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Abstract

High-resolution image (HRI) understanding aims to process
images with a large number of pixels, such as pathologi-
cal images and agricultural aerial images, both of which
can exceed 1 million pixels. Vision Large Language Models
(VLMs) can allegedly handle HRIs, however, there is a lack
of a comprehensive benchmark for VLMs to evaluate HRI
understanding. To address this gap, we introduce HRScene,
a novel unified benchmark for HRI understanding with rich
scenes. HRScene incorporates 25 real-world datasets and 2
synthetic diagnostic datasets with resolutions ranging from
1,024 → 1,024 to 35,503 → 26,627. HRScene is collected
and re-annotated by 10 graduate-level annotators, cover-
ing 25 scenarios, ranging from microscopic to radiology
images, street views, long-range pictures, and telescope im-
ages. It includes HRIs of real-world objects, scanned doc-
uments, and composite multi-image. The two diagnostic
evaluation datasets are synthesized by combining the target
image with the gold answer and distracting images in dif-
ferent orders, assessing how well models utilize regions in
HRI. We conduct extensive experiments involving 28 VLMs,
including Gemini 2.0 Flash and GPT-4o. Experiments on
HRScene show that current VLMs achieve an average ac-
curacy of around 50% on real-world tasks, revealing sig-
nificant gaps in HRI understanding. Results on synthetic
datasets reveal that VLMs struggle to effectively utilize HRI
regions, showing significant Regional Divergence and lost-
in-middle, shedding light on future research.

1. Introduction

High-resolution image (HRI) understanding aims to process
images with a large number of pixels [7]. It plays an im-
portant role in numerous scenarios, such as pathology [16],

autonomous driving [79], and large document understand-
ing [27, 28, 52]. With the development of Vision Large
Language Models (VLMs), automatic processing of HRIs
has been a promising direction [64]. As shown in Fig-
ure 1c, Gemini [59], Claude [4], and GPT [3] can support
images exceeding 1k resolution, enabling a wide range of
real-world applications, such as 24/7 street monitoring [79],
galaxy research [35], and radiology analysis [40].

However, even though existing VLMs can allegedly han-
dle inputs of high-resolution images, there is a lack of com-
prehensive HRI benchmark, hindering objective calibration
and measurement of progress on the effectiveness of HRI
understanding. First, HRI evaluation is often missing from
the official reports of mainstream VLMs. Figure 1c lists
most of the vision-based benchmarks that VLMs are evalu-
ated on, such as MMMU [76], VQAv2 [23], and AI2D [37].
Their average resolution is typically below 1k, making them
unsuitable for HRI evaluation. Moreover, there is no com-
prehensive real-world or diagnostic benchmark for HRIs.
As shown in Table 1, the existing real-world datasets with
HRIs tend to either focus on specific scenarios, like long-
range images [65], or particular resolutions, such as 8k [79].
The current diagnostic evaluation, namely, Multi-modal
Neelde-in-the-Haystack (NIAH), primarily focuses on long
text [48] or a mixture of low-resolution images [67].

To address this gap, we introduce HRScene, a unified
benchmark for HRI understanding, covering diverse real-
world scenes. HRScene incorporates 25 real-world tasks
with resolutions ranging from 1024 → 1024 to 35,503 →
26,627, and 2 synthetic diagnostic datasets with 1k to 4k
resolution. As shown in Figure 1a, we propose a task taxon-
omy to guide the development of HRScene : (1) we identify
8 categories of HRI tasks: Daily pictures, Urban planning,
Paper scanned images, Artworks, Multi-subimages, Remote
sensing, Medical Diagnosing, and Research understanding.
(2) We focus on the 25 real-world scenes distributed across
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Figure 1. (a) Overview taxonomy of the HRScene. (b) Performance of some VLMs on HRScene. (c) Comparison between the benchmarks
that the mainstream VLMs are evaluated on and HRScene. The y-axis is the

→
total pixel. The boxes/icons indicate the image resolution

they contain/support. The black lines inside each box show the average resolutions.

these categories, such as street monitoring and medical im-
age understanding. (3) Each scene evaluates diverse capa-
bilities of LLMs, such as counting, temporal and seman-
tic reasoning, holistic image judgment, visual retrieval, spa-
tial relations, and small object detection. HRScene is col-

Table 1. Comparison with existing real-world benchmarks and
Multi-modal NIAH diagnosis.

Benchmark Scenes Easy Eval Highest Res Avg Res

MME [79] 5 ✁ 5304 → 7952 2000 → 1500
HR-Bench [65] 1 ✂ 8000 → 8000 8000 → 8000
HRScene (ours) 25 ✁ 35503 → 26627 4828 → 4078

NIAH High-Res Multi-Res Real Img Needle in

MM-NIAH [67] ✂ ✂ ✁ text
MileBench [58] ✂ ✂ ✁ text
Visual Haystack [71] ✂ ✂ ✂ image
HRScene (ours) ✁ ✁ ✁ image

lected from 25 existing data resources, and 8 of them are
re-annotated by 10 graduate-level annotators, with diverse
view scales, ranging from microscope to radiology, street
views, long-range, and telescope images. It contains high-
resolution images of real objects, electronic documents, and
composite multi-subimages. Besides, six datasets require
domain-expert knowledge, while the remaining 19 belong
to general domains. The diagnostic dataset is synthesized
by combining the target image with the gold answer and
visually similar distractors arranged in different orders to
assess HRI utilization. Overall, HRScene comprises 7,068
images, with 2,008 of them being re-annotated.

We conduct extensive experiments to evaluate the
HRI understanding of 28 popular VLMs, including 6
proprietary VLMs: GPT [32], Claude [4], and Gem-
ini [60] families, and 22 open-sourced models, includ-
ing InternVL2 [12], DeepSeek [72], Phi [2], Qwen [63],

MolMo [15], LLava [47], and Llama [19] families. As
shown in Figure 1b, experiments on real-world tasks
demonstrate that current VLMs perform modestly, with an
average accuracy of around 50%, highlighting substantial
challenges of HRScene. Besides, we also provide the hu-
man performance of all real-world datasets by engaging
graduate-level annotators to annotate 750 image-question
pairs. Our synthetic datasets provide a fine-grained un-
derstanding of VLM performance, revealing two robust is-
sues across VLMs, including regional divergence and lost-
in-the-middle, shedding light on future improvement direc-
tions.

Our contributions are: (1) we propose HRScene, a
unified benchmark with 25 real-world and 2 diagnostic
datasets; (2) we benchmark 28 models on HRScene and
show the significant performance gap; (3) we discover two
salient issues of VLMs, including regional divergence and
the lost-in-the-middle.

2. Related Work
VLMs for High-resolution Image. Recent advances in
vision-language models have demonstrated remarkable ca-
pabilities in understanding and reasoning about visual con-
tent [19, 32, 47, 59]. However, processing high-resolution
images remains a significant challenge due to computa-
tional constraints and the need to capture both fine-grained
details and global context [8]. Two main categories of ap-
proaches have emerged to address these challenges. The
first category employs a dual encoder architecture that pro-
cesses the high-resolution and low-resolution of the same
image in parallel [25, 50, 51]. A low-resolution en-
coder, typically CLIP [55], captures coarse-grained fea-
tures for global understanding, while a high-resolution en-
coder based on convolutional neural networks [49] or ob-
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Figure 2. Distribution of resolution of each dataset. X-axis is the
resolution and nk indicates the resolution is at least n2↑106 pixels.

ject segmentation models [38] preserves fine-grained de-
tails. The resulting high-resolution and low-resolution to-
kens are then fused or concatenated before being passed
to large language models. This design achieves computa-
tional efficiency while leveraging both global and local vi-
sual features. The second category utilizes a splitting strat-
egy [18, 24, 26, 30, 44, 53, 72]. A high-resolution image
is first downsampled and processed by a vision encoder
to capture the global context, while the original image is
then divided into multiple sub-images processed by a vi-
sion encoder with the same resolution to extract local fea-
tures. It enables efficient processing of high-resolution im-
ages while preserving fine details, proving particularly ef-
fective for tasks requiring detailed local analysis and global
scene understanding. In this work, we propose HRScene,
a benchmark with diverse scenes that challenge both global
and local understanding capabilities of VLMs.
Evaluating High-resolution Image Understanding.
High-resolution image understanding has been an impor-
tant topic in computer vision [7]. Tradition research has
usually focused on downstream tasks such as classification
and detection, such as Crowd Counting [33, 34, 57, 68, 77],
Autonomous Driving [14, 31, 43, 56, 75], Aerial Image
Classification [13], and Pathology [1, 5, 61, 74]. With
the development of VLMs, more benchmarks have been
introduced based on the stronger capability of VLMs,
these tasks usually incorporate text instructions, logical
reasoning, and complex question answering. For instance,
MME-Realworld [79] proposes five tasks with small ob-
jects for VLMs to recognize and answer the given question;
MileBench focuses on the ability of VLMs to discern
relationships of multiple images that are possibly temporal

or semantically interconnected; and MuirBench contains 12
diverse multi-image tasks (e.g., scene understanding, order-
ing) with 10 multi-image relations. However, these works
are separately proposed and focus on limited scenes, failing
to evaluate the VLMs’ capability to HRI understanding
comprehensively.
Needle-in-the-Haystack. Needle in the Haystack (NIAH)
test is initially proposed for long text input [48]. It is used to
evaluate the LLM capability in long context understanding
and mark the text regions that LLMs fail to understand. Re-
cently, this NIAH test has been extended for Multi-modality
settings. MM-NIAH [67] evaluates VLMs with a question
on the synthetic sub-image embedded in a larger whole im-
age. MileBench [58] mixes the text and image input and
asks the model to retrieve both text and image information.
Visual Haystack [71] feeds VLM with multiple images and
tests the model’s robustness to the permutation of this in-
put. Different from these works, we analyze the HRI and
permute the sub-images inside one large image.

Table 2. General Statistics of HRScene.

Samples # Tasks # Elements #

Total 7068 Total 27 Images 7068
Reannotated 2005 Real-world 25 Questions 5807
Scratch 384 Synthetic 2 Options 34372

3. The HRScene Benchmark
This section outlines our benchmark construction process,
including a brief overview of each adopted category and the
manual efforts to ensure their adoption and maintain high
data quality.

3.1. Collection Guidelines
As mentioned previously, there is a significant gap in the
lack of unified, comprehensive, and easy-to-use HRI bench-
marks for VLMs. HRScene is motivated to address this
gap, offering a high-quality evaluation benchmark for HRI
understanding, and pushing VLMs to a general-purpose
HRI processor. To create a high-quality benchmark, we
consider the following guidelines for the creation: (1) con-
sider possible real-world scenes where users need VLMs to
process HRIs. Think in broader categories and taxonomy.
(2) Create comprehensive and most important tasks for each
category without duplication of tested capability. (3) Ensure
HRScene is easy to use. Each task does not need too many
data points while being easy to verify the correctness.

The taxonomy for this work is introduced as follows:
First, we identify 8 categories of scenes: Daily pictures,
Urban planning, Paper scanned images, Artwork, Multi-
sub-images, Remote sensing, Medical Diagnosing, and Re-
search understanding. Second, we cover a wide array of
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Figure 3. Some examples of HRScene. Blue ones are diagnostic datasets and purple ones are real-world datasets.

camera types, from microscopes to daily cameras, long-
range cameras, x-ray devices, remote sensing cameras, and
telescopes. Last but not least, we enrich the format and re-
quirements of the datasets by including both single-image
and multi-image data, expert and non-expert level QA, as
well as small object detection and global image understand-
ing.

3.2. Data Collection
In general, for all tasks, we ensure the selection of a bal-
anced subset by uniformly sampling across all categories,
such as question types, subtasks, and domains. We also fil-
ter out any images that do not meet the minimum resolution
threshold of 1024x1024 (1K). After sampling, all datasets
undergo human inspection, and any low-quality data points
are removed. The supplementary materials contain more
details about all datasets. Daily pictures include the pic-
tures captured by daily users with high-resolution cameras,
including HRIQ [29], designed for Blind Image Quality As-
sessment, VStar [70], designed for image search of objects
in daily images, MMAD [36], a dataset for abnormal de-
tection of daily items, and HR-Bench [66], for long-range
picture question answering. Urban planning contains the
scenes that are helpful for intelligent urban construction:
Autonomous Driving [79] contains images from car cam-
era, Monitoring [79] contains street camera images, OCR-
Wild [79] contains OCR of street signs, and PANDA [68]
is the monitor images from a crowded environment. Paper
scanned images consist of scanned images from paper or
documents, including structural documents (DocStruct4M
[27]), rich graphic documents (InfoVQA [52]), chart data
(NovaChart [28]), and complex diagrams and tables (Dia-
gram&Table [79]). Artwork tests the model’s capability
to understand art or design. MAME [54] contains the art-
work images from museums, ArtBench [45] is a dataset with
various paintings of different themes. CAD [21] is a floor
plan dataset for interior design. Multi-sub-images con-
tain images composed of multiple small sub-images. This
includes VisDiffBench [20] that requires telling the differ-
ence between two groups of images. MileBench [58] con-
tains frames from a video to form a larger image. Muir-

Bench [62] focuses on the multi-image of various scenes
and tests diverse capabilities, such as spatial relations. Re-
mote sensing is geographic images captured by remote de-
vices. This category includes RemoteSen [79] for aerial im-
age QA and HRVQA [42] for remote small object detection.
Animal [69] contains aerial images of geese from Izembek
Lagoon in Alaska. Medical Diagnosing is for medical pur-
poses. VQA-RAD [39] is a VQA dataset for radiology im-
ages of various types (X-rays and CT scans). LungHist700
[17] is a collection of histopathological lung tissue images.
Research includes the images for expert-domain research.
Grass [6] is phenological stage classification and raceme
counting of Urochloa images. Galaxy1 contains the images
from Hubble telescopes.

3.3. Data Reannotation

Task annotation Although most of the datasets contain an-
notations that can be directly used, some of them are not
easy to evaluate or do not have labels. To this end, we
ask 10 graduate-level annotators to reannotate 8 datasets.
For six of them, we construct several wrong options so that
each sample has at least 4 options in total. The wrong op-
tions are designed to be distracting and valid. Also, for
two of the datasets, we annotate from scratch, with one
question-answer pair for each image. For datasets with nu-
meric answers, we automatically generate random numbers
r ↑ [↓a,+a] multiple times to ensure 4 options, where a is
the correct answer.

Human performance annotation. After all task annota-
tions are done, we further collect their human performance.
We pick 30 samples from each dataset and assign these sam-
ples to annotators to generate answers. We use this answer
to compute the human performance. We also ask for feed-
back and comments from the annotator. If the annotator
raises any concerns about the dataset, we revise its construc-
tion until the samples resolve the annotator’s concerns.

1https://esahubble.org/images/
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Table 3. Overall performance of all models on real-world datasets of HRScene. The models are grouped according to the parameter sizes.
Bold indicates global best performance, while underline represents the best of the group. Avg. is the mean value of the column/row. Each
category represents the average score of every sample of the corresponding category in the test set.

Model Avg. testmini Art Daily Medical Paper Remote Research Sub-Img Urban Avg.

Random – 15.32 26.65 22.33 23.44 22.38 21.12 25.42 21.25 22.46

Phi3.5 4B 44.78 57.32 52.36 32.66 55.39 37.87 40.84 57.75 35.74 47.35
DeepSeek-Janus 7B 38.65 53.78 41.44 35.88 36.00 35.82 37.36 47.17 34.48 40.19

MolMo 7B-D 44.43 47.89 54.68 31.16 52.47 42.73 31.70 52.97 38.16 45.95
InternVL2 1B 35.58 31.07 36.83 30.17 32.37 30.34 26.22 37.62 25.59 31.63
InternVL2 2B 39.43 49.60 45.34 32.58 45.72 39.60 27.58 42.53 36.27 41.47
InternVL2 4B 47.46 60.74 47.18 42.02 57.91 35.96 35.52 66.16 40.77 49.23
InternVL2 8B 49.61 61.32 53.84 40.45 58.20 37.48 40.67 64.87 38.16 50.29
Qwen2-VL 7B 55.39 69.46 64.20 40.40 64.62 50.60 36.69 71.42 40.17 56.65
Llava-HR 7B 30.86 39.58 41.18 27.36 31.47 35.56 27.06 36.62 30.64 34.56

Llava-Next 8B 40.15 47.44 47.54 32.84 39.84 46.91 28.41 54.74 33.31 42.34
Llava-Next 13B 40.06 43.11 46.02 36.53 46.28 34.31 30.40 54.35 33.74 41.47
Llama3.2 11B 49.64 65.62 49.51 41.85 59.45 43.99 42.65 59.16 38.19 50.71

InternVL2 26B 53.86 66.97 57.95 38.15 64.62 42.58 36.04 68.27 45.90 54.69
DeepSeek-VL2 27B 53.09 71.83 58.78 35.86 61.84 46.16 34.88 66.05 44.59 54.73

InternVL2 40B 60.55 74.35 62.67 38.10 70.89 44.16 43.15 74.10 44.40 58.45
Llava-Next 34B 50.42 64.74 55.59 36.90 57.28 42.46 51.45 62.60 35.54 51.13

InternVL2 76B 55.38 69.74 61.68 38.08 67.07 43.50 29.40 73.68 41.28 55.64
Llama3.2 90B 54.88 70.66 51.90 40.02 64.31 44.85 31.56 63.48 39.28 52.60

Llava-Next 72B 47.00 61.00 54.20 36.15 57.19 42.03 31.56 59.13 34.74 48.69
Llava-OneVision 72B 55.96 68.26 64.64 42.00 68.91 46.18 52.12 68.75 40.28 57.45

MolMo 72B 54.02 60.30 58.16 35.91 63.67 52.16 55.59 64.97 43.99 55.12
Qwen2-VL 72B 62.03 75.85 66.20 43.69 78.13 52.48 39.36 74.89 44.66 61.85
Calude3 Haiku 40.84 57.90 37.14 27.66 55.08 30.05 29.24 57.43 27.67 41.34

Calude3.5 Sonnect 55.49 75.26 50.06 40.41 78.85 40.63 26.57 69.70 34.29 54.37
Gemini1.5 Pro 52.00 73.28 58.07 46.22 62.83 42.47 43.49 61.67 38.23 54.21

Gemini2.0 Flash 57.41 76.46 62.27 51.94 75.12 47.59 34.85 68.62 44.54 59.82
GPT-4o 51.24 69.13 55.90 22.63 66.80 44.05 35.38 65.13 41.72 52.91

GPT-4o mini 43.92 60.41 53.81 28.17 56.37 36.36 30.40 52.86 33.25 46.12

Avg. 48.72 61.54 53.18 36.64 58.17 41.75 36.08 60.60 37.84 49.68
Human – 75.33 77.75 23.81 88.75 58.33 48.50 90.00 55.25 64.72

3.4. Data Synthesis
While real-world datasets provide a comprehensive evalu-
ation of diverse scenes, a good diagnostic evaluation can
point out the issues of VLMs, and further enhance the un-
derstanding of the model defects, guiding future research
directions. To this end, we propose two diagnostic datasets
with HRIs aiming to find the defect of VLMs on HRI un-
derstanding in two aspects.
WhiteBackground NIAH. This test aims to detect the re-
gional defect of the VLMs, namely, Regional Divergence.
Inspired by the NIAH test of long text [48] and the eye
exam of humans, we propose to use a needle image to com-
bine with a white background haystack to form an NxN grid
(Figure 3). Specifically, we first prepare the image-question
pairs from the VQAv2 dataset [23] and use the image as
the needle. We then place it on different rows and columns
of white girds as haystack and evaluate the differences in
model performance.

ComplexGrid NIAH. This test is to diagnose the VLM ca-
pability of retrieving the correct image among multiple dis-
tracting images. Also inspired by the NIAH test in long
text [48], we use an image search tool to extract the most
similar images from the dev set of VQAv2. Then, we com-
posite them to form a larger grid. We collect the caption
of the needle and ask the model to point out the rows and
columns where the needle is located (Figure 3).

3.5. Data Analysis
Table 2 and Figure 2 shows the statistics of the datasets.
As shown in Figure 2, all of the datasets have a resolu-
tion higher than 1k. For most of the datasets, the resolution
is between 1k and 8k while PANDA contains images with
around 5→ 108 pixels, showing the diverse high-resolution
distribution of HRScene. Figure 3 displays some examples
of HRScene, the questions of HRScene cover a wide range,
such as indexing the correct image, action prediction, count-
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ing, and text recognition. More examples can be found in
Supplementary materials.

3.6. Data Preparation and Release
HRScene consists of 7068 samples, divided into three
splits: val, testmini, and test. val contains 750 samples.
These samples are identical to human-annotated ones, de-
signed for fine-grained validation of the users’ VLM set-
tings. testmini comprises 1000 samples, picked from each
HRScene real-world datasets, intended for rapid model de-
velopment evaluation or for those with limited comput-
ing resources. To ensure testmini maintains a distribution
closely resembling the whole set, we adopt this sampling:
(1) first, randomly sample questions with a threshold num-
ber of 25 for each dataset; (2) then, randomly sample the
remaining questions for each dataset according to its pro-
portion in the entire set. The test features the remaining
5323 samples for standard evaluation. Notably, the answer
labels for test will not be publicly released to facilitate fair
evaluation. Instead, we maintain an online evaluation plat-
form for user submissions. Evaluation results will be shown
on an official leaderboard.

4. Experiments
4.1. Implementation Details
We include a total of 28 VLMs in our experiment. The
details are in supplementary materials. This includes one
Phi-3.5 [2], two DeepSeek [9], seven InterVL2 [10–
12, 22], two Qwen2-VL [63], two MolMo [15], one
LLaVA-Onevision [46],one LLaVA-HR [51], four Llava-
Next [78], two Llama-3.2 [19], and two GPT-4o [32], two
Gemini [60], and two Claude [4].

For WhiteBackground, we follow the accuracy in
VQAv2[23]. For ComplexGrid dataset, we prompt the
model to generate the column and row of the needle image
and compare with the gold column and row using an exact
match. For real-world datasets, since they are MCQ-based,
we directly use exact math as metrics. Supplementary ma-
terials show more details.

4.2. Overall Results on Real-world Datasets
Table 3 shows the comparison of all models on
HRScene real-world datasets. To make the comparison fair,
we cluster the open-sourced models into 3 groups with sim-
ilar parameter sizes (Small: 1B-13B, Medium: 14B-34B,
Large: >35B), and compare the models inside each group.
As can be seen, the best small model is Qwen2-VL 7B,
with an average performance of 56.65% on all 25 tasks.
However, InternVL2 4B obtains group SOTA on Urban and
Medical categories. For Medium, InternVL2 40B obtains
the highest average score of 58.45%. While for Large mod-
els, Qwen2-VL 72B obtains the best performance again,

with 61.85% on average. For proprietary models, the best
model is Gemini2.0 Flash with 59.82% performance. Sup-
plementary materials contain the full results of all models.

Comparing these four types of models (Open-sourced
Small, Medium, Large, and Proprietary), we can observe
that the performance increases with the increasing model
sizes. However, the best model globally is Qwen2-VL 72B,
the only model whose performance is above 60%, surpass-
ing the GPT 4o, and Gemini. We further explore the reason
by checking the dataset details. As shown in Table 5, we
find that GPT 4o outperforms Qwen2-VL 72B on HRVQA
with 1k resolution, while Qwen2-VL performs much better
on Galaxy with images as large as 20k resolution. Qwen can
input images with native resolution, while GPT has a size
limit of 5 MB. This shows that due to the native resolution
support of Qwen, it obtains SOTA, even general capability
might not be the best. This result highlights the importance
of the HRI processing capability of native resolution to
obtain high performance.

On the other hand, for VLMs, the difficulties of each cat-
egory vary. As shown in the second-to-last row of Table 3,
Medical and Research obtain the lowest performance as it
requires domain knowledge, such as pathology and medical
images. Then, Remote and Urban planning is also challeng-
ing because it involves intensive counting and small object
detection tasks. The simplest ones are Art and Sub-Img,
which mainly focus on global understanding and reasoning
capabilities. However, the average performance across
all categories is only 49.68%, showing the large gap be-
tween VLMs and efficient HRI processing.

4.3. Overall Results on Diagnostic Datasets

WhiteBackground. Table 4 shows the statistics of the
WhiteBackground diagnosis. We report the average perfor-
mance of the samples (Perf ↔), the performance drop with
image size increasing from 1x1 (Size ↔), and the region ex-
pectation gap (Region ↗), which is the difference between
the highest performance region and the mean performance
of every region. We call this Regional Divergence. We
propose to use these metrics because the model can be im-
proved by (1) being more robust on image size extension,
especially with simple white background fillings, and (2)
inside each HRI, maintaining the same performance with
each region, specifically being the same performance as the
highest region. As shown in Table 4, most of the models
cannot maintain consistent performance with increasing im-
age size. Furthermore, models exhibit significant Region
Divergence, usually amplified with increasing image size.
For instance, Gemini-2.0-Flash obtains 39.85% Divergence
on 10x10 grids, meaning that if the answer to the question is
located at a random region, the performance will be around
40% lower than the best one among 100 regions.
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Table 4. Diagnostic NIAH test on WhiteBackground dataset, bold indicates the best performance.

1x1 3x3 5x5 7x7 10x10

Perf ↔ Perf ↔ Size ↔ Region ↗ Perf ↔ Size ↔ Region ↗ Perf ↔ Size ↔ Region ↗ Perf ↔ Size ↔ Region ↗
InterVL2 - 1B 62.46 60.17 -2.29 25.16 55.72 -6.74 34.12 52.29 -10.17 39.37 53.11 -9.35 23.82
InterVL2 - 2B 65.66 63.91 -1.75 24.44 60.29 -5.37 31.63 56.77 -8.89 35.22 49.76 -15.90 40.03
InterVL2 - 4B 62.06 62.45 0.39 27.01 58.19 -3.87 35.34 54.60 -7.46 39.15 56.54 -5.52 19.45
InterVL2 - 8B 68.66 66.10 -2.56 24.69 62.66 -6.00 30.87 58.86 -9.80 35.93 53.44 -15.22 22.42

Phi - 4B 77.46 74.00 -3.46 10.06 69.64 -7.82 17.02 65.71 -11.75 20.54 61.44 -16.02 21.28
Qwen2-VL - 7B 85.93 84.22 -1.71 5.30 83.14 -2.79 6.52 81.71 -4.22 7.55 79.91 -6.02 10.56
LLaMa3.2 - 11B 72.53 69.14 -3.39 15.72 66.11 -6.42 19.75 61.73 -10.80 27.13 41.17 -31.36 3.84
InterVL2 - 26B 82.60 80.87 -1.73 6.45 77.43 -5.17 11.03 74.63 -7.97 13.29 65.41 -17.19 16.99
InterVL2 - 40B 84.53 83.42 -1.11 4.57 80.02 -4.51 8.84 78.16 -6.37 11.29 74.95 -9.58 13.18

InternVL2-Llama3-76B 85.33 83.74 -1.59 4.59 77.09 -8.24 9.63 – – – 75.64 -9.69 13.35
DeepSeek-VL2-27B 72.06 49.71 -22.35 15.75 34.29 -37.77 23.37 28.41 -43.65 25.72 23.95 -48.11 23.30

LLava-Onevision-72B 87.73 84.51 -3.22 5.14 84.04 -3.69 10.40 – – – – – –
Qwen2-VL - 72B 84.13 84.51 0.38 5.62 84.04 -0.09 6.62 84.20 0.07 6.65 84.56 0.43 9.61
LLaMa3.2 - 90B 75.46 72.69 -2.77 10.88 – – – – – – – – –

GPT-4o-mini 68.66 60.69 -7.97 13.77 52.53 -16.13 19.59 44.35 -24.31 25.64 32.94 -35.72 33.65
Claude-3-Haiku 62.60 59.92 -2.68 17.00 54.05 -8.55 26.61 49.89 -12.71 31.84 44.83 -17.77 36.89

Gemini-2.0-Flash 69.86 67.45 -2.41 6.75 67.35 -2.51 16.00 66.50 -3.36 25.64 63.86 -6.00 39.85

Figure 4. Performance of the regions averaged across all dataset points and all 18 VLMs. X-Axis is the Manhattan distance to the left
upper corner, |x↓ 1|+ |y ↓ 1| where x, y is the row and column of the needle image, while the y-axis is the performance of that sample.
With the increase of the x-axis, the performance of the model exhibits a U-shape, with much lower performance in the middle. With the
increase in the image size, the shape becomes more significant.

Table 5. Fine-grained comparison between Qwen 72B and GPT
4o on two datasets.

HRVQA (1k) Galaxy (20k)

Qwen 72B 69.59 80.80
GPT 4o 73.82 68.68

ComplexGrid. In the NIAH test [48], the authors found
a significant drop when the gold answer is in the middle
of a long context, namely lost-in-the-middle. This is also
observed in multi-modal settings when the image is mixed
with text [58]. Surprisingly, we discover a similar but non-
identical behavior in HRI. Figure 4 shows the performance
change of the models with increasing Manhattan distance
from row 1, column 1 to the needle image. For instance, if
the needle image is row 2, column 3, the Manhattan distance

is computed as (2-1)+(3-1)=3. We observe a phenomenon
that is similar to lost-in-the-middle. Differently, we ob-
serve the performance forms a U-shape based on the Man-
hattan distance from the left upper corner rather than the
linear depth of the needle in traditional NIAH. We demon-
strate that lost-in-the-middle-manhattan is novel and from
the original lost-in-the-middle in supplementary materials.

5. Analysis
5.1. Influence of Model Size
We analyze the influence of model parameters on the perfor-
mance. We plot the relation between VLMs’ parameter size
and average performance on 25 datasets. Next, we draw the
trend line to fit the performance change. As shown in Fig-
ure 6, although different families of models’ performances
are different, their trends are all log-like increasing. This
shows that (1) increasing the model size can effectively in-
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(a) WhiteBackground, GPT-4o-mini. (b) WhiteBackground, InternVL2-40B.

(c) ComplexGrid, Claude-3.5-Haiku. (d) ComplexGrid, Phi-35-Vision.

Figure 5. Detailed performance of some models on two diagnose datasets.

Figure 6. The relationship between model performance and model
parameter size.

crease the HRI understanding, especially for the small mod-
els; and (2) the effect of increasing size is slowing down.

5.2. Global and Local Perception Trade-off

Processing HRIs requires capturing both fine-grained de-
tails and global context [8]. When an image becomes larger,
it becomes more difficult to capture global information be-
cause of the larger amount of patches in the input. At the
same time, it is too difficult to recognize objects when the
image becomes too small. To evaluate this trade-off in
HRScene, we run the Qwen2-VL 7B on two datasets: Au-
tonomous Driving, and HR-Bench. We resize the image to
90%, 70%, 50%, 30%, and 10% to evaluate the same im-
age with different sizes. Results in Figure 7 show that resiz-
ing to 1840 can obtain the best performance of Autonomous
Driving, and 3628 for HR-Bench. This indicates the trade-
off between local and global information can lead to an
optimal point that is different in different datasets.

Figure 7. Performance change with image resizing on Qwen2-VL
7B.

5.3. Ablation on Multi-image Combination
For ComplexGrid dataset, multiple images are combined to
form a large image with NxN grids. Thus, we conduct an
ablation study on different combination methods to avoid
unnecessary errors due to the non-optimal methods. We test
4 settings, dense is to combine all images without any inter-
val between images or index text below each image. Then,
we add an index to each image and a white interval between
images. We evaluate four models on the 10x10 dataset 3.
Results are in Table 6. Results show that indexing and in-
terval are useful for the model to recognize the different
sub-images and avoid errors in counting the index. Thus,
we use both to construct the ComplexGrid dataset.

5.4. Fine-grained Analysis of Diagnostic Datasets
To further analyze the performance details of two diag-
nostic datasets, we draw a heatmap for the models. Fig-
ure 5 shows the performance divergence on different re-
gions, where each grid represents the performance when
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Table 6. Ablation study on different image combination methods.

Qwen2-VL InterVL2

7B 72B 8B 26B

dense 1.53 3.17 2.78 1.82
w/ index 8.22 18.33 17.15 6.30
w/ interval 2.33 5.17 4.28 1.99
w/ both 8.62 18.72 20.54 8.28

the needle image is on that grid. The results show that
for the WhiteBackground dataset, the performance of dif-
ferent grids varies. Although different models do not have a
unified pattern, the Regional Divergence is still significant,
especially on larger images. For ComplexGrid, the results
clearly show the lost-in-middle phenomenon with the in-
creasing Manhattan distance, where the performance is the
best at the upper left corners and gradually becomes worse
with increasing Manhattan distance.

6. Conclusion and Future Work
In this paper, we propose HRScene, a unified benchmark
for HRI understanding, consisting of 25 real-world datasets
and two diagnostic datasets. Results show that the models
exhibit low performance on real-world tasks, showing the
challenge of HRScene, and display regional divergence and
lost-in-the-middle on diagnostic datasets that can direct
future improvement. In the future, researchers can develop
high-performance, general-purpose HRI processors by fine-
tuning on synthetic datasets or explore the deeper reasons
for utilization issues. After developing a stronger model,
it can be tested on real-world datasets of HRScene and
submitted to the leaderboard of HRScene to obtain a direct
comparison with other models on real-world scenarios.
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Chennamsetty, Mohammed Safwan, Varghese Alex, Bahram
Marami, Marcel Prastawa, Monica Chan, Michael Donovan,
et al. Bach: Grand challenge on breast cancer histology im-
ages. Medical image analysis, 56:122–139, 2019. 3

[6] Darwin Alexis Arrechea-Castillo, Paula Espitia-Buitrago,
Ronald David Arboleda, Luis Miguel Hernandez, Rosa N.
Jauregui, and Juan Andrés Cardoso. High-resolution image
dataset for the automatic classification of phenological stage
and identification of racemes in urochloa spp. hybrids. Data
in Brief, 57:110928, 2024. 4

[7] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis. Ef-
ficient high-resolution deep learning: A survey. ACM Com-
puting Surveys, 56(7):1–35, 2024. 1, 3

[8] Arian Bakhtiarnia, Qi Zhang, and Alexandros Iosifidis. Effi-
cient high-resolution deep learning: A survey. ACM Comput.
Surv., 2024. 2, 8

[9] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan,
Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan. Janus-
pro: Unified multimodal understanding and generation with
data and model scaling. arXiv preprint arXiv:2501.17811,
2025. 6, 2

[10] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhang-
wei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian,
Zhaoyang Liu, et al. Expanding performance boundaries of
open-source multimodal models with model, data, and test-
time scaling. arXiv preprint arXiv:2412.05271, 2024. 6, 2

[11] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhang-
wei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng
Luo, Zheng Ma, et al. How far are we to gpt-4v? closing
the gap to commercial multimodal models with open-source
suites. arXiv preprint arXiv:2404.16821, 2024.

[12] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,
Lewei Lu, et al. Internvl: Scaling up vision foundation mod-
els and aligning for generic visual-linguistic tasks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 24185–24198, 2024. 2, 6

[13] Gordon Christie, Neil Fendley, James Wilson, and Ryan
Mukherjee. Functional map of the world. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6172–6180, 2018. 3

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 3

[15] Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tri-
pathi, Yue Yang, Jae Sung Park, Mohammadreza Salehi,
Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo

9



and pixmo: Open weights and open data for state-of-the-art
multimodal models. arXiv preprint arXiv:2409.17146, 2024.
2, 6

[16] Jorge Diosdado, Pere Gilabert, Santi Seguı́, and Henar Bor-
rego. LungHist700: A dataset of histological images for
deep learning in pulmonary pathology. Scientific Data, 11
(1):1088, 2024. 1

[17] Jorge Diosdado, Pere Gilabert, Santi Seguı́, and Henar Bor-
rego. LungHist700: A dataset of histological images for
deep learning in pulmonary pathology. Scientific Data, 11
(1):1088, 2024. 4

[18] Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin
Wang, Linke Ouyang, Songyang Zhang, Haodong Duan,
Wenwei Zhang, Yining Li, Hang Yan, Yang Gao, Zhe Chen,
Xinyue Zhang, Wei Li, Jingwen Li, Wenhai Wang, Kai Chen,
Conghui He, Xingcheng Zhang, Jifeng Dai, Yu Qiao, Dahua
Lin, and Jiaqi Wang. Internlm-xcomposer2-4khd: A pioneer-
ing large vision-language model handling resolutions from
336 pixels to 4k HD. In Conference on Neural Information
Processing Systems (NeurIPS), 2024. 3

[19] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. 2, 6

[20] Lisa Dunlap, Yuhui Zhang, Xiaohan Wang, Ruiqi Zhong,
Trevor Darrell, Jacob Steinhardt, Joseph E Gonzalez, and
Serena Yeung-Levy. Describing differences in image sets
with natural language. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
24199–24208, 2024. 4

[21] Zhiwen Fan, Lingjie Zhu, Honghua Li, Xiaohao Chen, Siyu
Zhu, and Ping Tan. Floorplancad: A large-scale cad draw-
ing dataset for panoptic symbol spotting. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 10128–10137, 2021. 4

[22] Zhangwei Gao, Zhe Chen, Erfei Cui, Yiming Ren, Weiyun
Wang, Jinguo Zhu, Hao Tian, Shenglong Ye, Junjun He,
Xizhou Zhu, et al. Mini-internvl: A flexible-transfer pocket
multimodal model with 5% parameters and 90% perfor-
mance. arXiv preprint arXiv:2410.16261, 2024. 6, 2

[23] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-
tra, and Devi Parikh. Making the v in vqa matter: Elevating
the role of image understanding in visual question answer-
ing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6904–6913, 2017. 1,
5, 6

[24] Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zanlin Ni,
Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu, and Gao Huang.
Llava-uhd: An LMM perceiving any aspect ratio and high-
resolution images. In European Conference on Computer
Vision (ECCV), 2024. 3

[25] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu,
Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao
Dong, Ming Ding, and Jie Tang. Cogagent: A visual lan-
guage model for GUI agents. In IEEE/CVF Computer Vision
and Pattern Recognition Conference (CVPR), 2024. 2

[26] Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang,
Bo Zhang, Ji Zhang, Qin Jin, Fei Huang, and Jingren Zhou.
mplug-docowl 1.5: Unified structure learning for ocr-free
document understanding. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP) Findings,
2024. 3

[27] Anwen Hu, Haiyang Xu, Liang Zhang, Jiabo Ye, Ming
Yan, Ji Zhang, Qin Jin, Fei Huang, and Jingren Zhou.
mplug-docowl2: High-resolution compressing for ocr-
free multi-page document understanding. arXiv preprint
arXiv:2409.03420, 2024. 1, 4

[28] Linmei Hu, Duokang Wang, Yiming Pan, Jifan Yu, Yingxia
Shao, Chong Feng, and Liqiang Nie. Novachart: A large-
scale dataset towards chart understanding and generation of
multimodal large language models. In Proceedings of the
32nd ACM International Conference on Multimedia, pages
3917–3925, 2024. 1, 4

[29] Huang Huang, Qiang Wan, and Jari Korhonen. High reso-
lution image quality database. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3105–3109. IEEE, 2024. 4

[30] Mingxin Huang, Yuliang Liu, Dingkang Liang, Lianwen Jin,
and Xiang Bai. Mini-monkey: Alleviating the semantic saw-
tooth effect for lightweight MLLMs via complementary im-
age pyramid. In International Conference on Learning Rep-
resentations (ICLR), 2025. 3

[31] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.
The apolloscape dataset for autonomous driving. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition workshops, pages 954–960, 2018. 3

[32] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perel-
man, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Weli-
hinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card.
arXiv preprint arXiv:2410.21276, 2024. 2, 6

[33] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak
Shah. Multi-source multi-scale counting in extremely dense
crowd images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2547–2554,
2013. 3

[34] Haroon Idrees, Muhmmad Tayyab, Kishan Athrey, Dong
Zhang, Somaya Al-Maadeed, Nasir Rajpoot, and Mubarak
Shah. Composition loss for counting, density map estima-
tion and localization in dense crowds. In Proceedings of
the European conference on computer vision (ECCV), pages
532–546, 2018. 3

[35] Raza Imam, Mohammed Talha Alam, Umaima Rahman,
Mohsen Guizani, and Fakhri Karray. Cosmoclip: Generaliz-
ing large vision-language models for astronomical imaging.
arXiv preprint arXiv:2407.07315, 2024. 1

[36] Xi Jiang, Jian Li, Hanqiu Deng, Yong Liu, Bin-Bin Gao,
Yifeng Zhou, Jialin Li, Chengjie Wang, and Feng Zheng.
Mmad: The first-ever comprehensive benchmark for mul-
timodal large language models in industrial anomaly detec-
tion. arXiv preprint arXiv:2410.09453, 2024. 4

[37] Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon
Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is

10



worth a dozen images. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pages 235–
251. Springer, 2016. 1

[38] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
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7. Dataset Details
Autonomous Driving We extract samples from the MME-
Realworld dataset to evaluate a model’s embodied intelli-
gence, focusing on perception tasks such as distant object
perception, attribute recognition, and counting, as well as
reasoning tasks including intention prediction, interaction
relation understanding, and driver attention prediction.
Monitoring Extracted from MME-Realworld, this dataset
features images taken from public safety cameras in diverse
scenarios. It features realworld challenges including vary-
ing object scales and partially out-of-view objects captured
from different view points across day and night.
Document Parsing For text recognition in images, we
adopt DocStruct4M, which focuses on structure-aware pars-
ing of complex document data in images across five do-
mains: documents, webpages, tables, charts, and natural
images.
Fine-grained Perception We select HR-Bench for fine-
grained perception in high-resolution images. It poses
single-instance and cross-instance perception tasks. The
dataset is available in two resolution versions (4K and 8K),
with the 8K images cropped around the relevant objects to
produce the 4K versions. We select samples from both ver-
sions.
Aerial Images HRVQA is selected for aerial image under-
standing, it features images of a 1K spatial resolution and
QA pairs that span 10 question types (Number, Yes/No,
etc.) and 27 category concepts (Vehicles, Urban area, Water
bodies, etc.).
Image Quality To evaluate models on quality assessment
of daily-life pictures, we select HRIQ designed for Blind
Image Quality Assessment (BIQA) based on human per-
ceivable factors like blur, exposure, noise, etc. The label is
a human aligned Mean Opinion Score (MOS) on a scale of
0 to 5 given as options. We also design a custom prompt to
instruct the model about the task and the response format.
Infographics Infographics contain a mix of textual and vi-
sual elements arranged in complex layouts. We leverage
sampels from InfographicVQA to test a model’s ability to
recognize and jointly reason over multiple spans of infor-
mation present in infographics.
Tissue Diagnosis Automatic analysis of tissue samples
can accelerate clinical diagnosis and treatment. To do
this,we extract samples from LungHist700, a collection of
histopathological lung tissue images for the classification of
lung malignancies. We design a custom prompt to instruct
the model on the task, the options (seven classes), and the

response format.
Multi-Image We choose MuirBench for its diverse tasks
and multi-image relationships. To enable a single high-
resolution image input, we combine multiple images in each
sample into a grid on a canvas. In addition, we select only
samples with answers and remove any unanswerable ques-
tions.
Chart Comprehension Applying Large Multimodal Mod-
els (LMMs) to charts enables efficient information process-
ing and extraction of insights. Although we have collected
chart data from other datasets, we select NovaChart for its
comprehensiveness, featuring 18 different chart types and
15 chart-related tasks.
Visual Difference Describing differences between image
sets is crucial in many real-world applications (cite). We
repurpose VisDiffBench by selecting smaller subsets of 20
samples from the original image sets and creating a high-
resolution image as a 4x10 grid, with the first two rows oc-
cupied by images from set 1 and the last two rows by images
from set 2.
Medical Image A VQA dataset for radiology images of
various types (X-rays and CT scans) covering the chest and
abdominal regions with diverse question about size, modal-
ity, abnormality, etc.
Telescope Image The Galaxy dataset we use contains the
images captured by a bubble telescope. We annotate this
dataset from scratch with a question and four options.
CAD Contains floor-plan drawings of various architecture
projects including residential buildings, schools, hospitals,
and offices. It shows high variance in style and appearance
of objects or symbols.
PANDA This dataset features high-resolution images with
a wide Field-of-View (FoV) in outdoor scenarios, capturing
pedestrians with varying crowd densities, poses, trajecto-
ries, and occlusions.
V* A dataset for testing models on perceiving small details
in High-Resolution images of real-life scenarios. Sub-tasks
include attribute identification and spatial relationship rea-
soning of small very small objects.
MileBench We extract samples from MileBench, which
evaluates multi-modal long-context understanding involv-
ing multiple images. The model must retain and inte-
grate contextual information from extended inputs to an-
swer questions accurately. The subtasks feature images that
are temporally or semantically related.
OCR in the Wild Text recognition in real-world outdoor
scenarios, such as streets and shops, involving the percep-
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tion of advertisements, signage, identity information, and
other textual elements. The samples are extracted from
MME-Realworld.
Remote Sensing Extracted from MME-Realworld, this
tests perception in high-resolution images with rich details,
encompassing object counting, color recognition, and spa-
tial relationship understanding.
Chart and Diagram Unlike other chart datasets, this
dataset presents highly complex chart data, such as finan-
cial reports, which feature extensive numerical information
and mathematical content. It evaluates both perception and
reasoning capabilities of models. The perception tasks in-
volve locating values in diagrams and tables, while the rea-
soning tasks include identifying maximum and minimum
values, performing calculations, and predicting trends. The
samples are extracted from MME-Realworld.
ArtBench Contains artwork from 10 different artistic
styles: Baroque, Surrealism, Post Impressionism, Realism,
Romanticism, Impressionism, Art Nouveau, Expression-
ism, Renaissance, and Ukiyo-e. The correct artistic style
along with few other distractor choices are given options.
Museum To assess models on art understanding, the MAMe
dataset comprises of various artworks and their correspond-
ing medium (the various materials and techniques used to
create the artwork). The dataset exhibits high intra-class
variance, requiring models to pay close attention to fine-
grained details.
Animals This dataset presents the task of counting various
types of waterfowl using high-resolution aerial images of
water bodies. This task is relevant for surveying waterfowl
and reduces the manual effort.
Product Anomaly Detection Evaluating LMMs on their
ability to identify defective (anomalous) products presents a
highly industry-relevant task. This dataset not only supports
anomaly detection but also includes additional subtasks for
anomaly analysis, such as defect type classification, defect
localization, and severity assessment.
Grass Automated inspection of vegetation, such as signal
grass (Urochloa), is crucial for farmers and promotes sus-
tainable agriculture. To assess models in this real-world ap-
plication, we adopt the task of phenological stage classifi-
cation and raceme counting in high-resolution RGB images
of Urochloa.
Diagnosis Datasets For WhiteBackground dataset, we first
pick 500 samples from VQAv2 dataset. Then, we com-
bine each sample with white background images of differ-
ent sizes. In this paper, we include 1x1 (no white back-
ground), 3x3, 5x5, 7x7, and 10x10 versions. NxN indicates
the needle image is combined with N →N ↓ 1 white back-
ground images of the same size to form the entire image. In
this case, the needle image has N → N positions for each
sample. We run experiments to observe the difference in
performance in each position and measure Regional Diver-

Figure 8. The performance of all models with an increase of patch
id. Unlike lost-in-the-middle, no significant pattern can be ob-
served.

gence. Similarly, in ComplexGrid, we use similar images
to fill the background rather than white background images.
To pick out the most similar images, we use BLIP [41] to
rank the similarity between the needle image and all images
in the validation set of VQAv2. And use the most similar
N →N ↓ 1 images as the haystack.

8. Ablation on Lost-in-the-Middle
To test whether the observed U-shape is a trivial extension
of existing work [48], we further evaluate the model with
flattened distance, the metric used in the original lost-in-
the-middle that measures the linear distance of the starting
token and needle tokens in the input. Since VLMs use a vi-
sion transformer [63] that inputs the image as linear patches,
similarly, we measure the distance by counting how many
patches the needle is from the first patch.

The results are shown in Figure 8. As shown, no signifi-
cant patter can be observed with the increasing of the patch
distance, showing that the proposed phenomenon is not the
same as the original lost-in-the-middle.

9. Model Details
We include a total of 28 models in our experiment. Phi-
3.5 [2] is a lightweight model designed for efficient lan-
guage understanding and generation. We include Phi 3.5
vision instruct [2] for experiments. DeepSeek Janus Pro
7B [9] is a model that integrates multi-modal reasoning ca-
pabilities. DeepSeek-VL2 [73] is a vision-language model,
with deepseek vl2 27B included in our evaluation. In-
terVL2 [10–12, 22] is a family of multi-modal models
ranging from small to large-scale by OpenGVLab. We
include InterVL2 1B, InterVL2 2B, InterVL2 4B, In-
terVL2 8B, InterVL2 26B, InterVL2 40B, and InterVL2
Llama3 76B for experiments. Qwen2-VL [63] is a vision-
language model, and we consider both Qwen2 VL 7B
Instruct and Qwen2 VL 72B Instruct. MolMo [15] is
a series of models designed for molecular and scientific
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Table 7. Overview of 25 real-world datasets and their statistics. * indicates that the dataset is reannotated.

Dataset Name Explaination Capability # Samples Min Res High Res Avg. Res

Autonomous Driving Street View Small Object Understanding 300 5760x1200 5760x1200 5760x1200
DocStruct4M* Text document OCR 296 1024x1024 4000x28990 1733x2675
HR-Bench Daily photos Small Object Understanding 397 4032x1152 7680x7680 5740x4458
HRVQA* Aerial Image Spactial relation, Small Objects 273 1024x1024 1024x1024 1024x1024
HRIQ Long range picture Small Object Understanding 300 2880x2160 2880x2160 2880x2160
InfographicVQA* Graophic layout document OCR 300 1024x1024 6250x9375 1970x3881
LungHist700 Microscope Medical Image Domain Knowledge 308 1600x1200 1600x1200 1600x1200
MuirBench* Multi-imge combination Multi-image Reasoning 300 1064x1204 16062x7704 3072x2334
NovaChart* Chart Image Chart Understanding 297 2000x1600 3000x2147 2006x1600
Video Monitoring Street monitor Small Object Understanding 300 1280x1024 2048x2048 1989x1460
VisDiffBench* Multi-image combination Multi-image Reasoning 150 5220x1648 5220x2088 5220x2085
VQA-RAD Medical x-ray image Domain Knowledge 225 1024x1024 2321x1384 1041x1230
Galaxy* Telescope Image Counting 87 1435x732 29566x14321 4828x4078
OCR in the Wild Street brands Small Object OCR 300 1056x1056 7680x4320 2282x1867
Remote Sensing Shop signs Small Object Understanding 300 1272x1419 11500x7500 5788x4536
Diagram and Table Chart inside large image Small Chart Object Understanding 300 1201x1086 2481x3507 2337x1521
VStar Bench Daily photos Image Search 232 1080x1439 7500x5000 2357x1683
MAME Museum artiwork Domain Knowledge 300 1109x1043 15649x8900 3124x3200
Izembek Remote sensing of Zoo Counting 300 8688x5792 8688x5792 8688x5792
ArtBench Scanned Painting Domain Knowledge 306 1083x1024 9449x6496 1982x2017
Grass Argiculture Image Counting 300 4224x3168 4224x3168 4224x3168
MMAD Daily photo Reasoning 300 1024x1024 3024x3024 1918x1777
MileBench Video frame Image Reseasoning 300 1600x800 6400x6400 3096x2506
PANDA Public Monitor for Crowd Crowd Counting 300 24853x13983 35503x26627 27002x16152
CAD* Interior Design Spactial relation, Counting 297 2000x2000 2000x2000 2000x2000
Total N/A N/A 7068 1024x1024 35503x26627 5359x5395

applications. We include Molmo 72B 0924 and its dis-
tilled variant, Molmo 7B D 0924. LLaVA-Onevision [46]
is an open-source multimodal LLM, we selected llava-
onevision-qwen2-72b-ov-hf model for our experiments.
Llava-Next [78] is an evolution of LLaVA, and we in-
clude llama3-llava-next-8b-hf, llava-v1.6-vicuna-13b-hf,
llava-v1.6-34b-hf, and llava-next-72b-hf in our experi-
ments. Llama3.2 builds on the Llama architecture with
enhanced scalability. We include Llama-3.2-11B-Vision-
Instruct and Llama-3.2-90B-Vision-Instruct in our exper-
iments. GPT [3]includes versions optimized for both effi-
ciency and performance, with GPT 4o and GPT 4o-mini
selected. Gemini is a family of LLMs, and we evaluate
Gemini 2.0 Flash and Gemini 1.5 Pro [60]. Claude is a
family of LLMs known for its strong reasoning and safety
features. We include two models in ascending order of ca-
pability: Claude-3-haiku and Claude-3.5-sonnet.

10. Performance Details on Real-world
Datasets

Table 8 and Table 9 display the performance of all VLMs
on every real-world dataset. The scores are the average per-
formance of all samples in val, test, testmini splits.
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11. Prompts and Metrics
For ComplexGrid dataset, our prompt is “The image is
composed of multiple sub-images. The left upper corner
is row 1 column 1. We also add the row and column
numbers under each image. You need to identify the
sub-image that best suits the caption: {caption}, returning
the row and column id of the needle sub-image in this
format: <row>ROW</row><col>COL</col>, such
as <row>3</row><col>2</col>” . We ask the model
to answer with the HTML tag because we could use
Beautifulsoup to parse the tag to get a clean prediction to
avoid evaluation bias. For the real-world dataset, we also
adopt the same idea as tag parse. Our prompt is “question
n Give an answer with this format:
<ans>ANSWER</ans>, no redundant words. For
example: <ans>A</ans>”. We use exact math as our
metrics during the evaluation.

12. Examples
Table 10 to 32 show examples from HRScene real-world
datasets. We compress the images to display them in the
paper.

Table 10. Example from HRScene – ArtBench

The painting in the picture belongs to
which of the following categories?
(A) Surrealism
(B) Expressionism
(C) Realism
(D) Romanticism
(E) Art Nouveau
(F) Ukiyo E
(G) Post Impressionism
(H) Impressionism
(I) Baroque

The painting in the picture belongs to
which of the following categories?
(A) Ukiyo E
(B) Art Nouveau
(C) Post Impressionism
(D) Realism
(E) Impressionism
(F) Baroque
(G) Romanticism
(H) Expressionism
(I) Surrealism

Answer: H Answer: E

Table 11. Example from HRScene – Autonomous Driving

What is motion of the pedestrian wearing
blue top on the left?
(A) crossing the crosswalk
(B) standing
(C) jaywalking (illegally crossing not at
pedestrian crossing)
(D) walking on the sidewalk
(E) The image does not feature the object

What is motion of the purple sedan on the
right?
(A) parked
(B) moving
(C) stopped
(D) other
(E) The image does not feature the object

Answer: B Answer: E

Table 12. Example from HRScene – CAD

How many doors are there in the image?
(A) 1
(B) 0
(C) 2
(D) 3

What is the shape of the shadow at upper
left corner of the image?
(A) L-shape
(B) Oval
(C) Circle
(D) Squre

Answer: A Answer: A

Table 13. Example from HRScene – Diagram and Table

What’s the data of Shipping Costs of 2028
Year 5 in the table Profit per kg NH3
Analysis?
(A) -0.51
(B) -0.52
(C) -0.53
(D) -0.54
(E) This image doesn’t feature the data.

What is the revenue of Pigs Feed in year
5 in the Revenue Sources table?
(A) 4.548,625
(B) 4.223.063
(C) 3.710.817
(D) 4.058.442
(E) The image does not feature the num-
ber.

Answer: D Answer: D
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Table 14. Example from HRScene – DocStruct4M

Read the following text: <doc>CALL
FOR NOMINATIONS
BILINGUAL INSTRUCTIONAL AS-
SISTANT OF THE YEAR AWARD
[omitted]
Which of the following options is correct?
(A) the nominee’s outstanding [omitted]
14 </doc>
(B) the nominee’s outstanding [omitted]
14 </doc>
(C) the nominee’s outstanding [omitted]
14 </doc>
(D) the nominee’s outstanding [omitted]
14 </doc>

Which of the following sentences is
present in the image?
Which of the following options is correct?
(A) <ocr>CONTACTS </ocr>
(B) <ocr>CONTACT </ocr>
(C) <ocr>CONTRACT </ocr>
(D) <ocr>CONVENANT </ocr>

Answer: D Answer: C

Table 15. Example from HRScene – Galaxy

What type of celestial object is shown in
the image? Please note that only clearly
visible or distinguishable celestial bodies
are counted.
(A) Elliptical
(B) star
(C) Spiral
(D) irregular

Does the galaxy have a distinct central
core? Please note that only clearly visi-
ble or distinguishable celestial bodies are
counted.
(A) No
(B) I don’t know
(C) Yes
(D) two

Answer: B Answer: C

Table 16. Example from HRScene – Grass

Based on the plant in the image, which
growth stage does it belong to, and how
many racemes does it have?
(A) Reproductive stage, more than 200
(B) Reproductive stage, 10-100 (include
100)
(C) Reproductive stage, 0-10 (include 10)
(D) Reproductive stage, 100-200 (include
200)
(E) Vegetative stage, no racemes

Based on the plant in the image, which
growth stage does it belong to, and how
many racemes does it have?
(A) Reproductive stage, 10-100 (include
100)
(B) Reproductive stage, more than 200
(C) Reproductive stage, 0-10 (include 10)
(D) Vegetative stage, no racemes
(E) Reproductive stage, 100-200 (include
200)

Answer: A Answer: B

Table 17. Example from HRScene – HR-Bench

What is the number displayed above the
entrance where the woman is standing?
(A) 27E
(B) 37B
(C) 27D
(D) 27B

What is the color of the mailbox?
(A) Green
(B) Black
(C) Red
(D) Blue

Answer: D Answer: D
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Table 18. Example from HRScene – HRIQ

Assess the quality of a given image and
predict a score that reflects the mean sub-
jective human judgment of image qual-
ity. Some factors you may consider are
distortions, such as Noise, Out-of-focus
blur, Motion blur, Overexposure / Under-
exposure, Low contrast, Incorrect satura-
tion, Sensor noise, and any combination
of these distortions. Do not rely on meta-
data or external references - your judg-
ment should be based purely on visual
quality.
(A) 1 bad
(B) 2 poor
(C) 3 fair
(D) 4 good
(E) 5 excellent

Assess the quality of a given image and
predict a score that reflects the mean sub-
jective human judgment of image qual-
ity. Some factors you may consider are
distortions, such as Noise, Out-of-focus
blur, Motion blur, Overexposure / Under-
exposure, Low contrast, Incorrect satura-
tion, Sensor noise, and any combination
of these distortions. Do not rely on meta-
data or external references - your judg-
ment should be based purely on visual
quality.
(A) 1 bad
(B) 2 poor
(C) 3 fair
(D) 4 good
(E) 5 excellent

Answer: D Answer: D

Table 19. Example from HRScene – InfographicVQA

what percent of people live without dis-
ability around the world according to the
data given?
(A) ’80, ’80%’
(B) ’79.9’, ’79.9%’
(C) ’15’, ’15%’
(D) ’85’, ’85%’

Which of these animals are shown in the
image?
(A) ’cow, fish’
(B) ’cow, human’
(C) ’cat, cow’
(D) ’plane, apple’

Answer: D Answer: A

Table 20. Example from HRScene – Izembek

How many goose or other animals do you
see in the image?
(A) more than 400
(B) 100-200
(C) 200-300
(D) 300-400

How many goose or other animals do you
see in the image?
(A) more than 400
(B) 300-400
(C) 200-300
(D) 100-200

Answer: A Answer: C

Table 21. Example from HRScene – LungHist700

Given the following histopathological
image of lung tissue, classify the ma-
lignancy (if any) into one of the seven
categories:
(A) Normal tissue
(B) Adenocarcinoma (Well-
differentiated)
(C) Adenocarcinoma (Moderately differ-
entiated)
(D) Adenocarcinoma (Poorly differenti-
ated)
(E) Squamous cell carcinoma (Well-
differentiated)
(F) Squamous cell carcinoma (Moder-
ately differentiated)
(G) Squamous cell carcinoma (Poorly
differentiated)

Given the following histopathological
image of lung tissue, classify the ma-
lignancy (if any) into one of the seven
categories:
(A) Normal tissue
(B) Adenocarcinoma (Well-
differentiated)
(C) Adenocarcinoma (Moderately differ-
entiated)
(D) Adenocarcinoma (Poorly differenti-
ated)
(E) Squamous cell carcinoma (Well-
differentiated)
(F) Squamous cell carcinoma (Moder-
ately differentiated)
(G) Squamous cell carcinoma (Poorly
differentiated)

Answer: B Answer: B
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Table 22. Example from HRScene – MAME

The artwork in the picture belongs to
which of the following medium cate-
gories?
(A) Hand-colored etching
(B) Lithograph
(C) Faience
(D) Silk and metal thread
(E) Graphite
(F) Etching
(G) Clay
(H) Ivory
(I) Woodcut
(J) Oil on canvas

The artwork in the picture belongs to
which of the following medium cate-
gories?
(A) Lithograph
(B) Oil on canvas
(C) Ivory
(D) Porcelain
(E) Silver
(F) Woodblock
(G) Steel
(H) Limestone
(I) Marble
(J) Iron

Answer: J Answer: B

Table 23. Example from HRScene – MMAD

There is a defect in the object. Where is
the defect?
(A) On the top of the can
(B) On the bottom of the can
(C) Around the center region of the can,
on the image of the potato chip
(D) On the side of the can

There is a defect in the object. What is the
appearance of the defect?
(A) The defective capsule has a distinct
non-conforming orange color.
(B) The defective capsule has a shiny,
translucent quality.
(C) The defective capsule has a mis-
shapen appearance.
(D) The defective capsule has visible bub-
bles.

Answer: C Answer: A

Table 24. Example from HRScene – MuirBench

What type of clothing was the man pri-
marily seen wearing? <image1 ><im-
age2 ><image3 ><image4 ><im-
age5 ><image6 ><image7 ><im-
age8>
(A) None of the choices provided
(B) Green and white jacket
(C) Robe and shawl
(D) Sweater

<image1>Which of the following im-
ages shares the same scene with the given
image but contains the object dining ta-
ble?
(A) <image2>
(B) <image3>
(C) <image4>
(D) None of the choices provided
(E) <image5>

Answer: C Answer: C

Table 25. Example from HRScene – NovaChart

Can you discern the type of chart used in
this visualization? From the provided al-
ternatives, please select the correct choice
for the question above:
(A) bivariate histogram
(B) single-class scatter plot
(C) radar chart
(D) pie chart
(E) univariate histogram

Can you provide the histogram value for
the bin corresponding to the range x=[-
4.0, -1.96) and y=[73.235, 82.2385)?
(A) 13
(B) 9
(C) 2
(D) 3
(E) 0

Answer: A Answer: E

Table 26. Example from HRScene – OCR in the Wild

What is the content on the plaque in the
center of the picture?
(A)安ちぢっ杆
(B)安ちぢっ暖
(C)安ちぢっ檀
(D)安ちぢっ段
(E) This image doesn’t feature the con-
tent.

How long is this film in the picture?
(A) 5.1
(B) 2013
(C) 148 min.
(D) 143 min.
(E) The image does not feature the con-
tent.

Answer: D Answer: D

9



Table 27. Example from HRScene – PANDA

How many riding person(s) are in the im-
age?
(A) 35
(B) 27
(C) 23
(D) 44

How many riding person(s) are in the im-
age?
(A) 11
(B) 12
(C) 21
(D) 15

Answer: C Answer: B

Table 28. Example from HRScene – Remote Sensing

What color is the second ship from top to
bottom on the far right side of the picture?
(A) White
(B) Red
(C) Green
(D) Yellow
(E) This image doesn’t feature the color.

How many red cars are there in the park-
ing lot in the middle of the bottom of the
picture?
(A) 1
(B) 2
(C) 3
(D) 4
(E) This image doesn’t feature the count.

Answer: A Answer: D

Table 29. Example from HRScene – VQA-RAD

Is the trachea midline?
(A) Yes
(B) No
(C) Not specified

Is there evidence of an aortic aneurysm?
(A) Yes
(B) No
(C) Not specified

Answer: A Answer: B

Table 30. Example from HRScene – VStar Bench

What is the color of the car?
(A) The color of the car is silver.
(B) The color of the car is black.
(C) The color of the car is red.
(D) The color of the car is blue.

Is the flag blue and yellow or red and yel-
low?
(A) The color of the flag is red and yel-
low.
(B) The color of the flag is blue and yel-
low.

Answer: A Answer: B

Table 31. Example from HRScene – Video Monitoring

What is the number of people in the im-
age?(If a human maintains standing pose
or walking, please classify it as pedes-
trian, otherwise, it is classified as a peo-
ple.)
(A) 97
(B) 88
(C) 52
(D) 100
(E) The image does not feature the people

What is the number of tricycles in the im-
age?
(A) 51
(B) 97
(C) 55
(D) 74
(E) The image does not feature the tricy-
cles

Answer: E Answer: E

Table 32. Example from HRScene – VisDiffBench

What is the difference between the first
two rows of images and the last two rows?
(A) Animal species (Dogs vs Cats)
(B) Animal species (Cows vs Cats)
(C) Background Colors (Green vs Blue)
(D) Number of Objects (2 vs 3)

What is the difference between the first
two rows of images and the last two rows?
(A) Activity (Basketball vs Swimming)
(B) Number of animals (1 vs 2)
(C) Animal species (Cows vs Cats)
(D) Activity (Soccer vs Swimming)

Answer: A Answer: D
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