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Abstract

We present NeWRF, a novel deep-learning-based
framework for predicting wireless channels. Wire-
less channel prediction is a long-standing prob-
lem in the wireless community and is a key tech-
nology for improving the coverage of wireless
network deployments. Today, a wireless deploy-
ment is evaluated by a site survey which is a cum-
bersome process requiring an experienced engi-
neer to perform extensive channel measurements.
To reduce the cost of site surveys, we develop
NeWREF, which is based on recent advances in
Neural Radiance Fields (NeRF). NeWREF trains a
neural network model with a sparse set of channel
measurements, and predicts the wireless channel
accurately at any location in the site. We intro-
duce a series of techniques that integrate wireless
propagation properties into the NeRF framework
to account for the fundamental differences be-
tween the behavior of light and wireless signals.
We conduct extensive evaluations of our frame-
work and show that our approach can accurately
predict channels at unvisited locations with sig-
nificantly lower measurement density than prior
state-of-the-art.

1. Introduction

Wireless networks (such as WiFi and 5G) have become an
essential part of our lives. Real-world WiFi and cellular de-
ployments commonly encounter many issues such as dead
spots, dropped signals, sudden outages, and slow through-
put, potentially undermining the connectivity of wireless
devices. To solve these issues, site surveys (Kar & Dap-
puri, 2018) are often conducted to measure the quality of
the wireless network in various locations and, if required,
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Figure 1. The tomography of a wireless field (channel) in a
simple environment. Like water ripples, wireless signals can
add up constructively or destructively, causing fine-scale spatial
variation. Our algorithm, NeWRF, reconstructs this field from a
sparse set of channel measurements.

optimize the deployment of base stations. However, to con-
duct an effective site survey, an experienced engineer needs
to perform measurements for a very dense grid of points.
Today, this exhaustive measurement is rarely done due to
its intractable time and cost. Instead, a sparse measurement
approach is usually taken, where the engineer walks with a
radio receiver in the site and measures the wireless channels
at random locations. A wireless channel is a measure of the
distortions imposed on wireless signals as they propagate
from a transmitter to a receiver, which determines the qual-
ity of communication. The wireless channel is represented
as a complex number that characterizes factors such as sig-
nal attenuation, phase rotation, and interference. Although
the random sparse measurement approach is much more
efficient than the exhaustive grid-based survey, it fails to un-
cover the signal quality at unvisited locations; therefore, can
potentially miss many dead spots. As a supplement, wireless
ray-tracing simulations (Remcom, 2023) are also performed
to analyze the distribution of wireless fields, which uses
Computer-Aided Design (CAD) models of the environment.
However, ray-tracing simulations are not reliable since CAD
models cannot fully replicate how real-world environments
interact with wireless signals. Therefore, successive site
surveys are always required for further validation and cali-
bration.

In this work, we introduce a deep learning framework that
reduces the time and cost of wireless site surveys. Our goal
is to predict the wireless channel in every location in the
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space only using a sparse set of channel measurements. One
straightforward approach to accomplish this is to train a
machine-learning model that maps a spatial location to the
corresponding wireless channel. However, this approach
fails to incorporate the underlying physics of wireless prop-
agation, and thus still requires very dense measurements
to achieve reasonable performance. The challenge stems
from the fine-scale spatial variation of the channel, caused
by the constructive/destructive interference of electromag-
netic waves propagating via different paths (as shown in
Figure 1).

To solve this problem, we are inspired by recent advances in
computer vision and computer graphics, in particular, Neu-
ral Radiance Fields (NeRF) (Mildenhall et al., 2021). NeRF
is a novel deep learning framework that achieves impressive
performance in 3D reconstruction and view synthesis tasks.
Specifically, by learning from a collection of photos of a
scene, NeRF can synthesize photorealistic images from any
viewpoint, even those not captured in the original dataset.
The key innovation of NeRF is to represent a scene’s ra-
diance field as a continuous function, parameterized by a
Multilayer Perceptron (MLP) network. This model learns
to correlate 3D spatial coordinates with colored radiance
and density from 2D images. NeRF uses ray-tracing and
volume-rendering techniques to synthesize images, which
incorporates the underlying physics of light propagation.

In this work, we build on NeRF to predict wireless chan-
nels at unvisited locations by learning the wireless radiation
scenes from a sparse set of channel measurements. How-
ever, adapting NeRF to predict wireless channels requires
addressing several important challenges due to fundamen-
tal differences between visible light and wireless signals.
First of all, wireless environments, typically at the scale
of a room, are much larger and more complicated than the
scenes handled in NeRF. Although there have been recent
attempts to learn room-scale scenes with NeRF (Roessle
et al., 2022; Azinovi¢ et al., 2022), they all require addi-
tional depth information for regularization, which is hard to
obtain for wireless measurements. Second, each wireless
measurement results in a single complex number, which
contains much less information than an image of thousands
of pixels. As a consequence, training a model with merely
wireless channel measurements suffers from restricted in-
formation. Third, unlike image sensors in a camera that
capture light rays from a single direction, wireless antennas
capture signals from all directions. Tracing rays for an-
tennas requires sampling all directions, which significantly
enlarges the search space. We find that training the model to
trace all ray directions is both memory-hungry and results
in poor convergence. Last but not least, the propagation of
wireless signals is much more complex than that of visible
light. Effects such as attenuation, phase rotation, reflection,
and interference need to be characterized carefully to enable

the model to learn a realistic wireless radiation scene.

To address these challenges, we make the following contri-
butions:

* We propose NeWREF, the first NeRF-based wireless
channel prediction framework that integrates wireless
propagation characteristics into NeRF, enabling the
learning of wireless radiation scenes from sparse sets
of channel measurements.

* We improve the convergence of our model through a
novel ray-casting scheme that uses direction-of-arrival
measurements from a wireless antenna array to guide
the model to search the most critical directions.

* By inspecting the learnt model of NeWRF, we discover,
for the first time, the simple nature of wireless scenes
that enables our model to learn, even in complex room-
scale spaces using only sparse channel measurements.

* We propose a novel ray-searching algorithm to estimate
the direction-of-arrival, enabling accurate channel pre-
dictions at any unvisited location.

In summary, we propose NeWRF, a novel deep learning
framework for predicting wireless channels. We believe
our work represents the first step towards using NeRF to
predict wireless channels in complex indoor environments
with sparse channel measurements, opening up many new
opportunities to optimize the performance of future wire-
less networks. The datasets and code are available at:
https://github.com/LuHaofan/NeWRF

2. Preliminaries

In this section, we provide background knowledge on both
wireless communication and Neural Radiance Fields.
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Figure 2. Wireless communication model: Wireless signals emit-
ted by the transmitter experience attenuation, reflection, absorp-
tion, multipath interference, etc. before reaching the receiver. Our
framework models all of these factors.

Wireless Channel A wireless communication system con-
sists of a transmitter and a receiver, illustrated in Figure 2.
The transmitter emits wireless signals, the amplitude and
phase of which are carefully adjusted to encode data. The
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transmitted signal can be represented as a complex number
x = Ae?¥, where A is the amplitude, and %) is the phase.
As the signal propagates, its amplitude is attenuated by an
attenuation factor, A, and the phase is rotated by Aq.
The signal captured by the receiver y can be written as

y = Ae? x Ague?®¥ = A- A WHAY) ()

For free space propagation, i.e. with no objects blocking the
propagation path, the amplitude attenuation is proportional
to the inverse of the propagation distance, and phase rotation
is proportional to the propagation distance (Molisch, 2012):

c

Aatt(d) = W7

AY(d) = =2rfd/c. 2)
where d is the propagation distance, f is the signal fre-
quency, and c is the speed of light. Interactions with objects,
for example, reflection and penetration introduce additional
attenuation and phase rotations to the signal.

Additionally, transmitted signals propagate via multiple
paths to reach the receiver. As a result, the received sig-
nal is the sum of multiple copies of the transmitted signal
each with different attenuation factors and phase rotations:
L—1
y=Ael x 3" AL, AV 3)
1=0

where L is the total number of propagation paths, and [
is the path index. The wireless channel, &, is defined as
the ratio of the received signal and transmitted signal, and
characterizes the distortions introduced by the environment:

L—-1
Y A
h=2= > Al )
=0

Neural Radiance Fields (NeRF). NeRF learns a 3D volu-
metric representation of the radiance field of a scene from
2D images. It represents a scene using an MLP model with
5-dimensional inputs: f : (z,y,2,0,¢) — (r,g,b,0),
where z, y, z are the 3D spatial coordinates, and 6, ¢ are
the 2D view direction of a ray traced from the camera. This
function translates the 5D coordinates to the radiance of
red (r), green (g), and blue (b) light, as well as the volume
density, o, which describes the degree in which the environ-
ment blocks or attenuates light at a location. To generate
images from a particular viewpoint, NeRF performs ray-
tracing from each pixel of the image, takes discrete sample
points {po, p1,..., PN} along each ray r, and query the
MLP model with the coordinates of these samples for the ra-
diance and volume density predictions. The volume density
is translated to transmittance, 7", and opacity, «, of the corre-
sponding volume block. Transmittance refers to the amount
of light that passes through volume blocks without being
absorbed or scattered. While opacity describes the extent

to which the light is absorbed or scattered by a particular
volume block.

1—1
Ti = GXp(f Zajéj), Q; = ]. — exp(faiﬁi), (5)
j=1

where ¢ is the index of sample point, d; = ||pi+1 — pil| is
the distance between consecutive samples.

A volume rendering algorithm is then employed to approx-
imate the pixel value, C'(r), as the weighted sum of the
radiance at the sample points:

N
C(r)=>_ Tac;, (6)
=1

where N is the number of sample points along each ray,
and ¢; = [r,g,b] is the vector of radiance emitted at the
sample point p;. The generated image is compared with the
ground truth image to calculate the loss and update model
parameters during the training.

3. Related Work

NeRF has recently received huge attention from the com-
puter vision and graphics communities. There has been a lot
of work trying to improve and extend the original NeRF in
various regards. For instance, Martin-Brualla et al. (2021)
extends NeRF to synthesize large scenes from unconstrained
online photo collections; Pumarola et al. (2021) enables
NeRF to learn dynamic scenes; Mildenhall et al. (2022)
handles raw images taken in dark environments. These
works all use NeRF in the visible light spectrum which is
fundamentally different from wireless signals. In contrast,
we address several challenges and extend the NeRF formu-
lation to the radio frequency spectrum to learn the radiation
scenes of wireless signals.

Predicting the wireless channel has been a long-standing
problem in the wireless community (Karanam & Mostofi,
2023; Malmirchegini & Mostofi, 2012; Krijestorac et al.,
2021). The existing studies are mainly divided into two cate-
gories: temporal prediction and spatial prediction. Temporal
prediction work focuses on predicting the wireless channel
at a future timestamp given the past observations (Formis
et al., 2023; Varshney et al., 2023). Spatial prediction work
attempts to predict the channel at an unseen location given
the measurements at some other locations (Karanam &
Mostofi, 2023). In this work, we focus on solving the spatial
prediction problem.

There have been some pioneer attempts in this field; how-
ever, the fine-scale spatial variation of channels makes this
task extremely challenging. Karanam & Mostofi (2023) pro-
poses an analytical method to predict the wireless channel
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by extrapolating measurements taken at the boundaries of
the area of interest. However, their method cannot deal with
complex indoor environments, where multipath interference
is more severe. Also, it is limited to 2D receiver layouts
with carefully designed boundaries. In contrast, our method
can predict wireless channels in 3D indoor environments
with sparse measurements at random locations. A recent
work, NeRF? (Zhao et al., 2023), proposed a NeRF-inspired
technique to predict the direction-of-arrivals heatmap for
a fixed wireless receiver when the transmitter is placed at
different locations in the space. We note that the varying
location of the transmitter results in a varying wireless field
at each measurement, which deviates from the nature of
NeRF, that captures a static field representation!. As a con-
sequence, NeRF? needs to take the transmitter locations as
a direct input to the MLP model and essentially learns a
direct mapping from transmitter locations to the receiving
heatmaps. This is evident by their requirement of extremely
dense measurements (178.1 measurements/ ft> on aver-
age in their datasets) for training. We believe, the reverse
problem, i.e. learning a static radiation field sourcing from
a fixed transmitter, is more challenging. In this work, we
bridge this gap and devise a novel algorithm to learn a wire-
less radiation field with significantly lower measurement
density (i.e. 0.2 measurements/ ft3).

Another work (Orekondy et al., 2022) proposes a NeRF-
based neural surrogate for wireless ray-tracing simulation.
Their method requires knowledge of the environment ge-
ometry (given as a CAD model) and focuses on learning
the ray-surface interaction behavior for a wireless signal
propagating in space. In contrast, our method directly learns
the radiation field of the scene and requires no knowledge
about the environment geometry (except for the boundary
of the scene). This enables us to eliminate the need for
CAD models as a replica of the real world and thus can be
easily extended to predict wireless channels in real-world
scenarios.

4. NeWRF

In this section, we present the design of NeWRF. We first
provide a concrete formulation of the problem in Section 4.1.
Then we present our customized neural channel synthesis
algorithm in Section 4.2. We improve the convergence of
our model with a novel DoA-guided ray-casting method
introduced in Section 4.3. We present the optimization pro-
cess of NeWREF in Section 4.4. In Section 4.5, we uncover
the nature of wireless scenes and provide insights on how it
enables our model to reconstruct wireless fields in complex
environments. Finally, in Section 4.6, we present our novel
ray-searching algorithm for predicting wireless channels at

'This is analogous to learning a NeRF where the lighting con-
dition of the scene changes from one image to another.

Receiver

Transmitter Propagation Path

Figure 3. An example environment (MATLAB, 2023a) and loca-
tions of the transmitter and receivers. We fix the location of the
transmitter and measure the wireless channel at various receiver
locations. The wireless channel is the sum of multiple propagation
paths from the transmitter to the receiver.

inference time.

4.1. Problem Description

‘We consider indoor environments (such as the conference
room shown in Figure 3) with a single transmitter at a fixed
location and multiple receivers placed randomly throughout
the space. This setting represents a realistic scenario where
a WiFi access point talks to multiple client devices, such
as mobile phones, laptops, and various Internet-of-Things
(IoT) devices. Each receiver (client device) measures the
wireless channel and reports its measurements to a central
database. Note that when there are multiple transmitters co-
exist in the same space, communication systems naturally
perform time/frequency multiplexing to avoid interference.
Therefore, we assume the receivers can connect to each
transmitter in a round-robin manner and construct a wireless
scene for each transmitter in such cases. The propagation of
wireless signals can be modeled as rays that are emitted from
the transmitter, reflected by objects and walls and finally
captured by the receiver (Mittra, 2016). The reflection of
wireless signals follows the law of reflection, i.e. the angle
of the reflected ray is equal to the angle of the incident
ray, since the wavelengths of wireless signals (e.g. 12 cm
for 2.4 GHz WiFi signals) are typically much larger than
the roughness of object surfaces (Mittra, 2016). Our goal
is to predict the wireless channel at any location in the
environment using the sparse measurements obtained from
the receivers.

4.2. Neural Wireless Channel Synthesis

The first step to synthesizing the wireless channel is learn-
ing a wireless radiation scene. A wireless radiation scene
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Figure 4. An overview of our neural channel synthesis algo-
rithm: We backtrace each propagation path from a receiver and
query an MLP with the 5D coordinates (location and viewing
direction) of points along the path, to predict the radiated signal
(amplitude and phase) at that point. Then we integrate signals from
all paths to synthesize a channel. We model reflections as virtual
transmitters at the point of reflection.

is a continuous function that maps a point in space to the
wireless signal emitted from the point. This function is
also direction-dependent, since a point may emit signals
of different amplitudes and phases towards different direc-
tions. We approximate this wireless radiation scene with an
MLP model which takes a 5D input of spatial (z,y, z) and
direction (6, ¢) coordinates. The model outputs (A4, 1, o),
which are radiated signal amplitude, signal phase, and vol-
ume density, respectively. Volume density is an indicator of
the probability of a point being a wireless radiator.

Figure 4 illustrates the synthesis process of a wireless chan-
nel for a particular receiver location. We backtrace the rays
captured by the receiver, and along each ray r, we take mul-
tiple samples to obtain a discrete set of points >. We query
the MLP with the spatial and direction coordinates for each
sample point, p to get the radiated signal Aype’¥r» and the
corresponding volume density o. We translate the volume
density into a weight wyp = Typrp, Which characterizes
the contribution of the signal radiated at p to the channel at
the receiver. We follow the definition of 7" and « in Eq. (5).

Note that two kinds of points contribute most to the channel
at the receiver. One is the transmitter itself, which directly
acts as a source of radiation, and the other one is any point
that reflects the transmitter signal. We consider the latter
as virtual transmitters. The radiated signal from a virtual
transmitter includes the effects of absorption, attenuation,
and phase rotation due to the reflection. The effects of free
space propagation (Eq. (2)) are then explicitly included in
our synthesis algorithm. Hence the channel at a receiver can
be presented as the following equation, where it is calculated
by summing up signals radiated from all sample points along

2To avoid confusion, in this paper, the term “samples” is used
exclusively for the points taken along the rays. We refer to the
channel measurements data samples in our datasets with the term
“measurements”.

all rays:

c j —2m c
H(f) = Z Z wrpArP 47Td fej(wrp 2 fdp/ )7 (7)
P

rcl peP

where L is the set of rays, and PP is the set of points taken
along a ray.

4.3. Improving the Convergence of NeWRF

One key difference between wireless measurements and
images is that wireless antennas capture signals from all
directions. Thus, in wireless, finding the ray direction to
trace is a non-trivial problem. One potential solution is to
search exhaustively along a discrete set of azimuth and ele-
vation angle combinations that span all directions. However,
this approach has two fatal drawbacks. First, the actual
ray directions lie in a continuous space. Approximating
them with a discrete set of ray directions would require
an extremely dense grid of angles, which significantly in-
creases the memory consumption for training the model.
Secondly, for each receiver location, there are only 10~20
ray directions contributing significantly to the channel mea-
surement, whereas a search grid of 1° resolution involves
360 x 180 = 64, 800 ray angles. As a result, optimizing the
model to find the actual ray directions from such a large ray
space is very difficult, if not impossible. We find through
experiments that the model fails to converge with such a
large search space of ray directions. To solve this issue, we
leverage the fact that the Direction-of-Arrivals (DoA) of
wireless signals can be measured using an antenna array at
the receiver location (Foutz et al., 2022). We use DoA mea-
surements as prior knowledge and let the learning algorithm
trace rays primarily toward directions identified by the DoA
measurements. Through our experiments, we find that this
DoA-guided ray-casting approach significantly reduces the
training time and memory consumption, as well as enables
the learning algorithm to converge quickly.

4.4. Optimizing NeWRF

As in NeRF, We simultaneously optimize two MLP models
for each environment. One “coarse” and one “fine”. We
use mini-batch gradient descent to train our models where
at each iteration, we randomly pick a batch of receiver lo-
cations from the training set and obtain the ground truth
channel and DoA measurements. We cast rays toward each
DoA and use the stratified sampling strategy (Mildenhall
et al., 2021) to take coarse-grained samples uniformly dis-
tributed on each ray. We use these samples to query the
”coarse” model and use the procedures described in Sec-
tion 4.2 to synthesize coarse predictions of the channel for
each receiver location. We use the predicted weights wp, of
coarse samples to perform a round of hierarchical sampling
which densely samples regions with high weight values. We
query the “’fine” model with the union of coarse and fine
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samples and synthesize the fine channel predictions. The
coarse and fine channel predictions are each compared with
the ground truth to calculate loss and update the parameters
of each model.

In practice, we let the model predict the real and imaginary
parts of the radiated signal, (I, @), instead of amplitude and
phase, (A, ). This is because phase is modulo against 27,
which is not differentiable. A and 1 can be easily translated
from I and @ using Euler’s formula:

A=+/I?+Q?, ¢ = arctan(Q/I)

We use the Normalized Mean Square Error (NMSE) as the
loss function:

where h is the ground truth channel, and h is the predicted
channel. Unlike NeRF, we do not use Mean Square Error
(MSE) as the loss function since wireless channels are typ-
ically at the scale of 10! ~ 10~° and vary by orders of
magnitude in the dataset. NMSE is more robust to changes
in scale.

®)

Finally, it worth mentioning that similar to other NeRF
work, we noticed the existence of floaters, i.e. spurious
particles that "float” in space, in the trained model. We find
that casting a small number (5~10) of extra rays toward
random directions during the training process can effectively
regulate the model to remove the floaters, thus resulting in
a clean geometry of the scene. Further details about our
training pipeline and model architecture can be found in
Appendix A.

4.5. NeWRF’s Scene Representation

We train the model as described in the previous section and
find it has good generalization performance. However, we
find that the model learns a representation of the wireless
radiation scene that was different from what we originally
expected. Despite that, the scene still allows the model to
predict wireless fields (channels) even in room-scale envi-
ronments with merely a sparse set of channel measurements.
In this section, we present our findings and insights into it.

As mentioned in Section 4.2, we model the reflection of
wireless signals as a virtual transmitter emitting signals at
the reflection point on the surface. Therefore, we expect
our model to learn a representation where points with high
volume densities appear on the reflector surfaces of the en-
vironment. Eventually, this would allow us to reconstruct
a 3D model of the environment. However, we find that our
model, instead, learns to assign high volume densities at
the virtual images of the real transmitter against reflective

@® Real Transmitter Virtual Transmitter

Figure 5. A Learnt Wireless Scene: Spots with high volume den-
sity values indicate the locations of (virtual) transmitters. The gray
cube shows the 3D environment model presented in Figure 3.
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Figure 6. The nature of wireless scenes: While backtracing direct
rays leads to the transmitter, backtracing reflected rays consistently
intersect at the virtual images of the transmitter.

surfaces, as shown in Figure 5. In this figure, we query the
trained MLP model with a fine-resolution grid of 3D loca-
tions for the volume density predictions and plot the points
with significant volume densities. The red dot indicates
the volume blocks that match the real transmitter location.
The green dots indicate the locations of virtual transmitters,
which appear at virtual images of the real transmitter against
each reflective surface, such as walls and tables.

To better understand why this is the case, we illustrate a
simple wireless scene with a single transmitter and two
reflective surfaces in Figure 6. Three receivers are placed
in random locations to measure the wireless channel. The
signals emitted by the transmitter propagate via three major
paths to reach each receiver: one direct line-of-sight path
and two reflection paths 3. Since the receivers have no notion
about the environment, they simply trace the rays back in

3We omit the second order reflection here for simplicity; how-
ever it can also be characterized in the same manner.
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the direction from which they arrived. Because of the law
of reflection, the rays traced by all the receivers intersect
at the locations of the virtual images of the transmitter and
the transmitter itself. As a result, these points are sampled
more frequently than other points in the space, giving the
model an inductive bias to put higher volume densities at
these locations.

We note that this representation is one of many possible
solutions to this optimization problem that fits the training
set. However, the model seems to have such a bias that
it is more likely to converge to this representation of the
scene. Although this representation is not what we had ini-
tially expected, it does reveal the simple nature of radiation
scenes and allow for accurate channel synthesis from sparse
measurements.

4.6. Predicting Channels at Unvisited Locations

While DoA information is known for our training data, it is
not for the test data. Because of this, a new ray-casting tech-
nique was required for inference time predictions. Simply
casting rays across a grid of all directions is problematic.
Depending on the resolution of angles used for sampling
we could under or overestimate the contribution of a virtual
transmitter on a channel. When the resolution is too low,
virtual transmitters could be missed and when it is too high,
virtual transmitters could be sampled multiple times and
contribute too much to the channel. For this reason, we
developed a novel ray-searching algorithm that leverages
our discovery of the nature of wireless scenes to extract
DoA information and thereby intelligently cast rays at new
locations.

Our ray-searching algorithm consists of five steps:

1. Intersection Point Identification: For each receiver
location, m, in the training set, perform ray marching
along each DoA to identify intersection points, forming
a set of potential (virtual) transmitters, O.

2. Refine (Virtual) Transmitters: Apply DBSCAN (Es-
ter et al., 1996) to cluster the estimated positions in O.
Add the centroid of each cluster to a reduced set, V.

3. (Virtual) Transmitter Assignment: For each receiver
location, m, in the training set, find the closest (virtual)
transmitter v € V along each DoA and add them to a
set V,,, of pertinent virtual transmitters for m.

4. (Virtual) Transmitter Count Estimation for Test-
ing Locations Train a fully connected neural network
g:m —>’ Vi ‘ to map receiver locations to the cor-
responding number of (virtual) transmitters. Then use
this model to predict the size of V¢, the set of perti-
nent (virtual) transmitters for test location t, for all test
locations.

5. Voting-based (Virtual) Transmitter Selection: For

Office
(26.2ft x 16.4ft x 9.8ft)

Bedroom
(16.4ft x 15.7ft x 9.8ft)

Conference Room
(9.8ft x 9.8ft X 8.2ft)

Figure 7. 3D Environment Models for simulation

each t, select its neighboring receiver locations from
the training set (we use 6 nearest neighbors in practice).
Populate V,; with the (virtual) transmitters most fre-
quently assigned to the selected train locations. Finally,
DoA can be calculated using the position of t and the
estimated positions of (virtual) transmitters in V.

We note that although this ray-searching algorithm is able
to identify the locations of (virtual) transmitters, it cannot
replace the role of training a NeWRF model for the scene,
as we still need the prediction of signal amplitude and phase
for each virtual transmitter.

5. Evaluation

To better understand the performance of NeWRF in rep-
resenting wireless scene versus its performance in predict-
ing channels in unseen locations, we first evaluate how
accurately NeWRF can predict channels, assuming DoA
is known for each receiver location. We then evaluate the
performance of NeWRF in channel prediction while the
DoA is not known and we use our ray-searching algorithm
(presented in 4.6) to discover DoA of unseen locations.

Datasets: We generate simulation datasets for evaluation
using MATLAB. We use the Image Method (Yun & Iskan-
der, 2015) for ray tracing. We create datasets for three 3D
environments models (MATLAB, 2023a;b; Free3D, 2023)
of different complexities. Figure 7 shows the geometry and
dimensions of the three models. We put a transmitter in
each environment and randomly spread 443, 975, and 1907
receivers in each environment, respectively, to collect chan-
nel measurements. We use 80% of the measurements for
training the model and the remaining 20% for testing.

5.1. Channel Prediction Results

We first evaluate our algorithm using our conference room
dataset simulated with perfect reflector materials at a signal
frequency of 2.412 GHz. We will discuss the impact of
material types and signal frequencies in Section 5.3.

Figure 8a provides a visualization of the predicted channel
for the test set measurements. Since the wireless channels
are represented as complex numbers, we plot the real and
imaginary parts of the channels in the x and y-axis, respec-
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Figure 8. Channel Prediction Results: a) Prediction results for conference room environment. Each dot represents the channel at one test
location. b) Predicted channel components (paths) for a single location. Each dot represents a single propagation path. The arrow exhibits
the sum of all paths; ¢) The channel prediction accuracy in different environments compared with baseline methods. d), e), and f) channel
prediction accuracy for different training set sample densities, environment materials, and signal frequencies.

tively. Each dot in the plot represents the channel for a
particular receiver location. As is shown, our predictions
align very well with the ground truth. Moreover, although
we supervise the model with merely the sum of all multipath
components, NeWRF can accurately predict individual path
components for each particular receiver location as shown in
Figure 8b. In this plot, each dot represents one propagation
path of the wireless signal; the arrow indicates the sum of
all the components. Note that this capability of predicting
individual path components is very important for optimizing
the configurations of base stations and relays to enhance the
network coverage in practice (Karanam & Mostofi, 2023).

Next, we compare NeWRF with three baseline methods.

1) K-Nearest Neighbors (KNN): We predict the wireless
channel at a test location as the average channel of the
closest K locations in the training set. We pick K=3 since
that gives us the lowest error.

2) Multi-Layer Perceptrons (MLP): We train an MLP

model to directly map from the 3D location to the channel.

We use an MLP with 7 linear layers, each of width 128.
‘We train the model with the same condition as NeWRF, as
described in Appendix A.

3) NeRF?: We use the open-sourced code of NeRF? (Zhao
et al., 2023) and train it on our datasets. Since their code
assumes a dynamic transmitter scenario, we generate the
counterpart simulation datasets by keeping the locations of
each device the same as our datasets while swapping the
roles of transmitters and receivers.

We use Signal-to-Noise Ratio (SNR), as our evaluation
metric, which is defined as the SNR = —101log;,(NMSE),
where NMSE is Normalised Mean Square Error and defined
in Eq. (8). Higher SNR indicates a higher prediction ac-
curacy. For example, a 20 dB SNR is equivalent to a 1%
relative squared error in the prediction. Figure 8c shows
the results for three environments. NeWRF outperforms all
of the baseline methods in all environments. Note, NeRF?
does not perform well on our datasets since the measurement
density (0.4 measurements/ ft3) of our datasets is much
lower than what they require (178 measurement/ ft*). Fi-
nally, our results show that although the performance of
NeWREF degrades as the environment becomes larger and
more complex (such as a large office space with lots of
furniture), it still achieves more than 5 dB SNR which is
sufficient for many wireless applications.
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Figure 9. Ray-searching algorithm performance: Performance
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truth or discovered using our Ray-searching algorithm. GT stands
for ground truth, and RS stands for the Ray-Searching algorithm
presented in 4.6.

5.2. Measurement Density of Training Set

We further investigate the effect of training set sample den-
sity on the performance of NeWRF. To demonstrate this,
we use the conference room dataset. In this experiment, we
use 25%, 50%, 75%, and 100% of the training set measure-
ments to train our model, which corresponds to 0.1, 0.2, 0.3,
and 0.4 measurements/ ft3, respectively. We evaluate the
trained model on the same test set for a fair comparison.
As is shown in Figure 8d, NeWREF can effectively learn the
wireless radiation scene, and predict the channel accurately
with sample density as low as 0.2 measurements/ ft,
which is around 800x lower than that of NeRF?(Zhao et al.,
2023). This would significantly reduce the cost of wire-
less site surveys and improve the capability of dead spot
detection.

5.3. Impact of Materials Types and Signal Frequencies

The attenuation and phase rotation of wireless signals dur-
ing reflection are largely determined by the material that
constitutes the reflector. In particular, the material’s electri-
cal properties, such as permittivity and conductivity, play
significant roles. As such, the wireless properties of an en-
vironment can change greatly as the materials it is made of
change. Furthermore, even the same materials have differ-
ent behaviors when they interact with signals of different
frequencies. NeWRF is able to characterize both of these
effects, as shown in Figure 8¢ and 8f, where we train a
separate model for each material type and signal frequency.
NeWRF maintains high prediction accuracy in all these
scenarios.

5.4. Ray-searching Algorithm Performance

So far we evaluated the performance of NeWRF while DoA
is known. Here, we evaluate the performance of NeWRF

when we use our ray-searching algorithm to discover the
DoA for each location. Figure 9 shows the results. Our
results show that due to the error in DoA estimation, the
performance of NeWRF in channel estimation degrades by
a small margin (3~5 dB) when we use the ray-searching
algorithm. This error is mainly due to a slight discrepancy
of DoA between the test location and its nearest neighbors.
Although this SNR loss is negligible, one can improve it by
using slightly higher measurement density.

6. Limitations and Future work

In this work, we bring NeRF to radio frequency and demon-
strate the promise of reconstructing wireless radiation scenes
to facilitate site surveys. However, there remains a vast
range of directions to investigate to unleash the power of
NeRF for wireless applications. Here we highlight a few of
them to help stimulate research in these directions:

a) Relaxing phase requirement: accurate phase measure-
ment is challenging in real communication systems due to
the synchronization error between the transmitter and re-
ceiver. The presented NeWRF algorithm, which relies on
narrowband channels for training, does not perform well
if the phase is inaccurate or not provided. One potential
solution might be using wideband channel measurements
for training since wideband channels translate phase into the
variation of amplitude across different frequencies, which
can be measured accurately.

b) Relaxing DoA requirement: accurate DoA measurement
is required for ray-casting in the current NeWRF algorithm,
the error tolerance is within one degree based on our experi-
ments. In practice, achieving such a measurement resolution
would require a very large antenna array. Further studies are
needed to relax this constraint.

c¢) Extending to larger environments: although NeWRF out-
performs all the baselines for the three environments studied,
its performance reduction with the increasing environment
complexity is observed. Scaling to more complex envi-
ronments requires further research. One potential solution
would be fusing visual and wireless radiation fields, where
visual images provide more information about the environ-
ment to facilitate the learning of wireless fields.

7. Conclusion

In this work, we propose NeWRF, the first NeRF-based
learning framework for wireless channel prediction with
sparse measurements. We solve a series of challenges to
enable the neural synthesis of wireless channels and, for the
first time, reveal the nature of wireless scenes. We believe
NeWREF represents the first step towards the practical use of
NeRF in future wireless applications.
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Figure 10. NeWRF’s Training Pipeline model use the same architecture.

We implement NeWREF in Pytorch. Figure 10 shows the training pipeline. We use a batch size of 32 for each iteration of
training. As in NeRF, we use positional encoding to map the input coordinates to higher dimensional space to facilitate the
model to learn high-frequency variation of the wireless scene (Mildenhall et al., 2021). We use 10 frequencies to encode the
spatial coordinates (z, y, z), and 4 frequencies for the direction coordinates.

Figure 11 shows the MLP model architecture of NeWREF. It consists of 7 linear layers of width 128 and one output layer of
width 64. All layers as well as the o output are activated by ReLU functions. The I, Q outputs are activated with an tanh
function to keep the output value within range [-1, 1]. A single skip connection concatenates the input with the fourth linear
layer. (-) represents the positional encoding function.

We use the same architecture for both “coarse” and fine” models. A weighted sum of ’coarse” and ”fine” model loss is
used for supervision:
loss = 0.1 X coarse loss + 0.9 x fine loss

We use Adam optimizer (Kingma & Ba, 2014) with an initial learning rate of 5 x 10~4, and a REDUCELRONPLATEAU
learning rate scheduler with patience 10 and factor 0.9. The other parameters are left as default. We train our model on a
single NVIDIA A100 GPU, and it typically takes ~ 100k iterations to converge.

The sampling ranges and resolutions along each ray are adjusted for each environment due to their different dimensions. The
sampling range is set to 9 m, 15 m, and 24 m for the conference room, bedroom, and office, respectively. For the conference
room and bedroom, we take 128 samples per ray for the coarse stratified sampling, and another 128 samples per ray in the
hierarchical sampling to enhance the granularity. For the office environment, due to its complexity, we double the number of
samples for both sampling stages.

B. Subcarrier Channel Prediction

Modern wireless communication systems, such as WiFi and 5G use Orthogonal Frequency Division Multiplexing (OFDM)
for modulation. OFDM divides the spectrum bandwidth into multiple narrow frequency bands, termed subcarriers. Each
subcarrier modulates one data symbol. To demodulate data, the receiver has to perform channel estimation for all subcarriers.
For instance, a 20 MHz WiFi channel is typically divided into 64 subcarriers, with each subcarrier 312.5 kHz apart from its
neighbors. The channels of 52 (out of the 64) subcarriers are typically measured and reported by commercial off-the-shelf
WiFi chips (Ma et al., 2019), known as channel state information (CSI).

NeWRF is able to predict the subcarrier channels accurately using a model trained only on a single subcarrier without
further fine-tuning. To demonstrate this capability, we use a model trained on the conference room dataset with carrier
frequency 2.412 GHz to infer the channels for its nearby subcarriers. To synthesize the channel at a specific subcarrier
frequency, we simply change the signal frequency f in the channel synthesis algorithm (Eq. (7)) to the subcarrier frequency
fse = fe + k X Af Hz, where k is the index of the subcarrier, ranging from -26 to 26; Af is the subcarrier spacing,
which equals to 3.125 kHz for 802.11 a/g/n; and f. is the carrier frequency of the channel. Figure 12a shows the predicted

12



NeWREF: A Deep Learning Framework for Wireless Radiation Field Reconstruction and Channel Prediction

@PLO APt.1 mPL2 %Pt 3 ¢ Pt 4 EEGT ElPred OPtL.O APL.1 mPt2 %Pt 3 ¢ Pt 4 EEGT EMPred
25 15 o 15
o
<
20 20 AN 1o
3 —~
—_ E L R — b
) = 5 05
@15 S w 3
- <0.0 = ’
o -20 -10 0 10 20 > 0.0 y
Z 10 4 2
5 5 \ %_0.5
5 € 7 oomsooovenmaseonnensapeeey £ ’
=@= Fixed Noise through training a.,'( 0 1.0
Varying Noise for each iteration & ) w .
£
0 10 5 20 2 30 s s
Channel SNR (dB) -4 -20 -10 0 10 20 “7P15 -1.0 -05 00 0.5 1.0 15
Subcarrier Indices Real (x1072)
Figure 12. NeWRF’s performance on adding (a) (b)

noise to the channel
Figure 13. Subcarrier Channel Prediction

amplitude and phase versus the subcarrier indices at five different receiver locations (Pt.0~ 4). As is shown, the predictions
align very well with the ground truth. Figure 12b shows a different view of the same data as 12a, where we plot the real and
imaginary parts of the subcarriers in x and y-axis, respectively. In particular, we note that the prediction accuracy remains
high even for highly frequency selective channels. For instance, the channel amplitude of Pt.0 varies by orders of magnitude
across different subcarriers. And NeWRF is still able to predict the CSI accurately.

The reason behind this capability of NeWREF is that the model learns to decouple the attenuation factor and phase rotation
due to the reflection from that of free space propagation. The model predicts only the radiated signal, which is nearly
unchanged across the subcarrier frequencies. The dominant cause of the varying patterns across subcarriers is the phase shift
during the free space propagation and constructive/destructive interference of multipath, which are explicitly modeled by the
channel synthesis algorithm.

C. Impact of Noise

Here, we are interested in seeing the robustness of NeWRF against the influence of noise in wireless measurements. In
this experiment, we add artificial Gaussian white noise to the simulated channels. The ratio between the channel power
and added noise power is denoted as channel SNR. Figure 12 shows the results, the blue line shows the results of adding a
fixed noise, i.e. bias, to the ground truth channel in the training set. As is expected, the prediction accuracy reduces as the
channel SNR decreases. However, typical wireless systems today achieve more than 20 dB channel SNR in practice for
reliable communication, where NeWRF performs well in such SNRs. Also, we note that collecting multiple measurements
with different biases can improve the robustness. The orange line in Figure 12 demonstrates this effect, where we use
measurements with different additive noises in each iteration of training. The model is able to maintain good performance
even at very low SNRs. This is because the model implicitly averages these measurements to reduce the bias during the
training.
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