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Abstract

Predicting cancer dynamics under treatment is challenging due to high inter-patient
heterogeneity, unclear importance of available biomarkers, and sparse and noisy longitudinal
measurements. Mathematical models of longitudinal measurements can summarize cancer
dynamics by a few interpretable model parameters. By using machine learning methods
to predict the model parameters using baseline covariates, the relationships between the
covariates and cancer dynamics under treatment can be discovered. However, this two-
step approach does not account for the uncertainty of model parameter estimates in the
first step. Instead, hierarchical Bayesian modeling can be used to model the relationships
from baseline covariates to longitudinal measurements through mechanistic parameters while
incorporating the uncertainty of each part of the model.

The mapping from baseline covariates to model parameters can be modeled in several
ways. A linear mapping simplifies inference but fails to capture nonlinear covariate effects
and scale poorly for interaction modeling when the number of covariates is large. In contrast,
Bayesian neural networks (BNNs) can potentially discover interactions between covariates
automatically, but at a substantial cost in computational complexity.

In this work, we develop a hierarchical Bayesian model of subpopulation dynamics that
uses baseline covariate information to predict cancer dynamics under treatment, inspired
by cancer dynamics in multiple myeloma (MM). In MM, the level of a specific monoclonal
protein (M protein) in a patient’s blood is a well-known proxy of tumor burden. As a working
example, we apply the model to a simulated dataset, comparing the model’s ability to predict
M protein trajectories to a hierarchical Bayesian model with linear covariate effects. Our
results show that the BNN covariate effect model predicts cancer dynamics under treatment
more accurately than a model with linear covariate effects when covariate interactions are
present. This framework is also applicable to other types of cancer or other time series
prediction problems that can be described with a parametric model.



1 Introduction

Predicting cancer dynamics under treatment [1, 2, 3, 4, 5, 6, 7] is an essential step on the way
to personalized cancer therapy. It is made challenging by sparse and often noisy longitudinal
measurements, often with missing data and for a limited number of patients, with different
medical histories and potentially undergoing different treatments. Furthermore, for many dis-
eases, predictive biomarkers are not known but may be discovered from high-dimensional sets
of covariates measured with next-generation sequencing techniques. This calls for mathematical
models that can handle observation noise, missing data, and patient heterogeneity, and discover
predictive covariate effects automatically.

Multiple myeloma (MM) is a heterogeneous cancer with few known predictive biomarkers.
It is a hematologic malignancy affecting approximately 150,000 people annually worldwide [8].
Prognostic biomarkers are practically non-existing in MM, with the notable exception of the
chromosomal translocation t(11;14), which is a predictive biomarker for BCL-2 therapy [9].
Consequently, there is a strong need to identify markers of treatment response which can in-
form treatment decisions [10]. MM patients typically have an elevated presence of monoclonal
antibodies known as monoclonal protein (M protein) in their blood. Time series of M protein
measurements provide an opportunity to study the underlying population dynamics using sta-
tistical inference methods, and has inspired several mathematical modeling approaches in the
past [11, 12].

Different types of mathematical models from different mathematical fields are often treated
separately without any connections. However, combinations of methods from different fields
offer a huge potential to fulfill various modeling goals at once. For example, machine learning
is a great way to learn patterns from large datasets, using very flexible methods to discover im-
portant covariates automatically. On the other hand, machine learning models often lack direct
mechanistic interpretation, and quantifying the uncertainty of their predictions typically re-
quires additional post-processing steps. As an alternative, hierarchical Bayesian modeling offers
statistical uncertainty quantification inherently but requires case-specific model development
and careful choices of priors and sampling algorithms.

We developed a novel hybrid model combining machine learning and statistical uncertainty
quantification to benefit from the strengths of both approaches. This model combines the uncer-
tainty quantification of Bayesian inference, the interpretability of mechanistic models, and the
automatic covariate effect discovery of machine learning in the same framework. Our hierarchical
Bayesian model of subpopulation dynamics models the relationship between baseline covariates
and population dynamics of sensitive and resistant subpopulations in MM through mechanistic
model parameters. The model uses a nonlinear mixed effect model (NLME) [13] framework
to share information between patients, and sparsity-inducing priors to combat overfitting. The
model uses a BNN [14] to model the mapping from baseline covariates to mechanistic model
parameters, and enables automatic discovery of covariate interactions even for large numbers of
covariates. In this way, we are able to provide individual predictions of cancer dynamics under
new treatment by learning from other patients.

Provided with strongly informative covariates, our model could predict treatment response
prior to start of therapy. As an example, we applied this model to simulated MM patient
data, comparing the method to an alternative method with a linear mapping from covariates
to mechanistic model parameters. If successful, the model could be used as an aid in choosing
the next treatment from a range of candidate treatments. More generally, the model framework
could be applied to other cancer types or time series prediction problems that can be described
with a parametric model.



2 Materials and methods

In this section, we describe a mathematical model that predicts cancer dynamics under treat-
ment using covariates measured before the start of treatment, and describe a simulation study
designed to investigate whether the model can benefit from a neural network mapping from
covariates to model parameters to capture interactions between covariate effects.

2.1 Mathematical model of cancer dynamics under treatment

A response of a multiple myeloma patient to treatment is, in most cases, seen as a decrease in
the serum M protein level [15]. If the patient stays on the same treatment, disease progression
typically occurs in the form of increasing M protein level. These M protein dynamics can be
explained using two broad phenotypes of cancer cells: cells that are sensitive to treatment and
therefore decrease in amount, and cells that are resistant to treatment and therefore increase in
amount. The observed M protein value will be the total contributions from these two phenotypic
subpopulations. Mathematically, the total M protein level at time ¢ can be expressed as:

M(t) = M°7" exp <prt) + M°(1 — 7") exp (pst), (1)

where MY is the M protein level at the start of treatment, 7" as the proportion of resistant cells
at the start of treatment, p” is the growth rate of resistant cells, and p°® is the decay rate of
sensitive cells. Here, it is assumed that each population secretes M protein at the same rate,
and that this rate does not change over time.

Models of this kind have previously been used to model cancer dynamics under treatment,
using M protein as a marker of tumor size in multiple myeloma[l, 2]; using PSA as a marker
of tumor volume in prostate cancer [3, 4]; and using tumor volume measurements from CT
imaging in colorectal cancer [5]. Bayesian approaches with different mechanistic models have
also been used to predict tumor volume measurements from CT imaging in head-and-neck
cancer [6]. By parametrizing the decay rate, growth rate, and respective proportion of each
subpopulation, future M protein values can be predicted, and causes of disease progression can
be explored by quantifying associations between baseline covariates and the model parameters.
The model parameters in equation (1) deterministically parametrize an M protein trajectory.
The influences of each parameter p”, p*, 7", and M on the M protein trajectory are shown in
Figure 1.

In [7], a framework for prediction of relapse in MM patients from partially observed M protein
trajectories was introduced and applied to a set of patients derived from the IKEMA trial [16].
The work introduced hierarchical Bayesian models of subpopulation dynamics, using equation
(1) to model M protein observations, as well as relationships between baseline covariates and the
mechanistic parameters " and p”. Interestingly, however, efforts to predict cancer dynamics
under treatment using baseline covariates alone were unsuccessful, and inclusion of baseline
covariates failed to improve the model accuracy.

The models in [7] used linear effects to model the relation between covariates and model
parameters. Furthermore, the baseline covariates in [7] were limited to blood tests, Fluorescence
in situ hybridization (FISH), and demographic information like age and sex, which are known to
hold little predictive value. More advanced sequencing techniques like gene expression profiling
could contain the information needed to predict cancer dynamics under treatment, but would
likely require modeling of nonlinear covariate effects or interactions between covariates.

In this work, we present an extended version of the hierarchical Bayesian model of sub-
population dynamics which uses a neural network to model the relation between covariates
and model parameters, with the goal of capturing nonlinear covariate effects and interactions
between covariates. Below, we describe the mentioned linear and non-linear covariate models.
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Figure 1: Influence of model parameters on M protein trajectory. This figure shows the
influence of small changes in the model parameters in equation (1) on the M protein trajectory
of a patient with growth rate of the resistant population p” = 0.004, decay rate of the sensitive
population p® = —0.01, proportion of resistant cells at treatment start 7" = 0.16, and M protein
level at treatment start M° = 20. a) p” is changed from 0.004 to 0.0036 and 0.0044, respectively.
b) p® is changed from —0.01 to —0.007 and —0.013, respectively. c¢) 7" is changed from 0.16 to
0.11 and 0.21, respectively. d) MY is changed from 20 to 18.5 and 21.5, respectively.




2.2 Joint modeling of patient-specific M protein trajectories

Let N be the number of patients, indexed by i € [1,...,N]. Each patient has a vector of

length M; of M protein measurements y; = (yi1, ..., Yinm;) € RM:. Each M protein observation
yi; is measured at time ¢;;, with t; = (t;1 = 0,...,tin,) € RM:_ Furthermore, denote the p
baseline covariates as x; = (x;1,...,zi) € RP for each patient. M protein measurements y;

are modeled as the sum of a resistant population growing exponentially with rate p, and a
sensitive population decaying exponentially with rate pj, initial total population size MZ-O, and
initial proportion of resistant cells 7/, as shown in equation (2).

Yij = M(tij, Gi) +eEi 5 Eij N(O, 0'2)

) 0_r (s 0 r S (2)
M(t;;,0") = M;' 7t exp (piti]) + M; (1 — 7 )exp (pitij>

Note that t;; = 0, which means that y;; = M(0,6;) + ;1 = MZ-0 + €;1. Each patient has the
following set of mechanistic parameters:

e M?: True M-protein value at treatment start.

e 7 : Fraction of resistant cells at treatment start

‘A

e pi: Growth rate of resistant cells.

o pi: Growth rate of sensitive cells.

The mechanistic parameters are each physically required to be positive (M?), between 0 and 1
(ml), positive (p]), and negative (p;). To accommodate these physical constraints, the variables
are transformed to corresponding transformed parameters with support on the entire real line.

p; —exp(01;) [—00, 0]
Mechanistic parameters | pi | = exp(#2;) with domains [0, 0]
i e [0,1]
9” log(_pf )
Model parameters =1 6y | = IOg(PZ) € R3.
03 log( 125)

By the model formulation in (2), the observed y;; is normally distributed around M. M protein
values are strictly non-negative. To use a prior with infinite support, a prior is placed on the
log transformed 64; = log(M?) to make sure that all M; values are positive.

01i ~ N (log(yi1), £?)
M; = exp(f4;)

1

(3)

The model uses a nonlinear mixed effect model (NLME) [13] framework to share information
between patients, and sparsity-inducing priors to combat overfitting for covariate effects. Using
a nonlinear mixed effect framework (NLME) [13], each patient has a random intercept which
allows each patient to have different parameters p;, p;, and ;. The patient-specific parameters
01, 02;, and 03; are normally distributed around «a;, g, and a3 take a role similar to population
averages. This choice of prior, which is described in equation (4), favors individual parameters
that are similar within the group, while still allowing the model to fit to the data. The variation
in each 6; within the population is parametrized by the standard deviation hyperparameter wy
for I € {1,2,3}.

Forl=1,...,3: 6O ~ N(a,w}) (4)



To set priors for the parameters oy, [ = 1,2,3, a guess of each average 6;; in the population is
required. The prior is then defined as in equation (5).

ap ~N(a;,1) , 1€]1,2,3] (5)
For ¢ and w, the following priors are used:

o ~ HalfNormal(0,1) : o >0
¢ ~ HalfNormal(0,1) : £>0 (6)
w; ~ HalfNormal(0,1) : w; >0, [ €[1,2,3]

2.3 Linear covariate effects

To model relationships between baseline covariates and mechanistic parameters, a function that
maps baseline covariates to an effect on each mechanistic parameter can be included in the
model, as in equation (7), where z is the covariate vector with dimension p:

For | € {1,2,3} 2 0y NN(O[; + fl(x),wf), ﬂl = (511, ... ,ﬁlp) € RP (7)

In the linear covariate model, the effect of the p covariates in = on parameter 6; is modeled by
the function fj(x) = J:BZT, and the full expression becomes:

For 1 € {1,2,3}: O ~ N(oq + 28] ,w?), Bi=(Bu,---,Bp) € RP (8)

To accommodate automatic discovery of covariate effects, a sparsity inducing prior is used
for the coefficients f;, namely the hierarchical regularized horseshoe [17]. The hierarchical
regularized horseshoe introduces a global shrinkage parameter 7; and a set of local shrinkage
parameters S\Zb; one for each By, b € [1,...,p]. It also requires an initial guess of the number
of nonzero parameters, pg. This is chosen to be py = int(p/2). For a more efficient sampling,
we reparametrize [y, as O = Zlelj\lb- This means that zy, ~ A(0,1). The following priors are

used: _
By ~ N (0,77 - Afy) , L€[1,2,3] , be[l,...,p]

Po a
71 ~ Half-StudentT — 1, 1€]1,2,3
l ? <p —Po \/N> [ ]

A ~ Half-StudentTo(1) , 1 €[1,2,3] , bell,...,p]

¢* ~ InverseGamma(1, 1)

2.4 Interactions and nonlinear covariate effects

Modeling the effects of the covariates using a linear model makes inference easy, but the linear
model is not able to capture nonlinear effects or interaction effects between variables. Given
p covariates, interaction effect can be naively modeled by taking advantage of the sparsity
enforcing prior by adding the p(p— 1) possible interactions to the covariate vector. However, the
number of covariates scales poorly with p, and complicates the Bayesian inference. Furthermore,
such an approach would only model linear interaction effects.

To model nonlinear effects of covariates and interactions between covariates, we will intro-
duce a hierarchical Bayesian model of subpopulation dynamics with a shallow neural network
mapping from covariates to model parameters. With this change, equation (7) becomes:

For [ = 17 ERE 73 : eli NN(CK[ + fl(Xi’Z[,L,K,g),W?) (10)



where fi(x;|z;, L, K, g) is the output of a fully connected feedforward neural network with L
layers, K nodes per layer, weights z; and activation function g(-). Inspired by [18], we choose
a 2-layer neural network (L = 2) with two hidden nodes (K = 2), the smallest architecture
capable of capturing covariate interactions. With this model choice, we have:

2
filxilzi, L=2,K =2,9) =Y opg(Wix) + v (11)
k=1

where k is the index of the hidden node, wi = [wy1,... ,whp]T are the weights from the p
covariates to the hidden nodes, vy is the weight from the hidden node to the output layer, and
z; = [w!,vT])T where w = [w?,... ,WZ]T and v = [vy,..., vk, vo]”. The leaky rectified linear

unit (Leaky ReLU) function [19] is used as activation function:

x, ifx >0

) = 12
9(@) {0.13:, otherwise (12)

To select priors for the neural network weights, the naive approach is to give each element in z;
an isotropic prior:

z; ~ N(0;0.1) with o, ~ HalfNormal(0, 1) (13)

where 0 is a zero vector of the same dimension as z;. Isotropic Gaussians are the most commonly
used priors for the weights in neural networks, but introduce non-identifiability issues even in
architectures as small as two layers. To combat these non-identifiability issues, we constrain the
values of the output weights to be positive by using Half Student T priors with v = 2 degrees
of freedom and ¢ = 1, which has the following probability density function for x > 0:

G 2\
f("’:”’)‘r(;)m(”w?) "

where I' denotes the gamma function.

2.5 Simulation study

This section describes the design of a simulation study with the aim to compare two hierarchical
Bayesian models of subpopulation dynamics, one with a linear mapping from covariates to model
parameters, and one with a BNN mapping. The mechanistic model parameters of the simulated
patients will be generated with a system that contains interaction effects. Both models will
be trained on M protein measurements and baseline covariates of 150 training patients, then
evaluated by their ability to predict M protein trajectories for 150 test patients using only
baseline covariates and the M protein value at treatment start.

150 patients were simulated, with M protein measured every 28 days for a maximum of 14
cycles, or 392 days. To more closely resemble real data, random loss to follow-up was introduced
by sampling a random date off loss to follow-up. The number of measurements observed for a
patient before loss to follow-up was sampled randomly from a uniform distribution from 5 to 14
measurements. Each patient will have five covariates measured at baseline, named covariate 1,
covariate 2, covariate 3, covariate 4 and covariate 5, respectively. What each covariate represents
is undefined by intent, as the nature of each covariate is unimportant for the model comparison.
For each patient, the values of each covariate was sampled from an uniform distribution, as
follows:

Tij NUTL’Lf([—l,l]),] el,....5 (15)

7



Out of the five covariates, only the first three had an effect on model parameters p" and n", as
shown in Table 1. Importantly, for p", there is an interaction effect between covariates 1 and 2,
and for 7", there is an interaction effect between covariates 2 and 3. Covariates 4 and 5 do not
have any effect, and are included to test the feature selecting capacities of the models.

Table 1: Covariate effects

Effects on p"

Covariate or interaction Parameter | Value
Covariate 1 Bp,1 0.4
Covariate 2 B2 0
Covariate 3 B3 0
Covariate 4 Bp,a 0
Covariate 5 Bp.5 0

Interaction between 1 and 2 B, -0.8
Effects on 7"

Covariate or interaction Parameter | Value
Covariate 1 Br1 0
Covariate 2 Br2 0.4
Covariate 3 Br,3 -0.6
Covariate 4 Br.a 0
Covariate 5 Br.5 0

Interaction between 1 and 2 B 1

Using the covariate value of each patient, and the covariate effects in Table 1, the values of pl
and 7] for each patient were determined using equation (16). The value of p; for each patient
was set to —0.04.

0), =10g(0.002) + 28] + xi17:285, Bp= (Bp1,---,Bp5) € R’
pi = exp(6),)

0: =1og(0.1) + ziBL + @i pwi 385, Br = (Bris---Brs) ER®
;= exp(fy)/(exp(0y) + 1)

(16)

Figure 2 shows how the true model parameters p” and 7" in the population depend on the values
of covariates 1, 2 and 3. For p", the interaction effect between covariates 1 and 2 is shown by
the fact that the marginal effect of covariate 2 changes with the value of covariate 1: Among
patients with lower values in covariate 1, the p" value increases with the value of covariate 2;
conversely, among patients with higher values in covariate 1, the p" value decreases with the
value of covariate 2; For 7", there is also an interaction effect, but between covariates 2 and 3.

For each patient, the initial M protein value and the values of the five covariates were
sampled randomly according to the distributions in equation (17). To simulate measurement
error, normally distributed, independent and zero centered noise terms with standard deviation
1 were sampled randomly and added to each simulated M protein measurement.

log(M?) ~ N (log(50),0.1) (17)

To make the inference more challenging, a natural variation in model parameters can be intro-
duced by adding i.i.id normally distributed random effects to the model parameters of each pa-
tient using the equations in (18). The normally distributed random effects can be zero-centered
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Figure 2: Effects of covariates 1, 2, and 3 on model parameters p” and ©". These scatter plots
show values of p" (left) and 7" (right) for all patients. In the top row, the x axis represent

covariate 1; in the bottom row, the x axis represent covariate 3. The dots are colored according
to the value of covariate 2.



and have variance wy, for [ € {1,2, 3}.

0:. ~ N (log(0.04),w?)

pi = —exp(0, )

0%, ~ N(log(0.002) + z:8) + wi12i285,w3), B = (Bp1:---Bpp) € R
p; = exp(0), )

‘9; ~ N(lOg(Ol) + xzﬁ;{ + xi,2$i,36;7w?2,)7 Bl = (67‘(’,17 SRR Bﬂ',p) e RP

) = exp(0)/(exp(f7) +1)

(18)

2.6 Inference and evaluation

To fit the BNN and linear covariate effect models to the data, 10,000 Markov Chain Monte Carlo
(MCMC) samples were sampled from the posterior of each model using Hamiltonian Monte Carlo
(HMC). All statistical analysis was performed in Python version 3.11.3. Posterior sampling was
performed in PyMC version 5.1.1 [20] using the No-U-Turn sampler (NUTS) introduced in [21].
To improve convergence, the sampler was initialized using automatic differentiation variational
inference (ADVI) [22] within the PyMC software. The code for this project is available at
https://github.com/evenmm /mm-predict-bnn.

3 Results

Figure 3 shows the simulated M protein trajectories of the entire population in the simulation
study without random effects in model parameters and noise standard deviation of 1. Figure
4 shows examples of how the hierarchical Bayesian models of subpopulation dynamics with
linear and nonlinear covariate effects fit training data and their predictive performance on test
data. In Figure 5, the absolute errors for the two models are compared for various cycles after
treatment start, showing that the BNN method also outperforms the linear model numerically.

For the simulation study in figures 3, 4, and 5, the noise was normally distributed with a
standard deviation of 1, which is a feasible noise level for M protein measurements, but the
methods could perform differently at different noise levels. To test how the BNN and linear
covariate models performed under different noise levels, the simulation study was repeated
with a noise standard deviation of 2. Furthermore, if the model parameters p”, and 7" were
not deterministically determined by the values of the covariates, but have random individual
variations as described in equation 18, this would be even more challenging.

To investigate how well the model would work at higher noise levels and with random
effects in individual model parameters, additional simulation studies were carried out, adding
random variations to individual model parameters, according to equation 18. The random effect
variances w; were set to 0.10, 0.05, and 0.20 for p°, p" and 7", respectively. The simulated data
under the different experimental settings are shown in figure 6. Model fits to example training
patients and predictions on test patients corresponding to figure 4 for alternative experimental
settings are provided in the supplementary material. Figure 7 shows the predictive performance
of the linear and BNN covariate effect models for these experimental settings.

4 Discussion

The purpose of the simulation study was to evaluate whether the BNN model is able to predict
M protein trajectories using only baseline covariates and whether it is able to outperform a
linear model in the presence of covariate interaction effects. Figure 4 shows that both the BNN

10
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patient.
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for the 150 test patients. The dotted line marks the standard deviation of the observation noise.
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and the linear covariate effect models fit well with the observed data for training patients and
that the BNN model provides better predictions for test patients. In figure 7, the standard
deviation of the noise level is included in the interquartile range of errors of the BNN covariate
model, for all cycles after starting treatment except 13, which is the longest time frame. This
shows that the errors are comparable to the inherent noise in the system.

The baseline covariates presented in this study are intentionally unspecified and unnamed
to underline the modular structure of the theoretical framework. The covariate effects in the
simulation study are very strong. In real-world data, the size of the random effects relative to
the covariate effects could be larger than in the simulated data. Random effects in the model
parameters were only introduced for training patients. The introduction of random effects for
test patients would almost surely lead to a reduction in predictive performance on test data for
both models. However, to compare the two methods against each other, it is more useful not to
add random variations to the test patients, since these could anyway not be predicted by either
of the models.

As an example, we have applied our method to multiple myeloma (MM). In MM, predictive
and prognostic biomarkers remain elusive. One of the advances in the treatment of multiple
myeloma during the last decade is CD38 inhibitors such as daratumumab [23] and isatuximab
[24]. CD38 inhibitors are typically used in combination with Dexamethasone and either Poma-
lidomide or Carfilzomib. Within these combinations, there could be individual differences in
how well patients respond to the proteasome inhibitors Pomalidomide and Carfilzomib. When
informative covariates are available, the models presented in this study could be used to predict
the dynamics of cancer under a variety of treatments, thus helping in the choice of treatment
for each patient. As an example, they could inform on the choice of proteasome inhibitor to use
in combination with the CD38 inhibitor dexamethasone for the treatment of multiple myeloma.

In [7], future M protein values were predicted using previously observed M protein values
and covariate effects. If provided with such informative covariates that the entire M protein
trajectory from the beginning of a treatment could be predicted using covariates only, the meth-
ods developed in the current work would not only improve predictions when M protein values
are partially observed, but could allow prediction of M protein trajectories from baseline. With
this comes the opportunity of using the model as a tool for treatment selection, by comparing
trajectories under potential treatments.

We have developed a novel hierarchical Bayesian model of subpopulation dynamics for the
prediction of cancer dynamics under treatment. Our results show that the BNN covariate effect
model is superior to the linear covariate effect model for prediction in the presence of covariate
interaction effects, even at higher noise levels and with model parameters that are not directly
determined by the baseline covariates. In summary, the BNN model captures interactions be-
tween covariates while maintaining uncertainty quantification, accurately predicting M protein
trajectories using only simulated covariates. This shows the promise of hierarchical Bayesian
models of subpopulation dynamics for treatment suggestion when provided with strongly pre-
dictive covariates.
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Figure 8: Model fit to training data and predictions on test data, with noise standard
deviation = 2 and no random effects in model parameters of training patients. a)
Model fit of the linear and BNN covariate effect models to patients in the training set, where
M protein measurements and baseline covariates were provided to the models. b) Predictions
on test patients, where only the baseline covariates were provided to the models.
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Figure 9: Model fit to training data and predictions on test data, with noise standard
deviation = 1 and with random effects in model parameters of training patients. a)
Model fit of the linear and BNN covariate effect models to patients in the training set, where
M protein measurements and baseline covariates were provided to the models. b) Predictions
on test patients, where only the baseline covariates were provided to the models.
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Figure 10: Model fit to training data and predictions on test data, with noise stan-
dard deviation = 2 and with random effects in model parameters of training pa-
tients. a) Model fit of the linear and BNN covariate effect models to patients in the training
set, where M protein measurements and baseline covariates were provided to the models. b)
Predictions on test patients, where only the baseline covariates were provided to the models.
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