Cosmic: Cost-Effective Support for Cloud-Assisted 3D Printing
Yuan Yao!, Chuan He?, Chinedum Okwudire?, and Harsha V. Madhyasthal

YUniversity of Southern California

Abstract

In this paper, we consider a new workload for which server-
less platforms are well-suited: the execution of a 3D printer
controller in the cloud. This workload is qualitatively differ-
ent from those considered in prior work due to the stringent
timing requirements. Our measurements on popular server-
less platforms reveal millisecond-level overheads that impair
the timely execution of the example control algorithm we
consider. To mitigate the impact of these overheads, we judi-
ciously partition the execution of the algorithm across a set
of serverless functions and exploit timely speculation. Our
evaluations on AWS Lambda show that, for 30 diverse print
jobs, Cosmic is able to ensure the timely execution of the
controller while reducing cost by 2.8 x-3.5x compared to
other approaches.

1 Introduction

Serverless computing platforms like AWS Lambda [2] and
Azure Functions [3] have gained in popularity over the last
few years. In these services, the customer registers their code
— typically in the form of a container — with the cloud provider,
who runs an instance of the code for every request received.
Thus, the customer is freed from the onus of having to monitor
load and correspondingly scale up or scale down their service
deployment, and they do not pay for idle time.

The scalability and cost-effectiveness of serverless comput-
ing make it ideal for workloads with intermittent execution
patterns, such as periodic data processing or event-driven
workflows. However, when these workloads also demand
high parallelization and millisecond-level latency guarantees,
significant challenges arise. First, the overhead of cold starts
and function invocations, while acceptable for many applica-
tions, becomes prohibitive for latency-critical tasks. Second,
the management of large datasets across serverless instances
introduces significant delays and coordination overhead, as
network bandwidth and transfer times dominate.

In this paper, we study these challenges in serverless com-
puting with a non-traditional workload: 3D printing. In par-
ticular, our interest is in the control algorithm that guides the
operation of a printer by determining the sequence in which
it should print the different portions of a product. What distin-
guishes the controller is the stringent constraint on the time-
liness of its execution: before the printer is ready to execute
the i step of a print job, the controller must have identified
which portion of the product to print in that step.

Using a state-of-the-art control algorithm for a specific
form of 3D printing as an example, we demonstrate that com-
modity 3D printers lack the hardware necessary to run com-

2University of Michigan

plex control algorithms on-device. On the one hand, the CPU
on the printer cannot execute the sequential control algorithm
fast enough to keep up with the speed of printing. On the
other hand, to ensure that I/O delays do not slow down the
controller, the state needed by all steps of the algorithm must
be preloaded into memory. But, the amount of on-board mem-
ory does not suffice to accommodate all the necessary state.
Therefore, we consider the execution of the controller in a
cloud region close to the 3D printer.

In contrast to running the control algorithm across a fleet
of virtual machines, serverless offers two benefits.

e No cost during idle time: First, with serverless, the user
incurs no cost during idle periods, such as when the printer
pauses after each layer to spread metallic powder. These
short idle periods of a few seconds make suspending and
resuming a VM impractical.

o No cost to keep state in memory: Second, to handle requests
at low overhead, cloud providers attempt to reuse serverless
workers across requests [1]. These warm starts retain the
state read into the memory of a serverless worker while
printing one layer for subsequent layers, at no cost to the
user.

Nevertheless, our measurements on AWS Lambda and
Azure Functions show that exploiting these benefits while
meeting the controller’s timing constraints is nontrivial. Func-
tion invocation overheads, even on pre-warmed workers, re-
main too high to meet the stringent requirements of each step
of the controller. While parallelizing each step across multiple
workers reduces computation time, it introduces substantial
delays due to the network overhead of transferring the relevant
inputs to all workers.

To address these challenges, we have designed and imple-
mented Cosmic (Cost-effective Serverless for Millisecond
Computations), a system for cost-effective and timely execu-
tion of the low latency compute pipeline necessary to support
high quality 3D printing. Cosmic distributes sequential algo-
rithms across serverless workers, with three key strategies:
intelligent workload partitioning to minimize coordination
overhead and optimize function reuse, speculative execution
to mask invocation delays, and an adaptive search for the
configuration which balances performance and cost.

We use Cosmic to run the controller on Lambda for 30
print jobs: 10 diverse parts, each in 3 different sizes. We show
that Cosmic satisfies the timing constraints on the controller’s
execution for all jobs; other approaches from prior work that
have used serverless either fail in meeting these constraints
for 23 of the 30 jobs, or do so at 3.2x-3.5x higher cost.

USENIX Association

2025 USENIX Annual Technical Conference 73

High-power laser

Metal powder :

<« Layer N

Built layer
1..N-1

(b) Deformation from
temperature non-
uniformity.

(a) MMustration of LPBF printing.

Figure 1: Powder bed fusion.

In summary, we make the following contributions:

e We consider a workload that has not been of much interest
in the systems and networking research community — real-
time control of 3D printers — and showcase the relevance
of serverless computing for this workload.

e We present measurements of popular serverless platforms
to highlight previously ignored overheads that make it chal-
lenging to satisfy the millisecond-level timing requirements
of the control algorithm we consider.

e We introduce a new strategy for executing a sequential
algorithm on serverless and demonstrate how to use it to
cost-effectively satisfy the algorithm’s timing constraints.

e Lastly, we demonstrate the utility of our system, Cosmic,
by using it to run the controller for a variety of print jobs.

Though we focus in this paper on supporting the execu-
tion of a 3D printer’s controller, many aspects of Cosmic’s
design extend to other latency-sensitive compute pipelines.
We discuss the broader applicability of our work in Section 7.

2 Background and Motivation

Powder bed fusion. There exist a variety of 3D printing tech-
nologies [12,20, 26, 28]. In this paper, we focus specifically
on laser powder bed fusion (LPBF), which is used to build
three-dimensional parts by selectively fusing or melting metal
powder using a laser, as shown in Figure 1(a).

In LPBF, three-dimensional parts are constructed layer by
layer. Prior to scanning a layer, a thin layer of metal powder is
spread across the platform. The high-power laser then scans
this layer, selectively melting the powder to create a solid
cross-section of the part. This procedure is repeated for each
layer until the entire part is constructed.

One of the primary challenges in LPBF printing is in man-
aging the distribution of temperature during the scanning
process. For example, consider Figure 2(a), which shows the
print of a square metal plate with the laser scanning each layer
from the top edge to the bottom edge. By the time the laser
starts scanning the end of the layer, the top half cools down,
resulting in a non-uniform distribution of temperature across
the layer. As shown in Figure [(b), such non-uniformity in
temperatures can lead to residual stresses and deformities in

2000

=
w
o
o

| B

(a) Successive

=
o
o
o

Temperature [K]

w
o
o

(b) SmartScan

Figure 2: Comparison of temperature distribution when scan-
ning a layer’s cells (a) in order versus (b) with SmartScan.
Optimization

Initial
Temperature/ '1 ‘N

Printer | - [+ T]
Spread Powder (15s) IR Camera Laser Scan

Computer

Figure 3: Timeline of SmartScan execution.

the final product.

SmartScan. To maximize temperature uniformity, the solu-
tion is to optimize the order in which an LPBF printer scans
each layer. For this, we consider SmartScan [29], a feedfor-
ward control algorithm. SmartScan relies on a logical division
of each layer into cells, e.g., a square metal plate can be par-
titioned either into a set of horizontal or vertical stripes, or
a set of square islands. To determine the optimal sequence
in which the cells in a layer must be scanned, SmartScan
uses a physics-based thermal model to simulate temperature
distribution and heat transfer.

As depicted in Figure 3, the print of a layer starts with
the distribution of metal powder across the print platform,
which takes a fixed duration of 15 seconds. The printer then
employs an infrared camera to capture an initial map of how
temperature varies across the layer. The SmartScan algorithm
then iteratively computes the index of the next cell to print.
Each iteration involves multiplying the current temperature
map with a precomputed heat transfer matrix to produce an
updated temperature map, which the controller analyzes to
pick the next cell index. The process continues until the entire
layer has been scanned. Figure 2(b) illustrates the improved
temperature uniformity achieved with SmartScan.

Note that, though the cell-specific heat transfer matrices
for a part can be reused across multiple prints of that part, the
results of SmartScan’s computations cannot be reused. The
optimal sequence for printing a layer does not depend only
on the layer’s geometry. It also depends on the initial tem-
perature distribution captured by the infrared camera before
the scanning of a layer begins. The temperature distribution
at the start of each layer is influenced by multiple dynamic
factors which vary across layers, such as residual heat from

74 2025 USENIX Annual Technical Conference

USENIX Association

ot . 50
[< Y
: ﬁ 100

L . 150

s

4

250

0 100 200

(a) A gear (b) One of the layers
Figure 4: An example part printed using LPBF, and an example
partitioning of one of its layers into cells.

previously melted layers and the spreading of powder across
the platform. Unlike the modeling of heat transfer across
cells within a layer, these other heat transfer processes cannot
be modeled efficiently; hence, real-time computation of the
optimal scanning sequence is essential.

Challenges in local execution. Unfortunately, running
SmartScan on an LPBF printer’s on-board computer is in-
feasible for most print jobs. This is because, as shown in
Figure 3, in order to maintain the accuracy of SmartScan’s
simulation of heat transfer, it is crucial that, by the time the
printer is done scanning a cell, the cell that it should print
next has already been computed and delivered to it. Given
the typical speed of printing, the length of the time within
which SmartScan’s computation of the next cell to print must
complete — which we refer to as a time window — is quite
short. For example, at a speed of 600mm/s [29], printing a
length of 3cm takes only 50ms. If SmartScan fails to finish
computation within a time window, the printer will fall back
to printing a random cell, thus degrading printing quality.

Due to this stringent timing constraint, the heat transfer ma-
trices for all cells in a layer must be prefetched into memory;
else, within any window, delays when reading the heat trans-
fer matrix from disk for the cell currently being printed will
leave little to no time to perform the computation necessary
to select the next cell. This is a problem because, as shown in
Figure 5 for the example gear shape in Figure 4, as the size
of the printed part grows, so does the number of cells and
the size of the matrix for each cell. For example, to print the
gear with each layer of size 16cm?, 1,514 GB of data — 127
matrices, each of size 11.92 GB — will need to be in memory,
which greatly exceeds the amount of memory on-board an
LPBF printer.

Moreover, the processor on a typical LPBF printer is inca-
pable of executing SmartScan to keep up with the speed of
printing. For example, it takes around 450ms to complete the
matrix multiplication necessary to model the distribution of
heat during the print of a single cell in the above-mentioned
gear. This is significantly longer than the roughly 50ms time
window within which this computation must complete.

200 30

[Matrix size 55
1501 —™— Number of unigue matrices = o
L L2082
3 Y
c 100 r15%
S —
= ,10%
501 - =

0 0

1x1 2x2 3x3 4x4 5x5
Part Size [cm?]

Figure 5: For the gear in Figure 4, size of each heat transfer
matrix, and number of unique matrices in relation to layer size.

3 SmartScan in the Cloud

One could potentially try to address the limitations of the com-
puter on-board an LPBF printer by offloading control of the
printer to a fleet of edge servers. But, given that SmartScan’s
memory and compute requirements increase with the size of
the part being printed (Figure 5), an edge deployment suffi-
cient to support the print of large parts would be significantly
under-utilized when printing small parts.

To instead enable elasticity, we seek to run SmartScan at
a cloud data center close to the printer. If the printer loses
connectivity with its controller in the midst of a print job, it
can revert to how it would operate without SmartScan, i.e.,
print all remaining cells in a random order. We focus on parts
that are symmetric along the z-axis; for such parts, since the
heat transfer matrices are identical for every layer, in-memory
data can be reused across layers.

When running SmartScan in the cloud, precomputed matri-
ces can be generated on a cloud VM and uploaded to cloud
storage. Within a datacenter, cloud providers do not charge for
data transmission between VMs and cloud storage, as well as
between the storage and serverless workers. Moreover, since
the heat distribution matrices need to be precomputed once
per part, their generation has no impact on the delays involved
in every job which prints that part.

3.1 Why serverless?

In every step of the SmartScan algorithm, the controller com-
putes the temperature distribution expected after the printer
scans and melts the cell chosen in the previous step. It does so
by multiplying the temperature distribution vector computed
in the previous step with the precomputed heat transfer matrix
for the chosen cell. To ensure that the next cell to print is
determined before the printer completes printing a cell, the
multiplication can be parallelized across a set of virtual ma-
chines (VMs) or serverless workers; each VM/worker can
multiply the vector with a partition of the matrix, and these
results can be aggregated by a coordinator.

We argue that serverless workers are more well-suited for
this workload than VMs for two reasons.

USENIX Association

2025 USENIX Annual Technical Conference 75

3.1.1 Cost overhead of VMs

Paying for in-memory data when not in use. First,
SmartScan’s timing constraints make it infeasible for a VM
to dynamically read in the heat transfer matrix for the chosen
cell on-demand from cloud storage. For instance, if we exe-
cute SmartScan for a 16cm? gear on a x2gd.xlarge VM on
Amazon EC2, the computation can keep up with a printing
speed of 600mm/s. But, the length of each time window at this
speed is roughly 50ms, which is significantly shorter than the
350ms it takes for the VM to read in the 11.92 GB matrix for
a cell from an EBS volume which uses a gp3 SSD configured
with the maximum permitted limits on IOPS and throughput.
Retrieving this data from Amazon S3 takes even longer: 8
seconds.

Therefore, to adhere to SmartScan’s timing constraints, the
heat transfer matrices for all cells must be readily available in
memory throughout the algorithm’s execution. This calls for
the use of several expensive high-memory VMs. For example,
the 249 cells in a 16cm? gear map to 127 unique heat transfer
matrices, whose total size is 1,514 GB.

Paying for idle VMs. Second, as mentioned earlier, there is
a 15-second period between layers when metallic powder is
spread onto the printer bed. Though no computation is per-
formed during this period, 15 seconds is too short to suspend
and resume all the VMs that support SmartScan’s execution.
Thus, the user will need to pay to keep all data in-memory
during this period.

Note that it is challenging to reduce idle time on VMs by
multiplexing each VM across multiple print jobs. On the one
hand, the 15-second idle period for one job is not long enough
to read the data for another job into memory. On the other
hand, if multiple jobs printing the same part share a set of
VMs preloaded with the data for that part, the execution of
SmartScan for these jobs will need to be carefully coordinated
so that they do not interfere with each other’s ability to use
the CPUs on the VMs.

3.1.2 Advantages of serverless

In addition to enabling their customers to rent VMs, many
cloud providers today also have function-as-a-service offer-
ings; AWS Lambda and Azure Functions are popular ex-
amples. In these services, the user registers with the cloud
provider a container which encapsulates the user’s code. In
response to a new request, the cloud provider spins up an
instance of that container — which we refer to as a worker —
and executes the request in that instance.

Two characteristics of serverless platforms help address the
aforementioned cost overheads associated with using VMs to
execute SmartScan.

Pay per use pricing. First, the pricing model for services
such as AWS Lambda is structured such that users have to
pay only for the duration when a worker is running the user’s
code. As a result, the user will not incur any cost during the

15-second idle period between layers when no computation
is needed. Moreover, in each time window, the user need only
pay for the workers that are computing the expected impact
on temperature distribution due to the scanning of the cell
chosen in the previous window.

Warm starts. Second, once a worker is initiated, the cloud
provider keeps that worker’s state in memory for a few min-
utes even after the worker’s execution ends. As long as the
gap between consecutive invocations of a function is less than
a few minutes, the worker initiated for the first invocation is
reused for the second invocation. Thus, the workers that are
used to execute SmartScan when scanning one layer of a part
will retain the heat transfer matrices in memory even when
the scanning of the next layer is underway. Importantly, de-
spite the cloud provider keeping the worker’s state in memory
between successive invocations of a function, the user incurs
no cost during this period.

Though cloud platforms do not provide any guarantees on
reusing worker state in this manner, our measurements on both
AWS Lambda and Azure Functions reveal that warm starts
are highly reliable. Over a 24-hour period, we conducted
hourly trials where we issued sequences of function calls at
fixed intervals. For shorter invocation intervals, ranging from
50 milliseconds to 1 second, cold starts were extremely rare,
occurring in less than 0.1% of trials in a day. For longer idle
periods, ranging from 5 seconds to 1 minute, memory evic-
tion becomes slightly more likely, with cold starts increasing
from 0.6% to 3.2% as the interval lengthened. To prevent
cold starts across layers, which typically involve idle times of
tens of seconds, users can periodically issue dummy requests
to keep workers alive. The cost of sending such dummy re-
quests is negligible, as they require only a few milliseconds
of execution per second.

3.2 Challenges with serverless

Taking advantage of the characteristics of serverless platforms
to support the cost-effective execution of SmartScan is, un-
fortunately, not easy. To see why, we now consider some of
the approaches considered in prior work for other workloads
and demonstrate their limitations via measurements. For sim-
plicity, in this section and the next, we assume that each cell
maps to a unique heat transfer matrix.

3.2.1 Even warm starts incur invocation overhead

The simplest approach to implement SmartScan on serverless,
which we refer to as the Invoke-on-demand strategy, involves
registering a separate function for each cell in the part being
printed. At the start of the print, we concurrently invoke all
functions once so that they can read in the matrix assigned to
them from cloud storage into memory and exit; because of
warm starts, this data remains in memory. Thereafter, to print
each layer, a coordinator VM collects the temperature map
from the printer, and then iteratively repeats the following
steps (as shown in Figure 6): it invokes the function associated

76 2025 USENIX Annual Technical Conference

USENIX Association

Function worker(s) Invocation delay Execution
Cell 1
Cell 2
Cell 3
Coordinator /
' Window 1 Window 2 Window 3

Figure 6: Execution of SmartScan wherein a new function is
invoked every time the algorithm picks a new cell to scan.

with the cell chosen in the previous step, collects the result
and identifies the next cell to scan, and relays this choice
to the printer. In each step, the executed function multiplies
the input temperature map with its in-memory heat transfer
matrix to compute the estimated temperature map after the
printer scans the chosen cell.

Like prior work which has aimed to take advantage of
serverless computing’s pay-for-use pricing model [34, 35],
this simple implementation ensures that, at every step, the user
incurs cost only for the computation associated with one cell.
The user also does not incur any cost during the 15-second idle
period between the scanning of successive layers. Thus, as
long as the number of unique heat transfer matrices associated
with a part is large, the cost for a SmartScan-optimized print of
the part will be significantly smaller with this implementation
than one which runs SmartScan on EC2 VMs; see Appendix A
for a detailed analysis.

Invocation delays result in violation of timing constraint.
However, we find that the Invoke-on-demand strategy for exe-
cuting SmartScan on Lambda fails to keep up with the print-
ing speed. For example, in our execution of SmartScan on
Lambda for any one layer of a 4cm? gear, Lambda work-
ers are actively executing code for only 1.30 seconds, which
is less than the 3.33 seconds needed to print the layer. But,
SmartScan’s per-layer runtime includes an additional 2.98 sec-
onds. When combined, these delays add up to 4.28 seconds
per layer, exceeding the 3.33-second print time constraint.
This additional delay averages 24.8ms for each of the 120
cells in a layer, encompassing not only the invocation delay
(the time between when we invoke a function and when a
worker begins executing the function’s code), but also the
time spent sending temperature maps to the workers and the
cleanup overhead incurred by repeatedly invoking functions.

Invocation delays occur despite the fact that all of our func-
tion invocations are served by pre-warmed workers that al-
ready have the function state in memory. The underlying
cause is overheads internal to Lambda associated with its
routing of requests [7, 10] and context preparation.

En 1.0 AWS Lambda —mor———
£ == Azure Functions I
n 0.8 r’
S P
€ 0.6 /
") f
0 [
© 0.4 7
& /
’

L 0.2 /
Q U

0.0 =<

00 25 50 75 10.0 12.5 150 17.5 20.0
Delay between invocation and start of execution [ms]

Figure 7: Distribution of the overhead of invoking a serverless
function when executed on a pre-warmed worker.

To measure this overhead, we invoke a pre-warmed func-
tion instance from an EC2 VM. At the start of its execution,
the function issues a HTTP request back to the VM. We mea-
sure the invocation delay by comparing the times at which
the VM invokes the function and when it receives the HTTP
request from the function. Note that the measured invocation
delay includes a network round-trip between the VM and the
worker, which is sub-millisecond within a datacenter.

Based on our measurements on AWS Lambda, Figure 7
shows that the invocation delay is 10.2ms at the median, and
13.2ms at the 90" percentile. Figure 7 also shows that these
delays are similar with Azure Functions. For workloads that
have previously been considered a good match for serverless,
such as video processing [8, 16] and model training [18,34],
function invocation delays have been insignificant since the
execution time of individual functions has been in the order
of seconds or higher. In contrast, in our workload, overheads
even in the order of 10ms end up resulting in violations of
SmartScan’s timing constraints.

3.2.2 High parallelism leads to coordination overheads

Eliminating invocation overhead inflates cost. To avoid the
overheads associated with routing each function invocation to
a worker, we can invoke the functions for all cells at the start
of a new layer. Every function then waits for input from the
coordinator to perform the appropriate matrix multiplication,
akin to the strategy used in some prior systems [8, 16].

Executing SmartScan with this All-persistent strategy, how-
ever, significantly inflates costs. The user would not need to
pay for any computation during the idle time between layers
when metallic powder is being spread for the next layer. But,
since the functions for all cells will be active throughout the
duration that a layer is being scanned, we lose the benefit of
warm starts; the user will have to pay for a function’s state to
be kept in memory even when the worker assigned to run that
function is idle. Since serverless workers cost more per GB of
memory per second than VMs, the net effect is that executing
SmartScan with the All-persistent approach eliminates the
benefits of using serverless.

USENIX Association

2025 USENIX Annual Technical Conference 77

Function worker(s) Invocation Coordination Exec

Cell 1,2,3

Cell 1,2,3

Cell 1,2,3

Coordinator

Window 1 ' Window 2 I Window 3 L

Figure 8: Execution of SmartScan wherein the computation for
every cell is parallelized across all workers.

Keeping all workers active introduces coordination over-
heads. To lower cost, one might think: if the workers for all
functions are active throughout the print of a layer, we might
as well utilize the CPUs on all of them during that period?
We can accomplish this by rethinking the assignment of cells
to workers. Thus far, we have considered that each function
is assigned to store and process the matrix for a unique cell.

Instead, we can assign %th of every matrix to each function,
where N is the number of workers needed to keep all the
matrices in memory. As shown in Figure 8, in every step of
SmartScan’s execution, the coordinator VM sends the current
temperature map to all workers, each of whom multiplies
their slice of the matrix for the chosen cell. By aggregating re-
sults from all workers, the coordinator assembles the updated
temperature map.

The high degree of parallelism with this All-active strategy,
however, ends up inflating SmartScan’s runtime. For example,
we need 159 Lambda workers to accommodate all the matri-
ces for the 16cm? gear. When we execute SmartScan across
these many workers using the All-active strategy, it takes 16
seconds per layer, which greatly exceeds the constraint of
13.3 seconds imposed by the printing speed.

The primary source of delay here is the limited network
bandwidth at the coordinator. For example, of the 16-second
runtime per layer, only 270 ms involve any worker actively
executing matrix multiplications. The remaining coordination
delays stem from the overheads incurred in transferring the
temperature map in each step from the coordinator to all work-
ers. In our example job, each of the 249 steps involves the
coordinator pushing a 312 KB map to 159 workers — up to 50
MB of data per step. Note that, though each worker computes
the output temperature for only a subset of cells, every worker
receives the entire input temperature map. This is because
the heat transfer matrix models the distribution of heat from
every cell to every other cell. This data is transmitted at a rate
of roughly 5 Gbps, resulting in a delay — the coordination
delay — which takes up almost all of the runtime.

Matrix for cell 1 1T Matrix for cell 3 3 Group
BXX3 Matrix for cell 2 Matrix for cell 4 W Worker

[

w1 |22 B (11 R w (E22222 RQKY| w2222z
w2 |2 B (1D R w2 |P22227] RRRRRRS
w3 (271 83 [T RY| wa | [T AR
wa |72 B (1 XY s | () Y| wi [|

1 group each with
Ys of every matrix

N

2 groups each with
¥ of every matrix

4 groups each with
a full matrix

Figure 9: Three ways of dividing the matrices for 4 cells into
groups across 4 workers.

4 Design

The takeaway from our measurements in the previous sec-
tion is that simple approaches for executing SmartScan using
serverless either fail to meet the algorithm’s timing constraints
or significantly inflate cost compared to using VMs. To ad-
dress this problem, we present Cosmic, a new system for
executing low-latency compute pipelines like SmartScan on
serverless platforms.

Cosmic’s design has three key components. First, in terms
of how serverless is used to run SmartScan, we expand the
configuration space beyond the point solutions discussed in
the previous section. Second, we develop a model that can
accurately estimate for each configuration, the execution time
of SmartScan in that configuration and the cost the user would
incur. Using this model, Cosmic is able to identify the lowest
cost configuration that is expected to satisfy SmartScan’s
timing constraints. Third, we implement a runtime which can
ensure that SmartScan is executed in accordance with the
chosen configuration.

Though Cosmic is tailored to SmartScan’s 3D-printing con-
trol loop, we believe its modular components are workload-
agnostic and reusable across latency-sensitive cloud applica-
tions. We elaborate on this in Section 7.

4.1 Expanding configuration space

Any particular serverless configuration for running SmartScan
specifies two properties: a) which set of functions are used
to run the computation for any particular cell, and b) when
those functions are invoked. In comparison to the approaches
discussed in the previous section, we expand the space of
configurations along two dimensions.

Grouping. First, we rethink the assignment of cells to func-
tions. Existing approaches either assign each cell to a separate
set of functions (Invoke-on-demand or All-persistent) or have
a common set of functions execute the computations for all
cells (All-active). In contrast, Cosmic allows for many more
intermediate configurations as follows.

If N functions are registered in total across all cells — where
N must at least be equal to the number of workers needed
to store in memory the matrices for all cells — we divide
these functions into G groups of % workers each. Each group

78 2025 USENIX Annual Technical Conference

USENIX Association

Invocation Exec. Billed waiting —» Speculative invoke
Group 1
(b) Switching groups
Group 2

CoordinatorI[\/‘ L /

(a) In the same group (c¢) Speculative execution

Figure 10: Ilustration of SmartScan execution with Cosmic.

of workers is responsible for performing the computations
corresponding to ém of the part’s cells.

For example, Figure 9 shows three groupings for a part
which has four cells, each with a unique heat transfer matrix.
The right and left show configurations realized by existing
approaches: 4 groups with a unique function assigned to each
cell (right), or the state for all cells is equally distributed
across one group of 4 functions (left). In the middle is a
new configuration enabled by our approach: 2 groups of 2
functions each, with 2 cells assigned to either group.

Speculation. Second, we observe that it is not necessary to
incur the cost overhead of keeping the workers for all cells
active throughout the printing of a layer. Instead, it suffices
if every function is invoked prior to when it needs to start
running. Thus, while any step of SmartScan is executing,
we can predict the cell likely to be chosen in that step and
preemptively invoke the functions assigned to that cell.

Benefits. Partitioning workers into groups and assigning mul-
tiple cells to each group combined with speculative execution
offers multiple advantages.

e New mechanisms for mitigating invocation overhead. When
the cells chosen in two successive windows belong to the
same group, no function invocation overhead is incurred
at the start of the second window. For example, in the first
two windows in Figure 10, the workers that will execute
the computation for the second cell will already be active
after the first window. In addition, speculative invocation of
functions enables Cosmic to reduce the impact of function
invocation overheads without incurring the cost overhead
of keeping all workers alive.

o New tradeoffs between invocation and coordination over-
head. At one extreme, assigning all cells to a single group
eliminates invocation overheads, but will result in high co-
ordination overhead. At the other extreme, assigning each
cell to its own small subset of functions ensures that the
network on the coordinator VM does not prove to be a
bottleneck; but, without incurring the cost overheads asso-
ciated with speculation or keeping all workers alive, the
start of every window will be delayed by function invoca-
tion overheads. By varying the number of cells per group,
we can realize various intermediate points in the tradeoff
between the two overheads.

Characteristics
of the printing job

Properties
of the configuration to be evaluated

1. Number of cells
2. Number of unique matrices
3. Size of the matrices

Measurements I_l
of the serverless platform

1. Number of cells per group
2. Number of functions per group
3. Method to mitigate overhead, if any

Estimated average
1. Invocation delay profile Cosmic | | 1. Perwindow runtime
2. Execution profile Model 2. Per window cost
3. Bandwidth

Figure 11: Inputs and outputs of model used in Cosmic.

e Easier speculation. The assignment of multiple cells to the
same group of workers allows for easier use of speculation.
As long as the predicted cell belongs to the same group as
the cell chosen by SmartScan, invocation delays will not
affect our ability to satisfy timing constraints.

4.2 Choosing most cost-effective configuration

Enumerating all configurations. Given a product to print,
we use the combination of three attributes to represent ev-
ery serverless configuration that Cosmic can use to execute
SmartScan while the product is printed:

e The number of cells per group: varies from 1 to the total
number of cells that the product has been partitioned into

e The number of functions per group: at least the number
of workers needed to accommodate in memory the heat
transfer matrices for all cells in a group

e Which, if any, method is employed to address function
invocation overheads: workers for all functions are kept
active throughout the printing of each layer, functions for
the next window are invoked speculatively, or neither

The question at hand then is: among all configurations
which will enable SmartScan’s execution to keep up with
the printing speed, which one minimizes cost? In our current
implementation, Cosmic exhaustively enumerates all config-
urations; for the parts we have considered, this takes around
10 seconds at the start of a print job. Among those config-
urations where the estimated runtime is less than the time
needed to print a layer, Cosmic picks the one with the lowest
estimated cost. In extreme cases where the time constraint is
too stringent (e.g., because of a high printing speed), Cosmic
can determine when no feasible solution exists. In such cases,
SmartScan must be run across a fleet of VMs.

Model to estimate runtime and cost. For every configura-
tion that Cosmic considers during its search for the lowest
cost configuration, it needs to estimate SmartScan’s runtime
per layer with this configuration and the corresponding dollar
cost. Given the large number of configurations for even a
simple part, it is impractical to determine these estimates by
executing SmartScan in every configuration.

Instead, we need to estimate the runtime and cost associ-
ated with any configuration without running SmartScan in that

USENIX Association

2025 USENIX Annual Technical Conference 79

configuration. For this, as shown in Figure 11, we develop a
model which takes three kinds of inputs: 1) characteristics of
the product to be printed, 2) properties of the configuration be-
ing evaluated, and 3) measurements of the serverless platform.
Since the SmartScan algorithm involves a linear sequence of
steps, with each step lasting a window, the model’s task is
equivalent to computing the average runtime and cost per win-
dow. The duration of each window has two components:

o First, the coordinator VM requests the serverless platform
to invoke the functions for the cell being scanned in the
window. The workers which execute these functions re-
quest the function input from the coordinator. The delays
involved depend on invocation overheads and the effective-
ness of the speculation strategy.

e Then, the coordinator sends the input temperature map
to all workers and receives the output from them. Delays
include coordination and computation time.

‘We model each component of window duration separately.

In configurations where workers are kept alive throughout
the printing of a layer, the first delay component is zero as
no function invocation overhead is invoked. In configurations
which employ speculation, this delay is zero for a fraction
of the windows equal to the speculation accuracy; the ex-
pected speculation accuracy can be estimated from previously
completed prints of the same product. The delay is also zero
for windows in which the group is reused; we estimate the
expected chance of reuse by simulating random selection of
cells. For the other windows, or for all windows in the re-
maining configurations, we estimate the magnitude of the first
component as equal to the overhead of invoking functions on
warm workers. We rely on a one-time profiling of function
invocation delays, using measurements akin to those used to
generate Figure 7. Due to the heavy tailed distribution of these
delays, instead of simply using the average or median value
for all windows, we sample from the measured distribution
independently for every window.

The second component of a window’s duration, which is
also the period for which the user is billed, includes 1) the
time for the coordinator to disseminate the temperature map
obtained at the end of the previous window as input to all the
workers, and 2) the time taken by the workers to execute the
matrix multiplication which models the distribution of heat
during the printing. For the former, we observe that the band-
width between the coordinator VM on EC2 and the Lambda
workers is the bottleneck. We measure this bandwidth limit
once using iperf. For every print job, we can then use the
size of the temperature map for each layer and the number of
functions per group to estimate the time it will take for the
coordinator to finish sending the inputs to all workers. For
the latter, we rely on a profile of the time to execute matrix
multiplication on Lambda. We record the distribution of exe-
cution time for a range of matrix sizes, and interpolate from
this data for any particular part.

Invocation Exec. Billed waiting —» Speculative invoke
Group 1
Group 2

Billed| f Delayed

Coordinator

L
(a) Early speculation (b) Late speculation

Figure 12: Illustration of early and late speculation.

4.3 Executing chosen configuration

Once Cosmic uses its model to select the most cost-effective
configuration, the coordinator VM oversees the execution. It
invokes functions when necessary: all functions once at the
start of the print job so that all workers can read their state
into memory; then, the relevant functions at the start of each
window. The primary complexity in the coordinator’s role is
in determining how and when it should speculate.

Speculation algorithm. While the SmartScan algorithm is
running its computation in any particular window, we need a
lightweight method to predict the cell that will be chosen for
printing next. Our speculation strategy is inspired by approxi-
mation techniques commonly used in 3D printing algorithms
to reduce computation at the expense of lower printing qual-
ity [29]. Instead of to avoid compute bottlenecks, we leverage
approximation to quickly generate guesses with minimal ad-
ditional execution time and cost.

In SmartScan, recall that the primary purpose of the compu-
tation is to model the diffusion of heat. SmartScan maintains
a temperature map for a layer and simulates the scanning of
each cell in two steps: 1) applying the input heat from the
laser to the temperature map, and 2) updating the heat transfer
across the layer during scanning. The compute bottleneck is
the second step as it involves multiplying a matrix, which
models the expected heat transfer, with the temperature map.
In contrast, the first step simply involves adding a precom-
puted vector to the temperature map.

The approximation of this computation is rooted in the
observation that scanning each cell with a laser typically takes
only tens of milliseconds. Therefore, a good approximation of
the updated temperature map can be obtained by considering
only the laser input and ignoring the heat transfer over such a
short period. This approximate temperature map, which can
be computed by the coordinator using much less computation
than the full algorithm executed concurrently by the serverless
workers, can then be used to guess the next cell that will be
selected.

Note that this approximation cannot replace the full algo-
rithm. If we rely on the approximated temperature map in
every window, the simulation gradually deviates from the real
state of heat transfer, thus degrading SmartScan’s ability to
reduce the variance in temperature across the layer.

80 2025 USENIX Annual Technical Conference

USENIX Association

(1) Segmented gear (2) Triangular rotor

T kB I 9

(8) Ribbed bar

(6) Connecting rod (7) Mounting bracket

i Q E &

(3) Slotted grid

(4) Holed gear (5) Cylinder gasket

(9) Holed L-bracket (10) Simple L-bracket

Figure 13: Shapes of the printed parts.

Speculation timing. In addition to identifying which func-
tions to invoke speculatively, we need to determine when to
invoke them. Launching the group of functions early can en-
sure that they are ready to begin executing when SmartScan’s
next window starts, but doing so can inflate cost. Deferring the
speculative execution for as late as possible can reduce cost
but also reduce the utility in overcoming function invocation
overheads. Figure 12 illustrates these two scenarios.

To balance the two concerns, we rely on our profiling of
invocation overheads (Figure 7). During any window in the
execution of SmartScan, Cosmic’s coordinator estimates how
long it expects the window to last. It speculatively invokes the
functions for the predicted cell’s group D ms prior to when it
expects the current window to end, where D is the median of
the measured distribution of function invocation delay.

5 Evaluation

We evaluate Cosmic from three perspectives: Is it able to
satisfy the timing constraints associated with SmartScan’s
execution? What cost benefits does it offer? What contribu-
tions do each of Cosmic’s components make in enabling these
benefits? We compare Cosmic to the three baselines from
§3.2, which mimic the approaches used in prior work.

1) Invoke-on-demand: The computation for every cell is
distributed across a separate set of N functions, which
are invoked on-demand.

2) All-persistent: The computation for each cell is again
spread across N functions. But, all functions are invoked
at the start of a layer and return only once the compu-
tation for the entire layer ends. To minimize cost, we
assign a group of cells to the same set of N functions if
the workers for those functions can collectively store the
state for all of these cells in memory.

3) All-active: The data and computation for all cells are
distributed across a common set of N functions. As a

result, the workers for all functions are kept busy for the
entire duration of the print job.
In addition, we also compare Cosmic to the traditional ap-
proach of using N VMs, with the data and computation for
all cells equally split across the fleet. In all cases, we vary the
value of N to identify the lowest cost solution which ensures
that SmartScan keeps up with the printing speed.

5.1 Evaluation setup

We evaluate Cosmic and the baseline approaches by executing
areal SmartScan controller in the cloud. We mimic a print job
by having the controller relay its commands to a local desk-
top computer, which substitutes for an LPBF machine. This
mirrors a realistic deployment because any industrial grade
LPBF machine is itself driven by desktop software. On the
desktop, we simulate the mechanical printing process using
the printer’s precise specifications, e.g., uploading randomly
generated temperature maps and timing “laser movements”
with corresponding delays. We host the controller in the AWS
region closest to the desktop.

This setup enables us to examine the feasibility of real-time
control, even though the current printer hardware does not yet
support this capability; the current proprietary driver on our
LPBF printer only accepts precomputed sequences. Impor-
tantly, it also provides two other major benefits: 1) enhanced
data instrumentation, allowing fine-grained timing measure-
ments, and 2) the ability to conduct large-scale, long-term
evaluations without monopolizing physical resources.

Cloud hardware. We configure each AWS Lambda function
to its maximum capacity: 10 GB of memory and 6 vCPUs. Us-
ing the largest worker size allows for fewer parallel workers or
fewer groups for a given workload, reducing coordination de-
lays and improving speculation accuracy. We choose Lambda
functions equipped with ARM-based processors over x86 due
to their lower cost, without sacrificing performance.

USENIX Association

2025 USENIX Annual Technical Conference 81

Cosmic Invoke-on-demand

249 cells, 127 mats 223 cells, 108 mats

B All-persistent

224 cells, 90 mats

Il All-active . VM A Best

263 cells, 115 mats 180 cells, 127 mats

=
(=]
o
o

L

L

L

Cost normalized
to Cosmic [%]

74

X

1] x
71

X
71

500 + 1 .
0 LEZ 72

184 cells, 41 mats 215 cells, 52 mats

160 cells, 37 mats

231 cells, 16 mats 238 cells, 11 mats

__ 400

200 A

X

0_ i i

Cost normalized
to Cosmic [%

| |

Figure 14: Comparison of Cosmic with baseline approaches across 10 print jobs with layer size 16cm?2. The cost is normalized to that
obtained with Cosmic. X indicates the timing constraints were not met. The bars filled with hatched marks show the cheapest solution

for each job. The subplots are in the same order as in Figure 13.

We set up the coordinator on a m6g.8xlarge instance with
32 vCPUs to efficiently handle concurrent requests. To mini-
mize latency of communications between the coordinator and
workers, we place all of them in the same VPC and disable
TCP slow start on the coordinator.

For the VM-based baseline, we select instances from EC2’s

x2gd series, which are among the instance types with the
highest memory-to-vCPU ratios, offering 16GB of memory
per vCPU; a large memory-to-vCPU ratio helps avoid the cost
inefficiency of over-provisioned cores.
Printing parameters. We consider a diverse set of 10 parts,
shown in Figure 13, which are either derived from benchmarks
used in PBF optimization studies [29,33] or designed to model
real industrial parts. We consider each part in three layer sizes
—9cm?, 16cm?, and 25cm? — giving a total of 30 print jobs
which vary widely with respect to 1) number of cells per layer,
2) number of unique heat transfer matrices, and 3) size of the
matrices. For example, among the parts with a 16cm? size,
the time constraint per window ranges from 38ms to 62ms,
and the total memory requirement ranges from 131 GB to
1,514 GB.

We assume a printing speed of 800 mm/s, which falls within
the range for optimal LPBF results on AIST 316L stainless
steel, the material used in prior experiments [19,22]. We se-
lected this slightly higher speed than the more conservative
600 mm/s used in the original SmartScan paper [29], to eval-
uate Cosmic under more stringent conditions.

We assume the thickness of each layer to be 50 um [29].
For example, a 1 cm thick part would comprise 200 layers.

We start each print job assuming temperature across the
entire layer is uniformly at 293 Kelvin. Though the initial

temperature map can vary in practice due to residual heat from
previous prints, the computation performed when executing
the SmartScan algorithm will be unchanged. Moreover, we
show later that the accuracy of our speculation is largely the
same as we vary the initial temperature map.

5.2 Satisfaction of timing constraints

In every print job, we measure the timing of the controller’s
commands received at the desktop. In all 30 print jobs, we
find that Cosmic’s execution of SmartScan keeps up with
the specified printing speed, i.e., prior to the start of every
window, the desktop is expected to have received the next
cell to be scanned. Though the All-persistent and VM-based
approaches also manage to satisfy the timing constraints in all
print jobs, they do so at the expense of over-provisioned com-
pute resources and user-paid idle time. All-active satisfies the
constraints in all 10 jobs with layer size 9cm?, as few work-
ers are needed to accommodate all the matrices in memory.
However, All-active fails to finish running SmartScan in time
for 11 of the remaining 20 jobs, as coordination overheads
increase. Invoke-on-demand fares the worst, as it failed to
meet the time constraints in 23 of the 30 jobs, irrespective
of the amount of parallelism per cell. This is largely due to
invocation delays associated with warm starts (§3.2.1).

5.3 Comparison of dollar costs

For printing the parts with layer size 16cm?, Figure 14 shows
the dollar cost for resources in the cloud with each of the
approaches considered, normalized to the cost with Cosmic.
Results are similar for prints of the other two sizes. For every
approach, we consider the cost associated with the cheapest

82 2025 USENIX Annual Technical Conference

USENIX Association

9cm? ™ A

o

m 16cm?
A 25cm?

~
]

L)
n A A

Normalized cost of VM
compared to Cosmic
N
]
n
>

o
>

0 20 40 60 80 100 120 140 160
Number of unique matrices

Figure 15: Cost savings with Cosmic compared to VM-based
approach as a function of number of heat transfer matrices.

configuration in which SmartScan’s execution keeps up with
the printing speed. We mark an ‘X’ if, for that job, that ap-
proach cannot meet the time constraints in any configuration.

We see that Cosmic outperforms all four baseline ap-
proaches in 26 of the 30 print jobs; it results in the lowest cost
in all 10 prints of 9cm? layer size, in 9 of the 10 with layer
size 16cm?, and in 7 of the 10 with 25cm? layer size. In the 4
print jobs where Cosmic does not minimize cost, the cheapest
solutions cost 0.94x, 0.83x, 0.75x, 0.17 x lower, with the
first achieved by All-active and the rest using VMs.

Cost-savings compared to VMs. Across all 30 print jobs,
the cost overhead of VM-based solutions relative to Cosmic is
2.8 x at the median, with a maximum of 6.3 x. If the thickness
of every part was 1cm, for example, these numbers translate
to an average cost savings of $1.2, $4.5, and $18.7 per part for
9cm?, 16cm?, and 25¢m? layer sizes, respectively. Cosmic’s
cost savings relative to VMs increases with layer size due
to the decreasing fraction of idle time in SmartScan’s work-
flow (see Appendix A). Powder spreading between layers (§2)
takes 15 seconds irrespective of layer size. Hence, this down-
time takes up progressively less of SmartScan’s total runtime
as layer size increases: 73% for 9cm?, 60% for 16cm?2, and
49% for 25cm?.

As demonstrated in Figure 15, we also observe a correla-
tion between Cosmic’s cost benefits relative to VMs and the
number of unique heat transfer matrices needed for a specific
print job. VMs are cost-effective for running SmartScan when
the total size of precomputed data is relatively small (left end
of the graph), as the data can be stored in a few instances
which can all be kept busy without much coordination over-
head. When the total data size is large, the number of VMs
needed is dictated by the total memory size, resulting in most
of the CPUs idling during runtime. In such cases, Cosmic ben-
efits from Lambda’s pricing policy, which charges customers
only when workers are executing code, but not during idle
periods in-between when worker state remains in memory.

Cost savings compared to other serverless approaches. In
all but one of the 27 print jobs where using VMs is not the
most cost-effective solution, Cosmic outperforms all other
baseline approaches that use serverless. Again, if we consider

Invoke B Invoke+group HEE Invoke+group+spec

Feasible printing jobs count
N~ O @

[=]

25cm?

Figure 16: Number of print jobs for which timing constraints are
met first with Invoke-on-demand, and then by adding grouping
and speculative invocation incrementally.

all parts to be lcm thick, the average cost savings enabled by
Cosmic compared to the second-cheapest solution on server-
less are $0.71, $8.3, and $78.4 per part for 9cm?, 16cm?, and
25cm? layer sizes, respectively.

Ideally, Cosmic is expected to outperform Invoke-on-
demand, All-persistent, and All-active in all cases because
Cosmic’s configuration space subsumes these approaches.
However, in one of the print jobs — part 10 in layer size 16cm?
— All-active provides a solution that costs 0.94 x as much as
Cosmic. Although this solution is within Cosmic’s search
space, it is not chosen because Cosmic’s performance model
incorrectly estimates it to be slightly more expensive than the
selected alternative.

5.4 Utility of individual techniques

The fact that Cosmic combines many techniques to deliver
cost savings is evident in the wide diversity of configurations
that it chooses for the 30 print jobs we consider. The number
of groups into which it partitions the serverless functions that
it uses varies across jobs from 1 to 50. Whereas, the degree
of parallelism per group ranges from 4 to 34. To mitigate
the impact of function invocation delays, Cosmic chooses to
keep all workers active throughout the print only in 3 jobs. It
employs speculation in 21 of the 30 jobs. In the remaining
cases — primarily when the number of groups is less than 10
— Cosmic relies on the property that no invocation overhead
is incurred when the cells chosen in consecutive windows
belong to the same group.

5.4.1 Ablation study

To further evaluate the utility of the two key techniques that
Cosmic combines, we start with Invoke-on-demand and then
incrementally add grouping of functions and speculative in-
vocation. For each of the three approaches, Figure 16 shows
the number of print jobs (grouped by layer size) for which
they satisfied SmartScan’s timing constraints. As seen earlier,
Invoke-on-demand is capable of satisfying these constraints
in only 7 of the 30 jobs. Adding grouping addresses this prob-
lem for all printing jobs with layer sizes 9cm? and 16cm?,
but falls short for larger parts. Adding speculative invocation

USENIX Association

2025 USENIX Annual Technical Conference 83

2.5

Invoke
mmm Invoke+group

2.0 |
|| m Invoke+group+spec

Normalized cost

Printing jobs

Figure 17: For print jobs with layer size 16cm?, cost with Invoke-
on-demand, and with incremental addition of grouping and spec-
ulation; normalized to the cost with Invoke-on-demand plus
grouping and speculation.

further improves the coverage to all but one job, for which all
workers need to be kept persistently alive in order to ensure
timely execution.

Beyond the ability to ensure timeliness, the techniques used
in Cosmic also help reduce cost. Figure 17 demonstrates this
for print jobs with 16cm? layer size; the results are similar for
the other two layer sizes. In all 3 print jobs where Invoke-on-
demand enables SmartScan to keep up with the printing speed,
the addition of grouping lowers cost. We observe that group-
ing lowers runtime without increasing cost, as it increases the
likelihood of reusing Lambda workers in consecutive win-
dows, thereby avoiding invocation latency. In all but one of
the printing jobs, adding speculation further reduces cost as
it reduces the amount of parallelism needed to overcome the
impact of invocation delays.

5.4.2 Speculative invocation

Next, we dive deeper into the efficacy of Cosmic’s speculative
invocation of functions.

Speculation accuracy. First, across all 30 print jobs, we
find that Cosmic’s algorithm for predicting the cell group
whose functions need to be executed in the next window is
85% accurate on average. To examine the robustness of this
accuracy to variance in the initial temperature map, we rerun
Cosmic’s speculation for each part with 30 different initial
temperature maps. We observed that the speculation accuracy
is typically 85% =+ 5%. This suggests that it is reasonable
for our runtime/cost prediction model to take as input the
speculation accuracy from previously completed prints of the
same part.

Speculation timing. Next, we illustrate Cosmic’s effective-
ness in using speculation to hide invocation delays at low
cost. Figure 18 shows the distribution of speculative timing
during the execution of SmartScan for a 16cm? gear shape.
Specifically, we measure the gap from a) when the current
window finishes, i.e., the coordinator has received outputs
for the current window from all workers, until b) when the
Lambda functions needed for the next window are ready to
start execution, i.e., the coordinator has received a request for

" R f— Wait time for spec workers
208
©
£
2 0.6
w
(%)
2 0.4
(=
©
L 0.2
o
0.0 T T T T T
-6 -4 -2 0 2 4 6
Time [ms]

Figure 18: For a specific print job, distribution across windows
of the time from when the coordinator completes the current
window until when the speculatively invoked workers are ready
to start executing the next window.

input from all the speculatively invoked functions. Negative
values for this difference indicate early speculation, while
positive values indicate late speculation. The data reveals a
median value of 0.19ms, with the 5™ and 95" percentiles
at -2.00ms and 1.24ms, respectively. This implies that 95%
of the speculation instances incur a billable idle time of no
more than 2ms, and 95% of the speculation instances incur a
latency overhead less than 1.24ms; both account for less than
5% of the duration of the average window in this case study.
This efficiency demonstrates the balance achieved between
cost and performance via accurate modeling.

6 Related Work

Applications on serverless. Prior work [8, 16] has utilized
the massive parallelism enabled by serverless to significantly
reduce the time needed to process videos. Other work [34]
has taken advantage of serverless pricing policy to achieve
time and cost savings in processing sparse graphs workloads.
However, all of this work targets workloads in which each
task takes tens of seconds, even minutes, to complete. To the
best of our knowledge, we are the first to demonstrate the
viability of serverless for workloads with latency targets in
the order of tens of milliseconds.

Mitigating invocation latency. A significant body of prior
work targets cold start latency in serverless computing. Some
propose new optimizations that require changes to the server-
less platform [14,17,32]. There has also been work [31] on re-
ducing the platform’s burden for keeping instances warm. Oth-
ers try to avoid cold starts in the user space [8, 16,23,24,30].
However, none of these prior efforts target eliminating warm
start latency. We found that the latency associated with warm
starts is a bottleneck in meeting millisecond-level time con-
straints, and we use a combination of strategies to mitigate
this latency.

Performance modeling. Runtime optimization on serverless
often requires accurate performance prediction. Previous ef-
forts have modeled the combination of parallel and sequential
function executions [24], used Monte Carlo simulations to
predict the distribution of function costs [15], and modeled

84 2025 USENIX Annual Technical Conference

USENIX Association

cold start latency and execution time under different degrees
of parallelism [9]. Our model accounts for a variety of delays,
including function invocations and coordination overheads,
and models the impact of techniques such as grouping of
functions and speculative invocation.

Speculation. Speculative execution has been used to hide la-
tency in a wide variety of networked systems, e.g., distributed
file systems [27], distributed data processing [11], web brows-
ing [25], and online gaming [21]. Speculative execution has
also been employed to improve the performance of server-
less applications. For example, SpecFaaS [32] pre-executes
potential function calls before their control and data depen-
dencies are resolved, and Xanadu [13] pre-invokes functions
to mitigate cascading cold starts in function DAGs.

Our work developed a method for speculation specific to a
3D printing optimization algorithm, SmartScan [29]. Unlike
prior work that uses speculation as a best-effort strategy to
hide latency, our strategy for speculation is both time- and
cost-sensitive. In addition, we use grouping of functions to
improve the accuracy of speculation.

7 Discussion

Impact of changes in cloud pricing policies. Cosmic takes
advantage of serverless computing’s pay-as-you-go pricing
model, which only charges for active execution time. In par-
ticular, Cosmic avoids the cost of retaining data in memory
during the idle time between successive invocations of the
same function. Presumably, serverless platforms already bake
in the cost for supporting warm starts into their pricing policy,
as they charge more per GB of memory than traditional VMs.
These characteristics are not unique to AWS, but also exist in
Azure [3], Google Cloud [5], and emerging serverless GPU
inference services [4, 6], reflecting a deliberate design choice
to enhance the utility of serverless, and one that is likely to
persist in the near-term.

That said, if cloud providers alter their infrastructure — e.g.,

shortening warm start windows, or begin explicitly charging
for idle memory — Cosmic’s design remains adaptable. To
account for reduced persistence of warm workers, Cosmic
can issue dummy requests to maintain warm containers at
a negligible cost. Cosmic can also re-profile platform de-
lays and pricing, adjusting invocation timing or the degree
of parallelism. Though savings might decrease, many of our
approach’s benefits, such as minimizing the impact of invo-
cation delays and reducing over-provisioning of resources,
would still apply.
Printing larger parts. While our evaluation demonstrates
Cosmic’s ability to meet timing constraints and reduce costs
across a diverse set of print jobs, significantly larger printing
jobs present additional challenges. With much greater paral-
lelization, the overhead of communication between server-
less functions and ensuring scalability without compromising
timeliness are heavily constrained by the platform’s specifica-
tions, and remains an area for future exploration.

Reusability of abstractions. Though we designed and eval-
uated Cosmic in the context of optimizing a specific form of
3D printing, its core abstractions and modular components are
reusable in other domains: 1) Cosmic’s strategies for trading
off invocation and coordination overheads — e.g., grouping
parallelizable functions and optimizing invocation timing —
apply to any latency-critical processing pipeline where each
step is parallelizable. 2) Cosmic’s use of speculation to com-
bat function invocation overheads is applicable in settings
amenable to predictions. 3) Cosmic’s models for runtime and
cost guided by measurement profiles and pricing policies can
inform data partitioning and the degree of parallelization.
Generalizability to other workloads. Cosmic’s configura-
tion framework and profiling tool, when supplied with other
workload characteristics by users, can be adapted to a broad
range of domains. For example, we believe Cosmic can be
adapted for using serverless to support computations in sce-
narios where real-time spatial data is being analyzed, e.g., in
AR/VR and online gaming. In these scenarios, models of the
real/virtual world will need to be preloaded and data from
user inputs or sensors must be processed quickly in order to
render or make decisions in real-time. Processing of each
input can be treated as similar to each window in SmartScan.
Speculative execution could be used to predict inputs based
on the user’s trajectory, allowing for faster responses.

Another potential application of Cosmic could be au-
tonomous vehicle fleet coordination, which requires real-time
route planning and vehicle-to-vehicle coordination. Such
systems rely on large preloaded datasets, including high-
definition maps, traffic prediction models, and vehicle dy-
namics, to make decisions under tight timing constraints. At
each step, the coordination algorithm processes these datasets
to update vehicle paths dynamically, involving computation
similar to SmartScan. Cosmic could enhance this process
through speculative execution, precomputing likely scenarios
— such as potential lane changes or congestion — to minimize
delays.

8 Conclusion

In this paper, we demonstrated the utility of serverless com-
puting for a new application workload: control of 3D printing
from the cloud. While the pricing policy of serverless plat-
forms make them a good match for this workload, our mea-
surements highlighted the delays that make it challenging to
meet millisecond-level time constraints. Our design of Cosmic
combines a range of techniques with an accurate model that
estimates runtime and costs. Our results showcased Cosmic’s
utility across a diverse set of print jobs.

Acknowledgments

We thank the reviewers for their valuable feedback. This work
was supported in part by NSF grant CNS-2106184 and a grant
from Cisco.

USENIX Association

2025 USENIX Annual Technical Conference 85

References

[1] Lambda execution environments.
//docs.aws.amazon.com/lambda/latest/
operatorguide/execution-environments.html,

2024.

https:

[2] AWS Lambda.
2025.

https://aws.amazon.com/lambda,

[3] Azure Functions. https://azure.microsoft.com/
en-us/products/functions, 2025.

[4] Beam. https://www.beam.cloud/, 2025.

[5] Google Cloud Run.
run, 2025.

https://cloud.google.com/

[6] Modal. https://modal.com/, 2025.

[7] Alexandru Agache, Marc Brooker, Alexandra lordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In /7th USENIX
symposium on networked systems design and implemen-
tation (NSDI 20), pages 419—434, 2020.

[8] Lixiang Ao, Liz Izhikevich, Geoffrey M Voelker, and
George Porter. Sprocket: A serverless video processing
framework. In Proceedings of the ACM Symposium on
Cloud Computing, pages 263-274, 2018.

[9] Rohan Basu Roy, Tirthak Patel, Richmond Liew,
Yadu Nand Babuji, Ryan Chard, and Devesh Tiwari.
ProPack: Executing concurrent serverless functions
faster and cheaper. In Proceedings of the 32nd Interna-
tional Symposium on High-Performance Parallel and
Distributed Computing, pages 211-224, 2023.

[10] Marc Brooker, Adrian Costin Catangiu, Mike Danilov,
Alexander Graf, Colm MacCarthaigh, and Andrei Sandu.
Restoring uniqueness in microvm snapshots. arXiv
preprint arXiv:2102.12892, 2021.

[11] Qi Chen, Cheng Liu, and Zhen Xiao. Improving MapRe-
duce performance using smart speculative execution
strategy. IEEE Transactions on Computers, 63(4):954—
967, 2013.

[12] Sohini Chowdhury, N Yadaiah, Chander Prakash,
Seeram Ramakrishna, Saurav Dixit, Lovi Raj Gupta,
and Dharam Buddhi. Laser powder bed fusion: a state-
of-the-art review of the technology, materials, properties
& defects, and numerical modelling. Journal of Materi-
als Research and Technology, 20:2109-2172, 2022.

[13] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni.
Xanadu: Mitigating cascading cold starts in serverless
function chain deployments. In Proceedings of the 21st

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

International Middleware Conference, pages 356370,
2020.

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 467481, 2020.

Simon Eismann, Johannes Grohmann, Erwin Van Eyk,
Nikolas Herbst, and Samuel Kounev. Predicting the
costs of serverless workflows. In Proceedings of the
ACM/SPEC international conference on performance
engineering, pages 265-276, 2020.

Sadjad Fouladi, Riad S Wahby, Brennan Shacklett,
Karthikeyan Balasubramaniam, William Zeng, Rahul
Bhalerao, Anirudh Sivaraman, George Porter, and Keith
Winstein. Encoding, fast and slow: Low-latency video
processing using thousands of tiny threads. In NSDI,
volume 17, pages 363376, 2017.

Alexander Fuerst and Prateek Sharma. FaasCache: keep-
ing serverless computing alive with greedy-dual caching.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 386—400, 2021.

Runsheng Guo, Victor Guo, Antonio Kim, Josh Hildred,
and Khuzaima Daudjee. Hydrozoa: Dynamic hybrid-
parallel dnn training on serverless containers. Pro-
ceedings of Machine Learning and Systems, 4:779-794,
2022.

Liang Hao, Wanlin Wang, Jie Zeng, Min Song, Shuai
Chang, and Chenyang Zhu. Effect of scanning speed
and laser power on formability, microstructure, and qual-
ity of 316L stainless steel prepared by selective laser
melting. Journal of Materials Research and Technology,
25:3189-3199, 2023.

Jigang Huang, Qin Qin, and Jie Wang. A review of
stereolithography: Processes and systems. Processes,
8(9):1138, 2020.

Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes
Kopf, Yury Degtyarev, Sergey Grizan, Alec Wolman,
and Jason Flinn. Outatime: Using speculation to en-
able low-latency continuous interaction for mobile cloud
gaming. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, pages 151-165, 2015.

Jiangwei Liu, Yanan Song, Chaoyue Chen, Xiebin Wang,
Hu Li, Jiang Wang, Kai Guo, Jie Sun, et al. Effect of

86 2025 USENIX Annual Technical Conference

USENIX Association

https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/execution-environments.html
https://aws.amazon.com/lambda
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://www.beam.cloud/
https://cloud.google.com/run
https://cloud.google.com/run
https://modal.com/

scanning speed on the microstructure and mechanical
behavior of 316L stainless steel fabricated by selective
laser melting. Materials & Design, 186:108355, 2020.

[23] Xuanzhe Liu, Jinfeng Wen, Zhenpeng Chen, Ding
Li, Junkai Chen, Yi Liu, Haoyu Wang, and Xin Jin.
Faaslight: General application-level cold-start latency
optimization for function-as-a-service in serverless com-
puting. ACM Transactions on Software Engineering
and Methodology, 32(5):1-29, 2023.

[24] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick
Shankar, Sameh Elnikety, Somali Chaterji, and Saurabh
Bagchi. ORION and the three rights: Sizing, bundling,
and prewarming for serverless DAGs. In /6th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 22), pages 303-320, 2022.

[25] James W Mickens, Jeremy Elson, Jon Howell, and Jay R
Lorch. Crom: Faster web browsing using speculative
execution. In NSDI, volume 10, pages 9-9, 2010.

[26] Amir Mostafaei, Amy M Elliott, John E Barnes,
Fangzhou Li, Wenda Tan, Corson L Cramer, Peeyush
Nandwana, and Markus Chmielus. Binder jet 3d print-
ing—process parameters, materials, properties, model-

ing, and challenges. Progress in Materials Science,
119:100707, 2021.

[27] Edmund B Nightingale, Peter M Chen, and Jason
Flinn. Speculative execution in a distributed file system.
ACM SIGOPS operating systems review, 39(5):191-205,
2005.

[28] Kumaresan Rajan, Mahendran Samykano, Ku-
maran Kadirgama, Wan Sharuzi Wan Harun, and
Md Mustafizur Rahman. Fused deposition model-
ing: process, materials, parameters, properties, and
applications. The International Journal of Advanced
Manufacturing Technology, 120(3):1531-1570, 2022.

[29] Keval S Ramani, Chuan He, Yueh-Lin Tsai, and Chine-
dum E Okwudire. Smartscan: An intelligent scanning
approach for uniform thermal distribution, reduced resid-
ual stresses and deformations in pbf additive manufac-
turing. Additive Manufacturing, 52:102643, 2022.

[30] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari.
DayDream: executing dynamic scientific workflows on
serverless platforms with hot starts. In SC22: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-18. IEEE,
2022.

[31] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-
breaker: Warming serverless functions better with het-
erogeneity. In Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 753—
767, 2022.

[32] Jovan Stojkovic, Tianyin Xu, Hubertus Franke, and
Josep Torrellas. Specfaas: Accelerating serverless ap-
plications with speculative function execution. In 2023
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 814-827. IEEE,
2023.

[33] Akihiro Takezawa, Honghu Guo, Ryotaro Kobayashi,
Qian Chen, and Albert C To. Simultaneous optimiza-
tion of hatching orientations and lattice density distribu-
tion for residual warpage reduction in laser powder bed
fusion considering layerwise residual stress stacking.
Additive Manufacturing, 60:103194, 2022.

[34] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng,
Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora,
Ravi Netravali, Miryung Kim, et al. Dorylus: Affordable,
scalable, and accurate GNN training with distributed
CPU servers and serverless threads. In 15th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 21), pages 495-514, 2021.

[35] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar,
Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov,
Feng Yan, and Yue Cheng. InfiniCache: exploiting
ephemeral serverless functions to build a cost-effective
memory cache. In 18th USENIX conference on file and
storage technologies (FAST 20), pages 267-281, 2020.

A Appendix

The cost for a VM per window is formulated as:
Fm=m-m)-(t+155s) cym »

where

* n = number of unique matrices,

* m = size of in-memory precomputed data per cell in GB,

e t = time constraint in seconds,

* ¢y, = cost per GB of memory per unit of time for the

VM.

It’s important to note that VMs must stay operational between
layers, hence the additional 15 seconds of billed time. This
formula also assumes full utilization of the VM’s memory
capacity.

In contrast, the cost for Lambda per window is:

B=M-(t)-cp,

where M is the total memory capacity of Lambda workers
running in parallel, and assuming Lambda functions are con-
figured to complete computations precisely within the time
constraint ¢. Unlike VMs, where the scale of operation is dic-
tated by the total data size, the number of Lambda functions

USENIX Association

2025 USENIX Annual Technical Conference 87

running in parallel during each window is determined pri-
marily by the need to meet stringent time constraints. Conse-
quently, this total capacity M often exceeds what is necessary
for storing the precomputed data per cell m. Given that we
use the largest Lambda instances, we have M = Np - 10 GB,
where Np is the number of parallelism in each window.

Solving F,,,, > F,, simplifies to:

t
n-m>t+15~Np-92GB. €))

Here, the left side represents the total size of precomputed
data. Taking the example of the 16cm” gear shaped print
job, this inequality holds true as 1514 GB > 404.8 GB, with
n=127,m=11.9 GB,t = 10 s, and Np = 11. Qualitative
interpretation of this inequality shows that Lambda is poten-
tially more cost-effective than VM under certain conditions:
1) a higher total size of precomputed data, 2) a lower time
constraint relative to powder spreading time, and 3) fewer
parallel workers required in each window.

88 2025 USENIX Annual Technical Conference

USENIX Association

	Introduction
	Background and Motivation
	SmartScan in the Cloud
	Why serverless?
	Cost overhead of VMs
	Advantages of serverless

	Challenges with serverless
	Even warm starts incur invocation overhead
	High parallelism leads to coordination overheads

	Design
	Expanding configuration space
	Choosing most cost-effective configuration
	Executing chosen configuration

	Evaluation
	Evaluation setup
	Satisfaction of timing constraints
	Comparison of dollar costs
	Utility of individual techniques
	Ablation study
	Speculative invocation

	Related Work
	Discussion
	Conclusion
	Appendix

