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Abstract. Adversarial training (AT) improves model robustness by 
incorporating adversarial examples during training. Traditional methods, 
however, treat all examples equally, limiting their effectiveness. Recent 
studies show that adversarial examples vary in importance, and failing 
to account for this can weaken robustness. New approaches assign differ-
ent weights to adversarial examples, improving defenses against specific 
attacks while maintaining natural accuracy. However, existing reweight-
ing strategies often struggle against stronger attacks like CW and AA. 
Our analysis reveals that misclassified inputs may be assigned to different 
incorrect classes depending on the attack type and perturbation size, sug-
gesting that more than one metric for weight assignment is required. To 
tackle this, we propose an Adaptive Weight Assignment (AWA) strategy 
that uses predicted class probabilities across multiple attack types and 
perturbation sizes. This method strengthens weaker adversarially trained 
models and significantly improves robustness against strong attacks like 
CW and AA, as confirmed by our extensive experiments. 

1 Introduction 

Our modern society heavily depends on technology, with deep neural networks 
(DNNs) playing a pivotal role in critical areas like self-driving cars, recom-
mendation systems, and facial recognition. While DNNs have brought signif-
icant advancements, they are vulnerable to adversarial examples. To address 
these challenges, researchers have explored various methods to improve model 
robustness, with adversarial training (AT) [ 7] emerging as the most effective 
and foundational method. [ 11] formulated the adversarial training process as 
an optimization problem, aiming to find the model parameters θ that mini-
mize the risk minθ 

1 
n

∑n 
i=1 l(fθ(x′

i), yi). l(·) represents the loss function, fθ(x′
i) 

denotes the neural network’s prediction with parameters θ for the adversarially 
perturbed input x′

i generated during the inner maximization, and yi is the cor-
responding class label. This approach has paved the way for the development of 
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numerous defense strategies, including several variants of adversarial training, as 
proposed in [ 2, 5,11,13,14,16]. The results of adversarial training and its vari-
ations, though impactful, remain unsatisfactory, with a persistent gap between 
natural and adversarial accuracy. Meanwhile, other researchers have focused on 
assigning unequal weights to the training loss [ 6, 8,10,17]. Among these improve-
ment strategies, our work aligns with reweighting. Thus, we will discuss existing 
reweighting strategies and then elaborate on our proposed method. 

1.1 Existing Works 

In recent years, adversarial machine learning has garnered significant attention 
due to the vulnerability of deep learning models to adversarial attacks. Various 
defense strategies have been proposed to mitigate these risks, out of which some 
well-known approaches include adversarial training, regularization-based meth-
ods, reweighting, robust optimization, and detection-based defenses. We provide 
a brief description of regularization and reweighting methods. 

Regularization-Based Methods: 
Regularization techniques enhance training by promoting smoother decision 
boundaries, stabilizing model behavior under adversarial conditions, and reduc-
ing overfitting to adversarial examples. Researchers have explored these strate-
gies to strengthen defenses in deep learning models. One notable example is 
TRADES [ 16], which balances natural accuracy and adversarial robustness using 
a loss function with two components. MART (Misclassification-Aware Adversar-
ial Training), proposed by [ 13], focuses on misclassified examples during adver-
sarial training. It uses a regularization term that maximizes the margin between 
misclassified and correctly classified samples based on the premise that misclas-
sified examples are more susceptible to adversarial attacks. 

Reweighting Based Defenses in Adversarial Training: 
Geometry-Aware Instance-Reweighted Adversarial Training (GAIRAT) [ 17], 
prioritizing examples near decision boundaries as they are more vulnerable to 
attacks and thus require more attention during training. Similarly, Margin-Aware 
Instance Reweighting Learning (MAIL) [ 10] focuses on examples close to the 
decision margin, using predicted class probabilities to estimate their distance 
from the boundary. Existing reweighting strategies need improvement to perform 
effectively against stronger adversarial attacks such as Carlini-Wagne (CW) [ 3] 
and AutoAttack (AA) [ 4]. One of the main reasons for this shortcoming is that 
current reweighting approaches often rely on a single criterion to determine the 
weight of each adversarial example, such as the distance to the decision bound-
ary or the classification confidence on the perturbed example. This can lead to 
misallocation of weights, where adversarial examples that are assigned lower 
weights may still contain important information that is crucial for improving 
the model’s overall robustness. 

Limitations of Existing Works: 
Robustness still falls short, especially under strong attacks like CW, AA, and 
powerful black-box attacks. These challenges emphasize the need for more
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effective strategies to enhance model resilience and ensure strong performance 
against sophisticated adversarial threats. 

2 Notations 

Consider a standard classification problem defined over a dataset D = 
{(xi, yi)}n 

i=1 where xi represents the natural input corresponding to the label 
yi ∈ Y = {1, ......, C} , with C denoting the total number of classes. Let fθ(.) 
denote a deep neural network parameterized by θ. Let  fc(xi, θ) be the  logit out-
put of the deep neural network with model parameters θ corresponding to class 
c and pc(xi, θ) =  efc(xi,θ) /

∑C 
c′=1 e

fc′ (xi,θ) represent the probability that the net-
work predicts class c given the input example xi. Let  fθ(xi) represent the class 
prediction of the network. We denote by l(.) and  E(x,y) the loss and expected loss, 
respectively. The expected loss of the network over the dataset D is defined by 

E(x,y) = 1 
n 

n∑

i=1 

l(fθ(xi), yi). (1) 

In the context of adversarial learning, we also consider the adversarial samples 
x′

i, which are perturbed versions of the natural inputs xi, designed to mislead the 
classifier. Assume an initial point x(0), representing the natural data perturbed 
by small Gaussian or uniform random noise, i.e., x(0) = xi+Gaussian/U nif orm, 
where x(0) lies in the input feature space with a distance metric ||x − x′||∞. Let  
t ∈ N. PGD generates adversarial examples using the following update rule 
x(t+1) =

∏
Bε[xi]

(x(t) + α · sign(∇x(t)g′
i(fθ(x(t)), yi))). α is a step size,

∏
Bε[xi]

(.) 
is the projection function, Bε[x] =  {x′| ‖x′ − x‖p < ε} is a neighborhood of x, 
x(t) is the adversarial example at step t and g′

i(.) is the loss used to generate the 
adversarial used for training. 

3 Proposed Method 

Despite the progress made with existing reweighting techniques, their perfor-
mance against stronger attacks like CW and AA still needs to be improved. 
This highlights the need to reconsider and refine current reweighting strategies. 
This section begins with an insightful experiment to motivate our approach, 
followed by the details of the proposed reweighting method. 

Motivating Experiment: 
To motivate our proposed method, we consider a simple yet insightful experi-
ment. Specifically, we analyze a model trained with TRADES, one of the most 
robust defensive approaches. This experiment is conducted on the CIFAR-10 
dataset using a ResNet-18 architecture. The experiment consists of ten runs, 
recording the average number of correctly classified samples under two attack 
scenarios: PGD-20 (Fig. 1(a)) and CW (Fig. 1(b)). These results are presented
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Fig. 1. Adversarial Vulnerabilities Across Attack Methods and Perturbation Sizes. 

across varying perturbation sizes. Additionally, under two specific perturbation 
sizes, confusion matrices for the PGD-20 attack are shown in Figs. 1(c) and 1(d). 

Closely examining Figs. 1(a) and 1(b) reveals that as the perturbation size 
increases, the drop in correctly classified adversarial samples is influenced by 
both class and attack type. For instance, in the “deer” class: Under PGD-20, 
the number of correctly classified samples decreased by 76, 52, 35, and 19 as 
the perturbation size rose from 0.031 to 0.041, 0.041 to 0.051, 0.051 to 0.061, 
and 0.061 to 0.071, respectively. On the other hand, under CW attack, the 
decreases were 80, 40, 22, and 26 for the same perturbation size increments, 
highlighting that adversarial robustness strongly depends on the attack type 
and the perturbation size. While increasing the perturbation size prompts a 
decline in correctly classified samples, the rate of this decline varies. A slow 
decline as the perturbation size increases indicates some degree of resilience at 
a higher perturbation size. This comparison highlights two key observations: 
First, the rate of decline in correctly classified samples varies between attack 
types, indicating the nuanced impact of attack strategies on robustness. Sec-
ond, a slower decline at larger perturbation sizes suggests that the model retains 
some resilience under more aggressive adversarial conditions. Bridging this gap 
in decline across attacks and perturbation sizes remains a critical challenge for 
enhancing robustness while maintaining consistency across diverse adversarial 
scenarios, highlighting the need for adaptive defenses that address attack diver-
sity and varying perturbation levels to enhance robustness. Relying on a single 
factor, such as the distance to the decision boundary or classification confidence, 
when assigning weights to adversarial examples can overlook essential nuances 
in the adversarial training process. As a result, suboptimal weight assignment 
may occur, where valuable adversarial examples are not given the necessary
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attention during training, leading to a weakened defense against more complex 
attacks. Additionally, the confusion matrices (Figs. 1(c) and 1(d)) provide fur-
ther insights. These matrices show that the counts of correctly and incorrectly 
classified samples vary inconsistently across classes. For example: In Fig. 1(c), 
under PGD-20, the model incorrectly classified class 6 as classes 5, 4, and 3 with 
a count of 117, 225, and 179 times, respectively. Under the same PGD-20 but 
at different perturbation sizes (Fig. 1(d)), the same misclassifications occurred 
106, 241, and 157 times, suggesting that certain classes are more sensitive to 
the perturbation size than others. Classes such as 6 exhibit varying vulnerabil-
ity to attacks depending on the specific perturbation level and attack type. To 
the best of our knowledge, this is the first exploration of the rate of decline in 
correctly classified samples and misclassification patterns across classes under 
varying perturbation sizes. These findings emphasize the need to account for 
class-specific and attack-specific behavior when designing adversarial training 
methods to improve robustness. 

Proposed Method: Adaptive Weight Assignment: 
We consider an adversarially trained model fweak, a baseline model intended for 
improvement. During training, we leverage the prediction confidence of fweak to 
develop a more stable and robust model. This approach dynamically adapts the 
weights based on insights derived from fweak, enabling the model to focus on 
addressing its own vulnerabilities and enhancing robustness. Specifically, using 
fweak, we evaluate each adversarial example’s predicted class probability dis-
tribution under attacks with varying perturbation sizes, allowing us to assign 
higher weights to adversarial examples that are more challenging for the model 
fweak, such as those that cause misclassification under attacks like CW and PGD-
20. At the same time, adversarial examples deemed less challenging, based on 
their predicted class probabilities, are assigned lower weights but are not ignored 
entirely, as they may still provide helpful information for the model’s learning 
process. This ensures that the model is able to focus on difficult-to-classify adver-
sarial examples while still learning from easier examples, thus addressing the 
imbalance that traditional AT methods often encounter. Let w() represent the 
weighting function used in the adaptive reweighting strategy. The weighting 
function w() can take advantage of the weak model’s confidence levels when 
incorrectly classifying natural and adversarial samples. The function can empha-
size or de-emphasize certain misclassified examples during training by assigning 
weights based on the weak model’s certainty or uncertainty in its predictions. 

The results illustrated and reported in Fig. 1 demonstrate that the distri-
bution of misclassified samples is heavily influenced by the type of adversarial 
attack and the perturbation size introduced. In particular, for certain classes, the 
number of samples incorrectly classified into another class becomes notably high 
under specific adversarial conditions, suggesting that certain classes are more 
prone to adversarial perturbations, leading to a significant shift in predicted 
labels, which emphasizes the need for adaptive mechanisms to improve model 
robustness across different attack scenarios.
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Formally, considering a classification problem with C distinct classes, we 
define the predicted class probability distribution for natural examples as 
PC = [pc1 , pc2 , . . . , pc|C| ], where each pci represents the probability that a nat-

ural example is classified into class i, 1  < i <  |C| and
∑|C| 

i=1 pci = 1. Similarly, 
P ′

C = [p′
c1 , p

′
c2 , . . . , p

′
c|C| ] represent the predicted class probability distribution for 

the corresponding adversarial example, perturbed under the perturbation size 
α, where each p′

ci 
represents the model’s confidence in assigning the adversarial 

example to class i and
∑|C| 

i=1 p
′
ci 

= 1. For each input xi and the correspond-
ing adversarial x′

i, the model prediction probability is given by pi = max(PC) 
and, p′

i = max(P ′
C) respectively. Now consider a batch B of N input-label 

pairs, denoted by {(xi, yi)}N 
i=1, where xi is an input example and yi is its cor-

responding true class label. For each sample, xi let x′
i denote the adversarial 

example generated to attack the weak model fweak(·). If fweak(x′
i) �= yi with 

probability pi, we define the probability sets PCW[α] and  PPGD-20[α] to repre-
sent the probabilities of misclassified samples under CW and PGD-20 attacks 
with perturbation size α, respectively. Formaly, PCW[α] =  {p′

i|fweak(x′
i) �= 

yi, under CW attack with perturbation size α} and PPGD-20[α] =  
{p′

i|fweak(x′
i) �= yi, under PGD-20 attack with perturbation size α}. 

Additionally, let PNat  = {pi|fweak(xi) �= yi}, which represents the set of 
probabilities for inputs xi misclassified by the weak model on natural examples. 
Finally, let 

PAdv = mean( 
n∑

j=1 

PPGD−20[αj ]) + mean( 
n∑

j=1 

PCW [αj ]) (2) 

and 
PNat  = mean(PNat), w  = exp  (PAdv + PNat) 

c 
(3) 

In Eqs. 2 and 3, mean(·) denotes the average of the input values. The pertur-
bation sizes are represented by αi. In this work, we consider n = 2, corresponding 
to two perturbation sizes: α1 and α2. In Eq.  3, the constant c is introduced to 
adjust the weight. 

In summary, the sets PCW [α], PPGD−20[α] and  PNat  capture the weak 
model’s confidence in misclassifying adversarial and natural examples under dif-
ferent conditions. These probabilities are used in conjunction with the weighting 
function w() to adjust the model’s learning based on the difficulty and nature of 
the examples, thereby enhancing adversarial robustness. Our adaptive weight-
ing scheme is designed to dynamically modify the contribution of each training 
example, encompassing both natural and adversarial instances according to their 
respective misclassification probabilities. Specifically, we assign larger weights to 
those examples that are misclassified with high confidence by the weak model 
when exposed to both unperturbed data and adversarial attacks, such as the CW 
and PGD-20 methods. In our approach, we also account for varying perturbation 
sizes during these attacks to enhance the robustness of the training process. The 
core principle underlying our adaptive weighting strategy is to steer the model’s
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learning process toward examples where it displays significant uncertainty or 
misclassification. Since the weight increases exponentially with the misclassifica-
tion probability, the loss for harder-to-classify adversarial examples is amplified, 
causing the model to focus more on minimizing the risk for these examples dur-
ing training, thereby reducing the overall adversarial misclassification rate. In 
this case, we consider two perturbation sizes, α1 = 0.051 and α2 = 0.061. 

Integrating Into Existing Works: 
We propose integrating our novel reweighting strategy with two promising adver-
sarial training methods to enhance their robustness and adaptability. We aim to 
achieve superior robustness and performance across different scenarios by incor-
porating our reweighting strategy into these adversarial training methods. In the 
TRADES framework, the loss function is composed of two key components: the 
cross-entropy loss, which measures the performance on clean examples, and the 
Kullback-Leibler (KL) divergence, which quantifies the discrepancy between the 
natural and adversarial predictions. The TRADES loss is defined as 

CE(p(xi, θ), yi) +  1 
λ 

· KL(p(xi, θ)||p(x′
i, θ)). (4) 

where p(x′
i, θ) is the predicted probability for the perturbed input x′

i and yi is 
the true label. To improve TRADES, we introduce a reweighted KL term 

CE(p(xi, θ), yi) +  w · 1 
λ 

KL(p(xi, θ)||p(x′
i, θ)). (5) 

The weight w dynamically adjusts the Kullback-Leibler (KL) divergence 
based on the model’s confidence. Lastly, MART optimizes 

BCE(p(x′
i, θ), yi) +  λ · KL(p(xi, θ)||p(x′

i, θ)) · (1 − pyi
(xi, θ)). (6) 

To improve MART, we optimized the weighted loss defined by 

BCE(p(x′
i, θ), yi) +  w · λ · KL(p(xi, θ)||p(x′

i, θ)) · (1 − pyi
(xi, θ)). (7) 

By adjusting the weights w based on the probability of misclassification for 
each adversarial example, we enhance the model’s ability to focus on more chal-
lenging cases during training. This adaptive reweighting scheme fine-tunes the 
model’s robustness by prioritizing adversarial examples that are harder to clas-
sify, thus forcing the model to allocate more learning capacity to regions of 
the input space where adversarial vulnerability is higher. As a result, this app-
roach leads to improved overall robustness, as demonstrated by the significant 
performance gains recorded in the experimental results, particularly against 
stronger adversarial attacks. We denote the enhanced training objectives as
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TRADES+AWA and MART+AWA representing the improved versions of 
TRADES and MART, respectively. 

Algorithm 1: As an example, we show the training procedure of 
TRADES+AWA in the following 
Input: Training data D = {xi, yi}n 

i=1, c, step size μ1 and μ2 for the inner 
and the outer optimization respectively, the batch size m, the number of 
outer iteration T , the number of inner iteration K, and ε the perturbation 
size. Consider the perturbation sizes α1, α2. A model fθweak

(Model 
trained on TRADES, no weights applied) 
Initialization: 
Instantiate and initialize a model fθ with the weights of fθweak 

for t = 1, 2, ...., T do 
// At random, uniformly sample a mini-batch of training data 
B(t) = {x1, ..., xm}. 
// Using fθweak

, α1 and α2, generate adversarial samples for each 
xi ∈ Bt, 
// Compute PAdv, PNat  according to Eqs. 2 and 3. 
for each xi ∈ B(t) do 

x
′
i = xi + 0.001 × ς; ς ∼ N (0, I) 

for k = 1, 2, ...., K do 
x

′
i =

∏
Bε[xi]

(x
′
i+μ1sgn(∇x

′
i 
[CE(p(x′

i, θ), yi)]) 
end 

end 
w = exp  (PAdv+PNat) 

c 
θ = θ − μ2 

m

∑m 
i=1 ∇θ[CE(p(xi, θ), yi) +  1 λ · w · KL(p(xi, θ)||p(x′

i, θ))] 
end 
Output: fθ (This model is significantly more robust, and we refer to it as 
fStrong) 

4 Experiments 

We conducted a series of experiments and compared our method with the state-
of-the-art defenses on benchmark datasets CIFAR-10, CIFAR-100, and TinyIm-
ageNet. We tested on two model architectures: ResNet-18 and a larger capacity 
network, WideResNet-34-10. 
Baselines: We compare with top-performing variants of adversarial training 
defenses TRADES and MART. Additionally, we compare our work against other 
reweighting methods, Geometry-Aware Instance-Reweighted Adversarial Train-
ing (GAIRAT) [ 17] and MAIL [ 10]. In addition, we consider recent promising 
margin-based adversarial training approaches MMA [ 5] and  WAT  [  15]. 
Training Settings: The hyperparameters were selected using the Ray Tune 
hyperparameter search tool as proposed in [ 9], and the best parameters identi-
fied are as follows: ResNet-18 on TinyImageNet (c=3 and both 1 λ and λ are 8.0
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for TRADES+AWA and MART+AWA respectively). CIFAR-100 (c=6 and 3 for 
MART+AWA and TRADES+AWA, respectively. On the other hand, λ = 9.0 for  
MART+AWA and 1 λ= 8.0 for TRADES+AWA). CIFAR-10 on WRN-34-10 and 
ResNet-18 (c=6 for both architectures. λ = 9.0 for MART+AWA and 1 

λ = 6.0 
for TRADES+AWA). For TRADES, 1 

λ is set to 6.0, and λ is 5.0 in MART as 
specified in their original papers. We use the same parameters defined in their 
original papers for other baselines. All the models are trained using SGD for 130 
epochs with momentum 0.9 and the batch size m=100. The initial learning rate 
is 0.01, then decayed by a factor of ten at the 75th and further decayed at the 
90th epoch. We consider the weight decay of 3.5e-3. Adversarial data used in 
training are generated using PGD with a random start, maximum perturbation
ε set to 8/255. The step size μ1 = μ2 = 2/255, and the number of steps, is 
K=10. We consider two perturbation sizes, α1 = 0.051 and α2 = 0.061. 

Evaluation Details: We evaluated our method under white-box attack includ-
ing the L∞ PGD-20/100 [ 11], CW (PGD optimized with CW loss, confidence 
level K=50), and AA [ 4]. The perturbation size is set to ε=8/255 under the 
white-box attack, and the step size is 1/255. Additionally, we evaluated strong 
Black-box attacks SQUARE [ 1] and SPSA [ 12], which is a stronger query-based 
black box attack, with the perturbation size of 0.001 (for gradient estimation), 
sample size of 100, 20 iterations, and learning rate 0.01. 

Table 1. Clean and robust accuracy on ResNet-18 and under CIFAR-10. We per-
form six runs and report the average performance with 95% confidence intervals. The 
‘Clean’ column represents accuracy on natural examples. 

Method Clean PGD-20 PGD-100 CW AA SQUARE SPSA 
TRADES 82.46±0.0012 54.78 ± 0.0010 53.45 ± 0.0032 51.65 ± 0.0021 49.08 ± 0.0031 55.64 ± 0.0011 56.50 ± 0.0020 

TRADES + AWA 82.30 ± 0.014 56.35 ± 0.0021 55.02 ± 0.021 53.70 ± 0.012 51.50 ± 0.011 56.93 ± 0.024 60.45 ± 0.021 

MART 81.30 ± 0.003 54.73 ± 0.006 53.28 ± 0.005 51.86 ± 0.0031 49.01 ± 0.0020 55.66 ± 0.0031 56.15 ± 0.0040 

MART + AWA 82.18 ± 0.022 56.92 ± 0.006 55.29 ± 0.015 52.88 ± 0.014 49.17 ± 0.016 56.30 ± 0.021 59.66 ± 0.021 

Table 2. Clean and robust accuracies on WRN-34-10 and under CIFAR-10. We  
perform six runs and report the average performance with 95% confidence intervals. 
The ‘Clean’ column represents accuracy on natural examples. 

M ethod Clean PGD-20 PGD-100 CW AA SQUARE SPSA 
TRADES 84.58 ± 0.0021 57.71 ± 0.0012 56.69 ± 0.002 55.01 ± 0.0013 52.57 ± 0.002 59.45 ± 0.0024 61.09 ± 0.0023 

TRADES + Ours 84.38 ± 0.0012 58.53 ± 0.0221 57.45 ± 0.0011 56.49 ± 0.0112 54.19 ± 0.0013 59.79 ± 0.0015 63.10 ± 0.0031 

MART 84.25 ± 0.001 58.29 ± 0.0032 55.56 ± 0.0011 54.82 ± 0.002 51.40 ± 0.00 58.21 ± 0.0013 59.87 ± 0.00 

MART + Ours 84.88 ± 0.004 59.30 ± 0.005 57.29 ± 0.001 56.04 ± 0.0021 52.34 ± 0.003 59.09 ± 0.0022 62.84 ± 0.002 

Experimental Results: A detailed examination of the results presented in 
Tables 2 and 3 demonstrates the significant performance improvements achieved
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Table 3. Clean and robust accuracies on ResNet-18 and under CIFAR-100. We  
perform six runs and report the average performance with 95% confidence intervals. 
The ‘Clean’ column represents accuracy on natural examples. 

M ethod Clean PGD-20 PGD-100 CW AA SQUARE SPSA 
TRADES 57.16 ± 0.0010 30.32 ± 0.021 29.48 ± 0.021 25.16 ± 0.031 25.18 ± 0.031 30.46 ± 0.022 32.06 ± 0.014 

TRADES + Ours 60.18 ± 0.032 31.77 ± 0.011 30.95 ± 0.031 28.15 ± 0.025 26.03 ± 0.024 31.08 ± 0.054 33.91 ± 0.033 

MART 54.02 ± 0.0013 31.13 ± 0.014 30.14 ± 0.011 26.98 ± 0.010 24.83 ± 0.012 31.17 ± 0.016 32.45 ± 0.014 

MART + Ours 56.83 ± 0.014 32.79 ± 0.021 32.12 ± 0.025 29.37 ± 0.027 26.34 ± 0.014 31.45 ± 0.012 33.40 ± 0.018 

by our proposed method over TRADES and MART, particularly under stronger 
attacks like AutoAttack (AA). For instance, under ResNet-18, TRADES is 
improved by 1.57% under PGD-20 and PGD-100, 2.05% under CW, 2.42% 
under AA, and lastly 1.29% and 3.95% under SQUARE and SPSA attacks 
respectively. On the other hand, MART+AWA recorded an improvement of 
0.88% under Natural Accuracy, 2.19% and 2.01% under PGD-20 and 100, respec-
tively, 1.02% under CW, 0.64% under SQUARE and lastly 3.51% under SPAS. 
We recorded a minor improvement under AA. On the WRN-34-10 architecture, 
MART+AWA achieved gains of 0.63% in natural accuracy, 1.01% and 1.73% 
under PGD-20 and PGD-100, 1.22% under CW, 0.94% under AA, 0.88% under 
SQUARE, and 2.97% under SPSA. TRADES+AWA demonstrated a strong per-
formance against AA with a significant improvement of 1.64% while maintain-
ing comparable natural accuracy. Additional improvements included 0.82% and 
0.76% under PGD-20 and PGD-100, 1.48% under CW, and 2.01% under SPSA. 

Table 4. Clean and robust accuracies on TinyImageNet, ResNet-18 . We perform  
six runs and report the average performance with 95% confidence intervals. The ‘Clean’ 
column represents accuracy on natural examples. 

Method Clean PGD-20 CW AA 
TRADES 49.56 ± 0.001 22.90 ± 0.0021 19.70 ± 0.0011 16.78 ± 0.001 

TRADES + Ours 51.83 ± 0.003 25.43 ± 0.003 20.86 ± 0.001 18.87 ± 0.002 

MART 45.94 ± 0.003 26.02 ± 0.002 21.87 ± 0.001 19.20 ± 0.002 

MART + Ours 46.49 ± 0.004 26.80 ± 0.001 22.44 ± 0.002 20.5 ± 0.006 

The results in Table 3 highlight the significant improvements achieved by 
applying our method to TRADES and MART. For TRADES, we observed 
enhancements of 3.02% in clean accuracy, 1.45% and 1.47% under PGD-20 and 
PGD-100, 2.99% under CW, 0.85% under AA, 0.62% under SQUARE, and 1.85% 
under SPSA attacks. Similarly, for MART, we recorded an improvement of 2.81% 
in clean accuracy, 1.66% and 1.98% under PGD-20 and PGD-100, 2.39% under 
CW, 1.51% under AA, 0.28% under SQUARE, and 0.95% under SPSA attacks.
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Table 5. Clean and robust accuracies of different margin-based methods on CIFAR-
10 using the WRN-34-10 model. Results are based on six runs, with the average 
performance reported along with 95% confidence intervals. The ‘Clean’ column indi-
cates the accuracy of unperturbed examples. 

Method Clean PGD-20 PGD-100 CW AA SQUARE SPSA 
MMA 86.21 ± 0.003 57.17 ± 0.0021 56.03 ± 0.001 57.52 ± 0.011 44.57 ± 0.0011 57.12 ± 0.021 59.87 ± 0.011 

WAT 85.16 ± 0.003 56.69 ± 0.002 55.13 ± 0.002 54.06 ± 0.014 49.87 ± 0.021 58.89 ± 0.005 60.78 ± 0.002 

MAIL 86.82 ± 0.003 60.38 ± 0.012 58.68 ± 0.0012 51.48 ± 0.001 47.15 ± 0.001 58.02 ± 0.002 59.23 ± 0.032 

GAIRAT 85.39 ± 0.005 60.59 ± 0.016 58.13 ± 0.0032 45.08 ± 0.014 42.30 ± 0.007 50.98 ± 0.001 52.32 ± 0.004 

TRADES + AWA 84.38 ± 0.0012 58.53 ± 0.0021 57.45 ± 0.0011 56.49 ± 0.0024 54.19 ± 0.0013 59.79 ± 0.0015 59.87 ± 0.0001 

MART + AWA 84.88 ± 0.004 59.30 ± 0.005 57.29 ± 0.001 56.04 ± 0.0021 52.34 ± 0.003 59.09 ± 0.0022 62.84 ± 0.002 

For a more challenging task of classifying TinyImageNet, as presented in 
Table 4, our method significantly improves both TRADES and MART under all 
the attacks while maintaining an excellent natural accuracy. 

The results in Table 5 demonstrate that the enhanced versions of TRADES 
(TRADES + AWA) and MART (MART + AWA) significantly outperformed 
WAT, MAIL, and GAIRAT on stronger attacks like CW and AA. For example, 
TRADES + AWA surpassed WAT, MAIL, and GAIRAT by 4.32%, 7.04%, and 
11.89%, respectively. While MMA, WAT, MAIL, and GAIRAT achieved rela-
tively better performance in terms of natural accuracy, their robustness against 
stronger attacks was notably poor, highlighting a critical trade-off addressed 
by our method. 

5 Conclusion 

We propose an adaptive framework for adversarial training that uses a weight 
assignment strategy, considering various attack types and perturbation levels. 
This approach emphasizes the diverse behavior of adversarial examples, allowing 
the model to focus on more challenging examples during training. As a result, our 
method significantly boosts robustness against strong adversarial attacks while 
maintaining a reasonable performance on clean data. This work highlights a step 
forward in developing efficient and resilient defenses against evolving adversarial 
threats. 
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