to
optimise its performance for other relevant applications.

5. Conclusions

In this study, a hybrid approach combining the strengths of CNNs
and BiLSTM architectures was leveraged to assess the severity of cotton
FOV4 disease using UAS images. The results showed that the hybrid
approach outperformed single architecture or HC feature-based
methods, indicating the significance of deep learning-based feature
extraction techniques for complex disease severity evaluation in outdoor
field conditions. The study also highlighted the effectiveness of the
BiLSTM model in capturing temporal dependencies among UAS image
datasets compared to static ML models like SVM, resulting in improved
disease severity assessment accuracy. The Resnet101-BiLSTM model
achieved the highest overall accuracy of 89.7%, demonstrating the ef-
ficacy of the hybrid CNN-BiLSTM approach in accurately estimating the
severity of cotton FOV4 disease from UAS images. Furthermore, the
application of the CORAL approach successfully aligned the distribu-
tions and reduced the domain shift, as evidenced by quantitative anal-
ysis using GK-MMD values. This alignment of distributions resulted in
superior performance in classifying cotton diseases in the target domain,
even when trained and tested on a different dataset. The overall accu-
racy of the model with CORAL was 72.7%, highlighting its high
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generalisation capability and practical significance in real-world appli-
cations with diverse datasets. In summary, this study demonstrates that
hybrid CNN-BiLSTM techniques combined with domain adaptation are
effective for evaluating plant disease severity. Our findings provide a
strong foundation for future research in this field, leading to the
development of more effective and efficient disease monitoring and
management.
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