IEEE INFOCOM 2025 - IEEE Conference on Computer Communications | 979-8-3315-4305-1/25/$31.00 ©2025 IEEE | DOI: 10.1109/INFOCOM55648.2025.11044761

Prediction-Assisted Online Distributed Deep
Learning Workload Scheduling in GPU Clusters

Ziyue Luo*, Jia Liu*, Myungjin Lee', Ness B. Shroff*
* Dept. of ECE, The Ohio State University, USA, Email: 1uo.1457 @osu.edu, {liu, shroff} @ece.osu.edu
T Cisco Research, USA, Email: myungjle@cisco.com

Abstract—The recent explosive growth of deep learning (DL)
models has necessitated a compelling need for efficient job
scheduling for distributed deep learning training with mixed
parallelisms (DDLwWMP) in GPU clusters. This paper proposes
an adaptive shortest-remaining-processing-time-first (A-SRPT)
scheduling algorithm, a novel prediction-assisted online schedul-
ing approach designed to mitigate the challenges associated with
DL cluster scheduling. By modeling each job as a graph corre-
sponding to heterogeneous Deep Neural Network (DNN) models
and their associated distributed training configurations, A-SRPT
strategically assigns jobs to the available GPUs, thereby minimiz-
ing inter-server communication overhead. Observing that most
DDLwMP jobs recur, A-SRPT incorporates a random forest re-
gression model to predict training iterations. Crucially, A-SRPT
maps the complex scheduling problem into a single-machine in-
stance, which is addressed optimally by a preemptive ‘“‘shortest-
remaining-processing-time-first” strategy. This optimized solu-
tion serves as a guide for actual job scheduling within the GPU
clusters, leading to a theoretically provable competitive schedul-
ing efficiency. We conduct extensive real-world testbed and sim-
ulation experiments to verify our proposed algorithms.

I. INTRODUCTION

Distributed deep learning (DDL) has recently achieved re-
markable successes across multiple domains, e.g., natural lan-
guage processing (NLP) [1], computer vision [2], and com-
puter networks [3]. However, the training of deep neural net-
work (DNN) models is compute-intensive, requiring dedi-
cated, powerful, and expensive GPU clusters [4], [5], [6], This
has necessitated developing algorithms to efficiently sched-
ule distributed deep learning training jobs with mixed paral-
lelisms (DDLwMP), including but not limited to data paral-
lelism [7], model parallelism [8] and pipeline parallelism [9].
Such scheduling algorithms are pivotal for resource allocations
in GPU clusters to orchestrate DDLWMP jobs’ execution.

This work has been supported in part by Cisco Research Award PO-
USAO00EP312336, by NSF grants CAREER CNS-2110259, 11S-2324052,
NSF AI Institute (AI-EDGE) CNS-2112471, CNS-2312836, CNS-2106933,
CNS-2106932, CNS-1955535, and CNS-1901057, by DARPA YFA
D24AP00265, by ONR grant N00014-24-1-2729, by AFRL grant PGSC-SC-
111374-19s, by Army Research Office under Grants W911NF-21-1-0244 and
WO11NF-24-2-0205, and was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number W911NF-23-
2-0225. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any copyright no-
tation herein.

In the areas of DDL scheduling algorithm design, many
early attempts adopted a preemptive scheduling approach that
permits pausing, resumption, and reallocation of running jobs
for better flexibility. However, with ever-increasing learning
model sizes, interrupting DDL job executions, including sav-
ing/loading training models into/from the host memory and
potentially reallocating jobs to a different set of GPUs, incurs
large overhead on the order of seconds to minutes [5]. To
pursue improved resource utilization and consistent process-
ing of DDL jobs, some recent studies have shifted their focus
towards designing non-preemptive ML cluster scheduling al-
gorithms [10], [11], [12], where the scheduler dedicates a set
of GPUs solely for each DDLWMP job to ensure that all allo-
cated GPUs execute simultaneously without interruption until
the job’s completion. However, all aforementioned works are
designed for DDL jobs without mixed parallelisms. To date,
designing scheduling algorithms for DDLwWMP remains in its
infancy and there are several highly non-trivial challenges:

1) DDLwWMP jobs differ significantly in their model archi-
tectures, consisting of diverse types of DNN layers. The mix-
ture of parallelisms results in complex computation and com-
munication patterns during training. Thus, optimally placing
DDLwMP jobs across the available GPUs, taking into account
their model architectures and parallel paradigms, is highly
challenging. Further, resource fragmentation (available GPUs
are scattered across partially occupied servers due to frequent
small job allocations) exacerbates the problem.

2) The unpredictability of future workloads introduces an-
other challenge, rendering the scheduling task an online prob-
lem. Due to the non-preemption constraints, greedily schedul-
ing existing jobs to fully occupy the cluster’s computational
resources can lead to fragmentation issues and significantly
delay incoming jobs, thus increasing overall latencies. Thus,
strategic orchestration of the available jobs is needed to min-
imize the total job completion time: the algorithm should
schedule sufficiently many jobs to maximize resource utiliza-
tion while reserving resources for future job arrivals.

3) Many existing non-preemptive scheduling designs require
the knowledge of training iterations upon jobs’ submissions to
estimate job training durations. However, DNN model training
is a feedback-dependent exploration process [13]. It is com-
mon for users to submit multiple jobs exploring different con-
figurations of hyper-parameters and terminate most jobs due
to random errors or sub-optimal convergence performance [6],

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

[14]. This implies that the actual number of job training iter-
ations is uncertain. Blindly scheduling jobs according to the
user-specified training iterations could lead to suboptimal per-
formance.

To address these challenges, in this paper, we propose an
adaptive shortest-remaining-processing-time-first (A-SRPT)
scheduling algorithm. Our design contains two key compo-
nents: 1) a GPU mapping algorithm that judiciously assigns
a DDLwWMP job to a specific set of GPUs, thereby minimizing
the data communication overhead during job training; and 2)
a prediction-assisted online scheduling algorithm that strate-
gically schedules DDLwWMP jobs by incorporating a job total
training iteration prediction model. Our main contributions
and key results are summarized as follows:

« We represent DDLWMP jobs with various models and dis-
tributed training configurations as graphs, based on which
we further develop the Heavy-Edge algorithm, a graph-
cut-based method designed to strategically allocate each job
to available GPUs across servers. Heavy-Edge emphasizes
maximizing the use of high-bandwidth interconnection for
GPUs within a server (e.g., NVLink [15]), thereby improv-
ing overall training efficiency.

« We tackle the uncertain training duration challenge by lever-
aging the recurrence of DDLwWMP jobs. First, we use a
random forest regression method [16] to predict training
iterations from historical job execution traces. Then, by
leveraging this prediction model, we develop a prediction-
assisted online scheduling framework called A-SRPT based
on a two-step approach: 1) We show that the original com-
plex multi-dimensional GPU clustering problem can be sim-
plified as a preemptive single-machine scheduling prob-
lem with the predicted number of training iterations for
each DDLwWMP job. This simplification enables the use
of the shortest remaining processing time (SRPT) princi-
ple [17], which is optimal in scheduling jobs in the hy-
pothetical single-machine problem; 2) We use the virtual
single-machine SRPT solution to guide our non-preemptive
scheduling decisions for DDLWMP jobs in the actual clus-
ter. This two-step approach allows us to design DDLwWMP
scheduling schemes with theoretical performance guarantee.

o To validate the effectiveness of our proposed designs,
we conduct real-world trace-driven testbed experiments
and simulation studies based on profiled DDL workloads
with mixed DNN models and a two-month DL workload
trace [6]. Our experimental results verify the superiority of
our proposed algorithms over state-of-the-art DDL schedul-
ing algorithms. Specifically, our proposed algorithm outper-
forms all baseline designs and achieves up to 92% total job
completion time reduction.

II. BACKGROUND AND RELATED WORK

1) Parallelisms for Distributed DNN Training: DNN train-
ing is an iterative process to minimize a loss function [18],
where each iteration consists of forward propagation (FP),
backward propagation (BP), and gradient update, all of which

(a) Data Parallelism (b) Model Parallelism

(c) Pipeline Parallelism

1 il T
aPu @ | AIIReduce]
GPU2 [Z} BY J

AlReduce data

@3 FP of mini-batchm (@D BP of mini-batch m mini-batch m :
operation communication

Fig. 1: Three typical parallelisms for distributed DNN training.

are based on mini-batches. The advent of large DNN models
has driven the development of distributed DNN training to
speed up DNN training. To enable distributed DNN training,
data [7], model [8], and pipeline parallelisms [9], [19], [20],
as shown in Fig. 1, are the most common.

Data parallelism (Fig.1(a)) trains mini-batches on different
GPUs, followed by gradient synchronization using ring AllRe-
duce (RAR) [21] or tree AllReduce (TAR) [22]. RAR forms a
logical ring for communication [23], while TAR uses double
binary trees [22] (e.g., NVIDIA NCCL [24]). This method
requires each GPU to host a full DNN model, limiting it to
small-size models. Model parallelism (Fig. 1(b)) trains large
models by distributing FPs and BPs across GPUs, each hosting
a different model stage. However, model parallelism suffers
from low utilization as only one GPU is active at a time.

Building on model parallelism, pipeline parallelism
(Fig.1(c)) sequentially injects mini-batches into the system to
allow simultaneous GPU processing. Each model stage can
have multiple replicas [25], [20] trained with data parallelism
to reduce stage processing time. Pipeline parallelism can be
further divided into asynchronous and synchronous pipelines.
Synchronous pipeline [19], [20] maintains a synchronization
barrier between training iterations, enforcing synchronous gra-
dient updates across all model stages to achieve a better con-
vergence performance. However, such synchronization barriers
may interrupt the pipeline and delay new mini-batch entries,
leading to low GPU utilization. Asynchronous pipeline [26]
improves GPU utilization by continuously injecting mini-
batches to increase training throughput at the price of (slight)
model convergence degradation [9]. In this work, we consider
asynchronous pipeline due to its higher training efficiency.

2) Online DDL Job Scheduling: Early attempts on online
DDL job scheduling focused on preemptive algorithms. For
instance, Optimus [27] constructs resource-performance mod-
els for dynamic GPU scaling to minimize completion time of
data-parallel jobs. Gandiva [4] uses scaling heuristics for GPU-
sharing across multiple jobs. GADGET [23] balances com-
munication overhead and contention for resource scheduling
for RAR jobs. Tiresias [14] prioritizes jobs based on train-
ing duration metrics. Pollux [5] adapts resources to optimize
good-put, a metric combining throughput and statistical effi-
ciency. Non-preemptive scheduling research is more limited.
SPIN [10] focuses on minimizing makespan for placement-
sensitive jobs. An online framework in [11] addresses com-
munication contention among DDL jobs. An offline approx-
imation algorithm in [12] tackles communication overhead
and network contention for RAR jobs. However, all existing
methods above only considered a single parallelism. By stark
contrast, in this work, we propose a non-preemptive online

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

scheduling algorithm for DDLwMP DDL training jobs with
theoretical performance guarantees.

It is worth noting that most previous DDL job scheduling
works rely on the knowledge of job training duration/iterations
(some using predictive techniques based on historical run-
times [10], [14], [27]). Abdullah et al. [28] proposed to en-
hance ML job completion predictability using weighted-fair-
queueing for bounded preemption. However, prioritizing jobs
by predicted execution time can lead to inaccurate GPU allo-
cation and long wait times for short jobs. Inspired by recent
advances in learning-augmented online preemptive schedul-
ing for single machine [29], we propose an online prediction-
assisted algorithm for non-preemptive DDLWMP job schedul-
ing to delay long jobs to expedite shorter ones.

III. SYSTEM MODEL

We consider a GPU cluster consisting of M inter-connected
homogeneous GPU servers. Each server m € [M]! is equipped
with ¢ GPUs, yielding a total of G = Mg GPUs within the
cluster. The bidirectional (i.e., incoming and outgoing) NIC
bandwidth on each machine is denoted as B; ... The intra-
server bidirectional GPU communication bandwidth (e.g.,
PClIe, and NVLink [15]) is denoted as B;,:.r,, Which is typi-
cally one to two orders of magnitude greater than B;,t... The
system works in a time-slotted fashion, over a potentially large
span of T time-slots. There are I DDLwMP jobs in total in the
cluster, and job 4 € [I] is submitted at time r; € [T]. We note
that our proposed scheduling algorithm for DDLwWMP jobs
also includes single-GPU jobs as a special case, thus offering
general support for all DDL workloads. In what follows, we
zoom into two key components in our system modeling.

A. Workload Scheduling for DDL Jobs in GPU Cluster

In our DDLWMP training setting, each job i € [I] requests
to train a DNN model D; for n; iterations using a specific
distributed configuration. D; is divided into S; stages, each of
which consists of some consecutive DNN layers. For improved
training efficiency, stages can further be replicated across mul-
tiple GPUs in a data-parallel fashion [9], [25], allowing vary-
ing degrees of data-parallelism across different stages. The
processing of a single mini-batch by a stage is distributed over
the GPUs. Let k; ; denote the number of data-parallel replicas
for stage s € [S;] of job 4, which equals the required GPUs
for this stage. Thus, the total GPUs needed for job i is g; =
Do c[si] ki s. A single-GPU job is a special case with one non-
replicated stage. Our distributed training configuration covers
the following parallelisms as special cases: 1) data parallelism
(single-stage, multiple replicas), 2) model parallelism (multi-
ple non-replicated stages), and 3) pipeline parallelism (other
cases). We assume parallel configurations are given through
pipeline planning [30], [20].

On a given GPU, the time required for the FP (resp. BP)
of a mini-batch over a replica of stage s for job ¢ is denoted
by p{ 5 (resp. pf,s). The incoming and outgoing data size (i.e.,

'We use [X] to denote the set {1,2,..., X}.

activations during FP and gradients during BP) for each train-
ing iteration per replica of stage s in job ¢ are denoted by
dZZ and dff;t respectively. We use h; ; to represent the size of
trainable parameters for job ¢ and stage s.

We use z}"; to represent the number of GPUs allocated on
server m to host stage s of job ¢, and use ¢; to denote the
starting time of job 7. Accordingly, an amount of 27" /g band-
width for the stage is reserved at the incoming and outgoing
NIC. Let o;({z!".}) represent the per-iteration training time
of job ¢ given its GPU allocation {z".}, which will often be
simplified as «; for notational simplicity henceforth if no con-
fusion arises from the context. The characterization of «a; will
be specified later in this section. To ensure schedule feasibility,
we have the following constraints:

tiZTz‘,V’iE [[], (D
> all =k, Vi€ [I),s €[S, 2
me[M]

> > al <gVme M te[T]. (3)

i€ [I]:t; <t<t;+n;a; s€[S;]

Here, Constraint (1) ensures that each job is scheduled to
start only after its submission; Constraint (2) implies that all
stage replicas of job ¢ are allocated in the cluster; and Con-
straint (3) guarantees that the allocated GPUs for active jobs
do not exceed each server’s capacity limit.

B. Characterization of Per-Iteration Training Time o

As mentioned in Section II, we focus on the widely adopted
asynchronous pipeline parallel training [9], [26]. We note that
our design can be straightforwardly extended to synchronous
pipeline parallelism [19] by following the analytic model pro-
posed in [20] for «;. Under asynchronous pipeline parallelism,
as the execution of all stages is fully pipelined, the per-
iteration training time is the maximum per-stage computation-
communication time of a single stage (i.e., the bottleneck
stage) [9], [30]. We use BZT; to denote the per-iteration train-
ing time of stage s of job ¢ on machine m, which consists
of the computation time for the current batch of the stage
replicas on server m in one iteration (denoted as compj’),
the data communication time for sending activations and gra-
dients of the current batch into and out of the stage (denoted
as comm;), and the communication costs for synchronizing
parameters among all the stage replicas using AllReduce op-
erations (AllReduce;’fs). The communication time (including
both the FP and the BP) can be calculated as follows:

b
m.o__ pzf,s +pi,sa sz > 07
comp; s = 0 2 — 0
) 1,8 — Y

“)

To compute the inter-stage communication time when stage
s — 1 and/or s are replicated over multiple GPUs, we evenly
distribute the data being transmitted across inter-stage links.
Thus, the per-iteration data communication time between each

2dout 2dim,
‘ “2 [20]. Hence,

replica of stage s — 1 and s is ===t = =
for stage s € [2,3,...,5; — 1], if 2", > 0, we have:

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

(2dzn ki,s—l*z?fsfl + quut kz‘,s+1*1?,7’s+1)xm
%S ki s—1 %8 ki, s41 8

(@7 /9) Binrer

im T x
2d7l,nS i,s—1 + Qdf'l;t i,8+1
S ki s—1 5 Kjs41 5)

)
Bintra

m
comm; s =

+

and comm;"; = 0 otherwise. The term comm; for the first
and last stages can be calculated similarly. The data size com-
municated for each stage replica of stage s in the AllReduce
operation can be calculated as %h” [31] for both RAR
and TAR, and the data communication time is bottlenecked by
the minimum bandwidth between stage replicas. Hence, the
time taken by the AllReduce operation for job i stage s is:

2hegrhe it ol < ks,

m) ki s =" Binter

AllReduce; s 2(ki.sgfl)hi,: o ©6)
Here, in the first case, the bottleneck is due to the server NIC

bandwidth, while in the second case, all data communication

is conducted via the intra-server connection. Lastly, by putting

all things together and in line with existing formulations on

pipeline scheduling [25], [30], [20], we obtain the per-iteration

training time «; for processing a single batch as follows:

ﬂm
1,8

o = max
meM,se[S;]

max (comp;’s + commjs + AllReduce;js). (7)
meM,s€[S;] ’ ’ ’

Additionally, some distributed communication engines (e.g.,
BytePS [32]) enable strategic overlapping of AllReduce oper-
ations with backward computation. For example, gradients for
layer [can be synchronized using AllReduce while simulta-
neously computing gradients for layer [— 1. To account for
this overlapping, one can apply model-dependent coefficients
to the backward computation time and AllReduce time [33].

Let o and o™ denote the maximum and minimum
per-iteration training times of job ¢ given a GPU assignment,
respectively. o;*** can be computed using Eq. (7) if the job is
assigned to g; servers, with each server holding a single-stage
replica and assigned a bandwidth of 1/¢g X B; ... However,
evaluating a?‘in for each job requires searching through an
exponential number of possible GPU assignments, which is
computationally intractable. To address this challenge, we will
propose an estimation strategy to be described in Sec. IV-B.

C. The Online DDLWMP Job Scheduling Problem

In this paper, our goal is to minimize the total DDLwWMP
job completion in a time horizon of length 7', which can be
evaluated as Zz‘e[1 (t; + n;cy;). Putting all modeling together,
we can formulate our DDLWMP job scheduling problem as:

Minimize Z (t: + niay) ®)
i€ll]

subject to (1)—(3), z7s € N,Vm € [M],i € [I],s € [S4],
t; € [T,Vi € [I].

We note that Problem (8) is an integer non-convex program
due to the intricate modeling of the per-iteration training time
«;. Moreover, another key challenge in Problem (8) stems
from the uncertain job submission time 7; and the unknown
number of job training iterations n;, which necessitates online
algorithmic designs. In fact, the offline variant of Problem (8),
where r;, n; and «; are all predetermined (rendering the prob-
lem of scheduling parallelizable tasks [34]) is NP-hard. To
address these challenges, we propose a prediction-assisted al-
gorithm for optimizing the online DDLWMP job scheduling
in GPU clusters.

IV. PREDICTION-ASSISTED ONLINE JOB SCHEDULING
ALGORITHM

A. Basic Idea

The complexities of Problem (8) arise from two distinct per-
spectives: 1) The sensitivity of DDLWMP jobs to GPU place-
ment (the per-iteration training time, can significantly vary
with different placements); and 2) the inherent online nature of
the problem (not only are the job arrival times unknown, but
the actual number of job execution iterations is also typically
uncertain in practice).

To address these unique challenges, we introduce a new on-
line scheduling algorithm named adaptive shortest-remaining-
processing-time-first (A-SRPT) to solve Problem (8) based on
the following key observations: First, we note that the com-
plex computation-communication structure of DDLwWMP jobs
can be effectively modeled using graphs. This realization leads
us to develop a strategic graph partitioning algorithm called
Heavy-Edge. This algorithm favors co-locating replicas with
substantial communication requirements, thereby enhancing
overall scheduling efficiency.

Utilizing Heavy-Edge for job placement, we propose an
online job scheduling framework for DDLwWMP jobs with a
theoretical competitive ratio guarantee. This framework is in-
spired by the proven optimality of preemptive Shortest Re-
maining Processing Time (SRPT) scheduling for jobs based
on their predicted durations on a single machine [29]. In our
approach, we construct a single-machine preemptive schedul-
ing instance based on the original non-preemptive scheduling
problem. This construction considers the size of each job and
its predicted number of training iterations.

We then apply SRPT to preemptively schedule these jobs
within this hypothetical single-machine instance. The results
obtained from this single-machine scheduling model are then
used to guide the non-preemptive job allocation in the actual
cluster environment. In this way, jobs with larger predicted
workloads are scheduled later, creating space for potentially
future smaller jobs to be scheduled first, thus reducing the total
job completion time.

B. The Heavy-Edge GPU Mapping Algorithm

In our Heavy-Edge GPU mapping algorithm, each job i
is assigned to a set of servers M, for execution. Each server
m € M, has g, available GPUs to host job i’s stage replicas,
such that ZmeMi gm = gi (gm < g as some GPUs in the

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

Job Graph

Q=8

=) G
=&
— —
M EBEE
Server 1

replica y of
wtage x

Allocated
Servers

Server 2 Server 3

D available GPU . GPl;t:lorTgLesdm
Fig. 2: GPU mapping: An illustrative example.

server may be occupied by existing jobs). We now map each
stage replica of job ¢ to a GPU, with the goal to reduce inter-
server communication to improve job training efficiency.

Toward this end, we model each job i as a graph Q = (V, £),
where vertices V represent stage replicas and edges £ denote
data communication, with edge weights indicating communi-
cation data size. For inter-stage communication between stages
s—1 and s, we assign edges with weight i1 S :dm for
each replica pair. For intra-stage commumcatlon (AllReduce)
in stage s, we handle RAR and TAR differently. In RAR,
replicas form a ring with edges weighted %hz s. For
TAR, edges connect replica pairs linked in double binary trees,
weighted (ks)hl s» Which is halved compared to RAR. This
reduction is due to the structure of the double binary trees,
where each tree processes half of the total data [24].

As a result, the GPU mapping problem is equivalent to
a graph cut problem that partitions a graph into |M;| sub-
graphs of size g,,, to minimize inter-server communication (to-
tal cut weight among subgraphs) and maximize intra-server
communication (total edge weights within subgraphs). Fig. 2
illustrates an example of GPU mapping. The job consists of
three stages, each with two replicas. The job is assigned to
three servers with four, one, and one available GPU(s), re-
spectively. We partition the job graph into three subgraphs,
each corresponding to the set of GPUs in a server with the
same color. Unfortunately, this graph partitioning problem is
an NP-complete balanced graph cut problem [35] even with
equal GPUs per server, and not to mention with varying GPU
availability. To address this challenge, we propose the Heavy-
Edge approach, which greedily assigns heavily connected
stage replicas to servers as follows.

In Heavy-Edge, we start by sorting the servers in |M,]
based on the available GPU numbers in a descending or-
der, denoted as {my, ma,...,may, }. Vertices in V (i.e., stage
replicas) are then assigned to these servers from my to m ;.
We denote the current server for assignment as m and use
node_set to denote the set of vertices assigned to m, which
is initialized as . Next, we consider two cases: 1) if |V|
equals m’s GPU count, all replicas are assigned to it; 2) for
single-GPU servers, we assign the vertex with the minimum
total edge weight. In the case of a server with multiple GPUs
and there are remaining vertices, the GPU mapping process
follows the “Heavy-Edge” principle: we iteratively add ver-
tices to node_set by finding the heaviest edge between as-
signed and unassigned vertices, prioritizing intra-server com-

munication efficiency. If no connecting edge exists, we ran-
domly assign an unassigned vertex. This process continues
until node_set matches m’s number of available GPUs.

We use an example in Fig. 2 to further illustrate our Heavy-
Edge GPU mapping algorithm. The process begins by iden-
tifying the heaviest communication edge, (S1-R1,S1-R2),
with a data size of 20MB, and assigning these nodes to
node_set, i.e., the first server. To optimize communication
efficiency, we then allocate unassigned nodes directly con-
nected to this pair (i.e., S2-R1 and S2-R2), each with a IMB
connection to S1-R1 and S1-R2 respectively, to the same
server, maximizing intra-server communication. This process
continues sequentially for subsequent servers until all nodes
are assigned, effectively minimizing inter-server communica-
tion overhead.

With the Heavy-Edge GPU mapping algorithm, we ob-
tain the minimum achievable per-iteration training time &™"
for jobs, helping predict job training times. To minimize per-
iteration time, each job is allocated to the fewest servers pos-
sible, utilizing the maximum number of interconnected high-
bandwidth GPUs. For job i, a set of machines M; is assigned,
where servers my to mjaq,—1 contribute all g GPUs, and the
last server m 4, contributes g° < g GPUs. Heavy-Edge de-
termines the GPU mapping, and a2 is estimated using (7).

C. The A-SRPT Online DDLwMP Job Scheduling Algorithm

1) Adaptive Shortest-Remaining-Processing-Time-First:
Our online scheduling algorithm is inspired by the online
SRPT framework proposed in [36], which is optimal for online
scheduling for single-machine jobs with known durations over
parallel machines. However, our problem is far more complex
due to two critical aspects: 1) Each job in our setting can
span multiple GPUs, inducing complex inter-job communica-
tion patterns; 2) The actual number of training iterations of
jobs in our setting becomes known only upon job completion.
Assume that we have a prediction model that predicts the
number of training iterations n; for each training job . We
define the prediction error for job i, denoted by ¢;, as the total
absolute difference between the predicted and actual numbers
of training iterations, i.e., |n; —7;|. Let € and € denote the total
prediction and average prediction errors, respectively, which
can be computed as:

€= € = n; —ni|, and g:E_ 9
g{;} Z%;] | | 7 ©)

Our proposed design adopts the Shortest Remaining Pro-
cessing Time (SRPT) strategy, which prioritizes available jobs
with the least processing time. This approach is known to be
delay-optimal in single-machine preemptive settings [17] and
has been proven competitive even when job processing times
are unknown until completion but can be estimated [29].

We present an overview of our algorithmic idea in Fig. 3.
We “virtualize” the entire GPU cluster as a ‘single machine’
and proportionally scale down each job’s workload ((1)).
Specifically, let instance A denote the original online DDL-
wMP scheduling problem. We then define a new hypotheti-
cal single-machine preemptive online scheduling problem A,

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

@

Original Scheduling
Scaling training iterations

Instance

Hypothetical Single-
Machine Instance

A n; — &ni Al
G

A

9i 9i ~
‘ @ Deciding job a’ﬂi — E?lZ @
scheduling order Using predicted iterations
DDLwMP
Jobs Hypothetical Single-Machine
Instance with Predicted Iterations |

A 1

Fig. 3: Algorithmic idea overview.

sharing A’s job set. In A, the number of training iterations
for job i is scaled to %n;, while the arrival time r; is kept
unchanged. As the actual per-iteration training time «; of a
job can only be obtained after placement, to estimate the job’s
GPU requirements and its minimum attainable per-iteration
training time, we optimistically employ the minimum per-
iteration training time &™™, which is determined in the pre-
vious section. Thus, the job duration in instance A; is calcu-
lated as %nidfﬁ“. Furthermore, since the actual number of
job training iterations n; is unknown at the time of scheduling,
we introduce another instance, /Nll. This instance substitutes
Ajy’s training iteration number, %ni, with the predicted value,
%iny (2)). Consequently, the predicted job duration in Ay is
represented as %ﬁid?‘in. We schedule all jobs in A, first, and
order jobs according to their completion time in Ay. We then
perform job scheduling on the actual cluster following the or-
der (@). By doing so, jobs with larger predicted workloads
%ﬁi&?‘m are scheduled later due to longer completion times
in A,. Therefore, the goal of A-SRPT is to create space for
potentially future smaller jobs to be scheduled first, thus re-

ducing the total job completion time.

Our A-SRPT algorithm is detailed in Algorithm 1. The job
completion order in A, is maintained in pending_queue.
Let ¢ denote the current head of pending_queue, i.e., the
job to be scheduled. If the number of GPUs required by job 7
(i.e., g;) is less than or equal to the available number of GPUs
in the cluster, job ¢ can be scheduled (Line 5), and removed
from pending_gqueue (Line 7). Otherwise, we proceed to
the next time-slot (Line 25).

To further improve resource utilization, we classify jobs
as either “communication-heavy” or “non-communication-
heavy,” thereby tailoring the scheduling policy to each job’s
communication pattern. The rationale behind this strategy
is that communication-heavy jobs have per-iteration training
times highly sensitive to GPU mapping due to large communi-
cation data sizes, making their worst-case training time o}"%*
(with inter-server bandwidth B :.,) much higher than when
allocated to the fewest possible servers. Jobs are classified by
the ratio a"®* /a2 If this ratio exceeds COMM_HEAVY (1.5
in our experiments), the job is communication-heavy; other-
wise, it is non-communication-heavy. Communication-heavy
jobs are delayed until sufficient server resources are available,
while non-communication-heavy jobs are initiated immedi-
ately to maintain workflow efficiency.

For communication-heavy jobs, we prioritize server con-

Algorithm 1: The A-SRPT Algorithm.

Input: 1, {S;}, {ki s}, g6 {p] .00 3, {din, A2}, {hi 3,
M, 9, Bintera Bintra
Output: {t;, {z" }}ic(n

1 while ¢t < T do
2 Append completed jobs in A1 using SRPT to pending_queue
3 while pending_queue is not empty do
4 i < head of pending_queue
5 if g; < available number of GPUs in the cluster then
6 M; 0
7 Pop i from pending_gueue
8 if "% /@in > comy_HEAVY then
9 Select g; GPUs from servers with most available
GPUs; M; < these servers
10 {x?}s} <+ Heavy-Edge(i, M)
1 Calculate a; ({z"}) using (7)
12 if a;({a]"})/&™" < coMM_HEAVY then
13 | tit
14 else
15 k< o ({z%})
16 forte {t+1,....t+7%n;a1"} do
17 Calculate {z]".} and o based on
current server availability
18 if a; < k then
19 L t; < t; break
20 ti <t
21 else
2 Select g; GPUs from servers with least available
GPUs; M; < these servers
23 {x;”'}s} < Heavy-Edge(i, M;); t; < t
24 else
25 | t+t+1

26 return {t;, {z{" } }ic[n)

solidation (Lines 8-20). We select servers based on maxi-
mum availability and calculate a;(x]"). If oy (z}%)/am™ <
COMM_HEAVY, we schedule immediately. Otherwise, we de-
lay up to T%ﬁio}?‘i“, constantly reassessing allocations for a
more efficient configuration, i.e., a lower «;.

For non-communication-heavy jobs, we prioritize im-
mediate execution using a fragmentation-aware strategy
(Lines 21-23). Since their per-iteration training times are
less affected by placement, we allocate them to servers with
lower availability, reserving higher-availability servers for
communication-heavy jobs. We then use the Heavy-Edge al-
gorithm for GPU mapping and promptly initiate the job.

2) Theoretical Performance Analysis: Let I'4 denote the
total job completion time achieved by A-SRPT for the GPU
cluster scheduling problem A, and let OPT 4 represent the true
optimal job completion time. Also, let OPT 4, and OPTj; de-
note the total job completion times of the SRPT-based sched-
ules for instances A; and A;, respectively. Due to space lim-
itation, we omit the proofs of Lemma 1-3 in this paper.
Lemma 1. OPT 4, < pOPT 4, where p = max;e(g) %
Lemma 2. T"4 is no larger than
grnaxalnax
G _ gmax

pG

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

max

where g™** = max;c() gi, and = max;e[q o

Lemma 3. OPT; < OPTa, +1 gmaxgmax .

Then, the total job completion time performance result of
A-SRPT immediately follows from Lemmas 1-3:

Theorem 1 (Total job completion time achieved by A-SRPT).
T4 is no larger than

pG
G _ gmax)p+

max . max

2pg

(L+p)G .

2+7+ (1+T+7Gfgmax)_

qMmin

times the optimal job completion time OPTy, where o™ £
min;e(ry o™

Proof. Combining Lemmas 1, 2 and 3 yields:
gmax max

—_ OPT4 <
G_gmax 6+p A

pG

G g JOPTa, +1

Pa<(147+
1+7 1+p

pG max max
Y OPTAtT br, 1tp 4
G—gmax POPTat1g™ e { G +G—gmax}e

Assuming each job runs at least one iteration, we have
I . .
pOPTy > OPTy, > _;(i x amin) /G = omin LED g then
follows that

247+

Ta pG max - (14+p)G | _
2 —_— 2 1 -
OPTA < [+T+G,_gmx]p+ PY p[+7+ G—gme €,
where p £ 2[:: . This completes the proof. O

We remark that our competitive ratio bound is for the worst-
case scenario. In this scenario, it is assumed that all jobs could
potentially be executed with the maximum per-iteration train-
ing time «°*, which rarely happens in practice. Our numer-
ical evaluations based on real-world data traces and popular
DNN models show that the performance of A-SRPT is much
better than the worst-case competitive ratio bound suggests.
Also, Theorem 1 says that the performance of A-SRPT is
closely tied to the average error of the employed prediction
model. In what follows, we propose an efficient prediction
model that provides robust estimates based on the actual char-
acteristics of the jobs.

3) Random Forest Based Prediction: Studies show that
most DDL jobs are recurrent, with nearly 65% submitted at
least five times over two months [6]. This recurrence provides
the opportunity for GPU cluster to perform prediction based
on repeated job submissions by applying a hashing function
to meta-information (e.g., user details, training dataset, and
command-line script), thus generating a unique group id
for recurrent jobs. Leveraging group id and historical job
data, we employ random forest regression [16] with mean
squared error for tree splitting to predict training iterations
based on group id and user id. We predict O iterations for
unseen jobs, treating them as immediately complete in A; and
adding them directly to pend_queue for swift execution, re-
ducing wait times and enhancing efficiency. We use 100 trees
in our random forest regression. The high efficiency of forest
regression allows frequent retrainings (hourly/daily) for accu-
rate predictions. Training with a two-month trace of 700,000

DDLwWMP jobs [6] takes only 80 seconds. Combined with A-
SRPT, our prediction model enables efficient resource allo-
cation and job scheduling in GPU clusters.

V. PERFORMANCE EVALUATION

In this section, we conduct both real-world data-trace-driven
testbed experiments and simulation studies to evaluate the per-
formance and efficacy of our proposed A-SRPT algorithm.

A. Real-World GPU Cluster Testbed Experiments

1) System Settings: /-a) Implementation and Testbed: We
implement A-SRPT using Python and PyTorch 2.1.1 [37] with
4634 lines of code. The evaluation of A-SRPT is conducted on
a single server equipped with two NVIDIA H100 NVL GPUs.
To simulate a GPU cluster, we utilize the Multi-Instance GPU
(MIG) [38] technique, partitioning the two H100 GPUs into
14 virtual GPUs (vGPUs), each with 12 GB of GPU memory.
The scheduling overhead per job is within 5s. Due to the MIG
configurations, inter-vGPU communication is limited to the
PClIe bandwidth of 128 GB/s. Consequently, GPU mapping
does not significantly impact our testbed experiment. There-
fore, we set the delay factor to zero in A-SRPT. For more het-
erogeneous inter-GPU networks, we evaluate the performance
of A-SRPT in the simulation studies later in this section.

1-b) Deep Learning Workload: The dataset for our job anal-
ysis is obtained from an open-source two-month deep learning
workload trace collected from a production cluster with 6000
GPUs [6]. This data-trace contains features including job dura-
tion, submission time, user id of the individual submitting the
job, requested number of GPUs, and group id that identi-
fies recurring jobs. After completing a data cleaning process,
we obtain a total of 758,223 jobs for analysis.

However, this data-trace does not provide the training jobs’
DNN model information. To address this issue, we profile nine
representative DNN models on the vGPUs: three image clas-
sification models on the ImageNet dataset [39] and six natural
language processing (NLP) models. The details of this model
profiling are summarized in Table I. Here, BERT-large and
XLNet-large are profiled on the SQuAD2.0 dataset [40]. For
T5 and the three versions of GPT models that cannot be ac-
commodated on a single GPU, we construct a smaller model
consisting of three layers from the original model, which will
be used for profiling with a token sequence length of 512. The
distributed training configurations for each model are derived
from the planner proposed in [20], which calculates multiple
configurations per model. We assign each model and the de-
rived distributed training configuration to a job group (i.e., a
group of recurrent jobs) following the GPU requirement in
the trace. If a job in a group requires only a single GPU,
we pair the group with a model with a single-GPU training
configuration. Otherwise, if the job group demands more than
one GPU, we randomly select a model and one of its training
configurations for the group. The number of job training itera-
tions is computed by dividing the job duration in the trace by
its approximate minimum per-iteration training time, &,

Due to the limited size of our local testbed, we randomly
selected three sets of 75 consecutive jobs from the original

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

. »

o

4
2
@

4
%
%
>
%
%

P S S SO
SEEERESEESIOPINSSOUHIS

Prediction Error

Fig. 4: Percentage of jobs: different prediction errors.

Model # of Parameters | Mini-Batch Size
VGG19 [41] 144M 32
ResNet152 [2] 60M 4
Inception-V3 [42] 24M 32
BERT-large [43] 340M 4
XLNet-large [44] 550M 4

T5 [45] 11B 8

GPT [1] 6.7B/13B/175B 32/32/16

TABLE I: DNN models.

100000

—a ASRPT
N AsRPTPertect

80000

60000

Time (sec)

40000

20000

Total Job Total Job Makespan

Completion Time Flow Time

Fig. 5: Testbed experiment performance.

traces. We uniformly scaled down the job arrival times and
training iterations to 10% of the original data, resulting in a
scheduling period on the order of hours per method.

1-c) Prediction Model: We use the first 80% jobs in the
trace to train our random forest regression prediction model,
completing in just 84 seconds. The prediction error is depicted
in Fig. 4, which shows that approximately 60% of the jobs are
predicted correctly. Although there remains a non-negligible
prediction error in a small fraction of jobs, our subsequent
evaluation reveals that our algorithm outperforms the baseline
performance even with imperfect predictions.

1-d) Baselines: Our A-SRPT algorithm is compared with
five baseline GPU cluster scheduling algorithms: (1) SPJF
(Shortest Predicted Job First): This approach schedules jobs
based on their predicted durations as proposed by MLaaS [6];
(2) SPWF (Shortest Predicted Workload First): This policy
proposed in Tiresias [14] schedules jobs according to the prod-
uct of predicted durations and the number of required GPUs;
(3) WCS-Duration (Work-Conserving Scheduler, WCS [46] by
Duration): This approach continuously schedules jobs to use
available GPUs within the cluster following the order based
on their predicted duration; (4) WCS-Workload: Variant of (3),
sequencing by predicted workload; (5) WCS-SubTime: Variant
of (3), arranged by submission time. All baselines adopt the
Heavy-Edge algorithm for GPU mapping in both testbed and
simulation experiments.

2) Experimental Results: We present the real testbed re-
sults in Fig. 5, averaged over three job sets. The total job flow
time is defined as the difference between each job’s comple-

tion time and arrival time, and the makespan is the completion
time of the final job. We include the baseline A-SRPT-Perfect,
which uses A-SRPT with perfect knowledge of job durations
(i.e., perfect prediction). Our A-SRPT achieves performance
close to A-SRPT-Perfect, with only 7% longer total job com-
pletion time, and significantly outperforms all other baselines.
While WCS baselines achieve shorter system makespans, they
prioritize scheduling longer training jobs whenever possible.
This blocks the timely execution of later arriving shorter jobs,
resulting in larger total job completion times. In contrast, our
algorithm reduces the total job completion time by up to 44%.

B. Large-Scale Simulations

1) System Settings: /-a) System Settings: We consider a
cluster consisting of 250 servers, each equipped with eight
GPUs. The NIC bandwidth of each server is set to 10Gbps, and
the inter-GPU communication bandwidth within each server
is 300GB/s, based on the NVLink specs of NVIDIA V100
GPUs. We profiled all DNN models on a single NVIDIA V100
GPU. For scheduling, we randomly sample consecutive jobs
from the original trace.

2) Experimental Results: 2-a) Different Number of Jobs:
As the number of jobs increases, the workload and job diver-
sity grow, challenging the online algorithm’s ability to han-
dle varying job sizes. Fig. 6 shows total job completion times
for A-SRPT and baselines with job counts from 37,500 to
150,000 (5% to 20% of the trace). SPJF performs the worst
due to its rigid strategy based solely on predicted durations,
neglecting varying GPU demands. If the shortest job does not
fit, it will not schedule longer jobs with fewer GPU demands.
SPWF balances job duration with GPU needs, leading to bet-
ter workload distribution. WCS-Duration and WCS-Workload
enhance GPU utilization but delay larger jobs by prioritizing
smaller ones. A-SRPT consistently outperforms baselines, re-
ducing total job completion times by 31% to 91%.

2-b) Different Percentages of Single-GPU Jobs: The origi-
nal trace [6] has over 70% single-GPU jobs, making schedul-
ing less challenging due to minimal server assignment. Thus,
we fix the number of jobs at 75,000 and vary the percentage
of single-GPU jobs, with jobs randomly set for single-GPU
or distributed training. As the fraction of distributed jobs in-
creases, the scheduling problem becomes harder due to higher
workloads and complex communication. Fig. 7 shows that
as single-GPU jobs decrease from 80% to 0%, A-SRPT in-
creasingly outperforms baselines, reducing total job comple-
tion time by 16% to 57%.

2-c) Different Server NIC Bandwidths: We evaluate A-
SRPT with server NIC bandwidths from 1 Gbps to 50 Gbps,
using the job set with 0% single-GPU jobs. Lower bandwidth
exacerbates communication overhead, yielding longer total job
completion times under poor scheduling. Fig. 8 shows A-
SRPT maintains consistent performance gains, while base-
lines falter at 1 Gbps. Notably, at 50 Gbps, A-SRPT outper-
forms the best baseline WCS-Duration by 12%, and at 1 Gbps,
it reduces total job completion time by up to 92%, demon-

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

112

- A-SRPT
SPJF

mE SPWF

=== WCS-Duration

=== WCS-Workload

. WCS-SubTime

vam A-SRPT
SPJF

== SPWF

== WCS-Duration

&
IS

w
w

== WCS-Workload
nem WCS-SubTime

Total Job Completion Time (sec)
~

Total Job Completion Time (sec)
N

%
80%

20% 40% 60%
Single-GPU Job Percentage

37500 75000 112500

of Jobs

150000 0%

Fig. 6: Total job completion
time comparisons with differ-
ent numbers of jobs.

Heavy-Edge ILP
Model PITT (ms) PCT (ms) | PITT (ms) PCT (ms)
VGG19 88.11 1.94 82.96 55318.86
GPT-175B 10.14 1.52 10.14 2288.12

TABLE 1II: Per-iteration training time (PITT) and placement
computation time (PCT): Heavy-Edge vs. ILP

strating its effectiveness in handling communication overhead
and ensuring efficient job training.

2-d) Different Prediction Models: We now examine the per-
formance of our prediction model in Fig. 9 using jobs with
GPU demands following the original trace. Our random for-
est regression model is compared with simpler methods based
on the mean and median of previous job iterations, as well
as a perfect prediction model (i.e., A-SRPT-Perfect). All other
baselines use random forest regression. The average errors
for the random forest, median-based, and mean-based models
are 369, 563, and 593, respectively. The random forest model
outperforms simpler methods due to lower average error and
is only 14% less efficient than the perfect model, while less
accurate models (e.g., mean-based) significantly degrade algo-
rithm performance.

2-¢) Heavy-Edge vs. Integer Linear Programming (ILP):
Finally, we evaluate the performance of Heavy-Edge, with
results shown in Table II. In comparison, the placement is for-
mulated as an ILP problem based on [47] and solved optimally
using the Gurobi Optimizer [48]. Experiments were conducted
on a MacBook Pro (M1 MAX chip, 64 GB memory). We
compare the per-iteration training time (PITT) and placement
computation time (PCT) for two of our profiled models, aver-
aging results over 20 cases with varying GPU availability per
server. For the VGG19 model, the heterogeneity in computa-
tion time and data communication presents challenges in GPU
mapping. Heavy-Edge achieves a PITT only 6% longer than
the optimal ILP solution, while computing in under TWO mil-
liseconds compared to ILP’s 55+ seconds. Moreover, for the
GPT-175B model, the uniform structure allows Heavy-Edge
to find a solution 1500 times faster than the ILP.

VI. DISCUSSIONS

We note that the landscape of parallelism for distributed
deep learning training continues to evolve. New methods, such
as tensor parallelism [8] and expert parallelism [49], have
been key enablers for training extremely large-scale foundation
models [50]. Reflecting on this, it is interesting to discuss how

- ASRPT - Perfect

SPJF
mE SPWF
== WCS-Duration
=== WCS-Workload
- WCS-SubTime

mwa Random Forest
mm Median

o o
w

o o o
- N

o aap omNw
>
NSNS

Total Job Completion Time (sec)
Total Job Completion Time (sec)

)
°
o

50Gbps

10Gbps
Server NIC Bandwidth

Fig. 7: Completion time com- Fig. 8: Total job completion Fig. 9: Total completion time
parisons with different per- time with different server comparisons: different pre-
centages of single-GPU jobs. NIC bandwidths.

diction models and baselines.

A-SRPT can be extended to work with emerging parallelisms
to enable DDL scheduling designs for the future.

> Tensor parallelism. Tensor parallelism splits layers across
multiple GPUs, necessitating extensive inter-GPU communica-
tion through AllReduce operations [8]. To adapt Heavy-Edge
for tensor parallelism, we modify our graph model 2 = (V, €)
to represent tensor slices as vertices and AllReduce operations
as weighted edges. For communication efficiency, all tensor
slices of a layer must reside within a single server. To accom-
modate this, A-SRPT delays the start of tensor parallelism
jobs until sufficient server capacity is available.

> Expert parallelism. Expert parallelism in Mixture-of-
Experts (MoE) models distributes different ‘expert’ layers
across GPUs, posing challenges in balancing workloads and
managing inter-GPU communication [49]. We can represent
expert groups as vertices in our graph-based model. Communi-
cation, characterized by sparse activations/gradients and token
routing, is represented as weighted edges. Due to the dynamic
data transfer patterns presented in MoE training, we can set the
edge weights based on the estimated average communication
costs. This allows MoE jobs to be integrated into our unified
graph model, enabling effective placement and scheduling with

Heavy-Edge and A-SRPT.

VII. CONCLUSION

In this paper, we investigated online scheduling for dis-
tributed deep learning with mixed parallelism (DDLwMP)
jobs in GPU clusters. We introduced the adaptive shortest-
remaining-processing-time first (A-SRPT) scheduling method,
which integrates: 1) a GPU mapping algorithm that strategi-
cally assigns GPUs to job stages to minimize communication
overhead by co-locating communication-intensive parts, and
2) an online scheduling algorithm that uses a prediction model
for job scheduling. By modeling each DDL job as a graph,
our GPU mapping algorithm reduces communication overhead
effectively. Additionally, we proposed an online scheduling al-
gorithm that transforms the complex GPU cluster scheduling
problem into a single-machine instance, which can be opti-
mally solved. The scheduling decisions from this simplified
problem then guide the actual GPU cluster scheduling. Theo-
retical analysis and trace-driven experiments demonstrated A-
SRPT’s efficacy, achieving up to 92% reduction in total job
completion time compared to baselines.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

[1]

[2]

[3

=

[4

=

[5

=

[6]

[7]

[8

=

[10]

(1]

[12]

(13]

[14]

[15
[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24

REFERENCES

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language Models
Are Few-Shot Learners,” arXiv preprint arXiv:2005.14165, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. of IEEE CVPR, 2016.

L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling Deep Rein-
forcement Learning for Datacenter-Scale Automatic Traffic Optimiza-
tion,” in Proc. of ACM SIGCOMM, 2018.

W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
Cluster Scheduling for Deep Learning,” in Proc. of USENIX OSDI, 2018.
A. Qiao, S. K. Choe, S. J. Subramanya, W. Neiswanger, Q. Ho,
H. Zhang, G. R. Ganger, and E. P. Xing, “Pollux: Co-adaptive Cluster
Scheduling for Goodput-Optimized Deep Learning,” in Proc. of USENIX
OSDI, 2021.

Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the Wild: Workload Analysis and
Scheduling in Large-Scale Heterogeneous GPU Clusters,” in Proc. of
USENIX NSDI, 2022.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling Distributed Machine
Learning with the Parameter Server,” in Proc. of USENIX OSDI, 2014.
M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training Multi-Billion Parameter Language Mod-
els Using GPU Model Parallelism,” arXiv preprint arXiv:1909.08053,
2019.

D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: Generalized
Pipeline Parallelism for DNN Training,” in Proc. of ACM SOSP, 2019.
Z. Han, H. Tan, S. H.-C. Jiang, X. Fu, W. Cao, and F. C. Lau, “Schedul-
ing Placement-Sensitive BSP Jobs with Inaccurate Execution Time Es-
timation,” in Proc. of IEEE INFOCOM. IEEE, 2020.

Q. Wang, S. Shi, C. Wang, and X. Chu, “Communication Contention
Aware Scheduling of Multiple Deep Learning Training Jobs,” arXiv
preprint arXiv:2002.10105, 2020.

M. Yu, B. Ji, H. Rajan, and J. Liu, “On Scheduling Ring-All-Reduce
Learning Jobs in Multi-Tenant GPU Clusters with Communication Con-
tention,” in Proc. of ACM MobiHoc, 2022.

S. K. Karmaker, M. M. Hassan, M. J. Smith, L. Xu, C. Zhai, and
K. Veeramachaneni, “AutoML to Date and Beyond: Challenges and Op-
portunities,” ACM Computing Surveys (CSUR), vol. 54, no. 8, pp. 1-36,
2021.

J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A GPU Cluster Manager for Distributed Deep
Learning,” in Proc. of USENIX NSDI, 2019.

NVIDIA NVLink, https://www.nvidia.com/en-us/data-center/nvlink/.

L. Breiman, “Random Forests,” Machine learning, vol. 45, pp. 5-32,
2001.

E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys, “Sequencing and
Scheduling: Algorithms and Complexity,” Handbook in Operations Re-
search and Management Science: Logistics of Production and Inventory,
vol. 4, 1993.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “GPipe: Efficient Training of Giant
Neural Networks Using Pipeline Parallelism,” in Proc. of NeurIPS, 2019.
Z. Luo, X. Yi, G. Long, S. Fan, C. Wu, J. Yang, and W. Lin, “Efficient
Pipeline Planning for Expedited Distributed DNN Training,” in Proc. of
IEEE INFOCOM. 1IEEE, 2022.

A. Sergeev and M. Del Balso, “Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.
P. Sanders, J. Speck, and J. L. Traff, “Two-Tree Algorithms for
Full Bandwidth Broadcast, Reduction And Scan,” Parallel Computing,
vol. 35, no. 12, pp. 581-594, 2009.

M. Yu, Y. Tian, B. Ji, C. Wu, H. Rajan, and J. Liu, “GADGET: Online
Resource Optimization for Scheduling Ring-All-Reduce Learning Jobs,”
in Proc. of IEEE INFOCOM. IEEE, 2022.

Massively Scale Your Deep Learning Training with NCCL 2.4,
https://developer.nvidia.com/blog/massively-scale-deep-learning-
training-nccl-2-4/.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “DAPPLE: A Pipelined Data Parallel Approach for
Training Large Models,” in Proc. of ACM PPoPP, 2021, pp. 431-445.
D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-Efficient Pipeline-Parallel DNN Training,” in Proc. of ICML,
2021.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An Efficient
Dynamic Resource Scheduler for Deep Learning Clusters,” in Proc. of
EuroSys, 2018.

A. B. Faisal, N. Martin, H. M. Bashir, S. Lamelas, and F. R. Dogar,
“When Will My ML Job Finish? Toward Providing Completion Time Es-
timates through Predictability-Centric Scheduling,” in Proc. of USENIX
OSDI, 2024.

E. Bampis, K. Dogeas, A. V. Kononov, G. Lucarelli, and F. Pascual,
“Scheduling with Untrusted Predictions,” in Proc. of IJCAI, 2022.

J. M. Tarnawski, D. Narayanan, and A. Phanishayee, “Piper: Multidi-
mensional Planner for DNN Parallelization,” in Proc. of NeulPS, 2021.
Performance reported by NCCL tests, https://github.com/NVIDIA/nccl-
tests/blob/master/doc/PERFORMANCE.md.

Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and C. Guo,
“A Generic Communication Scheduler for Distributed DNN Training
Acceleration,” in Proc. of ACM SOSP, 2019, pp. 16-29.

M. Yu, C. Wu, B. Ji, and J. Liu, “A Sum-Of-Ratios Multi-Dimensional-
Knapsack Decomposition for DNN Resource Scheduling,” in Proc. of
IEEE INFOCOM, 2021.

J. Turek, J. L. Wolf, and P. S. Yu, “Approximate Algorithms for Schedul-
ing Parallelizable Tasks,” in Proc. of ACM SPAA, 1992.

K. Andreev and H. Ricke, “Balanced Graph Partitioning,” in Proc. of
ACM Symposium on Parallelism in Algorithms and Architectures, 2004.
C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, “Approximation
Techniques for Average Completion Time Scheduling,” SIAM Journal
on Computing, vol. 31, no. 1, pp. 146-166, 2001.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An Im-
perative Style, High-Performance Deep Learning Library,” in Proc. of
NeurlPS, 2019.

NVIDIA Multi-Instance GPU,
us/technologies/multi-instance-gpu/.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Proc. of IEEE CVPR,
2009.

P. Rajpurkar, R. Jia, and P. Liang, “Know What You Don’t Know:
Unanswerable Questions for SQuAD,” arXiv preprint arXiv:1806.03822,
2018.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556, 2014.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the Inception Architecture for Computer Vision,” in Proc. of IEEE
CVPR, 2016.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-Training
of Deep Bidirectional Transformers for Language Understanding,” arXiv
preprint arXiv:1810.04805, 2018.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V.
Le, “XLNet: Generalized Autoregressive Pretraining for Language Un-
derstanding,” in Proc. of NeurIPS, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the Limits of Transfer Learn-
ing with a Unified Text-to-Text Transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485-5551, 2020.

Y. Zheng, N. B. Shroff, R. Srikant, and P. Sinha, “Exploiting Large
System Dynamics for Designing Simple Data Center Schedulers,” in
Proc. of IEEE INFOCOM, 2015.

A. Archer, M. Fahrbach, K. Liu, and P. Prabhu, “Pipeline Parallelism for
DNN Inference with Practical Performance Guarantees,” arXiv preprint
arXiv:2311.03703, 2023.

Gurobi Optimizer, https://www.gurobi.com/.

C. Hwang, W. Cui, Y. Xiong, Z. Yang, Z. Liu, H. Hu, Z. Wang, R. Salas,
J. Jose, P. Ram et al., “Tutel: Adaptive Mixture-of-Experts at Scale,”
Proc. of MLSys, vol. 5, 2023.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von
Arx, M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill et al., “On
the Opportunities and Risks of Foundation Models,” arXiv preprint
arXiv:2108.07258, 2021.

https://www.nvidia.com/en-

Authorized licensed use limited to: The Ohio State University. Downloaded on July 15,2025 at 21:42:59 UTC from IEEE Xplore. Restrictions apply.

