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Abstract. Adversarial training (AT) improves model robustness by
incorporating adversarial examples during training. Traditional methods,
however, treat all examples equally, limiting their effectiveness. Recent
studies show that adversarial examples vary in importance, and failing
to account for this can weaken robustness. New approaches assign differ-
ent weights to adversarial examples, improving defenses against specific
attacks while maintaining natural accuracy. However, existing reweight-
ing strategies often struggle against stronger attacks like CW and AA.
Our analysis reveals that misclassified inputs may be assigned to different
incorrect classes depending on the attack type and perturbation size, sug-
gesting that more than one metric for weight assignment is required. To
tackle this, we propose an Adaptive Weight Assignment (AWA) strategy
that uses predicted class probabilities across multiple attack types and
perturbation sizes. This method strengthens weaker adversarially trained
models and significantly improves robustness against strong attacks like
CW and AA, as confirmed by our extensive experiments.

1 Introduction

Our modern society heavily depends on technology, with deep neural networks
(DNNs) playing a pivotal role in critical areas like self-driving cars, recom-
mendation systems, and facial recognition. While DNNs have brought signif-
icant advancements, they are vulnerable to adversarial examples. To address
these challenges, researchers have explored various methods to improve model
robustness, with adversarial training (AT) [7] emerging as the most effective
and foundational method. [11] formulated the adversarial training process as
an optimization problem, aiming to find the model parameters € that mini-
mize the risk ming L 37 | I(fy(2}),y:). I() represents the loss function, fp(z})
denotes the neural network’s prediction with parameters 6 for the adversarially
perturbed input x} generated during the inner maximization, and y; is the cor-
responding class label. This approach has paved the way for the development of
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numerous defense strategies, including several variants of adversarial training, as
proposed in [2,5,11,13,14,16]. The results of adversarial training and its vari-
ations, though impactful, remain unsatisfactory, with a persistent gap between
natural and adversarial accuracy. Meanwhile, other researchers have focused on
assigning unequal weights to the training loss [6,8,10,17]. Among these improve-
ment strategies, our work aligns with reweighting. Thus, we will discuss existing
reweighting strategies and then elaborate on our proposed method.

1.1 Existing Works

In recent years, adversarial machine learning has garnered significant attention
due to the vulnerability of deep learning models to adversarial attacks. Various
defense strategies have been proposed to mitigate these risks, out of which some
well-known approaches include adversarial training, regularization-based meth-
ods, reweighting, robust optimization, and detection-based defenses. We provide
a brief description of regularization and reweighting methods.

Regularization-Based Methods:

Regularization techniques enhance training by promoting smoother decision
boundaries, stabilizing model behavior under adversarial conditions, and reduc-
ing overfitting to adversarial examples. Researchers have explored these strate-
gies to strengthen defenses in deep learning models. One notable example is
TRADES [16], which balances natural accuracy and adversarial robustness using
a loss function with two components. MART (Misclassification-Aware Adversar-
ial Training), proposed by [13], focuses on misclassified examples during adver-
sarial training. It uses a regularization term that maximizes the margin between
misclassified and correctly classified samples based on the premise that misclas-
sified examples are more susceptible to adversarial attacks.

Reweighting Based Defenses in Adversarial Training:

Geometry-Aware Instance-Reweighted Adversarial Training (GAIRAT) [17],
prioritizing examples near decision boundaries as they are more vulnerable to
attacks and thus require more attention during training. Similarly, Margin-Aware
Instance Reweighting Learning (MAIL) [10] focuses on examples close to the
decision margin, using predicted class probabilities to estimate their distance
from the boundary. Existing reweighting strategies need improvement to perform
effectively against stronger adversarial attacks such as Carlini-Wagne (CW) [3]
and AutoAttack (AA) [4]. One of the main reasons for this shortcoming is that
current reweighting approaches often rely on a single criterion to determine the
weight of each adversarial example, such as the distance to the decision bound-
ary or the classification confidence on the perturbed example. This can lead to
misallocation of weights, where adversarial examples that are assigned lower
weights may still contain important information that is crucial for improving
the model’s overall robustness.

Limitations of Existing Works:
Robustness still falls short, especially under strong attacks like CW, AA, and
powerful black-box attacks. These challenges emphasize the need for more
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effective strategies to enhance model resilience and ensure strong performance
against sophisticated adversarial threats.

2 Notations

Consider a standard classification problem defined over a dataset D =
{(xs,y:)}_, where x; represents the natural input corresponding to the label
vy €Y ={1,..... ,C} , with C denoting the total number of classes. Let fp(.)
denote a deep neural network parameterized by 6. Let f.(z;,0) be the logit out-
put of the deep neural network with model parameters 6 corresponding to class
c and pe(x;,0) = efe(®i:0) ) 2521 efe (#i:0) yepresent the probability that the net-
work predicts class ¢ given the input example x;. Let fg(x;) represent the class
prediction of the network. We denote by [(.) and E(, .y the loss and expected loss,
respectively. The expected loss of the network over the dataset D is defined by

n

Bl = = D (o), ). (1)

i=1

In the context of adversarial learning, we also consider the adversarial samples
x}, which are perturbed versions of the natural inputs z;, designed to mislead the
classifier. Assume an initial point z(®), representing the natural data perturbed
by small Gaussian or uniform random noise, i.e., z(?) = x;+Gaussian/Uniform,
where z(9) lies in the input feature space with a distance metric ||z — 2/||o. Let
t € N. PGD generates adversarial examples using the following update rule
2D — HBE[xi](x(t) + - sign(Vym gi(fo(z®),1:))). a is a step size, 5. 20)
is the projection function, B.[z] = {z'| ||z’ — ||, < €} is a neighborhood of z,
z® is the adversarial example at step ¢ and g:(.) is the loss used to generate the
adversarial used for training.

3 Proposed Method

Despite the progress made with existing reweighting techniques, their perfor-
mance against stronger attacks like CW and AA still needs to be improved.
This highlights the need to reconsider and refine current reweighting strategies.
This section begins with an insightful experiment to motivate our approach,
followed by the details of the proposed reweighting method.

Motivating Experiment:

To motivate our proposed method, we consider a simple yet insightful experi-
ment. Specifically, we analyze a model trained with TRADES, one of the most
robust defensive approaches. This experiment is conducted on the CIFAR-10
dataset using a ResNet-18 architecture. The experiment consists of ten runs,
recording the average number of correctly classified samples under two attack
scenarios: PGD-20 (Fig. 1(a)) and CW (Fig.1(b)). These results are presented
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(a) PGD-20

(¢) PGD-20: pertur- (d) PGD-20: perturba-
bation size 0.051 tion size 0.061

Fig. 1. Adversarial Vulnerabilities Across Attack Methods and Perturbation Sizes.

across varying perturbation sizes. Additionally, under two specific perturbation
sizes, confusion matrices for the PGD-20 attack are shown in Figs. 1(c) and 1(d).

Closely examining Figs. 1(a) and 1(b) reveals that as the perturbation size
increases, the drop in correctly classified adversarial samples is influenced by
both class and attack type. For instance, in the “deer” class: Under PGD-20,
the number of correctly classified samples decreased by 76, 52, 35, and 19 as
the perturbation size rose from 0.031 to 0.041, 0.041 to 0.051, 0.051 to 0.061,
and 0.061 to 0.071, respectively. On the other hand, under CW attack, the
decreases were 80, 40, 22, and 26 for the same perturbation size increments,
highlighting that adversarial robustness strongly depends on the attack type
and the perturbation size. While increasing the perturbation size prompts a
decline in correctly classified samples, the rate of this decline varies. A slow
decline as the perturbation size increases indicates some degree of resilience at
a higher perturbation size. This comparison highlights two key observations:
First, the rate of decline in correctly classified samples varies between attack
types, indicating the nuanced impact of attack strategies on robustness. Sec-
ond, a slower decline at larger perturbation sizes suggests that the model retains
some resilience under more aggressive adversarial conditions. Bridging this gap
in decline across attacks and perturbation sizes remains a critical challenge for
enhancing robustness while maintaining consistency across diverse adversarial
scenarios, highlighting the need for adaptive defenses that address attack diver-
sity and varying perturbation levels to enhance robustness. Relying on a single
factor, such as the distance to the decision boundary or classification confidence,
when assigning weights to adversarial examples can overlook essential nuances
in the adversarial training process. As a result, suboptimal weight assignment
may occur, where valuable adversarial examples are not given the necessary
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attention during training, leading to a weakened defense against more complex
attacks. Additionally, the confusion matrices (Figs.1(c) and 1(d)) provide fur-
ther insights. These matrices show that the counts of correctly and incorrectly
classified samples vary inconsistently across classes. For example: In Fig. 1(c),
under PGD-20, the model incorrectly classified class 6 as classes 5, 4, and 3 with
a count of 117, 225, and 179 times, respectively. Under the same PGD-20 but
at different perturbation sizes (Fig.1(d)), the same misclassifications occurred
106, 241, and 157 times, suggesting that certain classes are more sensitive to
the perturbation size than others. Classes such as 6 exhibit varying vulnerabil-
ity to attacks depending on the specific perturbation level and attack type. To
the best of our knowledge, this is the first exploration of the rate of decline in
correctly classified samples and misclassification patterns across classes under
varying perturbation sizes. These findings emphasize the need to account for
class-specific and attack-specific behavior when designing adversarial training
methods to improve robustness.

Proposed Method: Adaptive Weight Assignment:
We consider an adversarially trained model fyeax, & baseline model intended for
improvement. During training, we leverage the prediction confidence of fyeak to
develop a more stable and robust model. This approach dynamically adapts the
weights based on insights derived from fyeak, enabling the model to focus on
addressing its own vulnerabilities and enhancing robustness. Specifically, using
fweak, we evaluate each adversarial example’s predicted class probability dis-
tribution under attacks with varying perturbation sizes, allowing us to assign
higher weights to adversarial examples that are more challenging for the model
fweak, such as those that cause misclassification under attacks like CW and PGD-
20. At the same time, adversarial examples deemed less challenging, based on
their predicted class probabilities, are assigned lower weights but are not ignored
entirely, as they may still provide helpful information for the model’s learning
process. This ensures that the model is able to focus on difficult-to-classify adver-
sarial examples while still learning from easier examples, thus addressing the
imbalance that traditional AT methods often encounter. Let w() represent the
weighting function used in the adaptive reweighting strategy. The weighting
function w() can take advantage of the weak model’s confidence levels when
incorrectly classifying natural and adversarial samples. The function can empha-
size or de-emphasize certain misclassified examples during training by assigning
weights based on the weak model’s certainty or uncertainty in its predictions.
The results illustrated and reported in Fig.1 demonstrate that the distri-
bution of misclassified samples is heavily influenced by the type of adversarial
attack and the perturbation size introduced. In particular, for certain classes, the
number of samples incorrectly classified into another class becomes notably high
under specific adversarial conditions, suggesting that certain classes are more
prone to adversarial perturbations, leading to a significant shift in predicted
labels, which emphasizes the need for adaptive mechanisms to improve model
robustness across different attack scenarios.
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Formally, considering a classification problem with C' distinct classes, we
define the predicted class probability distribution for natural examples as

Po = [peyy Peys - - - s Dey c‘], where each p., represents the probability that a nat-

ural example is classified into class i, 1 < i < |C| and Z‘i’l De; = 1. Similarly,

Po= 0, 0y pé‘c‘] represent the predicted class probability distribution for
the corresponding adversarial example, perturbed under the perturbation size
«, where each p/, represents the model’s confidence in assigning the adversarial

example to class ¢ and Zlﬂ p., = 1. For each input z; and the correspond-
ing adversarial 2, the model prediction probability is given by p; = max(P¢)
and, p; = max(P}) respectively. Now consider a batch B of N input-label
pairs, denoted by {(z;,v;)},;, where x; is an input example and y; is its cor-
responding true class label. For each sample, x; let 2 denote the adversarial
example generated to attack the weak model fyeak(:). If fweak(2;) # y; with
probability p;, we define the probability sets Pow|a] and Ppgp.go[e] to repre-
sent the probabilities of misclassified samples under CW and PGD-20 attacks
with perturbation size «, respectively. Formaly, Powla] = {pi|fwear(x}) #
yi, under CW attack with perturbation size o} and Ppcpoaola] =
{Di| fweak (z;) # yi, under PGD-20 attack with perturbation size a}.

Additionally, let Pyo: = {pi|fwear(x:) # yi}, which represents the set of
probabilities for inputs z; misclassified by the weak model on natural examples.
Finally, let

Ppgy = mean(z Ppap—20lay]) + mean(z Pow[aj]) (2)

J=1 Jj=1

and
Pnat = mean(Pngqt), w = exp (PALCPNM) (3)

In Egs. 2 and 3, mean(-) denotes the average of the input values. The pertur-
bation sizes are represented by «;. In this work, we consider n = 2, corresponding
to two perturbation sizes: a; and as. In Eq. 3, the constant ¢ is introduced to
adjust the weight.

In summary, the sets Powl|a], Ppap—20]l@] and Py, capture the weak
model’s confidence in misclassifying adversarial and natural examples under dif-
ferent conditions. These probabilities are used in conjunction with the weighting
function w() to adjust the model’s learning based on the difficulty and nature of
the examples, thereby enhancing adversarial robustness. Our adaptive weight-
ing scheme is designed to dynamically modify the contribution of each training
example, encompassing both natural and adversarial instances according to their
respective misclassification probabilities. Specifically, we assign larger weights to
those examples that are misclassified with high confidence by the weak model
when exposed to both unperturbed data and adversarial attacks, such as the CW
and PGD-20 methods. In our approach, we also account for varying perturbation
sizes during these attacks to enhance the robustness of the training process. The
core principle underlying our adaptive weighting strategy is to steer the model’s
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learning process toward examples where it displays significant uncertainty or
misclassification. Since the weight increases exponentially with the misclassifica-
tion probability, the loss for harder-to-classify adversarial examples is amplified,
causing the model to focus more on minimizing the risk for these examples dur-
ing training, thereby reducing the overall adversarial misclassification rate. In
this case, we consider two perturbation sizes, a; = 0.051 and as = 0.061.

Integrating Into Existing Works:

We propose integrating our novel reweighting strategy with two promising adver-
sarial training methods to enhance their robustness and adaptability. We aim to
achieve superior robustness and performance across different scenarios by incor-
porating our reweighting strategy into these adversarial training methods. In the
TRADES framework, the loss function is composed of two key components: the
cross-entropy loss, which measures the performance on clean examples, and the
Kullback-Leibler (KL) divergence, which quantifies the discrepancy between the
natural and adversarial predictions. The TRADES loss is defined as

1
where p(z},0) is the predicted probability for the perturbed input z} and y; is
the true label. To improve TRADES, we introduce a reweighted KL term

CEw(r,0), 1) + 1w+ 3 KL(p(ws,0)llp(el, ). Q

The weight w dynamically adjusts the Kullback-Leibler (KL) divergence
based on the model’s confidence. Lastly, MART optimizes

BCE(p(x;,0),y:) + A - KL(p(x:,0)||p(,0)) - (1 = py, (24, 0)). (6)
To improve MART, we optimized the weighted loss defined by
BCE(p(x},0), y:) +w - X KL(p(xs,0)Ip(x7, 0)) - (1 = py, (2:,0)).  (7)

By adjusting the weights w based on the probability of misclassification for
each adversarial example, we enhance the model’s ability to focus on more chal-
lenging cases during training. This adaptive reweighting scheme fine-tunes the
model’s robustness by prioritizing adversarial examples that are harder to clas-
sify, thus forcing the model to allocate more learning capacity to regions of
the input space where adversarial vulnerability is higher. As a result, this app-
roach leads to improved overall robustness, as demonstrated by the significant
performance gains recorded in the experimental results, particularly against
stronger adversarial attacks. We denote the enhanced training objectives as
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TRADES+AWA and MART+AWA representing the improved versions of
TRADES and MART, respectively.

Algorithm 1: As an example, we show the training procedure of
TRADES+AWA in the following
Input: Training data D = {x;,y;}{, ¢, step size p; and pq for the inner
and the outer optimization respectively, the batch size m, the number of
outer iteration 7', the number of inner iteration K, and € the perturbation
size. Consider the perturbation sizes ay, as. A model fy, ... (Model
trained on TRADES, no weights applied)
Initialization:
Instantiate and initialize a model fy with the weights of fy
fort=1,2,....,T do
// At random, uniformly sample a mini-batch of training data
B(t) = {1‘1, ceey J}m}.
// Using fo...., a1 and as, generate adversarial samples for each
x; € By,
// Compute Pagy, Pnar according to Egs. 2 and 3.
for each x; € B(; do
z; = x; 4+ 0.001 X ¢;¢ ~ N(0,1)
for k=1,2,...., K do
‘ z; = s ($;+M139n(vx; [CE(p(x;,0),y:)])
end

weak

end

w = exp (PAd'u'l‘PNat)

0=0—L25"" Vo[CE(p(xi,0),y;) + 5 - w- KL(p(x:,0)||p(«7, 0))]
end

Output: fp (This model is significantly more robust, and we refer to it as
fStTong)

4 Experiments

We conducted a series of experiments and compared our method with the state-
of-the-art defenses on benchmark datasets CIFAR-10, CIFAR-100, and TinyIm-
ageNet. We tested on two model architectures: ResNet-18 and a larger capacity
network, WideResNet-34-10.

Baselines: We compare with top-performing variants of adversarial training
defenses TRADES and MART. Additionally, we compare our work against other
reweighting methods, Geometry-Aware Instance-Reweighted Adversarial Train-
ing (GAIRAT) [17] and MAIL [10]. In addition, we consider recent promising
margin-based adversarial training approaches MMA [5] and WAT [15].

Training Settings: The hyperparameters were selected using the Ray Tune
hyperparameter search tool as proposed in [9], and the best parameters identi-
fied are as follows: ResNet-18 on TinylmageNet (¢=3 and both % and \ are 8.0
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for TRADES+AWA and MART+AWA respectively). CIFAR-100 (c=6 and 3 for
MART+AWA and TRADES+AWA | respectively. On the other hand, A = 9.0 for
MART+AWA and += 8.0 for TRADES+AWA). CIFAR-10 on WRN-34-10 and
ResNet-18 (c=6 for both architectures. A = 9.0 for MART+AWA and ; = 6.0
for TRADES+AWA). For TRADES, 1 is set to 6.0, and X is 5.0 in MART as
specified in their original papers. We use the same parameters defined in their
original papers for other baselines. All the models are trained using SGD for 130
epochs with momentum 0.9 and the batch size m=100. The initial learning rate
is 0.01, then decayed by a factor of ten at the 75th and further decayed at the
90th epoch. We consider the weight decay of 3.5e-3. Adversarial data used in
training are generated using PGD with a random start, maximum perturbation
€ set to 8/255. The step size py = p2 = 2/255, and the number of steps, is
K=10. We consider two perturbation sizes, a; = 0.051 and as = 0.061.

Evaluation Details: We evaluated our method under white-box attack includ-
ing the Lo, PGD-20/100 [11], CW (PGD optimized with CW loss, confidence
level K=50), and AA [4]. The perturbation size is set to e=8/255 under the
white-box attack, and the step size is 1/255. Additionally, we evaluated strong
Black-box attacks SQUARE [1] and SPSA [12], which is a stronger query-based
black box attack, with the perturbation size of 0.001 (for gradient estimation),
sample size of 100, 20 iterations, and learning rate 0.01.

Table 1. Clean and robust accuracy on ResNet-18 and under CIFAR-10. We per-
form six runs and report the average performance with 95% confidence intervals. The
‘Clean’ column represents accuracy on natural examples.

Method Clean PGD-20 PGD-100 |CW AA SQUARE |SPSA

TRADES 82.46+0.0012/54.78 + 0.0010 [53.45 +0.0032/51.65 + 0.0021/49.08 + 0.0031/55.64 + 0.001156.50 + 0.0020
TRADES + AWA 82.30i0.014 56-35i0.0021 55-02i0.021 53-70i0.012 51.50i0.011 56-93i0.024 60-45i0.021
IVIAR,T 81.30 4+ 0.003 54.73 +0.006 5328 +0.005 51.86 +0.0031 49.01 + 0.0020 5566 + 0.0031 5615 +0.0040
MART + AWA  82.18 +0.022/56.92 +0.006 [55.29 +0.015/52.88 +£0.014/49.17 +0.016/56.30 + 0.021/59.66 + 0.021

Table 2. Clean and robust accuracies on WRN-34-10 and under CIFAR-10. We
perform six runs and report the average performance with 95% confidence intervals.
The ‘Clean’ column represents accuracy on natural examples.

Method Clean PGD-20 PGD-100 |CW AA SQUARE [SPSA
TRADES 84.58 +0.0021/57.71 + 0.0012 [56.69 £ 0.002 |55.01 +0.0013 |52.57 +0.002 |59.45 + 0.0024 [61.09 + 0.0023
TRADES + Ours(84.38 £ 0.0012 [58.53 +0.0221/57.45 +0.0011/56.49 + 0.0112/54.19 + 0.0013 59.79 + 0.0015(63.10  0.0031
MART 84.25+0.001 |58.29 +0.0032 [55.56 + 0.0011 [54.82 +0.002 [51.40 +0.00 |58.21 +0.0013 [59.87 +0.00
MART + Ours 84.88+0.004 |59.30+0.005 |57.29 +0.001 |56.04 +0.0021(52.34 + 0.003 [59.09 +0.0022/62.84 + 0.002

Experimental Results: A detailed examination of the results presented in
Tables 2 and 3 demonstrates the significant performance improvements achieved
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Table 3. Clean and robust accuracies on ResNet-18 and under CIFAR-100. We
perform six runs and report the average performance with 95% confidence intervals.
The ‘Clean’ column represents accuracy on natural examples.

Method Clean PGD-20 PGD-100 |[CW AA SQUARE |SPSA

TRADES 57.16 + 0.0010 |30.32 + 0.021 [29.48 + 0.021 |25.16 + 0.031 |25.18 + 0.031 30.46 + 0.022 [32.06 + 0.014
TRADES + Ours|60.18 +0.032 [31.77 +0.01130.95 + 0.031128.15 4 0.02526.03 + 0.024/31.08 + 0.054/33.91 + 0.033
MART 54.02 +0.001331.13 + 0.014 |30.14 + 0.011 |26.98 +0.010/24.83 +0.012 31.17 +0.01632.45 + 0.014
MART + Ours  56.83 +0.014 [32.79 +0.02132.12 +0.02529.37 +0.027/26.34 1 0.014/31.45 + 0.01233.40 + 0.018

by our proposed method over TRADES and MART, particularly under stronger
attacks like AutoAttack (AA). For instance, under ResNet-18, TRADES is
improved by 1.57% under PGD-20 and PGD-100, 2.05% under CW, 2.42%
under AA, and lastly 1.29% and 3.95% under SQUARE and SPSA attacks
respectively. On the other hand, MART+AWA recorded an improvement of
0.88% under Natural Accuracy, 2.19% and 2.01% under PGD-20 and 100, respec-
tively, 1.02% under CW, 0.64% under SQUARE and lastly 3.51% under SPAS.
We recorded a minor improvement under AA. On the WRN-34-10 architecture,
MART+AWA achieved gains of 0.63% in natural accuracy, 1.01% and 1.73%
under PGD-20 and PGD-100, 1.22% under CW, 0.94% under AA, 0.88% under
SQUARE, and 2.97% under SPSA. TRADES+AWA demonstrated a strong per-
formance against AA with a significant improvement of 1.64% while maintain-
ing comparable natural accuracy. Additional improvements included 0.82% and
0.76% under PGD-20 and PGD-100, 1.48% under CW, and 2.01% under SPSA.

Table 4. Clean and robust accuracies on TinyImageNet, ResNet-18 . We perform
six runs and report the average performance with 95% confidence intervals. The ‘Clean’
column represents accuracy on natural examples.

Method Clean PGD-20 CW AA
TRADES 49.56 +0.001 22.90 £ 0.0021/19.70 + 0.0011|16.78 + 0.001
TRADES + Ours51.83 £0.003(25.43 £ 0.00320.86 +0.001|18.87 1 0.002
MART 45.94 +0.003126.02 + 0.002 |21.87 +0.001 [19.20 +0.002
MART + Ours 46.49 +0.00426.80 +0.001/22.44 + 0.002/20.5 + 0.006

The results in Table3 highlight the significant improvements achieved by
applying our method to TRADES and MART. For TRADES, we observed
enhancements of 3.02% in clean accuracy, 1.45% and 1.47% under PGD-20 and
PGD-100, 2.99% under CW, 0.85% under AA, 0.62% under SQUARE, and 1.85%
under SPSA attacks. Similarly, for MART, we recorded an improvement of 2.81%
in clean accuracy, 1.66% and 1.98% under PGD-20 and PGD-100, 2.39% under
CW, 1.51% under AA, 0.28% under SQUARE, and 0.95% under SPSA attacks.
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Table 5. Clean and robust accuracies of different margin-based methods on CIFAR-
10 using the WRN-34-10 model. Results are based on six runs, with the average
performance reported along with 95% confidence intervals. The ‘Clean’ column indi-
cates the accuracy of unperturbed examples.

Method Clean PGD-20 PGD-100 |CW AA SQUARE |SPSA
MMA 86.21 +0.003 [57.17 +0.0021/56.03 + 0.001 |57.52 +0.011{44.57 £ 0.0011 57.12+0.021 |59.87 +0.011
WAT 85.16 + 0.003 |56.69 + 0.002 |55.13 +0.002 {54.06 +0.014 [49.87 +0.021 |58.89 +0.005 [60.78 + 0.002
MAIL 86.82 +0.003/60.38 £ 0.012 |58.68 +0.0012{51.48 + 0.001 [47.15+0.001 |58.02+0.002 [59.23 + 0.032
GAIRAT 85.39 +0.005 (60.59 +0.016/58.13 + 0.0032 [45.08 £ 0.014 [42.30 £ 0.007 [50.98 +0.001 |52.32  0.004
TRADES + AWA |84.38 +0.0012(58.53 + 0.0021/57.45 + 0.0011 [56.49 4 0.0024/54.19 + 0.0013/59.79 + 0.001559.87 + 0.0001
MART + AWA  |84.88 +0.004 [59.30 +0.005 |57.29 + 0.001 [56.04 +0.002152.34 + 0.003 |{59.09 + 0.0022 |62.84 + 0.002

For a more challenging task of classifying TinylmageNet, as presented in
Table 4, our method significantly improves both TRADES and MART under all
the attacks while maintaining an excellent natural accuracy.

The results in Table5 demonstrate that the enhanced versions of TRADES
(TRADES + AWA) and MART (MART + AWA) significantly outperformed
WAT, MAIL, and GAIRAT on stronger attacks like CW and AA. For example,
TRADES + AWA surpassed WAT, MAIL, and GAIRAT by 4.32%, 7.04%, and
11.89%, respectively. While MMA, WAT, MAIL, and GAIRAT achieved rela-
tively better performance in terms of natural accuracy, their robustness against
stronger attacks was notably poor, highlighting a critical trade-off addressed
by our method.

5 Conclusion

We propose an adaptive framework for adversarial training that uses a weight
assignment strategy, considering various attack types and perturbation levels.
This approach emphasizes the diverse behavior of adversarial examples, allowing
the model to focus on more challenging examples during training. As a result, our
method significantly boosts robustness against strong adversarial attacks while
maintaining a reasonable performance on clean data. This work highlights a step
forward in developing efficient and resilient defenses against evolving adversarial
threats.
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