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Abstract

Resistance to therapy remains a significant challenge in cancer treatment, often due to the
presence of a stem-like cell population that drives tumor recurrence post-treatment. Moreover,
many anticancer therapies induce plasticity, converting initially drug-sensitive cells to a more re-
sistant state, e.g. through epigenetic processes and de-differentiation programs. Understanding
the balance between therapeutic anti-tumor effects and induced resistance is critical for identi-
fying treatment strategies. In this study, we introduce a robust statistical framework, based on
multi-type branching process models of the evolutionary dynamics of tumor cell populations, to
detect and quantify therapy-induced resistance phenomena from high throughput drug screen-
ing data. Through comprehensive in silico experiments, we show the efficacy of our framework
in estimating parameters governing population dynamics and drug responses in a heterogeneous
tumor population where cell state transitions are influenced by the drug. Finally, using recent in
vitro data from multiple sources, we demonstrate that our framework is effective for analyzing
real-world data and generating meaningful predictions.

1 Introduction

Cellular plasticity, the ability to reversibly transition between phenotypic states, is a fundamental
cell feature. In the context of cancer treatment, cellular plasticity often manifests as a transition
from a therapy-sensitive state to a therapy-resistant state, a phenomenon known as therapy-induced
resistance [31, 2]. This phenomenon has been observed not only in pharmaceutical treatments but
also in other modalities such as radiotherapy [18, 15, 31], reducing the efficacy of a broad class of
anti-cancer therapies. A critical phenotypic state transition related to therapy-induced resistance is
the de-differentiation of cancer non-stem-like cells (CNSCs). This process involves mature cancer
cell phenotypes (CNSCs) reverting to immature, cancer stem-like phenotypes (CSCs), which have
unlimited proliferation potential and are inherently drug-resistant [4]. Understanding drug-induced
transitions from CNSCs to CSCs can help shed light on tumor heterogeneity and lead to improved
treatment plans [19].

In a recent study [26], ciclopirox olamine (CPX-O), originally an antifungal agent, was identified
for its ability to induce the production of gastric CSCs from gastric CNSCs. The study utilized the
SORE-GFP reporter system coupled with fluorescence-activated cell sorting (FACS) to distinguish
between gastric CSCs and CNSCs. A high-throughput screening (HTS) technique was employed to
assess the effects of various potential medications on a homogeneous population of gastric CNSC
to explore drug-induced plasticity. One key assumption of this study is the effective separation of
gastric CSCs and CNSCs using the FACS technique and the SORE-GFP reporter system, which may
limit the scope of the findings. Additionally, the study noted CPX’s significant cytotoxic impact on
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gastric CNSCs. This complicates assessment of the level of drug-induced plasticity, since increased
abundance of CSCs relative to CNSCs can both be explained by drug-induced plasticity and a
selective advantage over CNSCs. Consequently, the empirical inference of drug-induced plasticity
presents significant challenges. As an alternative approach, we propose using a mathematical model
to understand how the drug affects the proliferation of both CNSCs and CSCs, and to tease apart
the drug’s effect on cell proliferation vs. transitions from CNSCs to CSCs.

Mathematical modeling has increasingly played a crucial role in understanding and treating
cancer [38, 21], offering advantages in modeling complex biological dynamics through manageable
mathematical models. For instance, recent studies have applied the multi-type branching process
model to depict diverse tumor populations undergoing phenotypic switching [16, 11, 10]. This
approach abstracts the cell division process into ‘branching events’, allowing each cell to generate
descendants across any subtype described in the model. As a result, the model can naturally describe
processes such as self-proliferation, differentiation, and de-differentiation of CSCs and CNSCs.

On the other hand, several recent studies [17, 35] have proposed frameworks for deconvoluting
subpopulation structure directly from HTS bulk cell count data, avoiding the need for a reporter
system coupled with FACS to separate distinct subpopulations. Instead, these studies distinguish
subpopulations based on their distinct responses to a given drug. For instance, these works have
successfully identified Imatinib-sensitive and -resistant Ba/F3 cells from a population mixture by ex-
amining heterogeneous drug response curves at various concentration levels. However, these frame-
works assume that each subpopulation can only generate its own subtype, thereby limiting their
ability to capture the differentiation and de-differentiation dynamics of CSCs and CNSCs.

In this study, we have developed a novel statistical framework that integrates the multi-type
branching process with a drug response model to simulate heterogeneous cell growth dynamics
under drug influence. This innovative framework serves as a mathematical tool for investigating
drug-induced plasticity between CNSCs and CSCs directly from HTS bulk cell count data. Given
our focus on drug-induced plasticity between CNSCs and CSCs and the inherent resistance of CSCs,
we will use the term drug-induced plasticity and the term drug-induced resistance interchangeably.

The paper is organized as follows. In Section 2, we introduce our newly proposed framework.
Based on this framework, we conduct multiple in silico experiments to validate our model predictions
in Section 3. Subsequently, in Section 4, we validate our framework using in vitro data obtained
from [26] and [3]. Finally, in Section 5, we conclude by discussing the advantages and limitations of
our framework. A detailed derivation of the methods and the experimental settings are provided in
the Appendix.

2 Methodology

In this section, we start by introducing a general model to describe heterogeneous tumor growth
dynamics, capable of accommodating an arbitrary number of distinct phenotypes. Then, we develop
a drug-effect model using the classical Hill equation, which is widely employed to represent dose-
response relationships. By integrating these two models, we propose a novel statistical framework for
inferring underlying tumor dynamics under the treatment, including homogeneous proliferation and
phenotypic transition, from HTS data. Finally, we tailor this framework to a specific case involving
two subpopulations within the tumor, CSCs and CNSCs, which will be the focus of our analysis in
the remainder of the paper. In what follows, we denote vectors and matrices in boldface letters and
all the vectors are row vectors.
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2.1 Asymmetrical birth multi-type branching process model

Assume there areK subpopulations of phenotypes within a tumor, each exhibiting its own growth
dynamics and drug response. These subpopulations are indexed by K = {1, · · · ,K}. Increasing
evidence indicates that asymmetric cell division is a key mechanism for both differentiation [14, 23]
and de-differentiation [32]. Therefore, we assume that each phenotype can transition to one or
more other phenotypes via asymmetric cell division. Our framework can also readily accommodate
phenotypic transitions that occur independently of cell divisions, as discussed for example in [11].

We employ an asymmetric birth multi-type branching process model in continuous time [1]. In
the model, a type-i cell divides into two type-i cells at rate αi, experiences natural death at rate
βi, and asymmetrically divides into one type-i cell and one type-j cell at rate νij (see Figure 1).
Specifically, within a given infinitesimal time interval ∆t > 0, a type-i cell has a probability αi∆t of
dividing into two type-i cells, βi∆t of dying, and νij∆t of asymmetrically dividing into one type-i
and one type-j cell. The net growth rate of type-i cells, κi, is defined as κi := αi−βi. The dynamics
of the model are encoded in the infinitesimal generator matrix A, which is the K ×K matrix

A :=


κ1 ν12 · · · ν1K
ν21 κ2 · · · ν2K
...

...
. . .

...
νK1 νK2 · · · κK

 . (1)

In this matrix, the (i, j)-th element is the net rate at which a type-i cell produces a type-j cell. For
all K phenotypes, we assume a strictly positive birth rate (αi > 0, i ∈ K), a non-negative death rate
(βi ≥ 0, i ∈ K), and a non-negative asymmetric birth rate (νi,j ≥ 0, i ̸= j). We furthermore assume
that κi > 0 for all i ∈ K, i.e. the net birth rate is positive, though transition and death may not
occur for all phenotypes.

For simplicity, we assume that the multi-type branching process is irreducible, meaning that each
subpopulation can eventually produce descendants in any other subpopulation, possibly through
intermediate types. Mathematically, this means that the infinitesimal generator matrix A cannot
be transformed into a block upper triangular matrix via simultaneous row or column permutation.

(a) Symmetric division (rate: α1) (b) Death (rate: β1) (c) Asymmetric division (rate: ν12)

Figure 1: Illustration of three independent events in the asymmetrical birth multi-type branching
process model. Different shapes represent different phenotypes.

We denote the cell counts of each phenotype as a random vector: B(t) = [B1(t), B2(t), · · · , BK(t)],
where Bi(t) is the number of type-i cells at the time t. For the special case where the pro-
cess is started by a single type-i cell, the cell count vector at time t is denoted by B(i)(t) =

[B
(i)
1 (t), B

(i)
2 (t), · · · , B(i)

K (t)], where B(i)(0) = ei is the i-th identity vector. The mean vector and
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covariance matrix for B(i)(t) are denoted by

m(i)(t) := E
[
B(i)(t)

]
,

Ξ(i)(t) := E
[(

B(i)(t)−m(i)(t)
)⊺ (

B(i)(t)−m(i)(t)
)]

,

where t ≥ 0 and
(
B(i)(t)−m(i)(t)

)⊺
represents the transpose of the vector

(
B(i)(t)−m(i)(t)

)
. To

explicitly compute the mean vector, we define the mean matrix using the matrix exponential:

M(t) = exp (tA) =
∞∑
j=0

(
tj

j!

)
Aj .

The mean vector m(i)(t) can be computed as the i-th row of the mean matrix,

m(i)(t) = eiM(t),

and the covariance matrix Ξ(i)(t) can be computed as shown in Proposition 1 below.

2.2 Drug-effect Model

Before modeling the drug effect, we introduce a fixed drug dose d and denote the cell count at
time t and concentration level d as B(t, d). The mean matrix M(t, d) and the covariance matrix
Ξ(i)(t, d) follow. Note that we use concentration level and dose interchangeably.

2.2.1 Base model

To model the drug effect, we define the well-known Hill equation with parameters (b, E,m) as

H(d; b, E,m) = b+
1− b

1 + (d/E)m
.

The Hill equation is a classic sigmoidal function used to describe a dose-response [28]. In
the equation, the parameter b represents the maximum drug effect, since H(0; b, E,m) = 1 and
limd→∞ H(d; b, E,m) = b. For b ∈ (0, 1), the Hill equation is strictly decreasing, while it is strictly
increasing for b > 1 (Figure 2). The parameter E indicates the concentration at which 50 percent
of the maximum effect is attained, known as the inflection point. The last parameter m is the
Hill coefficient, which controls the steepness of the Hill equation around the inflection point. As a
simplification, we fix the Hill parameter m = 1 for all drug effects when conducting our in silico ex-
periments in Section 3. We then reintroduce this parameter when modeling in vitro data in Section
4.

We initially assume the effects of a single drug are time-homogeneous. We distinguish between
two types of drug responses, drug toxicity response and drug-induced plasticity response, thereby
capturing multiple effects from a single drug.

• Drug toxicity response (cytotoxic effect): The parameters related to this response are denoted
as (bi,β , Ei,β) for type i. We assume that bi,β ∈ (0, 1) and that the death rate of type-i under
dose d is given by (for the case m = 1):

βi(d) = βi − log(H(d; bi,β , Ei,β)) = βi − log

(
bi,β +

1− bi,β
1 + (d/Ei,β)

)
. (2)
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(a) Hill equation when b ∈ (0, 1) (b) Hill equation when b > 1

Figure 2: Hill equation illustrations

The net growth rate of a type i cell, κi, is therefore negatively affected by increasing drug
concentration, i.e. κi(d) = (αi−βi)+log(H(d; bi,β , Ei,β)). In this scenario, the drug is assumed
to act through a cytotoxic mechanism, meaning that higher doses result in increased rates of
cell death. We note that our framework can also easily incorporate cytostatic effects, where
higher doses lead to a lower cell division rate, using a similar Hill function.

• Drug-induced plasticity response : The parameters related to this response are denoted as
(bi,ν , Ei,ν) for type-i. For simplicity, we assume here that the drug effect on type-i cell tran-
sitions is independent of the target phenotype j. Drug-induced phenotypic transition is a
widely observed effect of cancer treatment [27, 8, 34]. Particularly, drug-sensitive phenotypes
may be induced to develop resistance when exposed to the drug. When modeling the drug
effect on the asymmetric birth rate, we assume bi,ν ≥ 1 to account for elevated transitions
between subpopulations caused by the therapeutic environment. We furthermore assume that
the asymmetric birth rate of type i to any other type j under dose d is given by (for the case
m = 1):

νij(d) = νij + log(H(d; bi,ν , Ei,ν)) = νij + log

(
bi,ν +

1− bi,ν
1 + (d/Ei,ν)

)
. (3)

The assumption bi,ν ≥ 1 incorporates the situation where the drug does not impact phenotypic
transitions, when bi,ν = 1, νij(d) = νij for all d ≥ 0. It is worth mentioning that our framework
can also model drug inhibition of the asymmetric birth rate by letting bi,ν ∈ (0, 1).

2.2.2 Logistic time-delayed drug response

Our framework can be extended to accommodate a more complex drug-effect model, which may
involve time-inhomogeneous drug effects. In particular, for the in vitro dataset from [26] investigated
in Section 4, there appear to be delayed drug effects, which have been observed in other studies as
well [13, 30, 36]. To address this behavior, we allow for the possibility of a time-inhomogeneous drug
effect, which is modeled using a two-parameter logistic function. In this case, we assume that the
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maximum drug effect parameter b depends on time t through

|1− b(t)| = 1

1 + exp(k(t0 − t))
|1− b|,

where k, t0 are logistic function parameters. In this way, we can model the drug’s maximum potential
b(t) gradually reaching its ultimate value as time increases. Absolute values are taken to allow both
the cytotoxic effect b(t) < 1 and the drug-induced plasticity effect b(t) > 1 to be time-inhomogeneous.

Notably, incorporating this time-dependent drug effect model introduces a time-dependent in-
finitesimal generator matrix A(t, d), complicating the computation of the mean matrix and the
covariance matrix. Detailed implementation can be found in Secion 2.4.3.

2.3 Long-run behavior

As the HTS experiments being considered are run for a longer time duration, it becomes impor-
tant to understand the long-run behavior of the process B(t, d). According to the Perron-Frobenius
Theorem, the irreducible infinitesimal generator matrix A(d) has a strictly positive largest eigenvalue
λ1(d), which corresponds to the largest eigenvalue eλ1(d)t of the mean matrix M(t, d). Additionally,
the corresponding left eigenvector π(d) is strictly positive. A well-known limiting result reviewed in
[1] states that there exists, almost surely, a non-negative numerical random variable W such that

lim
t→∞

B(t, d)e−λ1(d)t = Wπ(d).

This result characterizes two aspects of the long-run behavior of the process B(t, d). First, the
stochastic process B(t, d) will grow with a deterministic exponential long-run growth rate λ1(d).

Second, when the eigenvector π(d) is normalized so that
∑K

i=1 πi(d) = 1, then πi(d) describes the
long-run proportion of type-i cells in the population. Therefore, we refer to the normalized version
of π(d) as the stable proportion between phenotypes.

2.4 Statistical Model

Now, we construct a statistical framework to infer heterogeneous tumor growth dynamics and
drug responses using HTS live-cell imaging bulk data. Here, ‘bulk data’ refers to aggregated total
cell counts across all subpopulations within the heterogeneous tumor. Our framework is designed to
accommodate data collected via live-cell imaging techniques, allowing efficient capture of bulk cell
counts from a single sample across multiple time points [25].

Assume the bulk datasetX is collected across a set of drug concentration levels D = {d1, · · · , dND
}

and a set of time points T = {t1, · · · , tNT
}, where 0 < t1 < · · · < tNT

. For each drug dose d ∈ D,
NR samples are cultivated, and live-cell imaging technique is used to collect bulk cell count data
at time points t1, . . . , tNT

. Let xT ,d,r = (x1,d,r, . . . , xNt,d,r) denote the data collected for the r-th
replicate under drug concentration d, where xk,d,r is the bulk cell count at time point tk. Taking
into account experimental measurement error, we propose the statistical model

xT ,d,r = Yd,r(T ) + Zd,r, (4)

where Yd,r(T ) denotes bulk cell counts at the time points T under the drug-affected evolution
dynamics model outlined in Sections 2.1 and 2.2, and Zd,r ∼ N(0, c2I) are independent multivariate
normally distributed noise terms. In other word, Yd,r(T ) is a random vector with NT elements,
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each obtained by summing the random vector B(ti, d) for i = 1, · · · , NT . Assuming that ni is the
starting number of cells of type i in each experiment, we can write

Yd,r(T ) :=
K∑
i=1

ni∑
j=1

y
(i)
j (T , d, r), (5)

where y
(i)
j (T , d, r) denotes the size of the clone started by the j-th initial type i cell at the time

points T under the stochastic model. Let n denote the initial total cell count and p = [p1, p2, · · · , pK ]
denote the initial subpopulation distribution, with ni = npi for all i. In this study, we assume that
pi is independent of n for all i, implying that ni → ∞ as n → ∞.

2.4.1 Central limit theorem

For simplicity, we temporarily omit the explicit notation for drug concentration levels and exper-

imental replicates and write Y(T ) and y
(i)
j (T ). When bulk cell counts are observed as opposed to

individual subpopulation counts, the stochastic process Y(t) is no longer a Markov process. There-
fore, the exact probability distribution for Y(T ) becomes overly complex [35]. Given that drug
screening experiments are usually started by a relatively large number of cells (in [5] for example,
2500 cells were deployed in each well), it is natural to focus on the asymptotic behavior of Y(T ) as
the initial cell number increases (n → ∞). For that, we need to understand the asymptotic behavior

of
∑ni

j=1 y
(i)
j (T ). We denote the expectation

E
[
y
(i)
j (T )

]
:= µ(i)(T ) = [⟨m(i)(t1),1⟩, · · · , ⟨m(i)(tNT

),1⟩],

where 1 is a size K all ones vector, ⟨·, ·⟩ is the inner product, and m(i)(t) denotes the mean vector
described in Section 2.1. We furthermore define a centered and normalized process for each i ∈ K
by

W(i)
ni
(T ) :=

1
√
ni

ni∑
j=1

(
y
(i)
j (T )− µ(i)(T )

)
.

A direct application of the multivariate central limit theorem gives the following result, where ‘⇒’
denotes converge in distribution.

Proposition 1. As ni → ∞:
W(i)

ni
(T ) ⇒ N(0,V(i)(T ))

where
V

(i)
a,b(T ) = 1Ξ(i)(ta)M(tb − ta)1

⊺ for 1 ≤ a ≤ b ≤ NT .

Here, M(t) is the mean matrix, and Ξ(i)(ta) is a covariance matrix (Section 2.1) given by

Ξ(i)(t) = diag(m(i)(t))−m(i)(t)⊺m(i)(t) +

∫ t

0

(M(t− τ))
⊺
C(i)(τ) (M(t− τ)) dτ,

where

C
(i)
jk (τ) =

{
νkjMik(τ) + νjkMij(τ) j ̸= k

2αjMij(τ) j = k.
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This result can be derived from a more general result, which is stated as Proposition 2 in Appendix

6.4. According to Proposition 1, we can approximate
∑ni

j=1 y
(i)
j (T ) as

ni∑
j=1

y
(i)
j (T ) ≈ niµ

(i)(T ) +N(0, niV
(i)(T ))

for sufficiently large ni. We can approximate Y(T ) accordingly. It is important to note that this
approximation holds true for each fixed drug concentration level d.

2.4.2 Maximum likelihood estimation (MLE) framework

Now we reintroduce the drug concentration level d ∈ D and use the approximation

Yd,r(T ) ≈
K∑
i=1

niµ
(i)(T , d) +N (r)(0, niV

(i)(T , d)),

where N (r)(0, niV
(i)(T , d)) represents independent and identical copies of a random vector with

distribution N(0, niV
(i)(T , d)). We then formulate our newly proposed statistical model as

xT ,d,r ≈
K∑
i=1

niµ
(i)(T , d) +N (r)(0, niV

(i)(T , d)) +N (r)(0, c2I), (6)

where the final term captures experimental measurement error as before. Based on this statistical
model, we compute the likelihood function L(θ(K)|X), which represents the probability of obtaining
the observed dataset X given the set θ(K) of all parameters in the model:

θ(K) = {(αi, βi, (νij)j ̸=i, bi,β , Ei,β , bi,ν , Ei,ν)i∈K, c}.

We then apply the maximum likelihood estimation framework to obtain the parameter set that is
most likely to explain the observed dataset. The estimated parameter set θ̂(K) is computed by
minimizing the negative log-likelihood, which is equivalent to maximizing the likelihood function:

θ̂(K) = argmin
θ(K)∈Θ̂

− log(L(θ(K)|X)), (7)

where Θ̂ is the set of feasible parameters. In Table 1, we provide an overview of notation.

2.4.3 Deterministic approximation and time-delayed drug-effect model

The statistical model (6) utilizes the central limit theorem approximation derived in Proposition
1. Alternatively, one can employ a law of large numbers type approximation to derive a simpler
statistical model. Specifically, we can formulate the statistical model as follows:

xT ,d,r ≈
K∑
i=1

niµ
(i)(T , d) +N (r)(0, c2I), (8)

where the variability within the data is solely attributed to the observation noise with a standard
deviation of c. We note that this model assumes deterministic cell growth dynamics, as µ(i)(T , d)
is a deterministic function of time and dosage. In [9], Greene et.al. have studied a similar model;
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Notation Dimension Description Definition/Range
αi 1 Subtype i symmetric division rate α > 0

βi(d) 1 Subtype i death rate β(0) ≥ 0
νij(d) 1 Subtype i asymmetric division rate to subtype j ν(0) ≥ 0
λ1(d) 1 Long-run growth rate λ1(0) > 0
K 1×K Subpopulation index set |K| = K

B(t, d) 1×K Vector of subpopulation counts B(t, d) ≥ 0
B(i)(t, d) 1×K B(t) generated from single type i cell B(i)(t, d) ≥ 0
m(i)(t, d) 1×K Expected value of B(i)(t, d) m(i)(t, d) ≥ 0
Ξ(i)(t, d) K ×K Covariance matrix of B(i)(t, d) det(Ξ(i)(t, d)) > 0
A(d) K ×K infinitesimal generator matrix Aii(d) = αi − βi(d),Aij = νij(d)

M(t, d) K ×K Mean matrix limt→0 M(t, d) = I
I K ×K Identity matrix I

C(i)(t, d) K ×K Factor matrix for covariance see Proposition 1
b 1 Maximum drug effect parameter b > 0
E 1 Half maximum drug effect parameter E > 0
m 1 Drug effect steepness parameter n > 0
n 1 Initial total cell count n ∈ [1000, 10000]
c 1 Standard deviation of the i.i.d. observation noise c ∈ (0, 0.1n)

p 1×K Vector of initial proportion pi for subtype i
∑K

i=1 pi = 1, ni = npi
π(d) 1×K Stable proportion π(d)A(d) = λ1(d)π(d)
D 1×ND Set of concentration levels applied |D| = ND

T 1×NT Set of time points |T | = NT

W
(i)
ni (T , d) 1×NT Centered and normalized process of total cell counts W

(i)
ni (T , d) = 1√

ni

∑ni

j=1

(
y
(i)
j (T , d)− µ(i)(T , d)

)
µ(i)(T , d) 1×NT Expected value of the total cell counts µ(i)(T , d) ∈ R1×NT

V(i)(T , d) NT ×NT Covariance matrix of W
(i)
ni (T , d) V(i)(T , d) ∈ RNT×NT

Table 1: Table of definitions in Section 2.1, Section 2.2, Section 2.3, and Section 2.4.

however, they did not specify the dose-response relationship using the nonlinear Hill equation and
instead suggested a more restrictive linear relationship.

The deterministic model allows for easier computation of the likelihood function; we therefore
use this model when analyzing data with a time-delayed drug response. Specifically, we define the
time-inhomogeneous mean behavior of the asymmetrical division multi-type branching process as:

m̃(i)(t, d) = E
[
B(i)(t, d)

]
= ei exp

(∫ t

0

A(τ, d)dτ

)
,

where the infinitesimal generator matrix A(t, d) depends on both time and concentration levels,
as described in the logistic time-delayed drug effect model proposed in Section 2.2.2. Although
the corresponding covariance for B(i)(t, d) can be computed in a similar manner, calculating the
variance within a realistic time frame is challenging. Therefore, we employ the simplified statistical
model (8) with µ(i)(T , d) := [⟨m̃(i)(t1, d),1⟩, · · · , ⟨m̃(i)(tNT

, d),1⟩] when incorporating the logistic
time-delayed drug effect later in Section 4.

2.5 Simplified model of drug effect on CSCs and CNSCs mixture

In our computational analysis of Sections 3 and 4, we will investigate the performance of our
newly proposed framework on a tumor population consisting of two phenotypes: 1. CSCs, 2. CNSCs.
Our primary focus is on identifying drug-induced plasticity, that is drug-induced transitions from the
CNSC phenotype to the CSC phenotype. Given that we only have two subpopulations, we identify
the parameters for the CSC resistance subpopulation with an r subscript and those for the CNSC
sensitive subpopulation with a s subscript, as shown in Table 2:

9



Cell type Initial proportion α rate β rate ν rate b for β E for β b for ν E for ν
CSCs pr αr βr νrs br,β Er,β br,ν Er,ν

CNSCs ps αs βs νsr bs,β Es,β bs,ν Es,ν

Table 2: CSCs and CNSCs subpopulation parameters

To investigate heterogeneous drug effects on CSCs and CNSCs, we adopt assumptions inspired
by the experimental work [26]. First, we specify assumptions related to the cell growth dynamics:

Assumption 1. CNSCs proliferate with less potential than CSCs, while CSCs have a non-negative
natural proliferation rate and a non-negative differentiation rate, expressed as κr ≥ κs ≥ 0, νrs ≥ 0.

Assumption 2. CNSCs do not exhibit natural plasticity, implying no transition from CNSCs to
CSCs in the absence of drug.

We note that under Assumption 2, the irreducibility condition of Section 2.1 is violated in the
absence of drug. However our framework can still be applied under the following non-extinction
assumption, as discussed further in Appendix 6.1.

Assumption 3. CSCs do not go extinct, ensuring the persistence of the CSC subpopulation.

Additionally, we constrain the pharmacologic dynamics of cells as follows:

Assumption 4. The drug does not affect CSCs, reflecting a resistant behavior in CSCs.

We note that if the starting population of CSCs is sufficiently large and CSCs have a positive net
growth rate, κr > 0, then Assumption 3 will follow from Assumption 4, since a large starting
population of proliferating cells unaffected by the drug is unlikely to go extinct.

The final assumption pertains to the initial distribution between CSCs and CNSCs. In [26],
the researchers experimentally separated CSCs and CNSCs, and they performed assays on isolated
subpopulations of CNSCs. However, assuming the stable proportion between CSCs and CNSCs at
the start (Section 2.3) – without employing a separation technique – is more natural. Hence, we
begin with Assumption 5 and later relax it in Section 3.2.2.

Assumption 5. The initial proportion of CSCs and CNSCs in the absence of the drug is the stable
proportion.

By adopting this assumption, there is no need to estimate the initial proportions pr and ps; these
parameters are inferred directly from the cell dynamic parameters (α, β, ν) for each subpopulation.

The corresponding mathematical formulations for the above assumptions are summarized in
Table 3.

Assumptions Reflection in parameter
Assumption 1 κr ≥ κs ≥ 0, νsd ≥ 0
Assumption 2 νsr = 0
Assumption 4 br,β = br,ν = 1
Assumption 5 p = π(0)

Table 3: Assumptions and corresponding parameter constraints
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3 Results (in silico)

To evaluate our framework’s performance in analyzing in silico data, we utilized the Gillespie
algorithm [7] to generate computer-simulated data based on the asymmetrical birth multi-type
branching process model. Each simulation started with an initial total cell count of n = 1000, and
we conducted NR = 20 replicates across various concentration levels D and time points T , where

D = {0, 0.0313, 0.0625, 0.125, 0.25, 0.375, 0.5, 1.25, 2.5, 3.75, 5},

T = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36}.

Finally, Gaussian observation noise was added to obtain the in silico dataset. Further details on the
data generation can be found in Appendix 6.5.

In these in silico experiments, we derive two types of estimation results: 1. point estimation
(PE) obtained for each experiment through the MLE process (see Appendix 6.5 for implementation
details), 2. confidence intervals (CIs) obtained using the bootstrapping technique (see Appendix 6.6
for implementation details), specifically for selected in silico experiments.

Given our focus on a specialized case involving two subpopulations, as outlined in Section 2.5,
we set K = 2. It is worth noting that one can treat K as a variable and employ model selection
techniques to estimate the number of subpopulations exhibiting distinct phenotypic drug responses.
Similar approaches were explored in [17] using a simpler statistical framework, but a detailed explo-
ration of this topic is outside the scope of the current study.

3.1 Deconvolution of drug effects (base experiment)

3.1.1 Illustrative example

We begin with a single illustrative example. Table 4 shows the true parameter set used to
generate the in silico dataset and the corresponding PEs obtained using our statistical framework.
In Figure 3, we display both the PEs and CIs for this example, focusing on two key metrics: the
stable proportion π(d) between phenotypes under each concentration level d, and the GR50 dose for
the CNSC growth rate (cytotoxic effect) and de-differentiation rate (plasticity effect), respectively.
The GR50 dose is the concentration level at which the drug achieves half its maximal observed effect
on the growth rate. It is a useful summary metric of the drug effect which incorporates both primary
drug effect parameters E and b, as is further discussed in Appendix 6.7.

αr βr νrs αs βs bs,β Es,β bs,ν Es,ν

θ∗ 0.5407 0.5055 0.2929 0.2280 0.2280 0.8536 0.7073 1.0827 1.2285

θ̂ 0.5407 0.5036 0.2988 0.2412 0.2419 0.8612 0.6468 1.0773 1.2336

Table 4: True parameter set θ∗ and point estimates θ̂ in Figure 3

Figure 3 illustrates that our newly proposed framework accurately estimates the stable proportion
in the absence of drug (pie charts in top panel). Additionally, the varying stable proportions of
CSCs at different drug concentrations are captured by the CIs constructed from the bootstrapping
estimations (line plot in top panel). The CIs also encompass the correct GR50 values for both the
cytotoxic and plasticity effects (bottom panel).

In this example, the true GR50 values for the two drug effects fall between two concentration
levels applied in the experiment. In our previous work [35], we used a similar statistical framework
to investigate a tumor with two subpopulations, where each was affected by an anti-cancer drug to a
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Figure 3: Estimation of stable proportion and GR50 based on the data generated by the true param-
eter set in Table 4. The pie chart demonstrates the PE of the stable proportion between CSCs and
CNSCs under a no-drug environment. The upper-right plot shows 100 bootstrapped PEs as scatter
points and the corresponding 90% CIs for the stable proportion of CSCs at each drug concentra-
tion level, with the red line representing the true stable proportion of CSCs in the same plot. The
boxplots illustrate the CIs of GR50 of both the drug-induced plasticity effect and cytotoxic effect,
with the dashed colored lines representing the corresponding true GR50 values. Specifically, the
red dashed line and red boxplot correspond to cytotoxic effect, while the blue dashed line and blue
boxplot correspond to drug-induced plasticity effect.

varying degree and there were no transitions between the subpopulations. There, we observed that
close GR50 values for the cytotoxic effects on each subpopulation often resulted in poor estimations
of the GR50 values. In the current study, where we consider two distinct types of drug effects, the
difference in GR50 is no longer critical for distinguishing these effects.

3.1.2 Estimation across a wide range of true parameter sets

To assess estimation performance across a wide range of biologically realistic parameter sets, we
examined the relative errors (RE) from 100 datasets, each generated using a different true parameter
set. The RE between an estimator x̂ and the true value x∗ was calculated as

Er(x̂;x∗) =

∣∣∣∣ x̂− x∗

x∗

∣∣∣∣ . (9)

The results for all datasets are summarized using boxplots in Figure 4. Note that we recorded the
RE for 1 − bs,β and bs,ν − 1 rather than bs,β and bs,ν directly. These new measurements of REs
ensure symmetry when measuring the maximum drug effect between cytotoxic and plasticity effects,
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since bs,β ∈ (0.5, 1) and bs,ν ∈ (1, 1.5) (see Appendix 6.5). Additionally, we included a horizontal
line at RE = 0.2 as a threshold to indicate reasonably well estimated parameters.

Figure 4: Relative error of the parameter estimation. The boxplot contains 100 independent exper-
iments generated by randomly selected true parameter sets. The red line is the median of the REs.
The grey horizontal line is a threshold when RE is equal to 0.2.

Figure 4 shows that most point estimates are reasonable, with over three fourths of estimates
having a RE below the specified threshold. This indicates that our newly proposed framework
can successfully disentangle the cell growth dynamics and drug effect dynamics. We note that
the plasticity effect parameter bs,ν is generally estimated less accurately than the cytotoxic effect
parameter bs,β . This may stem from the fact that in all parameter sets, the true plasticity effect
is smaller than the cytotoxic effect, i.e. bs,ν − 1 < 1 − bs,β , making it more challenging to detect
the plasticity effect (see Appendix 6.5). In addition, we note that the relative error metric is more
sensitive when the true value is small, since even small absolute errors |x̂ − x∗| can lead to large
relative errors |(x̂− x∗)/x∗|.

Although our estimation framework performs well overall, there are some examples where it fails
to recover the true values from the data. One explanation for low quality in the estimation is a
poor experimental design, i.e. poor selection of concentration levels and data collection time points,
resulting in reduced parameter identifiability. For instance, when estimating E, if the tested concen-
tration levels do not cover the true value, i.e. max(D) < E, it will be challenging for our framework
to identify the true value. Even when E is within the tested concentration levels, observation noise
and the stochastic nature of the data generation can still distort the estimation, particularly when E
is close to the maximum tested concentration level. A detailed analysis of how experimental design
impacts parameter identifiability will be explored in future work.
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Figure 5: Scatter plots of 100 independent experiments. Both plots have average parameters es-
timation relative error on the x-axis. In the left panel, the y-axis represents the observable drug
effect on the long-term growth rate of the CSCs and CNSCs mixture. In the right panel, the y-axis
represents the observable drug effect on the stable proportion between the CSCs and CNSCs.

3.1.3 Analysis of failed estimations

As previously mentioned, one potential explanation for poor estimation under our framework is
a poor experimental design. To better understand potential challenges in parameter identifiability,
we analyzed the true parameter sets and the simulated data from the 100 experiments described
earlier. We specifically examined the drug effects on two theoretical metrics of long-run behavior:
stable proportion (π(d)) and long-run growth rate (λ1(d)) (see Section 2.3). For each metric, we
computed its theoretical values across different concentration levels and determined the maximum
discrepancy among them to quantify the ranges of drug effects observed in the experiments.

In Figure 5, scatter plots illustrate these quantities plotted against the average RE over all
estimated parameters for each experiment. In the right panel’s lower right corner, four examples
show a maximum change in stable proportion below 0.1, coinciding with a notably high average
estimation error. In the left panel, these same four examples exhibit low maximum changes in
long-run growth rates. This observation indicates that inaccurate estimations tend to occur when
observed drug effects are minimal. This insight is further supported by Figure 6, where we visualized
two example datasets with high vs. low RE, and observed that the dataset with less variation in
growth pattern across different concentration levels has higher average RE. To summarize, poor
estimation in terms of RE can in most cases be traced to a small observed drug effect, which can
either arise due to a poor experimental design (drug effects do not manifest due to poor selection
of concentration levels or data collection points) or a small true drug effect, in which case the RE
metric is more sensitive to estimation inaccuracy as mentioned in the previous section.

3.2 Robustness of the framework

To assess the robustness of our newly proposed statistical framework using in silico data, we
designed a series of experiments to evaluate the performance of the framework when relaxing some
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Figure 6: Visualization of the simulated data with sufficient and insufficient information for accurate
estimation. The left panel demonstrates data with insufficient information, while the right panel
demonstrates data with sufficient information. Each line plot illustrates total cell count data across
13 time points under a specific concentration level described in the legend. The error bar is derived
from the standard deviation of 20 independent replicates.
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Figure 7: Relative error of the parameter estimation when relaxing Assumption 4. The remaining
details of the plot can be found in Figure 4.

of the assumptions in Section 2.5. Detailed experimental settings are described in Appendix 6.5.

3.2.1 Relaxed drug effect assumption

In Assumption 4 of Section 2.5, we posit that the drug will not affect the CSCs. However,
this assertion may seem too stringent for practical scenarios, where the varying microenvironment
caused by different drug concentration levels could potentially affect the CSCs [37]. Therefore, we
conduct another set of experiments to examine the performance of our framework when the drug
does influence the CSCs. While the mechanisms underlying drug resistance in CSCs are not yet fully
understood [29, 20], for testing purposes, we make the simplifying assumption that the drug affects
CSCs in a similar way to CNSCs, manifesting through cytotoxic effects and increased asymmetrical
divisions, albeit to a lesser extent than for CNSCs. As noted in Section 2.2, our framework is also
adaptable to scenarios where the drug might decrease the differentiation rate.

Figure 7 presents the RE from 100 independent experiments. We observe that the estimates of
certain parameters, such as (νrs, bs,ν , Es,ν), show deterioration compared to Figure 4, with more
than 50% of estimates having RE above the 0.2 threshold value. However, our framework continues
to provide reasonably accurate estimates for parameters like αs, βs, bs,β .

As mentioned in the previous section, the estimation accuracy may be correlated to the sig-
nificance of the drug effect. In the current experiment, we find more compelling evidence to sup-
port this observation. In particular, the estimation accuracy for the CSC drug effect parameters
(br,β , Er,β , br,ν , Er,ν) is significantly lower than the accuracy in estimating the analogous parameters
for CNSCs, due to our assumption of a more pronounced impact of the drug on CNSCs.
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Figure 8: Relative error of the parameter estimation when relaxing Assumption 5. The remaining
details of the plot can be found in Figure 4.

3.2.2 Relaxed initial proportion assumption

Our next experiment aims to investigate the possibility of estimating the initial subpopulation
structure under arbitrary initial proportions, relaxing Assumption 5 of Section 2.5. To accommodate
this situation, we reintroduce two parameters, pr and ps, with the constraint that pr + ps = 1,
representing the initial proportions of CSCs and CNSCs respectively.

The results in Figure 8 indicate that relaxing the initial proportion assumption does not dete-
riorate the accuracy of the estimation of other parameters, and the initial proportion is estimated
reasonably well. This highlights the potential of our framework to deconvolute the phenotypic sub-
population structure with an unknown initial proportion. It is also worth noting that we allow the
pr and ps to be uneven, for example, pr = 0.03 and ps = 0.97.

3.2.3 Limited division CNSC dynamics assumption

We finally consider a more general CNSC division scheme, where CNSCs can only undergo
symmetric division a limited number of times, reflecting a gradual loss of proliferation potential. We
refer to CNSCs produced through asymmetric division of CSCs as first-generation CNSCs, which
can only divide up to G times. For the first G generations of CNSCs, we assume that the g-th
generation can symmetrically divide into two (g + 1)-th generation CNSCs, asymmetrically divide
into one CSC and one g-th generation CNSC, or die. The (G + 1)-th generation CNSCs can only
die or asymmetrically divide into one CSC and one (G + 1)-th generation CNSC. All CNSCs share
the same symmetric division rate αs, death rate βs and asymmetric division rate νsr (Figure 9).
In addition, the drug effect parameters bs,β , Es,β , bs,ν , Es,ν are the same for CNSCs in the different
generations. This scheme encompasses a broader spectrum of CNSC dynamics, ranging from the
scenario where CNSCs cannot self-renew (G = 0) to the scenario where CNSCs have an infinite
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capacity for self-renewal with a certain rate αs (G → ∞). Theoretically, our current framework can
accurately capture the extreme scenarios where G = 0 or G → ∞. We are interested in the practical
performance of our framework in the intermediate case, i.e., 0 < G < ∞.

(a) Symmetric division
of CSC (rate: αr)

(b) Asymmetric division
of CSC (rate: νrs)

(c) Symmetric division of
CNSC (rate: αs)

(d) Asymmetric division
of CNSC (rate: νsr)

Figure 9: Illustration of four distinct division events assumed for the limited division scenario.
Square shape represents CSC and round shape indicates CNSC, while different colors illustrate a
different division potential of each generation in CNSC.

We first want to determine whether our framework can reliably estimate the symmetric division
rate of CNSCs, αs. To streamline the experiment, we selected the same true value α∗

s > 0 for
G ∈ {0, 1, 2, 3}. Instead of using the RE, we adopt the ratio between the estimated value and the
true value of αs as the metric of accuracy. Specifically, for an estimator x̂ and the true value x∗, we
compute the accuracy metric as:

Er(x̂;x∗) =
x̂

x∗ . (10)

This new metric effectively captures two important scenarios: (i) the framework should produce
an estimation α̂s = 0 when G = 0, resulting in a ratio α̂s/α

∗
s = 0, and (ii) the framework should

accurately estimate α̂s = α∗
s when G is sufficiently large.

The results of our experiment (Figure 10) align well with these two scenarios. Specifically, our
framework accurately infers that αd = 0 when the maximum division number is G = 0, indicating
that CNSCs cannot undergo self-renewal. However, when G = 1, 75% of estimates for αs are
below the true value. Surprisingly, our framework accurately recovers the true value of αs when
G = 2 and G = 3. For other parameters, we generally observed systematic biases in the estimation,
see Appendix 6.8. However, interestingly, we found that the drug effects’ inflection points, Es,ν

and Es,β , were accurately estimated across different values of G. This observation demonstrates
the robustness of our framework in estimating the drug effects’ inflection points under varying
differentiation dynamics. In other words, through detecting the changes in cell population growth
dynamics, our framework can estimate the concentration levels at which such changes occur, even
though it may not fully explain these changes. For the other parameters, we note that it is possible
to fully capture the dynamics of CNSCs with limited proliferation potential by expanding our model
beyond two subpopulations, as we further discuss in the conclusion section (Section 5).

4 Results (in vitro)

We validate our approach using several published drug screen datasets.
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Figure 10: Estimation error of the CNSCs division rate when CNSCs can only divide a limited
amount of times. The ratios between the estimated division rate and the true division rate are
presented to varying maximum division numbers G. The boxplot is based on 30 independent exper-
iments for each G ∈ {0, 1, 2, 3} with varying true parameter sets. The grey horizontal line illustrates
the ratio when CNSCs division rate is accurately estimated.
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4.1 Detecting CPX-O induced plasticity in gastric carcinoma cell lines

4.1.1 Data overview

To validate our framework using in vitro data, we utilized data from a recent study [26] that inves-
tigated four human gastric carcinoma cell lines (AGS SORE6−, AGS SORE6+, Kato III SORE6−,
Kato III SORE6+). Our focus in this section is specifically on the AGS SORE6− and AGS SORE6+
cell lines. SORE6 serves as a reporter system indicating the stemness of these cancerous gastric cells,
where SORE6− and SORE6+ denote gastric CNSCs and CSCs, respectively. In the study [26], ci-
clopirox olamine (CPX-O) was found to reprogram gastric CNSCs into CSCs. To support these
findings, the authors cultivated pure AGS SORE6− cells and monitored both cell viability data and
the percentage of AGS SORE6+ cells using the SORE6 reporter system.

In our study, we mainly utilized two experimental datasets provided in [26]:

1. AGS Conc (XConc): AGS SORE6− samples were cultivated under nine concentration levels
of CPX-O:

D1 = {0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16} (µM).

Total cell count data (TC) and stem cell proportion (SC) were observed after 48 hours of
treatment, i.e. T1 = {48} (hours).

2. AGS Time (XTime): AGS SORE6− samples were cultivated under three concentration levels
of CPX-O:

D2 = {0, 4, 8} (µM).

Total cell count data (TC) and stem cell proportion (SC) were observed after 2, 6, 12, 24 and
48 hours of treatment:

T2 = {2, 6, 12, 24, 48} (hours).

Unfortunately, neither of these experiments provides enough information to estimate all param-
eters under our framework. Specifically, three concentration levels in the AGS Time data are not
sufficient to estimate the four parameter effects of the drug in our framework, and a single time point
in the AGS Conc data is inadequate to capture the heterogeneous dynamics of cell growth. This
limitation may arise from the need to employ the FACS technique to distinguish between the CSC
and CNSC populations. To overcome this limitation, we propose to employ a data imputation on the
AGS Conc data based on the information from the AGS Time data. Further details of imputation
can be found in Appendix 6.9.2. We provide the imputed dataset in Table 5.

Concentration levels (µM ) 0 0.125 0.25 0.5 1 2 4 8 16
TC of replicate 1 at time 12 3083 3083 3083 3083 3083 3083 3083 3083 3083
TC of replicate 1 at time 24 4272 4246 4222 4173 4080 3907 3608 3150 2568
TC of replicate 1 at time 48 5038 4503 3242 2235 1849 1608 1140 1054 756
TC of replicate 2 at time 12 3502 3502 3502 3502 3502 3502 3502 3502 3502
TC of replicate 2 at time 24 4851 4823 4795 4739 4633 4437 4098 3578 2917
TC of replicate 2 at time 48 5722 4597 3433 2881 2511 2295 1875 1309 694

Table 5: In vitro total cell count (TC) data: AGS Conc data with augmented estimation according
to AGS Time. The colored data are estimated data according to the AGS Time data, while the
black data are actual data from [26].
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Model |θ| Free parameters
I 12 αr, βr, νrs, αs, βd, bs,β , Es,β ,ms,β , bs,ν , Es,ν ,ms,ν , c
Ia 6 αs, βs, bs,β , Es,β ,ms,β , c
II 14 αr, βr, νrs, αs, βs, bs,β , Es,β ,ms,β , bs,ν , Es,ν ,ms,ν , k, t0, c
IIa 8 αs, βs, bs,β , Es,β ,ms,β , k, t0, c

Table 6: Free parameters in models for AGS–CPX-O experiment.

Drug-induced plasticity no Drug-induced plasticity
Without time-delay effect AIC(I): 653.4866 AIC(Ia): 677.9985
With time-delay effect AIC(II): 543.7607 AIC(IIa): 576.5120

Table 7: AIC value for 4 varying model assumptions in AGS–CPX-O experiment.

4.1.2 Candidate model description and model selection results

One potential application of our newly proposed statistical framework in practical settings is to
detect the presence of drug-induced plasticity using model selection criteria. Here, we employ the
well-known Akaike Information Criterion (AIC) calculated by the formula:

AIC = 2|θ| − 2 log(L∗), (11)

where |θ| is the number of free parameters in the model and L∗ is the maximum value of the
likelihood function for the model. AIC, rooted in information theory, quantifies the information lost
by a model, with lower AIC values indicating higher model quality.

We consider a total of four different models. The first two models, based on the framework
described in equation (6), differ in their assumptions regarding the induction of plasticity by CPX-
O. We denote the model that assumes drug-induced plasticity as model I and the alternative as
model Ia. In fitting the in vitro data, we reintroduce the Hill parameter m to our drug-effect model
(Section 2.2). Additionally, it is assumed that the drug does not affect the dynamics of CSCs.

Model I has 12 free parameters, as detailed in Table 6, to depict the cell growth dynamics
of CSCs and CNSCs and the drug response of CNSCs. In contrast, Model Ia requires only 6 free
parameters, as it assumes no drug-induced plasticity for CPX-O, resulting in no parameters necessary
for gastric CSCs. Indeed, since the in vitro experiments in question are started with isolated CNSC
subpopulations (ps = 1), and no natural plasticity of CNSCs is assumed (νsr = 0), no CSCs should
emerge in the experiments according to the assumptions of Model Ia.

In the other two models, we introduce a time-delayed drug-effect which is present in the AGS
Time data, since similar cell growth patterns are observed within the first 12 hours across different
drug concentration levels, with pronounced variations emerging thereafter. Further details can be
found in Appendix 6.9.1. Therefore, we assume that the maximum drug effect parameter b varies
over time following a two-parameter logistic function as described in Section 2.2.2. Like the previous
two models, one of these time-delayed drug-effect models, denoted as II, assumes that CPX-O can
induce plasticity, while the other, denoted as IIa, does not. Model II has 14 free parameters,
whereas Model IIa involves 8 free parameters, as detailed in Table 6.

The AIC results, summarized in Table 7, indicate a preference for the models assuming drug-
induced plasticity under the AIC model selection criteria. Furthermore, comparing the AIC values
between models with and without the time-delay assumption reveals the significant role of the time-
delay effect in the current data. While our newly proposed framework may not fully capture the
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Figure 11: COLO858 bulk cell count data treated under six different concentration levels of Vemu-
rafenib. Errorbars, color-coded for each drug concentration, represent the mean and scaled standard
deviation from four replicates.

experimental data in [26], it nonetheless yields conclusions consistent with the actual observations
reported in [26]. It should also be stressed that our framework is able to infer the presence of drug-
induced resistance from total cell count data, whereas this conclusion is drawn in [26] using additional
data on the CSC proportion over time. Of course, the inference of drug-induced plasticity is in this
case facilitated by the ability to start the experiments from isolated CNSCs, but our framework is
applicable to a broader range of experimental setups without this ability.

4.2 Detecting Vemurafenib induced plasticity in COLO858 cell line

In [6], the authors observed drug-induced de-differentiation of melanoma cells, leading to adaptive
resistance. Specifically, they monitored the response of a melanoma cell line, COLO858, following
exposure to the BRAF inhibitor Vemurafenib. Single-cell analysis and molecular profiling revealed an
up-regulation of a de-differentiated NGFRHigh state in Vemurafenib-treated cells. The authors also
collected live-cell imaging bulk cell count data for the COLO858 cell line under various Vemurafenib
concentration levels. This live-cell imaging data was provided in the follow-up work [3]. We now
wish to show that our framework can be used to detect drug-induced plasticity in this dataset.
For consistency with previous definitions, we refer to the NGFRHigh and NGFRLow states of the
COLO858 cell line as CSCs and CNSCs, respectively, for the remainder of this subsection.

4.2.1 Data overview

In [3], the COLO858 cell line was treated with six doses of Vemurafenib:

Dv = {0(DMSO), 0.032, 0.1, 0.32, 1, 3.2}(µM),

over a period of 120 hours. The full dataset is shown in Figure 11.
Similar to the AGS–CPX-O dataset, there is a time-delayed drug effect at the beginning of these

experiments. Fortunately, we have already proposed a time-delayed drug response model in Section
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Model |θ| Free parameters
DIPnAsy 13 αr, βr, br,β , Er,β , αs, βs, bs,β , Es,β , bs,ν , Es,ν , k, t0, c
nDIPnAsy 8 αs, βs, bs,β , Es,β ,ms,β , k, t0, c
DIPAsy 15 αr, βr, νrs, br,β , Er,β , αs, βs, νsr, bs,β , Es,β , bs,ν , Es,ν , k, t0, c
nDIPAsy 13 αr, βr, νrs, br,β , Er,β , αs, βs, νsr, bs,β , Es,β , k, t0, c

Table 8: Free parameters in models for COLO858–Vemurafenib experiment.

Drug-induced plasticity no Drug-induced plasticity
Without natural plasticity AIC(DIPnAsy): 6183 AIC(nDIPnAsy): 6433
With natural plasticity AIC(DIPAsy): 6145 AIC(nDIPAsy): 6370

Table 9: AIC value for 4 varying model assumptions in COLO858–Vemurafenib experiment.

2.2.2. It is worth reiterating that incorporating the time-delayed drug response model will complicate
the computation of the mean matrix and the covariance matrix, so we decided to employ a simpler
statistical model for analysis of this dataset as described in Section 2.4.3.

As is apparent from Figure 11, the current dataset exhibits a logistic growth dynamic under
DMSO conditions, which is not consistent with the exponential growth assumption of our framework.
Therefore, we only use data from the first 60 hours of the experiments, which includes a total of 30
time points at 2-hour intervals, where exponential growth is a reasonable assumption.

4.2.2 Candidate model description and model selection results

Similar to the AGS–CPX-O dataset, we propose using the AIC model selection criterion to deter-
mine whether the drug induces de-differentiation of the COLO858 cell line treated with Vemurafenib
solely using live-cell imaging bulk cell count data. Before defining various models of interest, we
begin with two model assumptions derived from [6]:

• Initially, the population consists entirely of melanoma CNSCs. (ps = 1, pr = 0).

• Vemurafenib may have cytotoxic effects on both CSCs and CNSCs; however, it promotes
transitions only from CNSCs to CSCs. (br,ν = 1).

These assumptions closely align with those made in Section 2.5. However, we would like to emphasize
that we now allow the drug to have a cytotoxic effect on the CSC population, aligning with the
observation in [6] that the COLO858 CSCs are less sensitive but still inhibited by the Vemurafenib.

We are fundamentally interested in determining whether the drug induces de-differentiation
from CNSCs to CSCs, but since it is unknown whether there is natural plasticity between the
two subpopulations or not, we will allow for both alternatives. This leads to four candidate models.
The models DIPnAsy and nDIPnAsy assume no natural plasticity (νrs = νsr = 0), with the former
model assuming the presence of drug-induced plasticity and the latter assuming no such drug effect.
The models DIPAsy and nDIPAsy assume the possibility of natural plasticity, where the former
model again assumes the presence of drug-induced plasticity. The free parameters for each model
are provided in Table 8.

The AIC results are demonstrated in Table 9. See Appendix 6.9.3 for the details of the computa-
tion. We conclude that models assuming drug-induced plasticity are generally preferred, regardless
of whether natural transitions between the two subpopulations are assumed. These results show
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how our framework, using only data on the bulk cell population, is able to detect the presence of
drug-induced resistance which has been confirmed using single-cell analysis in [6].

In a recent paper [33], Sontag et.al. employed a deterministic model to analyze the same COLO858–
Vemurafenib dataset. Their estimation scheme assessed drug effects at different concentration levels
with distinct parameters, estimating non-zero drug-induced plasticity. In contrast, our statistical
framework employed the Hill equation to quantify the dose-response relationship and concluded the
presence of drug-induced plasticity across the entire dataset using the AIC model selection criteria.

5 Conclusion

In this study, we introduced a novel statistical framework designed for analyzing HTS bulk data
involving multiple subpopulations of cells. Using an asymmetrical birth multi-type branching pro-
cess, we extended a model introduced in our previous work [35] to accommodate transitions between
the different subpopulations, thereby enhancing its range of applications. One such application in-
volves inferring drug-induced plasticity in a mixture population of cancer stem-like cells (CSCs) and
cancer non-stem-like cells (CNSCs). The asymmetrical birth multi-type branching process naturally
accounts for the differentiation of CSCs and the de-differentiation of CNSCs. Additionally, we incor-
porated the Hill equation to characterize the cytotoxic effects of anti-cancer drugs and drug-induced
de-differentiation rates. We tested our approach using both in silico and in vitro data.

In our in silico experiments, we used stochastic simulation to generate datasets involving drug-
treated mixtures of CSCs and CNSCs. The datasets consisted of total cell counts collected at
predetermined drug concentration levels and time points. Drawing inspiration from recent research
on drug-induced plasticity [26], we formulated five assumptions to simulate the dynamics of CSCs
and CNSCs, along with their respective drug effects. Under these assumptions, our newly proposed
framework not only identifies the presence of drug-induced plasticity, but also accurately predicts
several key features of the mixture dynamics. Specifically, in an illustrative example, the framework
accurately recovered the drug-affected stable proportions between CSCs and CNSCs across various
drug concentration levels. Furthermore, it determined the GR50 values for both the drug’s cytotoxic
effect on CNSCs and its induced plasticity effect. Through further numerical experiments, we
confirmed that the newly proposed framework consistently provides precise estimations for each
model parameter, capturing the growth dynamics of individual subpopulations, transitions between
the subpopulations, as well as drug-induced toxicity and plasticity.

We further investigated the robustness of our framework by relaxing assumptions regarding the
dynamics of the CSCs and CNSCs and how the drug affects each supbopulation. By allowing the
CSC and CNSC mixture to start from an arbitrary initial proportion instead of the stable drug-free
proportion, our framework accurately estimated not only the mixture’s growth dynamics and drug
effects but also the initial proportion. However, relaxing the assumption that the drug only affects
CNSCs resulted in a more complex drug effect profile, which degraded the identifiability of each
individual effect. In particular, the drug effects on CSCs were less identifiable, which may be due
to our assumption that the drug has a more significant effect on CNSCs. It should also be kept
in mind that we only assume data on total cell counts, as opposed to cell counts for individual
subpopulations, which is an inherent limitation for teasing apart complex evolutionary dynamics
and drug effect profiles involving multiple parameters. Using this kind of data, some simplifying
assumptions must be made to ensure the identifiability of all model parameters.

Additionally, we explored the performance of our framework under the assumption of limited
division of CNSCs, portraying the differentiation process as a gradual loss of cell proliferation po-
tential. Our framework successfully estimated the CNSC division rate when the maximum division
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number (G) of CNSCs equaled 0, 2 or 3. Furthermore, it consistently provided reliable estimates of
the half-maximum effects parameter (E) for each drug effect on the CNSCs. Even though parame-
ter estimates generally degraded, these results demonstrate that our newly proposed framework can
offer valuable insights even under more complex and realistic scenarios. To fully capture these dy-
namics, we propose expanding our model beyond two subpopulations, by modeling each generation
of CNSCs as a distinct subpopulation. Specifically, we can represent the symmetric division of g-th
generation cells into two (g+1)-th generation cells as birth events where a cell of one type produces
two cells of another type. Currently, our asymmetric division framework does not account for this
behavior, as it models subpopulation transitions through asymmetric divisions. However, model-
ing subpopulation transitions through symmetric division is straightforward using the multi-type
branching process framework [1]. We plan to explore this in future work.

We validated our framework using data from the gastric carcinoma cell line (AGS) treated with
ciclopirox olamine (CPX-O) [26], as well as BRAF-mutated melanoma cell line (COLO858) treated
with Vemurafenib [3]. Based on single-cell tracking analysis, these two studies confirm the presence
of drug-induced plasticity in both datasets. Coupled with the AIC model selection scheme, our novel
statistical framework is able to indicate the presence of drug-induced plasticity in both datasets using
live-cell imaging bulk data alone. Validation using data from [26] posed challenges due to the limited
in vitro data available. This discrepancy is partly due to the experimental procedure described in
[26], which involves using FASC to separate CSCs and CNSCs – a step that our framework does not
require. Nevertheless, our framework indicates that CPX-O induces plasticity in the AGS gastric
carcinoma cell line, aligning with the conclusions in [26]. In the COLO858–Vemurafenib validation
experiment, an abundance of time-course data over a period of 120 hours is provided in [3]. However,
we observed a logistic type of proliferation dynamics, potentially caused by carrying capacity, which
is not assumed in our model. Therefore, we chose to employ only the initial 60 hours data, which
demonstrated a clear exponential type of proliferation. Incorporating logistic proliferation dynamics
is a potential future direction.

In general, our framework requires many parameters to model various drug effects, necessitating
multiple data points at distinct concentration levels to adequately capture mixture dynamics under
drug influence. However, this requirement may be offset by the advantage of not needing a more
sophisticated technique for subpopulation separation. Moreover, the quality of the data is equally as
important as the quantity of it. As observed in our in silico experiments, some true parameter sets
became unidentifiable under the specific concentration levels used in the experiments. To enhance
the framework’s utility, one future direction involves developing techniques for experimental design,
meaning optimal selection of drug concentrations and time points for accurate parameter inference.
Such analysis could markedly improve the framework’s ability to extract insights from HTS data.

Another challenge identified in the in vitro experiment was the time-inhomogeneous drug effect.
While our drug-effect base model assumes time-homogeneous drug effects on the target tumor sam-
ple, data from [26, 3] show significant heterogeneity in drug effects over time. In Section 2.2.2, we
addressed this by developing a two-parameter logistic function, resulting in a better fit to the in
vitro data.

There are several avenues for extension of the framework beyond those already mentioned. First,
while we have focused on inferring drug-induced plasticity in a CSC and CNSC mixture, the newly
proposed framework is based on a versatile mathematical model (multi-type branching process)
which can be adapted to a broader range of transition dynamics between two or more subpopulations.
These subpopulations are defined by their heterogeneous responses to controllable interferences –
specifically, drugs in this case. Second, we have in this work focused on cellular responses to single-
drug interventions. One potential extension involves expanding our framework to encompass more
complex multi-drug responses, potentially unveiling more intricate underlying systems. Moreover,
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external factors such as nutrient levels, hypoxia, stromal content, and other microenvironmental
factors could be integrated into our framework in future work.
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6 Appendix

6.1 Reducible infinitesimal generator matrix A and long-run behavior
of B(t, 0)

The results in Section 2.3 rely on the irreducibility assumption of infinitesimal generator matrix
A. However, Assumption 2 in Section 2.5 violates this irreducibility assumption under no-drug
conditions. Consequently, we explore the details of these assumptions and discuss the situation
when those assumptions are violated in this section.

The main issue arising from reducibility is that the process B(t, 0) may not converge almost
surely to a stable proportion π in the long-run. To address this, we use the results in [24]. Given
that we assume κs > κd > 0 (Assumption 1) and CSCs do not go extinct (Assumption 3), we can
directly apply Proposition 1 and Corollary 1 in [24]. Specifically, Proposition 1 in [24] states that
there exist random variables Vs and Vd such that

lim
t→∞

e−κstBs(t) = Vs and lim
t→∞

e−κstBd(t) = Vd

almost surely. From Corollary 1 in [24], we further have

Vd =
νsdVs

κs − κd
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almost surely. From this ratio, we can further derive

[Vs, Vd] = C

[
κs − κd

κs − κd + νsd
,

νsd
κs − κd + νsd

]
= Cπ,

where C is a random variable and the stable proportion π is still the left eigenvector of A corre-
sponding to the largest eigenvalue. Consequently, the stable proportion exists. By following the
same procedure—obtaining the left eigenvector of A corresponding to the largest eigenvalue—we
can determine the stable proportion when A becomes reducible under the no-drug condition.

6.2 Long-run behavior of finite moment of the multi-type branching pro-
cess

In [1], the authors reviewed the long-run growth rate of the first and the second moments of the
multi-type branching process. Specifically, the mean matrix scaled by e−λ1t would converge to a
matrix independent of time. In other words, the long-run expected cell count will increase at rate
eλ1t. Similarly, the second moment has a growth rate e2λ1t. To prove Proposition 2, we extend these
results by considering any finite moment of this process, i.e. we want to show that for any positive
finite integer z and combination cz : [c1(z), · · · , cK(z)] ≥ 0 such that

∑K
i=1 ci(z) = z,

lim sup
t→∞

E
[
B

(i)
1 (t)c1(z)B

(i)
2 (t)c2(z) · · ·B(i)

K (t)cK(z)

]
e−λ1zt < ∞.

Consequently, we show the following Lemma 1.

Lemma 1. For any integer z > 0 and combination cz, we have

E
[
B

(i)
1 (t)c1(z)B

(i)
2 (t)c2(z) · · ·B(i)

K (t)cK(z)

]
= O(eλ1zt).

Proof. The probability-generating function for the multi-type branching process for B(i)(t) is de-
noted as

F (i)(s, t) := E
[
sB

(i)(t)
]
= E

[
K∏

k=1

s
B

(i)
k (t)

k

]
,

where s = [s1, · · · , sK ]. With these notations, we can write the Kolmogorov forward equation [1]
for B(i)(t) as

∂

∂t
F (i)(s, t) =

K∑
k=1

u(k)(s)
∂

∂sk
F (i)(s, t), (12)

where the function u(i)(s) for type i is defined as

u(i)(s) := αis
2
i + βi +

∑
j ̸=i

νijsisj −

αi + βi +
∑
j ̸=i

νij

 si, 0 ≤ s ≤ 1

We denote a vector cz = [c1(z), c2(z), · · · , cK(z)] as the combination index vector. Then we use

∂scz to represent ∂s
c1(z)
1 ∂s

c2(z)
2 · · · ∂scK(z)

K .
Now we can define

ℓz(t) = max
cz

∂z

∂scz
F (i)(s, t)

∣∣∣
s=1

, (13)
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and we denote c∗z as the maximum combination index of z-th moment. We can see from the equation
(13) that for each z ≥ 1 there exists C ′

z > 0 such that for any combination cz

ℓz(t) ≥
∂z

∂scz
F (i)(s, t)

∣∣∣
s=1

≥ C ′
z

∞∑
n1=c1(z),··· ,nK=cK(z)

n
c1(z)
1 · · ·ncK(z)

K P (B
(i)
1 (t) = n1, · · · , B(i)

K (t) = nK)

= C ′
z E

[
K∏

k=1

B
(i)
k (t)ck(z)

]
− C ′

z E

[
K∏

k=1

B
(i)
k (t)ck(z) ;B

(i)
k (t) < ck(z)

]
.

As the multi-type branching process goes to infinity or extinct with probability 1 as time goes to
infinity, we have, in the supercritical case,

lim
t→∞

E
[∏K

k=1 B
(i)
k (t)c

∗
k(z) ;B

(i)
k (t) < c∗k(z)

]
E
[∏K

k=1 B
(i)
k (t)

c∗
k(z)

] = 0

so that there exists Cz such that ℓz(t) ≥ Cz E
[∏K

k=1 B
(i)
k (t)c

∗
k(z)

]
.

Thus, it suffices to establish the upper bound on ℓz(t) to prove the Lemma. We show the upper
bound of ℓz(t) by induction on z. The base case was given by the fact that eλ1t is the largest
eigenvalue of the mean matrix M(t), i.e.

E
[
B

(i)
k (t)

]
= [eiM(t)]k ≤ eλ1t,

where [·]k is the k-th element of the vector, for any k ∈ {1, · · · ,K}. Then we assume that for z > 1
and all j ≤ z − 1, ℓj(t) = O(eλ1jt). Then from the equation (12) we have that

d

dt
ℓz(t) =

∂z

∂sc
∗
z

K∑
k=1

u(k)(s)
∂

∂sk
F (s, t)

∣∣∣
s=1

=
z∑

j=0

∑
cj≤c∗

z

(
c∗1(z)
c1(j)

)
· · ·

(
c∗K(z)

cK(j)

) K∑
k=1

∂j

∂scj
u(k)(s)

∂z−j+1

∂sc
∗
z−cj∂sk

F (s, t)
∣∣∣
s=1

=

z∑
j=1

∑
cj≤c∗

z

(
c∗1(z)
c1(j)

)
· · ·

(
c∗K(z)

cK(j)

) K∑
k=1

∂j

∂scj
u(k)(s)

∂z−j+1

∂sc
∗
z−cj∂sk

F (s, t)
∣∣∣
s=1

≤
z∑

j=1

∑
cj≤c∗

z

(
c∗1(z)
c1(j)

)
· · ·

(
c∗K(z)

cK(j)

) K∑
k=1

∂j

∂scj
u(k)(1)ℓz−j+1(t)

≤ λ1zℓz(t) +
z∑

j=2

∑
cj≤c∗

z

(
c∗1(z)
c1(j)

)
· · ·

(
c∗K(z)

cK(j)

) K∑
k=1

∂j

∂scj
u(k)(1)ℓz−j+1(t)

The third equality is due to the fact that u(k)(1) = 0 for all k, the first inequality follows from the
definition of ℓz(t), and the last inequality is due to the following inequality

K∑
k=1

∂

∂si
u(k)(1) = αi − βi +

∑
k ̸=i

νki = 1Ae⊺i ≤ λ1,
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for any i ∈ {1, · · · ,K}. Since ℓz−j+1(t) = O(eλ1(z−j+1)t), for z ≥ j ≥ 2, there exists constants αz,cj

such that

e−λ1ztℓz(t) ≤
z∑

j=2

∑
cj≤c∗

z

(
c∗1(z)
c1(j)

)
· · ·

(
c∗K(z)

cK(j)

) K∑
k=1

αz,cj

∫ t

0

e−λ1τ(j−1)dτ

=
z∑

j=2

∑
cj≤c∗

z

(
c∗1(z)
c1(j)

)
· · ·

(
c∗K(z)

cK(j)

) K∑
k=1

αz,cj

λ1(j − 1)

(
1− e−λ1t(j−1)

)
.

The induction hypothesis is thus established, completing the proof.

6.3 Derivation of the covariance for asymmetric birth model:

In this sub-section, we would like to derive the covariance matrix

Ξ(i)(t) = E
[(

B(i)(t)−m(i)(t)
)⊺ (

B(i)(t)−m(i)(t)
)]

.

Rather than drive this directly, we denote a second factorial moment D
(i)
jk (t) = E

[
B

(i)
j (t)(B

(i)
k (t)− δjk)

]
,

where δjk is the Kronecker delta. Note that

D(i)(t) = Ξ(i)(t) +m(i)(t)⊺m(i)(t)− diag(m(i)(t)) (14)

From the proof of Lemma 1, we have the probability generating function for B(i)(t) defined as

F (i)(s, t) := E
[
sB

(i)(t)
]
= E

[
K∏

k=1

s
B

(i)
k (t)

k

]
,

where s = [s1, · · · , sK ]. Then from the Kolmogorov Forward Equation (12), we have the u(i)(s) for
asymmetric birth model defined as:

u(i)(s) := αis
2
i + βi +

∑
j ̸=i

νijsisj −

αi + βi +
∑
j ̸=i

νij

 si, 0 ≤ s ≤ 1. (15)

Then we have

∂

∂t

(
∂2

∂sj∂sk
F (i)(s, t)

)
=

K∑
ℓ=1

[
∂2

∂sj∂sk
u(ℓ)(s)

∂

∂sℓ
F (i)(s, t) +

∂

∂sj
u(ℓ)(s)

∂2

∂sℓ∂sk
F (i)(s, t)

+
∂

∂sk
u(ℓ)(s)

∂2

∂sℓ∂sj
F (i)(s, t) + u(ℓ)(s)

∂3

∂sℓ∂sj∂sk
F (i)(s, t)

]
.

(16)

We can see from the equation (15) that for any ℓ ∈ {1, · · · ,K}

u(ℓ)(1) = 0

∂

∂sj
u(ℓ)(1) =

{
αj − βj j = ℓ

νℓi j ̸= ℓ

∂2

∂sj∂sk
u(ℓ)(1) =

{
νjk ℓ = j ̸= k

2αj ℓ = j = k.
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Letting s = 1 and re-arranging equation (16), we can see that

d

dt
D

(i)
jk (t) =

K∑
ℓ=1

AℓjD
(i)
kℓ (t) +

K∑
ℓ=1

AℓkD
(i)
jℓ (t) + (1− δjk)[νkjMik(t) + νjkMij(t)] + 2δjkαjMij(t),

where A is the infinitesimal generator matrix, and we know that D(i)(t) is a symmetric matrix.
Thus, we derive the following matrix differential equation

d

dt
D(i)(t) = A⊺D(i)(t) +D(i)(t)A+C(i)(t), (17)

where C
(i)
jk (t) =

{
νkjMik(t) + νjkMij(t) j ̸= k

2αjMij(t) j = k
. Observe that equation (17) is a Lyapunov matrix

differential equation. With the initial condition D(i)(0) = 0, we have the solution

D(i)(t) = exp(tA⊺)

(∫ t

0

exp(−τA⊺)C(i)(τ) exp(−τA)dτ

)
exp(tA)

=

∫ t

0

(M(t− τ))
⊺
C(i)(τ) (M(t− τ)) dτ.

Then we can derive the covariance Ξ(i)(t) from D(i)(t) from equation (14).

6.4 Extension of Proposition 1

In Proposition 1, we assume that time points T = {t1, · · · , tNT
} are independent of the initial cell

count n. This assumption becomes invalid if we assign specific numerical values to n and t1, · · · tNT
.

Therefore, in this subsection, we aim to relax this assumption to make our results applicable in a
more realistic scenario, where there is a dependency between the set of time points and the initial
cell count.

To that end, we denote

Y(Tn) := [Y (t1,n), Y (t2,n), · · · , Y (tNT ,n)],

where Tn depends on n and ti,n belongs to one of the following sets of sequences:

F := {(tn)n∈N; lim sup
n→∞

tn < ∞}

I := {(tn)n∈N; lim
n→∞

tn = ∞}.

The sets F and I correspond to the finite time points sequence, which remain finite as n → ∞, and
the infinite time points sequence, which diverge to infinite as n → ∞, respectively.

Since we introduce the dependency on n, the covariance between Z(ti,n) and Z(tj,n) no longer
remains constant as n approaches infinity. Therefore, directly applying the multivariate CLT is not
valid in this case; instead, we should utilize the more general Lindeberg-Feller multivariate CLT.

To apply the Lindeberg-Feller multivariate CLT, we denote the normalized random vector

Ȳ(Tn) =
K∑
i=1

ni∑
j=1

ȳ
(i)
j (Tn) =

K∑
i=1

ni∑
j=1

[exp(−λ1t1,n)⟨B(i)
j (t1,n),1⟩, · · · , exp(−λ1tNT ,n)⟨B(i)

j (tNT ,n),1⟩].

30



We next denote the

µ̄(i)(Tn) = [exp(−λ1t1,n)⟨m(i)(t1,n),1⟩, · · · , exp(−λ1tNT ,n)⟨m(i)(tNT ,n),1⟩]

as the expectation of ȳ
(i)
j (Tn). Note that all elements in µ̄(i)(Tn) are bounded above by 1 according

to the spectral property of the mean matrix.
Same as Proposition 1, we define a centered and normalized process for a given i ∈ K

W̄(i)
ni
(Tn) =

1
√
ni

ni∑
j=1

(
ȳ
(i)
j (Tn)− µ̄(i)(Tn)

)
and claim Proposition 2 from Lindeberg-Feller multivariate CLT

Proposition 2. as n → ∞
W̄(i)

ni
(Tn) ⇒ N(0, V̄(i)(Tn))

where for 1 ≤ a ≤ b ≤ NT

V̄
(i)
a,b(Tn) =


1 exp(−2λ1ta,n)Ξ

(i)(ta,n) exp(−λ1(tb,n − ta,n))M(tb,n − ta,n)1
⊺ ta,n, tb,n ∈ F

1 exp(−2λ1ta,n)Ξ
(i)(ta,n)P1⊺ tb,n − ta,n ∈ I, ta,n ∈ F

1Q(i) exp(−λ1(tb,n − ta,n))M(tb,n − ta,n)1
⊺ tb,n − ta,n ∈ F , ta,n ∈ I

1Q(i)P1⊺ tb,n − ta,n ∈ I, ta,n ∈ I.

The Q(i) and P are the limit of the exp(−2λ1t)Ξ
(i)(t) and exp(−λ1t)M(t) respectively as t → ∞.

Proof. For simplicity, we denote z
(i)
j (Tn) = ȳ

(i)
j (Tn) − µ̄(i)(Tn). It is obvious that E

[
z
(i)
j (Tn)

]
= 0

for all n. Then we need to check the behavior of its covariance matrix. Without loss of generality,

we assume 1 ≤ a ≤ b ≤ NT . For a, b-th element of the second moment of z
(i)
j (Tn):

[Vz(i)j (Tn)]a,b = exp(−λ1(ta,n + tb,n))Cov
(
⟨B(i)(ta,n),1⟩, ⟨B(i)(tb,n),1⟩

)
Cov

(
⟨B(i)(ta,n),1⟩, ⟨B(i)(tb,n),1⟩

)
= 1

{
E
[
B(i)(ta,n)

⊺B(i)(tb,n)
]
− E

[
B(i)(ta,n)

]⊺
E
[
B(i)(tb,n)

]}
1⊺

= 1
{
E
[
B(i)(ta,n)

⊺ E
[
B(i)(tb,n)

∣∣∣ B(i)(ta,n)
]]

−E
[
B(i)(ta,n)

]⊺
E
[
E
[
B(i)(tb,n)

∣∣∣ B(i)(ta,n)
]]}

1⊺

= 1
{
E
[
B(i)(ta,n)

⊺B(i)(ta,n)M(tb,n − ta,n)
]

−E
[
B(i)(ta,n)

]⊺
E
[
B(i)(ta,n)M(tb,n − ta,n)

]}
1⊺

= 1
{
E
[
B(i)(ta,n)

⊺B(i)(ta,n)
]
− E

[
B(i)(ta,n)

]⊺
E
[
B(i)(ta,n)

]}
M(tb,n − ta,n)1

⊺

= 1Ξ(i)(ta,n)M(tb,n − ta,n)1
⊺

[Vz(i)j (Tn)]a,b = 1 exp(−2λ1ta,n)Ξ
(i)(ta,n) exp(−λ1(tb,n − ta,n))M(tb,n − ta,n)1

⊺

We know from Athreya and Ney that:

lim
t→∞

M(t) exp(−λ1t) = P
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where P is the outer product of the left and right eigenvector of M(t) corresponding to eigenvalue
exp(λ1t), and there exists a finite matrix Q(i) such that

lim
t→∞

Ξ(i)(t) exp(−2λ1t) = Q(i).

Therefore, we know that all the elements in Vz(i)j (Tn) are finite. In particular, we claim the following
condition for Lindeberg-Feller multivariate CLT holds:

lim
ni→∞

1

ni

ni∑
j=1

Vz(i)j (Tn) = lim
n→∞

Vz(i)j (Tn) = V̄(i)(Tn),

where

V̄
(i)
a,b(Tn) =


1 exp(−2λ1ta,n)Ξ

(i)(ta,n) exp(−λ1(tb,n − ta,n))M(tb,n − ta,n)1
⊺ ta,n, tb,n ∈ F

1 exp(−2λ1ta,n)Ξ
(i)(ta,n)P1⊺ tb,n − ta,n ∈ Iτ

1Q exp(−λ1(tb,n − ta,n))M(tb,n − ta,n)1
⊺ ta,n ∈ I

1QP1⊺ tb,n − ta,n ∈ Iτ , ta,n ∈ I.

The first equality is due to the following two observations: 1. As pi independent of n, we know that

ni → ∞ is equivalent to n → ∞. 2. For any given n, the random vector z
(i)
j (Tn) is i.i.d. copy of

z(i)(Tn).
Then we claim the Lindeberg condition:

lim
ni→∞

1

ni

ni∑
j=1

E
[
∥z(i)j (Tn)∥21(∥z(i)j (Tn)∥ ≥ ϵ

√
n)
]
= 0 (18)

for a given ϵ > 0, where 1(·) is the indicator function, is satisfied. Due to the aforementioned two
observations, it is equivalent to show that

lim
n→∞

E
[
∥z(i)(Tn)∥21(∥z(i)(Tn)∥ ≥ ϵ

√
n)
]
= 0. (19)

We applied the Cauchy-Schwarz inequality to (19), which simplifies the task to showing that

lim
n→∞

E
[
∥z(i)(Tn)∥4

]1/2
E
[
1(∥z(i)(Tn)∥ ≥ ϵ

√
n)
]1/2

= 0. (20)

Then we argue that

lim
n→∞

E
[
∥z(i)(Tn)∥4

]
= lim

n→∞
E

[NT∑
τ=1

exp(−2λ1tτ,n)
(
⟨B(i)(tτ,n),1⟩ − ⟨m(i)(tτ,n),1⟩

)2
]2


≤ lim

n→∞
E

[NT∑
τ=1

exp(−2λ1tτ,n)(1B
(i)(tτ,n)

⊺B(i)(tτ,n)1
⊺ + 1m(i)(tτ,n)

⊺m(i)(tτ,n)1
⊺)

]2


= lim
n→∞

∑
1≤τ≤ℓ≤NT

exp(−2λ1(tτ,n + tℓ,n))(c
4
τ,ℓ + c2τ,ℓ + c0τ,ℓ),
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where

c4τ,ℓ = E
[
1B(i)(tτ,n)

⊺B(i)(tτ,n)1
⊺1B(i)(tℓ,n)

⊺B(i)(tℓ,n)1
⊺
]

c2τ,ℓ = E
[
1B(i)(tτ,n)

⊺B(i)(tτ,n)1
⊺
]
1m(i)(tℓ,n)

⊺m(i)(tℓ,n)1
⊺

c0τ,ℓ = 1m(i)(tτ,n)
⊺m(i)(tτ,n)1

⊺1m(i)(tℓ,n)
⊺m(i)(tℓ,n)1

⊺.

With Lemma 1 and the fact limt→∞ exp(−2λ1t)1m
(i)(t)⊺m(i)(t)1⊺ < ∞, we can directly see that

lim
n→∞

exp(−2λ1(tτ,n + tℓ,n))c
0
τ,ℓ < ∞

lim
n→∞

exp(−2λ1(tτ,n + tℓ,n))c
2
τ,ℓ < ∞.

For c4τ,ℓ, we apply the Cauchy-Schwarz inequality to obtain

exp(−2λ1(tτ,n + tℓ,n))c
4
τ,ℓ ≤

[
exp(−4λ1tτ,n)c

4
τ,n

]1/2 [
exp(−4λ1tℓ,n)c

4
ℓ,n

]1/2
,

where
c4τ,n = E

[
(1B(i)(tτ,n)

⊺B(i)(tτ,n)1
⊺)2

]
, for 1 ≤ τ ≤ NT .

From Lemma 1, we claim that for 1 ≤ τ ≤ NT

lim
n→∞

exp(−4λ1tτ,n)c
4
τ,n < ∞.

Consequently, we have

lim
n→∞

E
[
∥z(i)(Tn)∥4

]
< ∞.

Next, we observe that

E
[
1(∥z(i)(Tn)∥ ≥ ϵ

√
n)
]
= P(∥z(i)(Tn)∥ ≥ ϵ

√
n) ≤

E
[
∥z(i)(Tn)∥

]
ϵ
√
n

.

As we have already shown that limn→∞ E
[
∥z(i)(Tn)∥4

]
< ∞, we can directly show that

lim
n→∞

E
[
∥z(i)(Tn)∥

]
ϵ
√
n

= 0.

As a result, we have equation (20) follows.
We conclude this proof by applying the Lindeberg multivariate CLT:

W(i)
ni
(Tn) =

1
√
ni

ni∑
j=1

z
(i)
j (Tn) ⇒ N(0, V̄(i)(Tn)).

In Proposition 2, we demonstrate with an appropriate normalization factor the normalized and
centered random vector Y is still approximately normally distributed when time depends on n. In
practice, because we cannot employ n → ∞, Proposition 1 is enough to obtain a good approximation
of Y.
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6.5 Details of data generation and optimization implementation in the
in silico experiments

To describe the data generation and optimization in the in silico experiment, we define two
distinct ranges:

1. the Generating parameters range based on the assumption outlined in Section 2.5.

2. the Optimization feasible range employed in all of the in silico experiments.

These two ranges characterize most of the differences among the in silico experiments, while the
procedure of the experiments is the same. The detailed in silico experiments procedure is given
by the following. We first randomly select a ‘true parameters set’ from the Generating parameters
range to simulate the in silico data through the Gillespie algorithm [7]. Subsequently, we solve the
MLE problem in equation (7) within the Optimization feasible range. In particular, we employ the
MATLAB Optimization Toolbox [22] function fmincon with sequential quadratic programming (sqp)
solver. Given the complex likelihood equation, we solve the optimization starting from 20 initial
points within the feasible region and select the estimation with the lowest negative log-likelihood.

We denote the ‘true parameters sets’ and the estimated parameters as θ∗ and θ̂ respectively,
while referring to the Generating parameters range and Optimization feasible range as Θ∗ and Θ̂.
These ranges simulate realistic scenarios and reflect our prior knowledge about nature. One principle
in setting these two ranges is that Θ∗ ⊆ Θ̂ to simulate insufficient prior knowledge about the ‘true
nature’.

6.5.1 Base experiment

In this experiment, we adhere to the assumptions outlined in Section 2.5. In particular, the Gen-
erating parameter range Θ∗ and the Optimization feasible range satisfy the assumptions established
in Section 2.5. For simplicity, we implemented a special case of Assumption 1: αr ∈ (βr, βr + 0.1)
and αs = βs, (i.e. 0 = κs ≤ κr ∈ (0, 0.1)). Nevertheless, we also tested for the case when κs > 0
and got a similar results. Assumption 2 can be directly implemented in the selection of Θ∗ and
Θ̂, and Assumption 5 can be implemented in the computation of likelihood. In accordance with
Assumption 4, where br,β = br,ν = 1, the selection of Er,β and Er,ν does not impact the likelihood
computation, so we set Er,β = Er,ν = 1 for simplicity. Conversely, we carefully choose the values
for Es,β and Es,ν within the concentration levels implemented in the in silico experiment to ensure
the drug has an observable effect on the tumor within the given concentration levels.

We conclude our selection of Θ∗ and Θ̂ in Table 10. To prevent the occurrence of unreasonably
large net growth rates during the optimization process, we imposed two linear constraints: αr−βr ≤
0.1 and νrs + αs − βs ≤ 0.5. In addition to the subpopulation parameters, we also selected the
standard deviation parameter c ∈ (0, 10) for the observation noised added to the data.

6.5.2 Relaxed drug effect assumption

To model a scenario where the drug has less significant effects on the CSCs, we selected 1−br,β <
1−bs,β and br,ν−1 < bs,ν−1. As in the base experiment, we present the new Generating parameters
range and Optimization feasible range in Table 11.

6.5.3 Relaxed initial proportion assumption

Compared to the base experiment, we added initial proportion as variables to be estimated in
these experiments. The corresponding Generating parameters range and Optimization feasible range
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Parameters Θ∗ Θ̂
αr (βr, βr + 0.1) (0, 1)
βr (10−3, 0.9) (0, 1)
νrs (0, 0.5) (0, 1)
αs βs (0, 1)
βs (10−3, 0.5) (0, 1)
bs,β (0.8, 0.9) (0.5, 1)
Es,β (0.0625, 2.5) (0, 3)
bs,ν (1, 1.1) (1, 1.5)
Es,ν (0.0625, 2.5) (0, 3)

Table 10: Generating parameter range Θ∗ and Optimization feasible range Θ̂. According to as-
sumptions in Section 2.5, br,β = Er,β = br,ν = Er,ν = 1 and νsr = 0 are set to both range.

Parameters Θ∗ Θ̂
αr (βr, βr + 0.1) (0, 1)
βr (10−3, 0.9) (0, 1)
νrs (0, 0.5) (0, 1)
br,β (0.97, 1) (0.5, 1)
Er,β (0.0625, 2.5) (0, 5)
br,ν (1, 1.03) (1, 1.5)
Er,ν (0.0625, 2.5) (0, 5)
αs βs (0, 1)
βs (10−3, 0.5) (0, 1)
bs,β (0.8, 0.9) (0.5, 1)
Es,β (0.0625, 2.5) (0, 3)
bs,ν (1, 1.1) (1, 1.5)
Es,ν (0.0625, 2.5) (0, 3)

Table 11: Generating parameter range Θ∗ and Optimization feasible range Θ̂ for relaxed drug effect
experiments. According to assumptions in Section 2.5, νsr = 0 is set to both ranges.

are given in Table 12. It is important to note that during the optimization process, we also apply
an equality constraint, ps = 1− pr, to avoid unrealistic initial proportion.

6.6 Bootstrapping technique

To compute the confidence interval (CIs) of estimation, we employ the bootstrapping technique.
This technique requires resampling the original dataset to obtain a new dataset. In Section 3.1.1,
we resampled 13 replicates from 20 generated replicates. Then the MLE process was conducted to
obtain a bootstrap estimate. Based on 100 bootstrap estimates, we obtained the 95% CIs by taking
the 2.5 and 97.5 percentile of those estimates.

6.7 Parameters of interest

To evaluate the quality of the estimations, we consider the estimations of the following quantity,
which can profile the phenotypical switching dynamics and the subpopulation sensitivity to the drug.
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Parameters Θ∗ Θ̂
pr (0, 1) (0, 1)
αr βr, βr + 0.1 (0, 1)
βr (10−3, 0.9) (0, 1)
νrs (0, 0.5) (0, 1)
ps 1− pr (0, 1)
αs βs (0, 1)
βs (10−3, 0.5) (0, 1)
bs,β (0.8, 0.9) (0.5, 1)
Es,β (0.0625, 2.5) (0, 3)
bs,ν (1, 1.1) (1, 1.5)
Es,ν (0.0625, 2.5) (0, 3)

Table 12: Generating parameter range Θ∗ and Optimization feasible range Θ̂ for relaxed initial
proportion experiments. According to assumptions in Section 2.5, br,β = Er,β = br,ν = Er,ν = 1 and
νsr = 0 are set to both range.

• Stable proportion:

The stable proportion of the multi-type branching process is determined by the normalized
left eigenvector, π, corresponding to the largest eigenvalue, eλ1t, of the mean matrix. As a
result, it depends on the symmetric birth rates, death rates, and asymmetric birth rates of
each subpopulation. In our drug-effect model, we assume that either the death rates or the
asymmetric birth rates of each subpopulation are affected by the drug, and thus, the stable
proportion also depends on the drug concentration levels. To better understand the nature of
the given tumor, we consider the stable proportion as one important parameter of interest.

• GR50:

The GR50, introduced in [12], is a newly proposed summary metric of drug-sensitivity. It
is defined as the concentration at which a drug’s effect on cell growth is half the observed
effect. For a given maximum concentration level, dm, applied during the experiment and
corresponding drug effect parameters, (b, E), we compute the GR50 by

GR50 = E

(
1− erm

erm − b

)
,

where rm = 1
2 log

(
b+ 1−b

1+ dm
E

)
is the half-maximum effects.

6.8 Detailed analysis of limited division CNSCs dynamics assumption

To better understand how the our framework analyzes the data with limited CNSCs symmetric
division, we monitor the relative difference (RD) between the estimation and true parameters, defined
as

Er(x̂;x∗) =
x̂− x∗

x∗ . (21)

Compared to RE, RD can better depict overestimation and underestimation. As an analogy to
the RE = 0.2 threshold, we consider RD = 0.2 and RD = −0.2 lines as thresholds for accurate
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Figure 12: Relative difference of parameter estimation when CNSCs can only symmetrically divide
G = 0 times. The solid line indicates RD = 0 and the dashed line indicates RD = 0.2 and
RD = −0.2.

estimation. The RD of the estimation from 30 experiments with limited division number G = 0, 1, 2, 3
are shown in Figure 12, Figure 13, Figure 14, and Figure 15, respectively.

When G = 0, our novel framework accurately captures the limited division cell dynamics by
correctly identifying the CNSCs’ symmetric division rate αs = 0. Therefore, in Figure 12, we
observe that every parameter ehibits an RD centered around 0. However, there are many instances
where the estimations of other parameters related to CNSCs have RD value less than −0.2 or greater
than 0.2. We suggest that this could be due to the small population of CNSCs compared to CSCs
when G = 0; hence, the estimation quality of these parameters might be influenced by the variability
across distinct experiments.

In Figures 13 to 15, we observe that the estimation of αs becomes more accurate with increas-
ing G. However, the differentiation rate νrs and CNSCs’ death rate βs are often overestimated.
Conversely, the CSCs’ symmetric division rate αr and death rate βr tend to be slightly underes-
timated. Overall, we conclude that our framework systematically overestimates νrs and βs, while
underestimating αr, βr in order to better capture the αs.

Surprisingly, the estimation of Es,β and Es,ν are not systematically overestimated or underes-
timated. Additionally, these two quantities becomes more accurately estimated with increasing G.
Therefore, we propose two hypotheses about the estimations of Es,β and Es,ν :

1. These estimations are not significantly affected by changes in the underlying tumor growth
dynamics.

2. The quality of these estimations might be related to the size of the targeted subpopulation,
CNSCs.
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Figure 13: Relative difference of parameter estimation when CNSCs can only symmetrically divide
G = 1 times. The solid line indicates RD = 0 and the dashed line indicates RD = 0.2 and
RD = −0.2.

These conjectures suggest that the drug effects’ inflection points Es,β and Es,ν could exhibit robust
estimation characteristics across different scenarios, particularly when the targeted subpopulation is
abundant.

6.9 Detailed implementation of in vitro experiments

In this subsection, we present a detailed implementation of the in vitro experiment described in
Section 4.

6.9.1 Analysis of the AGS Time experiment data

To understand the AGS Time experiment data obtained from [26], we visualize the total cell
count data at different time points in Figure 16. It is evident that, before time point 12, the total cell
count growth dynamics remains indifferent across three varying drug concentration levels. However,
after 24 hours, the effect of the drug becomes significant. Therefore, we conclude that there is a
time delay before CPX-O can fully activate to affect the AGS cell line.

In contrast to practical observation, our statistical framework does not assume heterogeneity
of the drug effect over time. As a result, our current framework struggles to adequately capture
the AGS Time experiment data without additional assumptions to incorporate the time effect on
drug activation. We then consider modeling the time effect on drug activation as one of the future
directions, which can further strengthen the current statistical framework. Nevertheless, we are still
incorporating some aspects of the information obtained from the AGS Time experiment.
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Figure 14: Relative difference of parameter estimation when CNSCs can only symmetrically divide
G = 2 times. The solid line indicates RD = 0 and the dashed line indicates RD = 0.2 and
RD = −0.2.

6.9.2 AGS Conc TC data imputation for varying concentration levels at 12 and 24
hours.

Due to the scarcity of the AGS Time data, we proposed to employ the simpler exponential
growth model to characterize the cell growth dynamics to estimate the TC of AGS Conc for varying
concentration levels at 12 and 24 hours. In particular, this model comprises two parameters λ,X0,
representing the growth rate and initial cell count, respectively. One can mathematically formulate
the cell count X(t) at time t by

X(t, d) = X0 exp(λ(d)t), (22)

where the growth rate λ may depend on the drug concentration level d.
As mentioned in the main text, the AGS Time data comprises only 3 concentration levels, which

is insufficient for estimating 4 drug-related parameters bs,β , Es,β , bs,ν , Es,ν . Therefore, we need to
utilize the AGS Conc data, which collects data at 9 varying concentration levels.

Time-delayed drug effect assumption:
In Appendix 6.9.1, we observed that the cell growth dynamics did not change at the first 12

hours under varying doses of CPX-O. To validate our statistical framework, which does not assume
a delay in the drug effect over time, we propose focusing on the data after the 12-hour checkpoint.
In other words, we assume that the CPX-O does not have an effect in the first 12 hours.

Shared underlying dynamics between AGS Time and AGS Conc data assumption:
Because the AGS Time and AGS Conc data have different initial experimental settings, such

as varying the initial total cell count and the proportion between CSCs and CNSCs, we need to
assume that under no drug effect (DMSO), the underlying growth dynamics are consistent for these
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Figure 15: Relative difference of parameter estimation when CNSCs can only symmetrically divide
G = 3 times. The solid line indicates RD = 0 and the dashed line indicates RD = 0.2 and
RD = −0.2.

Figure 16: AGS Time experiment data.
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two experiments. Based on this assumption, we can estimate the initial TC (XConc(0, 0)) in the
AGS Conc data from TC at 48 hours (XConc(48, 0)) based on the ratio between the initial TC
(XTime(0, 0)) and TC at 48 hours (XTime(48, 0)) in AGS Time data. In other words, we assume
the following equation holds

XTime(48, 0)

XTime(0, 0)
=

XConc(48, 0)

XConc(0, 0)
, (23)

where the colored quantity is estimated data.
Estimating the AGS Conc data at 12 hour
We estimate the XTime(0, 0) data by fitting the exponential growth model to the DMSO AGS

Time data at 2, 6, and 12 time-points. After obtaining the estimation for XConc(0, 0), we further
estimate the XConc(12, 0) based on the exponential growth model fitted to the DMSO AGS Time
data at 2, 6, 12 time-points. Since we assume that CPX-O has no effect in the first 12 hours, we
assign the same value of XConc(12, d) = XConc(12, 0) to all nine varying concentration levels. It is
also worth mentioning that we estimate XConc(12, 0) separately for each replicate.

Estimating the AGS Conc data at 24 hours
To estimate the AGS Conc data at 24 hours, we first note that CPX-O affected cell growth

dynamics during the time interval (12, 24 hours). Therefore, we need to estimate the drug effect
during the time interval (12, 24 hours). Since we only have three concentration levels, we proposed
to utilize the Hill equation with two cytotoxic effects parameters b, E to model the drug effect here.
It is also worth noticing that the cytotoxic effect is the main effect that is observed. Based on the
exponential growth model, we obtain 3 estimated growth rates λ(0), λ(4), λ(8) for 3 concentration
levels of CPX-O. We then fit these growth rates through the 2 parameters Hill equations

λ(d) = λ(0) + log

(
b+

1− b

1 + d/E

)
.

With the estimated parameters b, E, we estimate the growth rate λ(d), d ∈ {0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16}.
We then plug in these estimated growth rates to estimate the TC at 24 hours, i.e.

X(24, d) = X(12, 0) exp(12λ(d)), d ∈ {0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16}.

6.9.3 Details of maximum likelihood estimation when AIC computation

AGS–CPX-O AIC computation:
To calculate the AIC value, we first need to obtain the maximum likelihood estimate for each

model. Following the experimental setup described in Appendix 6.5, Table 13 provides an Opti-
mization feasible range used in the experiment. The same optimization range is applied to the free
parameters across all four model assumptions.

COLO858–Vemurafenib AIC computation:
To computing the AIC value, we calculated the maximum likelihood estimate for each model

based on the Optimization feasible range described in Table 14.
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