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ABSTRACT

Multi-Objective Markov Decision Processes (MO-MDPs) are receiving increasing attention, as
real-world decision-making problems often involve conflicting objectives that cannot be addressed
by a single-objective MDP. The Pareto front identifies the set of policies that cannot be dominated,
providing a foundation for finding Pareto optimal solutions that can efficiently adapt to various
preferences. However, finding the Pareto front is a highly challenging problem. Most existing
methods either (i) rely on traversing the continuous preference space, which is impractical and results
in approximations that are difficult to evaluate against the true Pareto front, or (ii) focus solely on
deterministic Pareto optimal policies, from which there are no known techniques to characterize the
full Pareto front. Moreover, finding the structure of the Pareto front itself remains unclear even in
the context of dynamic programming, where the MDP is fully known in advance. In this work, we
address the challenge of efficiently discovering the Pareto front, involving both deterministic and
stochastic Pareto optimal policies. By investigating the geometric structure of the Pareto front in
MO-MDPs, we uncover a key property: the Pareto front is on the boundary of a convex polytope
whose vertices all correspond to deterministic policies, and neighboring vertices of the Pareto front
differ by only one state-action pair of the deterministic policy, almost surely. This insight transforms
the global comparison across all policies into a localized search, drastically reducing the complexity
of searching for the exact Pareto front. We develop an efficient algorithm that identifies the vertices
of the Pareto front by solving a single-objective MDP only once and then traversing the edges of the
Pareto front, making it more efficient than existing methods. Our empirical studies demonstrate the
effectiveness of our theoretical strategy in discovering the Pareto front efficiently.

1 INTRODUCTION

In recent years, there has been growing interest in multi-objective Markov Decision Processes (MO-MDPs), where
the reward involves multiple implicitly conflicting objectives (Xu et al., 2020b; Rame et al., 2024). Consequently,
attention has shifted toward developing approaches for finding Pareto optimal policies, policies whose returns cannot
be dominated by any other policies, in MO-MDPs and, more broadly, in multi-objective Reinforcement Learning
(RL) (Abdolmaleki et al., 2020; Yang et al., 2019b; Lu et al., 2022; Zhou et al., 2024).

Finding Pareto optimal policies based on specific preferences is often sensitive to the scales of the objectives and
struggles to adapt to changing preferences (Zhou et al., 2024; Qiu et al., 2024). Accurately capturing true preferences
across multiple objectives is challenging, as the balance between objectives can be distorted by differences in scale (Ab-
dolmaleki et al., 2020; Kim et al., 2024). When one reward objective has a much larger scale than others, even assigning
a small weight to it cannot prevent it from dominating the scalarized reward, leading to an undesired Pareto optimal
policy. In such cases, multiple adjustments to the preferences may be necessary to achieve the desired balance across
objectives. Additionally, preferences may shift over time, requiring quick adaption to new preferences (Mossalam et al.,
2016; Yang et al., 2019a; Jang et al., 2023). In such cases, solving for a Pareto optimal policy from scratch using a
scalarization-based approach does not meet the need for fast adaptability.

On the other hand, the Pareto front which consists of all Pareto optimal policies directly represents the trade-offs
between multiple objectives, thus avoiding sensitivity to differences in objective scales. Once the Pareto front is
obtained, the Pareto optimal policies corresponding to various preference vectors can be selected from the Pareto front
without recalculating from scratch.
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The Pareto front approximation methods can be broadly divided into two categories. The first straightforward approach
derives the Pareto front by solving single-objective problems obtained from scalarizing the multi-objective MDP for
each preference and combining the resulting Pareto optimal policies (Qiu et al., 2024). Although state-of-the-art
methods in the field of MO-RL leverage the similarity between Q-functions or policy representations of Pareto optimal
policies for nearby preferences to avoid solving the optimal policy from scratch for each preference, thus reducing
complexity (Parisi et al., 2014; Yang et al., 2019a; Lu et al., 2022), these methods still require sampling the continuous
preference space to approximate the Pareto front. In cases where the Pareto front contains low-dimensional faces,
sampling preference vectors on those faces makes it nearly impossible for approximation methods to identify such
edge cases and accurately reconstruct the exact Pareto front. Another Pareto front finding method iteratively finds the
preference that improves the current Pareto front the most to avoid blind traversing the preference space (Roijers, 2016;
Mossalam et al., 2016). However, this method only identifies deterministic policies on the Pareto front, which does not
capture the entire Pareto front. In 2D (2-objectives) cases, constructing the whole Pareto front from deterministic Pareto
optimal policies simply connects adjacent deterministic points by a straight line. However, in general cases, it is not
that simple. For example, in a 3D (3-objectives) case shown in Fig. 1, deriving the entire Pareto front (as in Fig. 1a)
from the vertices corresponding to deterministic Pareto optimal policies (as in Fig. 1b) alone still requires significant
effort. Therefore, even in scenarios where the MDP is fully known, deriving the entire Pareto front through dynamic
programming remains complex. This raises a fundamental question:

How can we efficiently obtain the full exact Pareto front in MO-MDPs?

In this work, we address the problem of efficiently finding the Pareto front in MO-MDPs. We explore the geometric
properties of the Pareto front in MO-MDP and reveal a surprising property of deterministic policies on the Pareto front:
the Pareto front lies on the boundary of the convex polytope, and the neighboring deterministic policies, corresponding
to neighboring vertices of the Pareto front, differ by one state-action pair almost surely. Building on this key insight, we
propose an efficient algorithm for finding the Pareto front.

Specifically, our contributions are as follows:

1. Geometric Properties of the Pareto Front: We reveal several key geometric properties of the Pareto front,
which form the foundation of our efficient Pareto front searching algorithm. First, we demonstrate that
the Pareto front lies on the boundary of a convex polytope, with its vertices corresponding to deterministic
policies. Notably, any neighboring policies on this boundary differ by only one state-action pair, almost surely1.
Furthermore, we prove that deterministic Pareto optimal policies are connected and all Pareto-optimal faces
incident to a deterministic policy can be efficiently extracted from the convex hull formed by that policy and
its neighbors.

2. Efficient Pareto Front Searching Algorithm: We propose an efficient Pareto front searching algorithm
that can discover the exact Pareto front, while also identifying all deterministic Pareto-optimal policies as
a byproduct. The proposed algorithm only requires solving the single-objective optimal policy once for
initialization, and the total iteration number is the same as the number of vertices on the Pareto front.
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(b) Vertices on Pareto front

Figure 1: Finding Pareto front and Pareto front vertices in MO-MDP

2 RELATED WORK

In the literature on both multi-objective optimization and reinforcement learning, two categories of problems are
commonly considered. The first assumes that the (sequential) decision maker has preset or deduced preferences over

1For almost all P and r in the space of valid transition kernels and rewards (with Lebesgue measure 1), the neighboring
deterministic policies on the convex polytope differs by at most one state-action pair.
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multiple objectives in advance, and the goal is to find a Pareto optimal solution that performs well under these given
preferences (Fernando et al., 2023; Chen et al., 2024; Mahapatra & Rajan, 2020; Xiao et al., 2024). The methods
addressing this problem in multi-objective MDPs are specifically referred to as single-policy methods (Siddique et al.,
2020; Peschl et al., 2021; Hwang et al., 2023; Zhou et al., 2024; Qiu et al., 2024). The second category focuses on
finding a set of (approximate) Pareto optimal solutions that are diverse enough to represent the full range of the Pareto
front (Liu et al., 2021; Zhang et al., 2023; Ye et al., 2024). This allows the (sequential) decision maker to choose the
most preferable solution afterward. Due to its flexibility in adapting to changing preferences, this approach has received
significant attention. However, finding the Pareto optimal front in the multi-objective optimization field does not take
advantage of the specific structure of MO-MDPs, where multiple objectives share the same state and action spaces,
as well as identical transition dynamics. Exploiting this structure in MO-MDPs could potentially lead to significant
reductions in computational complexity. This section overviews the methods to get the Pareto optimal front estimation
in MO-MDPs and MO-RL.

As early as White (1982), the dynamic programming-based method was proposed to find the optimal Pareto front for
MO-MDPs, though the size of the candidate non-stationary policy set grows exponentially with the time horizon. To
efficiently find the vertices on the Pareto front, Mossalam et al. (2016) introduced the Optimistic Linear Support (OLS)
method, which solves a single-objective problem along the direction that improves the current set of candidate policies
the most. However, OLS can only find vertices on the Pareto front and does not provide a method for constructing the
entire Pareto front from these vertices, which remains non-trivial.

Van Moffaert & Nowé (2014) proposed Pareto Q-learning, which learns a set of Pareto optimal policies in the MO-RL
setting. Building on this, subsequent work has investigated training a universal Pareto optimal policy set, where the
policy network takes preference embedding as input and outputs the corresponding Pareto optimal policy (Yang et al.,
2019a; Abels et al., 2019; Zhou et al., 2020; Lu et al., 2022). These Q-learning variants rely on the maximization of
Q-function estimations over the action space, making them suitable only for discrete action spaces. Recent works
have extended Q-learning with policy networks to handle continuous action spaces (Xu et al., 2020a; Basaklar et al.,
2022). While these Q-learning methods update the Q-function for each preference vector by leveraging the Q-functions
of similar visited preference vectors, thus avoiding the need to retrain from scratch, they still require updating the
Q-function for each visited preference vector. Consequently, they still need to explore the preference space to achieve a
near-accurate Pareto front. This process becomes computationally inefficient as the reward dimension increases.

There are also policy-based MORL algorithms designed to find Pareto optimal policies (Chen et al., 2021; Cai et al.,
2023; Zhou et al., 2024; Parisi et al., 2014). A concept similar to our approach, which directly searches over the
Pareto front, is the Pareto-following algorithm proposed by Parisi et al. (2014). This algorithm employs a modified
policy-gradient method that adjusts the gradient direction to follow the Pareto front. While it can reduce the complexity
of finding the Pareto front by avoiding the need to converge to the optimal policy from scratch, it requires multiple
policy-gradient steps to identify even a nearby Pareto optimal policy. Furthermore, it cannot guarantee comprehensive
coverage of the estimated policies, nor can it ensure discovering the true Pareto front.

In addition to value-based and policy-based methods that extend from single-objective RL, there are also heuristic
approaches for combining policies that have shown promising performance in specific settings. For instance, rewarded
soup (Rame et al., 2024; Jang et al., 2023) proposes learning optimal policies for individual preference criteria and
linearly interpolating these policies to combine their capabilities. While Rame et al. (2024) demonstrated that rewarded
soup is optimal when individual rewards are quadratic with respect to policy parameters, this quadratic reward condition
is highly restrictive and does not apply to general MDPs.

3 PARETO FRONT SEARCHING ON MO-MDP

We begin with introducing to the basic concepts underlying MO-MDPs. Next, we provide an overview of the proposed
efficient Pareto front searching algorithm to offer intuition into its workings. Finally, we present a detailed explanation
of the algorithm. A proof sketch of the proposed algorithm will be provided in Section 4.

3.1 PRELIMINARIES ON MO-MDP

We consider a discounted finite MO-MDP (S,A,P, r, γ), where S and A are the sets of states and actions, with
cardinalities S and A, respectively. The transition kernel P defines the probability P(s′|s, a) of transitioning from s
to s′ given action a. The reward tensor r ∈ RS×A×D specifies the D-dimensional reward r(s, a) obtained by taking
action a in state s. γ < 1 is the discount factor.
Assumption 1. (Sufficient Coverage of the Initial State Distribution) We assume that the initial state distribution µ > 0,
meaning that the probability of starting from any state is larger than zero.
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The sufficient coverage of the initial state distribution assumption is commonly used in RL (Agarwal et al., 2020).
Define Π as the set of stationary policies, where for any π ∈ Π, π(a|s) represents the probability of selecting a at state
s. The value function with policy π is denoted as Vπ(s) ∈ Rd, which is written as

Vπ(s) = E

[∑
t

γtr(st, at)|s0 = s, at ∼ π(·|st), st+1 ∼ P(·|st, at)

]
.

We define the long-term return of policy π as Jπ(µ) = Es∼µ(·) [V
π(s)]. Let J(µ) denote the set of expected long-term

returns for all stationary policies under the initial state distribution µ, i.e., J(µ) = {Jπ(µ)|π ∈ Π}. For simplicity of
notation, we will omit µ in the following sections.

J is convex as proven in Lu et al. (2022). We further emphasize that J is not only convex but also a convex polytope,
with each vertex corresponding to a deterministic policy, as established in Lemma 12.
Lemma 1. In discounted finite MO-MDP, under Assumption 1, J is a closed convex polytope, and its vertices are
achieved by deterministic policies.

As we investigate the boundary of J, which is a convex polytope, we introduce relevant definitions concerning convex
polytopes. Let C ⊆ Rd be a convex polytope. A face of C is any set of the form F = C ∩ {x ∈ Rd : w⊤x = c},
where w⊤y ≤ c for any y ∈ C. The faces of dimension 0, 1, and dim(C)− 1 are called vertices, edges, and facets,
respectively.

To address the trade-offs between conflicting objectives, we introduce the well-known notions of dominance and Pareto
optimality. For any two vectors u and v, u strictly dominates v, denoted as u ≻ v, if each component of u is at least as
large as the corresponding component of v, and at least one component is strictly larger. A vector u is Pareto optimal
in a set S if any other vector v ∈ S does not strictly dominate u. The Pareto front of a set S, denoted as P(S), is the set
of Pareto optimal vectors in S.

In the context of MO-MDP, we say that policy π1 dominates policy π2, denoted as π1 ≻ π2 if Jπ1 ≻ Jπ2 . A policy π is
Pareto optimal if Jπ is Pareto optimal in J. We similarly define the Pareto front of Π as P(Π) = {π ∈ Π | Jπ ∈ P(J)}.

3.2 ALGORITHM OVERVIEW

This section provides an overview of our proposed algorithm for efficiently identifying the entire Pareto front. By using
a single-objective solver only once to get an initial Pareto optimal point and then searching along the surface of the
Pareto front, our method ensures complete coverage of the Pareto front.

The algorithm maintains a queue Q containing Pareto optimal policies whose neighboring policies have yet to be
explored. The queue is initialized with a deterministic policy π0, derived by solving a single-objective MDP, which is
formulated from the original multi-objective MDP using an arbitrary positive preference vector, ensuring that π0 lies on
the Pareto front. The obtained policy π0 serves as the starting point for systematically traversing the entire Pareto front.

In each loop, we pop out one element π in the queue Q. The following steps are applied to explore the Pareto front in
the neighborhood of π. We also use Fig. 2 to give an illustration of those steps in each loop.

(a) (Neighbor Search) First, we identify and evaluate all deterministic policies that differ from π by only one
state-action pair. From these, we discard any policies whose returns are dominated by returns of others3.
As shown in Fig. 2a, the gray planes and edges represent previously discovered parts of the Pareto front, the
black point corresponds to the returns of π (the deterministic Pareto-optimal policy being explored), and the
red points represent the policies that are not dominated among those differing from π by only one state-action
pair.

(b) (Incident Faces Calculation) Next, we compute the incident faces of the return of π on the convex hull
formed by the returns of π and the policies identified in the first step, i.e., the non-dominated policies among
deterministic policies differing from π by only one state-action pair.
As depicted in Fig. 2b, the incident faces of π on the constructed convex hull are illustrated with purple planes,
and the black lines represent the edges of these incident faces.

(c) (Pareto Face Extraction). In this final step, we select the faces from the incident faces identified in the
second step. We add a face from the incident faces to the Pareto front if a non-negative combination of the

2Proof of this lemma is in Appendix D.
3We say that u is dominated by v if u is less than or equal to v in all objectives. A more formal definition of dominance is

provided in Section 3.1.
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(a) Step 1: Selecting non-dominated
distance-1 policies

(b) Step 2: Generate convex hull of cur-
rent policy and non-dominated policies

(c) Step 3: Extract incident Pareto opti-
mal faces

Figure 2: Illustrations of the steps for finding Pareto-optimal front at each iteration. S = 5, A = 5, and D = 3.

normal vectors of all intersecting facets on the face yields a strictly positive vector. Once a face is selected, all
neighboring vertices on this face are added to the set of deterministic Pareto optimal policies. These vertices
are also added to the queue Q to explore their neighboring faces in the next iterations.
As illustrated in Fig. 2c, the selected faces are added to the set of Pareto front (marked in blue), and all
neighboring vertices on the incident faces are shown as orange dots.

Applying the above steps to all policies in the queue Q until the queue is empty ensures that the neighboring policies of
all possible deterministic policies on the Pareto front have been visited. Since all vertices and their incident faces are
traversed by the proposed algorithm, it guarantees full exploration of all faces of the Pareto front.

The intuition behind the proposed algorithm is that any deterministic Pareto optimal policy can identify all neighboring
policies on the Pareto front by considering deterministic policies that differ by only one state-action pair. This ensures
that all Pareto optimal policies are discovered during the search process. Additionally, the Pareto optimality justification
excludes any policies that are not Pareto optimal, guaranteeing that the search trajectory remains on the Pareto front.
The detailed theoretical results will be shown in Section 4. As the algorithm is guaranteed to consistently search along
the Pareto front, the total number of iterations is the same as the number of deterministic Pareto optimal policies.

3.3 PARETO FRONT SEARCHING

This section presents the pseudocode and details of the proposed Pareto front searching algorithm. Before diving
into details, we introduce some necessary notations as preparation for presenting our algorithms4. We denote the set
of deterministic policies that differ from π by exactly one state-action pair as Π1(π), and the set of non-dominated
policies among Π1(π) as Π1,ND(π). Let Conv(JΠ1,ND ∪{Jπ}) represent the convex hull constructed from the long-term
returns of Π1,ND(π) and π. The set of incident faces of Jπ on the convex hull Conv(JΠ1,ND ∪ {Jπ}) is denoted by
F(Jπ,Conv(JΠ1,ND ∪ {Jπ})).
The pseudocode for the Pareto front searching algorithm is presented in Algorithm 1. While the primary objective of
Algorithm 1 is to identify the entire Pareto front, a byproduct of the algorithm is the identification of all vertices on the
Pareto front that correspond to all deterministic Pareto optimal policies. Therefore, the output of Algorithm 1 includes
both the Pareto front, denoted as P(Π), and the set of deterministic Pareto optimal policies, denoted as V(Π).

We begin by finding a Pareto optimal policy through scalarization and adding it to the queue Q as part of the initialization,
as detailed in Lines 4 and 5 of Algorithm 1.

Neighbour Search As detailed in Lines 9 and 10 of Algorithm 1, for any deterministic Pareto optimal policy π popped
from Q, we first evaluate all policies in Π1(π) \ Z, which differ from π by only one state-action pair and have not yet
been visited (with the visited policies stored in Z). Once the long-term returns of Π1(π) are known, we select the set
of non-dominated policies, Π1,ND(π), the set of policies in Π1(π) that cannot be dominated by any other policies in
Π1(π). Specifically, the PPrune algorithm from Roijers (2016) efficiently identifies the set of non-dominated elements
from a given set, whose details are shown in Algorithm 3 in Appendix I.

4Notation table is provided in Table 1 of Appendix B.
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Algorithm 1 Pareto Front Searching Algorithm

Input: MDP settings: (S,A,P, r, γ)
Output: the set of Pareto optimal faces P(Π) and the set of deterministic Pareto optimal policies V(Π)

1: Initialize P(Π)← ∅, V(Π)← ∅.
2: Initialize queue Q← ∅. // Queue of Pareto optimal policies to explore
3: Initialize set Z← ∅. // Set of visited deterministic policies
4: Initialization: Sample a weight vector w ≻ 0, solve the optimal deterministic policy π0 for (S,A,P,w⊤r, γ).
5: Q.push(π0), V(Π).add(π0).
6: while Q is not empty do
7: π ← Q.pop().
8: Select Π1(π). //Select all deterministic policies that differ from π by one state-action pair
9: Evaluate Π1(π) \ Z and update Z by Z.add(Π1(π)). //Evaluate policies not yet visited

10: Select non-dominated policies Π1,ND(π) from Π1(π).
11: Calculate the convex hull Conv(JΠ1,ND ∪ {Jπ}) formed by {J π̃ | π̃ ∈ Π1,ND(π) ∪ {π}}.
12: Extract F(Jπ,Conv(JΠ1,ND ∪ {Jπ})). //the set of incident facets of Jπ on Conv(JΠ1,ND ∪ {Jπ})
13: Extract Pareto optimal faces F̃ and vertices Ṽ from F(Jπ,Conv(JΠ1,ND ∪ {Jπ})) using Algorithm 2.
14: Q.push(Ṽ \ V(Π)).
15: P(Π).add(F̃), V(Π).add(Ṽ).
16: end while

Although the number of policies differing by one state-action pair is proportional to the state and action space, i.e.,
|Π1(π)| = S × (A − 1), the number of non-dominated policies Π1,ND(π) is usually small. This helps reduce the
complexity of calculating the convex hull and extracting Pareto front faces in the subsequent steps.

Incident Facets Calculation In Lines 11 and 12, we aim to compute F(Jπ,Conv(JΠ1,ND ∪ {Jπ})), the set of (D− 1)-
dimensional facets of Conv(JΠ1,ND ∪ {Jπ}) that intersect at Jπ . A straightforward approach is to calculate the convex
hull of the set of vertices JΠ1,ND ∪ {Jπ} (as shown in Line 11) and select all facets that intersect at Jπ. However,
since we are only interested in the facets of Conv(JΠ1,ND ∪ {Jπ}) that involve Jπ, computing the entire convex hull
is unnecessary. Specifically, facets that do not involve Jπ do not need to be considered. An efficient solution is to
adapt the Quickhull algorithm (Barber et al., 1996), a well-established method for computing the convex hull of a
set of points, to our algorithm. This adaptation focuses on updating only the facets related to Jπ, thereby avoiding
unnecessary calculations of irrelevant facets.

Pareto Face Extraction We apply Algorithm 2 to extract all faces where the Pareto front intersects at Jπ from
F(Jπ,Conv(JΠ1,ND ∪ {Jπ})).

Figure 3: Convex polytope and its
Pareto front (red edge and plane)

Consider a k-dimensional face of a D-dimensional polytope. Let the normal
vectors to the D−1-dimensional facets that intersect at this face be denoted as
{wi}ni=1. Specifically, when k = D − 1, then the facet that intersects on the
face is itself, and n = 1. The face is Pareto optimal if for any j = 1, · · · , D,

n∑
i=1

α∗
i [wi]j > 0, (1)

where α∗ is the solution to the following linear programming problem:

maximizeα min
j∈{1,··· ,D}

n∑
i=1

αi[wi]j ,

subject to αi ≥ 0, ∀i ∈ {1, 2, . . . , n}.
(2)

Here, wi = [[wi]1, · · · , [wi]D]⊤ represents the normal vectors, and [wi]j
refers to the j-th component of the i-th normal vector. The objective function
aims to maximize the smallest component of the weighted sum across all dimensions j = 1, · · · , D, ensuring that the
face is Pareto optimal. A detailed lemma showing the Pareto front criterion and its proof is presented in Appendix G.

It is possible that a high-dimensional face is not on the Pareto front, while some lower-dimensional components of that
face still belong to the Pareto front. Figure 3 illustrates this scenario. The cyan and red planes form a 3D polytope,
where the red line and red planes represent the Pareto front of the polytope. Notably, the Pareto front includes not only
2D planes but also 1D edges, such as the line segment AB. This observation implies that even if a high-dimensional
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face (e.g., the plane containing AB) is not Pareto optimal, it is necessary to examine its lower-dimensional faces (e.g.,
edge AB) to determine if they are Pareto optimal.

In Algorithm 2, We traverse from (D− 1)-dimensional faces down to 1-dimensional faces (edges) to verify if each face
is Pareto optimal. Faces that have not yet been verified are pushed into the queue Qface. If the face H popped from
Qface is verified to be Pareto optimal via Eq. (1), it is added to the Pareto face set, and its vertices are added to the set of
Pareto optimal vertices. Otherwise, we proceed to examine the subfaces of F that are one dimension lower.

Note that if a Pareto optimal face has vertices corresponding to deterministic policies {πi}ki=1, then the policies
constructing the face are convex combinations of {πi}ki=1, expressed as {π|π(a|s) =

∑k
i=1 αiπi(a|s), ∀s, a, αi ≥

0,
∑k

i=1 αi = 1}. The lemma demonstrating this result, along with its detailed proof, can be found in Lemma 24 of
Appendix G.

Algorithm 2 Pareto Optimal Face Selection

Input: Incident faces F(Jπ,Conv(JΠ1,ND ∪ {Jπ}))
1: Initialize the set of Pareto optimal faces F ← ∅, the set of Pareto optimal vertices V ← ∅, the queue of faces for

checking Pareto optimality Qface ← ∅.
2: For all G ∈ F(Jπ,Conv(JΠ1,ND ∪ {Jπ})), Qface.push(G) and w(G)← normal vector of G.

// w(G) represents the set of normal vectors of facets that intersect G
3: while Qface is not empty do
4: H ← Qface.pop().
5: if there exist vertices of H not in F then // H /∈ F
6: if w(H) has a feasible solution to Eq. (1) then
7: F .add(H) and V.add(vertices of H).
8: else if dim(H) > 1 then
9: Let S be the set of (dim(H)− 1)-dimensional faces of H that intersect Jπ .

10: for each H̃ ∈ S do
11: Qface.push(H̃) and w(H̃).add(w(H)).
12: end for
13: end if
14: end if
15: end while
16: Return F and V .

4 WHY CAN THE PARETO-FRONT SEARCHING ALGORITHM WORK?

In this section, we present the theoretical foundations behind Algorithm 1. This section is divided into three parts, and
we give an overview of each part as follows.

1. Distance-one Property on Boundary of J(µ): We prove that neighboring deterministic policies on the
boundary of J differ by only one state-action pair. This ensures that we can efficiently find all neighboring
policies of π on both the boundary of J and the Pareto front by searching within the Π1(π).

2. Sufficiency of Traversing Over Edges: We show that for any vertex on the Pareto front, at least one edge on
the Pareto front connects it to another Pareto-optimal vertex. This property guarantees that we can traverse the
entire Pareto front by exploring neighboring deterministic policies.

3. Locality Property of the Pareto front: We establish that the faces of the Pareto front intersecting at a
deterministic policy can be found by computing the convex hull of the returns of this deterministic policy and
non-dominated deterministic policies that differ by one state-action pair. This ensures efficient discovery of
Pareto front faces through local convex hull computation, reducing the computational overhead.

4.1 DISTANCE-ONE PROPERTY ON BOUNDARY OF J

We present a theorem stating that the endpoints of any edge on the boundary of J correspond to deterministic policies
that differ by only one state-action pair, almost surely. Specifically, for a finite MDP (S,A,P, r, γ), where P is the
transition probability kernel and r ≥ 0 is the reward function, the set of P and r for which deterministic policies on the
edge of the Pareto front differ by more than one state-action pair has Lebesgue measure zero. The proof of this theorem
is provided in Appendix D.
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Theorem 1. In a discounted finite MO-MDP (S,A,P, r, γ) and under Assumption 1, any edge on the boundary of J
connecting two deterministic policies corresponds to policies that differ by only one state-action pair, almost surely.

Since the Pareto front lies on the boundary of J, this theorem guarantees that for any policy π on the Pareto front, the
neighboring policies on the Pareto front can be found by searching among Π1(π), a set of policies that differ from π by
only one state-action pair. This significantly reduces the search space, making it more efficient to traverse the Pareto
front.

Proof Sketch The proof follows two key steps: (1) First, we show that any face on the boundary of J is formed by the
long-term returns of policies that are the convex combinations of the deterministic policies corresponding to the vertices
of the face. Specifically, any point on an edge between two deterministic policies is the long-term return of a convex
combination of these policies. (2) Next, we establish that if two deterministic policies differ by only one state-action
pair, the long-term returns of their convex combinations form a straight line. In contrast, if two deterministic policies
differ by more than one state-action pair, the long-term returns of their convex combinations do not form a straight line
between them for almost all MDPs.

By combining these two observations, we conclude that the endpoints of any edge on the boundary of J correspond to
deterministic policies differing by exactly one state-action pair almost surely. Since the Pareto front lies on the boundary
of J, it follows that neighboring policies on the Pareto front differ by only one state-action pair. This completes the
proof.

4.2 SUFFICIENCY OF TRAVERSING OVER EDGES

From the previous section, we have the properties of the neighboring policies on the Pareto front. Hence, a natural
approach would be to traverse all vertices of the Pareto front by moving along the edges connecting them. However, this
approach relies on the assumption that the vertices on the Pareto front are connected. If the vertices are not connected,
we risk being stuck at a single vertex on the Pareto front without a way to reach other unconnected vertices. To address
this, we present Lemma 2 showing that the Pareto front of J is connected (proof is provided in Appendix E).
Lemma 2. (Existence of Neighboring Edges on the Pareto Front of J) Suppose J contains multiple Pareto optimal
vertices. Let Jπ1 be a Pareto optimal vertex on J. Let JN (π1, J) = {Jπ | π ∈ ΠN (π1, J)} represent all neighboring
vertices of Jπ1 on J. Then, there exists at least one neighboring vertex J ∈ JN (π1, J) such that the edge connecting J
and Jπ1 lies on the Pareto front.

Proof Sketch We prove Lemma 2 by contradiction. Assume there exists a vertex on the convex polytope J that is
not connected by an edge lying on the Pareto front. In this case, we show that this vertex would dominate all other
points on the polytope, implying that it is the only Pareto optimal point, which leads to a contradiction. Therefore, if the
Pareto front contains more than one deterministic Pareto optimal policy, the vertex must be connected to at least one
edge on the Pareto front. This completes the proof.

Lemma 2 only shows that a Pareto optimal vertex is connected to an edge (1-dimensional) on the Pareto front. However,
it does not guarantee that one of the neighboring facets of a Pareto optimal vertex must also lie on the Pareto front.
A facet of J lies on the Pareto front if and only if its normal vector is strictly positive (which will be shown later in
Lemma 3), meaning that all points on the facet are not dominated by any other points in J. However, the normal
vectors of all facets intersecting at a Pareto optimal vertex are not necessarily strictly positive. This observation is
consistent with Fig. 3, where point A is a Pareto optimal vertex, but it only lies on a Pareto optimal edge AB, and all its
incident faces are not Pareto optimal. This also justifies that constructing the Pareto front in a 2D case (with two reward
objectives) is relatively simple, as we only need to connect the neighbor vertices. However, in higher dimensions, the
Pareto front becomes more complex, and it is impossible to build the Pareto front purely from vertices.

4.3 LOCALITY PROPERTY OF THE PARETO FRONT

Previous theoretical results show that it is possible to traverse the Pareto front through edges constructed by deterministic
policies that differ by only one state-action pair. However, each policy has S × (A− 1) neighboring policies, and the
challenge lies in efficiently selecting the Pareto optimal policies among them and constructing the Pareto front based on
these neighbors.

This section provides the theoretical foundations for retrieving the boundary of J from the convex hull constructed by
a vertex and the neighboring policies that differ by only one state-action pair. Furthermore, we show that the Pareto
front can be retrieved by (1) constructing the convex hull using the vertex and locally non-dominated policies, and (2)
applying Lemma 3 to extract all Pareto optimal faces from the convex hull.
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Let deterministic policy π correspond to a vertex on J. We denote the set of neighbors on the boundary of J to Jπ as
N(Jπ, J), and the set of deterministic policies whose long-term returns make up N(Jπ, J) as Nπ(J

π, J). Let F(Jπ, J)
and F(Jπ,Conv(JΠ1 ∪ {Jπ}) be the set of incident faces of Jπ on J and Conv(JΠ1 ∪ {Jπ}), respectively.
Theorem 2. The neighboring vertices and faces of Jπ on the convex hull Conv(JΠ1 ∪ {Jπ}) are the same as
those on J. Formally, N(Jπ,Conv(JΠ1 ∪ {Jπ})) = N(Jπ, J), Nπ(J

π,Conv(JΠ1 ∪ {Jπ})) = Nπ(J
π, J), and

F(Jπ,Conv(JΠ1 ∪ {{Jπ})) = F(Jπ, J).

The proof is provided in Theorem 6 and Proposition 3 of Appendix F. This theorem guarantees that we can find all
neighboring vertices and faces on the boundary of J from the local convex hull Conv(JΠ1 ∪ {Jπ}). By iterating
through the process of constructing the convex hull of all distance-one policies and retaining the neighboring faces, we
can eventually traverse the entire boundary of J.

We also establish key properties of the Pareto front on a convex polytope (proof is provided in Appendix G).
Lemma 3. Given a convex polytope C, let F be face of C defined as the intersection of n facets, i.e., F = ∩ni=1Fi,
where n ≥ 1 and each facet is of the form Fi = C∩ {x ∈ Rd : w⊤

i x = ci}. Then the face F lies on the Pareto front of
C if and only if there exists a linear combination of the normal vectors, weighted by αi ≥ 0 for any i ∈ {1, · · · , n},
such that

∑
i αi[wi]j > 0 where [wi]j is the j-th component of wi.

Based on Lemma 3, we can also extract the Pareto optimal faces from the local convex hull. Let F(Jπ,P(J)) be the set
of incident faces of Jπ on the Pareto front P(J). The proof is shown in Proposition 6 of Appendix F.
Proposition 1. Let FP (J

π,Conv(JΠ1,ND ∪ {Jπ})) denote the incident faces of Jπ on the convex hull Conv(JΠ1,ND ∪
{Jπ}) that satisfy the conditions of Lemma 3. Then,

F(Jπ,P(J)) = FP (J
π,Conv(JΠ1,ND ∪ {Jπ})).

This proposition demonstrates that the faces of the Pareto front that intersect with a vertex are equivalent to the Pareto
optimal faces of the local convex hull constructed by the vertex and its neighboring vertices. Therefore, we conclude that
all faces of the Pareto front that intersect with a vertex can be identified by computing the convex hull of neighboring
non-dominated policies and then applying the Pareto front criterion in Lemma 3, which corresponds to Eq. (1), to
extract the Pareto optimal faces from the local convex hull.

5 ALGORITHM EVALUATION

In this section, we empirically evaluate the performance of our algorithm in discovering the full Pareto front, including
the vertices that correspond to deterministic Pareto optimal policies in MO-MDPs. To the best of our knowledge, this
is the first method capable of precisely identifying the complete Pareto front without traversing the preference vector
space. We start with giving an example where the shape of the Pareto front necessitates identifying the entire front,
rather than focusing solely on deterministic policies. Then we compare our algorithm with existing methods in terms of
efficiency in finding both the full Pareto front and the set of deterministic Pareto optimal policies.

We demonstrate a Pareto front structure that is not immediately evident from the vertices alone even in a simple setting.
We consider a basic MDP setting, where we only have 4 states and 3 actions, and the reward dimension is 3. The
transition kernel is uniformly distributed between 0 and 1 and normalized to sum to 1, while the reward functions
are uniformly distributed between 0 and 1. The discount factor is 0.9. As illustrated in Fig. 4, the Pareto front is
more complex than simply being the convex hull of its vertices. For instance, A is a point on the Pareto front, but
none of its incident facets are on the Pareto front. To find an edge connecting A to another policy on the Pareto front,
we must further examine which edge that connects point A and other points corresponding to deterministic Pareto
optimal policies is also on the Pareto front by Lemma 3. This edge is difficult to derive using only the knowledge of
deterministic policies on the Pareto front.

5.1 ABILITY AND EFFICIENCY IN FINDING THE PARETO FRONT

As the Pareto front searching algorithm is the first to recover the entire precise Pareto front, we provide a benchmark
algorithm for comparison to demonstrate both the ability and efficiency of our method in identifying all faces of the true
Pareto front. The benchmark algorithm retrieves the Pareto front in two steps: (1) computing the convex hull of all
non-dominated deterministic policies and (2) applying Algorithm 2 to identify the Pareto front. Details are shown in
Algorithm 4.

Since the number of deterministic policies increases exponentially with the number of states, and the complexity of
calculating the convex hull is proportional to the number of input points (Barber et al., 1996), the benchmark algorithm’s
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complexity grows exponentially with the number of actions. Therefore, we compare the performance of our algorithm
against the benchmark in small MDP settings. Specifically, we consider state spaces of size 5 and 8, action spaces
ranging from 5 to 7, and a reward dimension of 3. Our algorithm successfully identifies all faces of the true Pareto front
in all cases. As shown in Fig. 5, the runtime of the benchmark algorithm increases exponentially with the number of
actions, making it impractical even in moderately sized action spaces. In contrast, our algorithm maintains a controllable
runtime by efficiently traversing edges on the Pareto front to identify the Pareto faces.

5.2 EFFICIENCY IN FINDING THE PARETO FRONT VERTICES

We compare the efficiency of finding all vertices on the Pareto front (i.e., deterministic Pareto optimal policies) with
OLS (Roijers, 2016). For each iteration, OLS solves the single-objective MDP for a given preference vector and
calculates new preference vectors by constructing a convex hull of all candidate preference vectors. In contrast, our
algorithm requires only a single single-objective planning step during the initialization phase to obtain the initial
deterministic Pareto-optimal policy. Rather than constructing a global convex hull encompassing all potential Pareto-
optimal policies, our algorithm builds the convex hull locally based on the vertex and its neighboring policies. As a
result, our algorithm achieves significantly lower computational complexity compared to OLS. A detailed complexity
comparison is provided in Appendix H.

We compare the running time of our algorithm against OLS in terms of efficiency for finding all vertices on the Pareto
front. Specifically, we consider scenarios where the state space size is 5 and 8, and the reward dimension is 4. As shown
in Fig. 6, while both OLS and the proposed algorithm efficiently find all vertices when the action and state space are
small, the running time for OLS increases significantly with even slight expansions in the state and action space. In
contrast, our proposed algorithm maintains a more manageable running time.
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Figure 4: Pareto front of a simple
MDP with S = 4, A = 3, and D = 3.
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Figure 5: Comparison between the
proposed Pareto front searching algo-
rithm and the benchmark algorithm
when D = 3.
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proposed deterministic Pareto optimal
policies searching algorithm and the
OLS algorithm when D = 4.

6 CONCLUSION

This paper investigated the geometric properties of the Pareto front in MO-MDPs. We proved that any neighboring
deterministic policies on the Pareto front differ in exactly one state-action pair almost surely. We also demonstrated that
the Pareto front is continuous in MO-MDPs, enabling traversing the Pareto front by moving along edges. Building
on these theoretical insights, we proposed an efficient Pareto front searching algorithm, which was validated through
experiments. The algorithm effectively explores the Pareto front by leveraging the structure of the deterministic policies.
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A DISCUSSION ON PARETO OPTIMALITY

We define the Pareto optimal policy set based on an initial state distribution µ. Unlike single-objective reinforcement
learning, where the optimal policy maximizes the long-term return for all states under any initial state distribution,
Pareto optimality with respect to a specific initial state distribution µ does not ensure Pareto optimality across all
states (Lu et al., 2022). Lu et al. (2022) introduces the concept of aggregate Pareto efficiency, where a policy π is
considered aggregate Pareto optimal if there exists no policy π′ such that Vπ′ ≻ Vπ . The Pareto front P(Π) defined in
Section 3.1 only forms a subset of the aggregate Pareto optimal set.

We focus on the definition of Pareto optimality over a given state distribution for two key reasons:

1. Relevance to Practical Applications: In real-world applications, the starting state often follows a specific
distribution. For example, in RLHF applications in Large Language Models (LLM), input texts typically
follow a certain distribution. Thus, it is unnecessary to optimize for Pareto efficiency over every individual
state and objective, as this would not align with the natural distribution of inputs in such settings.

2. Convergence to Aggregate Pareto Optimality: As the discount factor γ → 1, P(Π) approaches the aggregate
Pareto optimal set (Lu et al., 2022). Therefore, in settings with a high discount factor, focusing on P(Π)
provides a close approximation to the aggregate Pareto optimal set.

B NOTATIONS

Let IM denote the identity matrix of size M , 1M denote the M -dimensional vector where all elements are 1, and
0M×N denote a zero matrix with dimensions M ×N . Let A⊤ denote the transpose of the matrix A. Let A > (≥)B
denote that each element of A is strictly greater than (greater than or equal to) the corresponding element of B. Given
an MDP (S,A,P, r, γ), for any policy π, define the state transition probability matrix Pπ and the expected reward
vector rπ as:

Pπ(s, s′) :=
∑
a∈A

P(s′|s, a)π(a|s), rπ(s) :=
∑
a∈A

r(s, a)π(a|s).

We provide the notation table as follows.

Table 1: Notation table

Notation Description
Π Set of stationary policies
ΠD Set of deterministic stationary policies

Jπ(µ) Long-term return of policy π given initial state distribution µ

JU (µ) Set of long-term returns of all stationary policies in U with initial distribution µ

J(µ) Set of long-term returns of all stationary policies with initial distribution µ

P(S) Pareto front of the set S
V(C) Set of vertices of the polytope C
B(C) Boundary of the polytope C
P(Π) Set of Pareto optimal policies {π ∈ Π | Jπ ∈ P(J(µ))}

Conv(S) Convex hull of the set S
N(x,C) Set of neighboring vertices of vertex x on C
F(x,C) Set of incident faces of vertex x on C
Π1(π) Set of deterministic policies differing from π by exactly one state-action pair

Π1,ND(π) Set of non-dominated policies among Π1(π)

ΠN (π,M) Set of deterministic policies that differ from π at all states inM and matching π at
all other states
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C SUPPORTING LEMMAS AND THEOREMS

In this section, for the sake of completeness in the paper, we present some well-known lemmas and theorems, along
with a few easily proven lemmas, which will be used in the subsequent proofs.

We begin by presenting some well-known theorems and lemmas in the field of linear algebra.
Theorem 3. (Rank-nullity theorem) Let A be an m× n matrix. Then, the following relationship holds: rank(A) +
dim(null(A)) = n, where rank(A) is the dimension of the column space of A, and null(A) is the null space of A.
Lemma 4. Let A be an m× n matrix and b ̸= 0 be an m-dimensional vector. If Ax = b has at least one solution,
then the dimension of the solution space of Ax = b is equal to dim(null(A)), where null(A) is the null space of A.
Lemma 5. Let A be an m× n matrix with full column rank. If AB = kAC, then B = kC.

Proof. From AB = kAC, we can subtract kAC from both sides to get A(B− kC) = 0m. Since A has full column
rank, it follows from Theorem 3 that the dimension of its null space must be zero, and the only solution is Ax = 0m is
x = 0n. Therefore, the only solution to A(B− kC) = 0m is B− kC = 0n. Hence, B = kC.

Lemma 6. (Horn & Johnson, 2012) Let A ∈ Rn×n be a square matrix. The maximum absolute value of the eigenvalues
of A, denoted as ρ(A), satisfies the following inequality:

ρ(A) ≤ ∥A∥∞,

where ∥A∥∞ = max1≤i≤n

∑n
j=1 |Aij |. is the infinity norm of the matrix A.

Then we present some lemmas related to the multi-objective optimization.
Lemma 7. (Boyd & Vandenberghe, 2004) Let S denote the set of achievable objective values and let P(S) denote the
set of Pareto optimal values in C. Then P(S) ⊆ B(S), i.e., every Pareto optimal value lies in the boundary of the set of
achievable objective values.
Lemma 8. Let x be a point in a set S. x lies on the Pareto front of S if and only if there exists a vector w > 0 such that
w⊤(x− y) ≥ 0 for all y ∈ S.

Proof. ( ⇐= ) Assume, for the sake of contradiction, that x is not on the Pareto front of S. This means there exists
a point y ∈ S that strictly dominates x, i.e., y ≻ x. This implies that y is at least as large as the corresponding
objective of x and y is strictly better than x in at least one objective. Therefore, given w > 0, we have w⊤(x−y) < 0.
However, this contradicts the assumption that w⊤(x− y) ≥ 0 for all y ∈ S. Thus, no point in S strictly dominates x,
which implies that x is on the Pareto front.

( =⇒ ) If x is Pareto optimal, then for any y ∈ S, x is at least as large as the corresponding objective of y and x is
strictly better than y in at least one objective. Given w > 0, w⊤(x− y) ≥ 0.

Next, we restate some definitions in the main body of the paper and present several lemmas related to polytopes.
Definition 1. (Ziegler, 2012) Let C ⊆ Rd be a convex polytope. A linear inequality w⊤x ≤ c0 is valid for C if it is
satisfied for all points x ∈ C. A face of C is any set of the form F = C ∩ {x ∈ Rd : w⊤x = c0} where w⊤x ≤ c0 is a
valid inequality for C. The dimension of a face is the dimension of its affine hull, i.e., dim(F ) := dim(aff(F )). The
faces of dimension smaller than dim(C) are called proper faces. The faces of 0, 1, dim(C)− 2, dim(C)− 1 are called
vertices, edges, ridges, and facets, respectively.
Lemma 9. (Grünbaum, 2013) Every nonempty proper face of a convex polytope C is an intersection of facets of C.
Lemma 10. Given a d-dimensional convex polytope, if the optimization objectives are the individual coordinate values,
then the Pareto front of the convex polytope is a continuous set.

Finally, we give some lemmas related to MDP.
Lemma 11. (Altman, 2021) The occupancy measure of any policy π and initial distribution µ is defined as dπµ(s) :=
(1− γ)

∑∞
t=0 γ

tP (st = s|s0 ∼ µ(·)). Similarly, define d̄πµ(s, a) := (1− γ)
∑∞

t=0 γ
tP (st = s, at = a|s0 ∼ µ(·)) =

dπµ(s)π(a|s). Define for any set of policies U , LU (µ) := ∪π∈U{d̄πµ} and define L(µ) := ∪π∈Π{d̄πµ}. Then, L(µ) is
closed convex polytope and L(µ) = Conv(LΠD (µ)).
Lemma 12. (Sutton & Barto, 2018) Given MDP (S,A,P, r, γ), there exists at least one policy that is al-
ways better than or equal to all other policies in all states, denoted as optimal policy. The optimal policy
π∗ satisfies π∗(s) = argmaxa∈A Q∗(s, a), where Q∗(s, a) is the solution to the Bellman optimality equation
Q∗(s, a) = E [r(s, a) + γmaxa′ Q∗(s′, a′) | s, a].
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Lemma 13. If there exists µ where µ(s) > 0 for any s ∈ S such that a deterministic policy π∗ maximizes for
Jπ∗

(µ) = µ⊤Vπ∗
, then π∗ is the optimal policy, i.e., Vπ∗

(s) = maxπ V
π(s) for any s.

Proof. We prove this by contradiction. If π∗ is not the optimal policy, and there exists optimal policy u ̸= π∗ such that
V π∗

(s) ≤ V u(s) for any s ∈ S , and on at least one state V π∗
(s) < V u(s). Then Ju(µ) > Jπ∗

(µ) since µ(s) > 0 for
any s. This contradicts the condition that π∗ maximizes for Jπ(µ). So π∗ is also an optimal policy.

Lemma 14. Given a single-objective MDP (S,A,P, r, γ). If Π∗ is the set of the optimal deterministic policies, then
the set of all optimal policies (including stochastic and deterministic policies) is the convex hull constructed by Π∗.

Proof. We first show that all policies in the convex hull constructed by the set of optimal deterministic policies
Π∗ are optimal policies. By Lemma 12, the optimal policies share the same state-action value function, that is,
Qπi(s, a) = Qπj (s, a) = Q∗(s, a) for any πi, πj ∈ Π∗. Since πi ∈ Π∗ are deterministic policies, with a little abuse
notation of π, we have πi(s) = arga∈A maxQ∗(s, a) for any i. Let α be a (|Π| − 1)-dimension standard simplex. Let
π be the convex combination of Π∗, that is, π(a|s) =

∑
i αiπi(a|s) for any s. As each possible choice of π at state s

maximizes Q∗(s, a), i.e., πi(arga∈A maxQ∗(s, a)|s) = 1, π at state s maximizes Q∗(s, a) and π is an optimal policy.
Hence any convex combination π optimal deterministic policies are also optimal.

Then we want to show for any policies not on the convex hull the set of optimal deterministic policies Π, it cannot
be the optimal policy. We prove this by contradiction. Suppose an optimal policy π is not on the convex hull by all
deterministic policies. In that case, it is written as π =

∑
i,πi∈Π∗ αiπi +

∑
j,πj∈Π̄ βjπj , where

∑
i αi +

∑
i βj = 1,

αi ≥ 0, βj ≥ 0, and Π̄ is a set of non-optimal deterministic policies. Suppose on state s such that V πj (s) ≤ V ∗(s),
then π(s) ̸= argmaxπ Q∗(s, a), which indicates π is no longer an optimal policy. This contradicts the assumption that
π is an optimal policy.

Lemma 15. Given an MDP (S,A,P , r, γ) and a deterministic policy π : S → A, let π ∈ ΠN (π1,M). The transition
matrix Pπ and reward vector rπ can be decomposed into block matrices as follows:

Pπ =

[
A B
Cπ Dπ

]
, rπ =

[
X
Y π

]
.

Following the definitions of Γ and V in Eq. (9) we have

Γπ =

[
γ(IS−M − γA)−1B

IM

]
, Ṽπ =

[
(IS−M − γA)−1X

0M

]
.

Proof. Since the transition probabilities and rewards starting from S \M are the same for any π ∈ ΠN (π1,M), we
conclude that A, B, and X (the relevant blocks of Pπ and rπ) are independent of π. However, Cπ , Dπ , and Y π vary
with π, as indicated by the subscripts.

Analysis of Γ We decompose Γπ into block matrix form, i.e., Γπ =
[
(Γπ

1 )
⊤
, (Γπ

2 )
⊤
]⊤

, where Γπ
1 ∈ R(S−M)×M

and Γπ
2 ∈ RM×M .

The definition of H(s̄i,M, s̄j) that for any s̄i, s̄j ∈ M with i ̸= j shows that H(s̄i, s̄i) = 0 with probability 1 and
H(s̄i, s̄j) =∞ with probability 1. Thus,

[Γπ
2 ]i,j = E

[
γH(s̄i,s̄j)

]
= 0 for i ̸= j, and [Γ2]i,i = E

[
γH(s̄i,s̄i)

]
= 1.

For Γπ
1 , starting from si ∈ S \M, the probability of reaching s̄j ∈M in one step is Bi,j . The probability of reaching

s̄j in two steps is Ai,:1S−M . Repeating this reasoning for subsequent steps, we obtain:

[Γπ
1 ]i,j =P (Sπ(si,M) = s̄j)E

[
E
[
γH(si,s̄j)

]∣∣∣Sπ(si,M) = s̄j

]
=γBi,j + γ2Ai,:B:,j + γ3Ai,:AB:,j + · · ·

Since ∥γA∥∞ < 1, it follows from Lemma 6 that the eigenvalues of γA are smaller than 1. Therefore, IS−M − γA
does not have any zero eigenvalues, implying that it is invertible. Summing over all steps, we have:

Γπ
1 = γ

∞∑
n=0

(γA)nB = γ(IS−M − γA)−1B.
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Thus, we conclude:

Γπ =

[
Γπ
1

Γπ
2

]
=

[
γ(IS−M − γA)−1B

IM

]
.

Analysis of V Similarly, we decompose V into block matrix form: Ṽπ =

[(
Ṽπ

1

)⊤
,
(
Ṽπ

2

)⊤]⊤
, where Ṽπ

1 ∈

R(S−M)×D and Ṽπ
2 ∈ RM×D.

For Ṽπ
2 , starting from any s̄ ∈ M, we reach M with probability 1 in zero steps, so the total reward is 0. Thus,

Ṽπ
2 = 0M×M .

Starting from state si ∈ S \M, it has immediate reward [X](i,·). For the next state, it has probability [A]i,j to move to
state sj ∈ S \M, and it has probability

∑
j [B]i,j to move to s̄j ∈M which terminates the process with future return

0. Therefore, we can write the Bellman equation-like form:

Ṽπ
1 =X + γAṼπ

1 + γB0(S−M)×D

=X + γAṼπ
1 .

Solving this equation gives:
Ṽπ

1 = (IS−M − γA)−1X.

Hence, we conclude:

Ṽπ =

[
Ṽπ

1

Ṽπ
2

]
=

[
(IS−M − γA)−1X

0M

]
.

Lemma 16. (Properties of Fπ and Eπ) The functions Fπ and Eπ , defined in Eq. (12), can be expressed as follows:

Fπ := γPπ(M)Γ,

Eπ := rπ(M) + γPπ(M)Ṽ,

where Γ and Ṽ are predefined matrices given in Lemma 15,M is a subset of states, and Pπ(M) is the transition
probability matrix under policy π restricted to the subsetM.

We can derive the following properties:

1. Gradients of Fπ and Eπ with respect to π. For any s̄ ∈M and a ∈ A, the partial derivatives of Fπ and Eπ

with respect to the policy π are given by:

∂Fπ

∂π(s̄, a)
= γP(δ(s̄), a, ·)Γ, ∂Eπ

∂π(s̄, a)
= r(δ(s̄), a, ·) + γP(δ(s̄), a, ·)Ṽ,

where δ(s̄) is a unit vector indicating the state s̄, Z = P(δ(s̄), a, ·) ∈ RM×S , with Z(s̄, ·) = P(s̄, a, ·), and
Z(s̄′, ·) = 0 for any s̄′ ̸= s̄.

2. Simplification when π is a deterministic policy. If π is a deterministic policy, then Fπ and Eπ can be simplified
as follows:

Fπ =
∑
s̄∈M

γP(δ(s̄), π(s̄), ·)Γ,

Eπ =
∑
s̄∈M

(
r(δ(s̄), π(s̄), ·) + γP(δ(s̄), π(s̄), ·)Ṽ

)
.

3. Given π = απ1 + (1− α)π2, where 0 ≤ α ≤ 1 to ensure π is a valid policy, we have

Fπ =αFπ1 + (1− α)Fπ2 ,

Eπ =αEπ1 + (1− α)Eπ2 .

Proof. (1) Recall that the state transition matrix and reward function under policy π are defined as follows:

Pπ(s, s′) :=
∑
a∈A

P(s, a, s′)π(s, a), rπ(s) =
∑
a∈A

r(s, a)π(s, a),
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where P(s, a, s′) is the probability of transitioning from state s to state s′ given action a, and r(s, a) is the reward for
taking action a in state s.

For any s̄ ∈M and a ∈ A, we compute the derivatives of Pπ(s, s′) and rπ(s) with respect to the policy π(s̄, a):

∂Pπ(s, s′)

∂π(s̄, a)
= P(s, a, s′)δ(s = s̄),

∂rπ(s)

∂π(s̄, a)
= r(s, a)δ(s = s̄),

where δ(s = s̄) is the Kronecker delta function, which is 1 if s = s̄ and 0 otherwise.

Next, substituting these expressions into the derivatives of Fπ and Eπ with respect to π(s̄, a), we obtain:

∂Fπ

∂π(s̄, a)
=

γ∂Pπ(s, s′)

∂π(s̄, a)
Γ = γP(δ(s̄), a, ·)Γ,

∂Eπ

∂π(s̄, a)
=

∂rπ(s)

∂π(s̄, a)
+

∂γPπ(s, s′)

∂π(s̄, a)
Ṽ

= r(δ(s̄), a) + γP(δ(s̄), a, ·)Ṽ .

(2) When π is a deterministic policy, we recall that π maps each state s ∈ S to a specific action π(s) ∈ A. In this case,
with a slight abuse of notation π, the transition matrix and reward function are simplified as follows:

Pπ(s, s′) =
∑
a∈A

P(s, a, s′)π(s, a) = P(s, π(s), s′),

rπ(s) =
∑
a∈A

r(s, a)π(s, a) = r(s, π(s)),

where the policy π deterministically selects action π(s) in each state s.

Substituting these expressions into the definitions of Fπ and Eπ , we obtain the desired results:

Fπ =
∑
s̄∈M

γP(δ(s̄), π(s̄), ·)Γ,

Eπ =
∑
s̄∈M

(
r(δ(s̄), π(s̄)) + γP(δ(s̄), π(s̄), ·)Ṽ

)
.

(3) Since the transition probability matrix and reward function under a mixed policy απ1 + (1− α)π2 can be expressed
as linear combinations of the respective components under policies π1 and π2, we have:

Pαπ1+(1−α)π2(M) = αPπ1(M) + (1− α)Pπ2(M),

and
rαπ1+(1−α)π2(M) = αrπ1(M) + (1− α)rπ2(M).

By applying these expressions in conjunction with the definitions of Fπ and Eπ , the desired result follows.

D DISTANCE-1 PROPERTY

Let Πall be the set of all policies, including both stationary and non-stationary policies, and let Jall(µ) = {Jπ(µ)|π ∈
Πall} denote the set of achievable long-term returns for all policies in Πall. Recall that J(µ) = {Jπ(µ)|π ∈ Π}
represents the set of achievable long-term returns for all policies in the set of stationary policies Π. By Theorem 3.1 of
Altman (2021), it is sufficient to represent the J(µ) using only stationary policies, i.e., Jall(µ) = J(µ). Therefore, we
focus on the set of stationary policies to construct the Pareto front in our paper.

The Pareto front of J(µ) is denoted as P(J(µ)). Lemma 1 shows that the J(µ) construct a convex polytope. The
boundary and vertices of the convex polytope J(µ) are denoted as B(J(µ)) and V(J(µ)), respectively. Lemma 1 also
implies the vertices of J(µ) are deterministic policies, that is, V(J(µ)) ⊆ ΠD.

Lemma 17. (Restatement of Lemma 1) J(µ) is a closed convex polytope, and the vertices of J(µ) can be achieved by
deterministic policies.
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Proof. We observe that J(µ) can be obtained by applying a linear transformation to L(µ), that is, J(µ) =

{
(
d̄πµ
)⊤

r|d̄πµ ∈ L(µ)}.
Then we prove the following lemma, which shows that linear transformations preserve the convex polytope structure
and a subset of its vertices.

Lemma 18. Suppose C is a convex polytope in n-dimension space whose vertices set is V, and A ∈ Rm×n. Let
C̄ = {Ax|x ∈ C}, then C̄ is also a convex polytope with vertices V̄, and V̄ ⊆ {Av|v ∈ V}.

Proof. Since C is a convex polytope, it is the convex hull of its finite vertex set V = {v1,v2, . . . , vk}. That is,
C = Conv(V) =

{∑k
i=1 αivi

∣∣∣ αi ≥ 0,
∑k

i=1 αi = 1
}
. Applying the linear map A to C, we get:

C̄ =AC =

{
A

(
k∑

i=1

αivi

) ∣∣∣∣∣ αi ≥ 0,
k∑

i=1

αi = 1

}

=

{
k∑

i=1

αi(Avi)

∣∣∣∣∣ αi ≥ 0,
k∑

i=1

αi = 1

}
.

This shows that C̄ is the convex hull of the finite set {Av1,Av2, . . . ,Avk}, which implies that C̄ is a convex polytope,
and the set of vertices V̄ is a subset of {Av|v ∈ V} = {Av1,Av2, . . . ,Avk}.

The conclusion can be obtained by combining Lemma 11 and Lemma 18.

By the definition of the Pareto front, the Pareto front is the set of non-dominated policies on J(µ). By Lemma 7, the
Pareto front is on the boundary of the convex polytope.

We define two policies, π1 and π2, as neighboring policies if an edge on the boundary of the convex polytope B(J(µ))
connects the long-term returns of π1 and π2.
Lemma 19. Under Assumption 1, for any edge on B(J(µ)) with endpoints denoted as Jπ1(µ) and Jπ2(µ), any point
on this edge can only be achieved by the long-term return of a convex combination of policies π1 and π2. Specifically,
for any α ∈ [0, 1], there exists a β ∈ [0, 1] such that

αJπ1(µ) + (1− α)Jπ1(µ) = Jβπ1+(1−β)π2(µ).

Proof. Let π1 and π2 are neighboring points on B(J(µ)), and E(π1, π2) is an edge connecting two vertices. Since
E(π1, π2) is a face of J(µ), by Definition 1, there exists weight vector w and scalar c0 such that E(π1, π2) = C∩{x ∈
Rd : w⊤x = c0} and w⊤x ≤ c0 for any x ∈ J(µ). Therefore, we have

{π1, π2} = arg max
π∈V(J(µ))

w⊤Jπ(µ).

Moreover, since any points within the convex polytope can be written as the convex combination of extreme points, and
the solutions of extreme points to argmaxπ∈ΠD

w⊤Jπ(µ) only contains π1 and π2, therefore

{αJπ1(µ) + (1− α)Jπ1(µ)|α ∈ [0, 1]} = argmax
π∈Π

w⊤Jπ(µ). (3)

We construct a single-objective MDP (S,A,P , r⊤w, γ), where we use the preference vector w to transform M -
objective reward tensor r ∈ RS×A×D to single-objective reward ∈ RS×A. Under Assumption 1, π1 and π2 are optimal
deterministic policies on (S,A,P , r⊤w, γ) by Lemma 13. By Lemma 14, the optimal policies on (S,A,P , r⊤w, γ)
lies in the convex hull constructed by π1 and π2, i.e.,

{Jβπ1+(1−β)π2(µ)|β ∈ [0, 1]} = argmax
π∈Π

w⊤Jπ(µ). (4)

Combining Eq. (3) and Eq. (4), we obtain

{αJπ1(µ) + (1− α)Jπ1(µ) | α ∈ [0, 1]} = {Jβπ1+(1−β)π2(µ) | β ∈ [0, 1]}.
This result indicates that, for an initial distribution µ, the edge between neighboring policies in J(µ) can only be
achieved through the long-term return of the convex combination of these neighboring policies. This concludes our
proof.
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Definition 2. We define the distance between two deterministic policies, π1 and π2, as the number of states where the
policies differ. This distance is denoted by d(π1, π2).

Lemma 20. Given a discounted finite MDP (S,A,P, r, γ), where P is the transition probability kernel and r ≥ 0 is
the reward function. Let π1 and π2 be two deterministic policies. Under Assumption 1, we have

1. d(π1, π2) = 1: If π1 and π2 differ by exactly one state-action pair, {Jαπ1+(1−α)π2
(µ)|α ∈ [0, 1]} forms a

straight line segment between Jπ1(µ) and Jπ1(µ).

2. d(π1, π2) > 1: If π1 and π2 differ by more than one state-action pair, for almost all P and r in the space of
valid transition kernels and rewards (with Lebesgue measure 1), {Jαπ1+(1−α)π2

(µ)|α ∈ [0, 1]} does not form
the straight line segment between Jπ1(µ) and Jπ1(µ).

Proof. LetM be the set of states that π1 and π2 differ on. By definition of distance between two deterministic policies,
M := |M| = d(π1, π2).

Recall that ΠN (π,M) denotes the set of deterministic policies that differ from π only at states within M, while
matching π at all other states. In other words, all policies in ΠN (π,M) take the same actions for states outside the
setM. For states that cannot reachM within a finite number of steps, the value function is identical across all such
policies. Conversely, for states that can reachM in finite steps, the value function depends on the policy withinM.
With some slight abuse of notation, in the remainder of this proof, we focus only on the set of states that can reachM
within a finite number of steps, denoted as S .

Starting from state s under policy π, we define hitting time of the setM⊆ S , denoted as Hπ(s,M), as the first time
step at which the process reaches any state inM. It is defined as:

Hπ(s,M) := inf {t ≥ 0 | s0 = s, st ∈M} ,

where st denotes the state of the process at time t. For any s̄ ∈M, we define the random variable Hπ(s̄,M) = 0 as
it takes 0 steps from s̄ toM. Moreover, we define the total return of d-th objective before hittingM from state s
under policy π as the sum of discounted rewards until the process reaches any state inM. It is given by:

R̃π
d (s,M) :=

Hπ(s,M)−1∑
t=0

γtrd(st, at),

where r(st, at) is the reward at time step t.

Similarly, Starting from state s under policy π, we denote the hitting time of a specific state s̄ ∈M, conditioned on
avoiding all other states inM before reaching s̄ as Hπ(s,M, s̄) with slight abuse of notation. It is defined as:

Hπ(s,M, s̄) := inf {t ≥ 0 | s0 = s, st = s̄, sk /∈M, ∀k < t} . (5)

For any s̄′, s̄ ∈M with s̄′ ̸= s̄, the random variable Hπ(s̄′,M, s̄) are defined as:

• Hπ(s̄,M, s̄) = 0 with probability 1, as it takes 0 steps to reach s̄ from s̄,

• Hπ(s̄′,M, s̄) = ∞ with probability 1, as it is impossible to reach s̄ first from s̄′ (since we are already at
s̄′ ∈M).

The total return before hitting s̄ ∈ M, conditioned on avoiding all other states inM before reaching s̄, denoted as
R̃π

d (s,M, s̄):

R̃π
d (s,M, s̄) :=

Hπ(s,M,s̄)−1∑
t=0

γtrd(st, at). (6)

The arrival state is defined as the first state inM reached by the process, starting from s under policy π. Denote the
arrival state as:

Sπ(s,M) := sHπ(s,M), (7)

where sHπ(s,M) is the state of the process at the hitting time Hπ(s,M). Since Sπ(s,M) is the first state inM that is
reached, the hitting time of Sπ(s,M) is indeed the same as the hitting time ofM. Similarly, the total return before
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hittingM is the same as the return before hitting Sπ(s,M) conditioned on avoiding hitting other states inM, that is:

Hπ(s,M) =Hπ(s,M, Sπ(s,M)),

R̃π
d (s,M) =

Hπ(s,M)−1∑
t=0

γtrd(st, at) =

Hπ(s,M,Sπ(s,M))−1∑
t=0

γtrd(st, at) = R̃π
d (s,M, Sπ(s,M)).

(8)

Denote the expectation of the total return and discount before hitting s̄ conditioned on avoiding all other states inM
before reaching s̄ as Ṽπ

d = [Ṽ π
d (s0,M), · · · , Ṽ π

d (s|S|,M)]T ∈ RS×1, Ṽπ ∈ RS×D, and Γ̃ ∈ RS×M , respectively.
For s ∈ S , s′ ∈M, d ∈ {1, · · · , D}, we define

Ṽ π
d (s,M) :=E

[
R̃π

d (s,M)
]
,

Ṽπ =[Ṽπ
1 , . . . , Ṽ

π
D],

Γπ(s,M, s̄) =P (Sπ(s,M) = s̄)E
[
γH(s,M,s̄)

]
.

(9)

Recall Vπ ∈ RS×D is the value function with initial state distribution µ, where µ is ignored for the notation simplicity.
Moreover, we use Vπ

d (s) and Vπ
d (M) to denote the d-th objective value function at state s and at state set M,

respectively. By the definition of value function, Vπ
d (s) can be written as

Vπ
d (s) =E

[ ∞∑
t=0

γtrd(st, at)

∣∣∣∣∣s0 = s

]

=E

[
E

[ ∞∑
t=0

γtrd,t

∣∣∣∣∣Sπ(s,M)

]∣∣∣∣∣s0 = s

]
.

We next want to calculate the conditional expectation of long-term return given Sπ(s,M) = s̄.

E

[ ∞∑
t=0

γtrd,t

∣∣∣∣∣Sπ(s,M) = s̄

]
=E

H(s,M,s̄)−1∑
t=0

γtrd,t + γH(s,M,s̄)Vπ
d (s̄)


=E

H(s,M,s̄)−1∑
t=0

γtrd,t

+ E
[
γH(s,M,s̄)

]
Vπ

d (s̄)

(By linearity of expectations and Vπ
d (s̄) is a constant)

=E
[
R̃π

d (s,M, s̄)
]
+ E

[
γH(s,M,s̄)

]
Vπ

d (s̄) (by definition of R̃π
d (s,M, s̄) in Eq. (6))

Plugging the above equation into Vπ
d (s), we have

Vπ
d (s) =

∑
s̄∈M

P (Sπ(s,M) = s̄)E

[ ∞∑
t=0

γtrd,t

∣∣∣∣∣Sπ(s,M) = s̄

]
=
∑
s̄∈M

P (Sπ(s,M) = s̄)E
[
R̃π

d (s,M, s̄)
]
+
∑
s̄∈M

P (Sπ(s,M) = s̄)E
[
γH(s,M,s̄)

]
Vπ

d (s̄)

1
=E

[
R̃π

d (s,M)
]
+
∑
s̄∈M

P (Sπ(s,M) = s̄)E
[
γH(s,M,s̄)

]
Vπ

d (s̄)

=Ṽπ
d (s,M) +

∑
s̄∈M

Γπ(s,M, s̄)Vπ
d (s̄) (by Eq. (9)),
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where 1 is because

∑
s̄∈M

P (Sπ(s,M) = s̄)E
[
R̃π

d (s,M, s̄)
]
=E

E
H(s,M,Sπ(s,M))−1∑

t=0

γtrd(st, at)

∣∣∣∣∣∣Sπ(s,M)

∣∣∣∣∣∣s0 = s


=E

E
H(s,M)−1∑

t=0

γtrd(st, at)

∣∣∣∣∣∣Sπ(s,M)

∣∣∣∣∣∣s0 = s

 (by Eq. (8))

=E

H(s,M)−1∑
t=0

γtrd(st, at)

∣∣∣∣∣∣s0 = s


=R̃π

d (s,M).

Lemma 15 gives the value of Γπ and Ṽπ as following

Γπ =

[
γ(IS−M − γA)−1B

IM

]
, Ṽπ =

[
(IS−M − γA)−1X

0M

]
.

Note that Γπ and Ṽπ are the same for any policy in ΠN (π1,M). Since we only consider policies within ΠN (π1,M),
for simplicity of notation, we omit the superscripts π in Γπ and Ṽπ in the following sections, as they remain constant
for any policies within ΠN (π1,M).

Rearranging Vπ , we have

Vπ = Ṽ + ΓVπ(M). (10)

By the Bellman equation and Eq. (10), we can rewrite the Vπ(M) as

Vπ(M) =rπ(M) + γPπ(M)Vπ (by Bellman equation)

=rπ(M) + γPπ(M)
(
Ṽ + ΓVπ(M)

)
(by Eq. (10))

=
(
rπ(M) + γPπ(M)Ṽ

)
+ γPπ(M)ΓVπ(M).

Since [A,B] is a stochastic matrix, we have (IS−M − γA)−1B1M < (IS−M − A)−1B1M = 1S−M , where the
inequality means (IS−M −γA)−1B1M is smaller than (IS−M −A)−1B1M component-wisely. Moreover, since each
element of A and B are larger than zero, we also have (IS−M−γA)−1B1M > 0S−M . As each element of Cπ and Dπ

are not smaller than zero, it follows that 0M ≤
(
Cπ(IS−M − γA)−1B+Dπ

)
1M < (Cπ +Dπ)1M = 1M . Hence,

∥Cπ(IS−M − γA)−1B+Dπ∥∞ < 1. By Lemma 6, Pπ(M)Γ = γCπ(IS−M − γA)−1B+Dπ has eigenvalues all
smaller than 1. Hence the eigenvalue of (IM − γPπ(M)Γ) are larger than zero, implying it is invertible. Rearranging
the above equation, we have

Vπ(M) = (IM − γPπ(M)Γ)
−1
(
rπ(M) + γPπ(M)Ṽ

)
. (11)

Define

Fπ :=γPπ(M)Γ,

Eπ :=rπ(M) + γPπ(M)Ṽ.
(12)

Plugging Eq. (11) into Eq. (10), we obtain

Vπ =Ṽ + Γ · (IM − γPπ(M)Γ)
−1
(
rπ(M) + γPπ(M)Ṽ

)
=Ṽ + Γ · (IM − Fπ)

−1
Eπ. (by definition of Fπ and Eπ)

(13)
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We move to investigate the derivative of Vπ with respect to π(s̄, a).

∂Vπ

∂π(s̄, a)
=Γ · ∂ (IM − Fπ)

−1

∂π(s̄, a)
Eπ + Γ · (IM − Fπ)

−1 ∂Eπ

∂π(s̄, a)

=Γ · (IM − Fπ)
−1 ∂Fπ

∂π(s̄, a)
(IM − Fπ)

−1
Eπ + Γ · (IM − Fπ)

−1 ∂Eπ

∂π(s̄, a)

(by
∂Y−1

∂x
= −Y−1 ∂Y

∂x
Y−1 (Petersen et al., 2008))

=Γ · (IM − Fπ)
−1

P(δ(s̄), a, ·)Γ · (IM − Fπ)
−1

Eπ

+ Γ · (IM − Fπ)
−1
(
r(δ(s̄), a, ·) +P(δ(s̄), a, ·)Ṽ

)
. (by Lemma 16)

Then we can calculate the directional derivative on the direction of π2 − π1, where π2 and π1 are deterministic policies.
Moreover, π1(s̄) ̸= π2(s̄) for any state s̄ belonging to M, and π1(s̄) = π2(s̄) for any state other than M. The
calculation of the directional derivative, denoted as

〈
∂Vπ

∂π , π2 − π1

〉
, is as follows:〈

∂Vπ

∂π
, π2 − π1

〉
=

∑
s̄∈M,a∈A

∂Vπ

∂π(s̄, a)
(π2(s̄, a)− π1(s̄, a))

=Γ · (IM − Fπ)
−1
∑
s̄∈M

(P(δ(s̄), π2(s̄), ·)−P(δ(s̄), π1(s̄), ·)) Γ · (IM − Fπ)
−1

Eπ

+ Γ · (IM − Fπ)
−1
∑
s̄∈M

((
r(δ(s̄), π2(s̄), ·) +P(δ(s̄), π2(s̄), ·)Ṽ

)
−
(
r(δ(s̄), π1(s̄), ·) +P(δ(s̄), π1s̄), ·)Ṽ

))
(by (1) of Lemma 16)

=Γ · (IM − Fπ)
−1

(Fπ2 − Fπ1) (IM − Fπ)
−1

Eπ + Γ · (IM − Fπ)
−1

(Eπ2 −Eπ1)

(by (2) of Lemma 16).

Consequently, the directional derivative along the direction of π2 − π1 at a convex combination of π1 and π2, namely
απ1 + (1− α)π2 with 0 ≤ α ≤ 1, can be expressed as follows:〈

∂Vπ

∂π

∣∣π = απ1 + (1− α)π2, π2 − π1

〉
= Γ · (IM − Fπ)

−1
(Fπ2 − Fπ1) (IM − Fπ)

−1
Eπ + Γ · (IM − Fπ)

−1
(Eπ2 −Eπ1)

= Γ · (IM − Fπ)
−1

(Fπ2 − Fπ1) (IM − Fπ)
−1

(αEπ1 + (1− α)Eπ2)

+ Γ · (IM − Fπ)
−1

(Eπ2 −Eπ1)

(by Eπ = αEπ1 + (1− α)Eπ2 from (3) of Lemma 16)

= Γ · (IM − Fπ)
−1

((1− α) (Fπ2 − Fπ1) + (IM − Fπ)) (IM − Fπ)
−1

Eπ2

+ Γ · (IM − Fπ)
−1

(α (Fπ2 − Fπ1)− (IM − Fπ)) (IM − Fπ)
−1

Eπ1

= Γ · (IM − Fπ)
−1

(IM − Fπ1) (IM − Fπ)
−1

Eπ2

− Γ · (IM − Fπ)
−1

(IM − Fπ2) (IM − Fπ)
−1

Eπ1

(by Fπ = αFπ1 + (1− α)Fπ2 from (3) of Lemma 16).

(14)

Furthermore, the directional derivative along the direction π2 − π1 at the point π1 can be written as:〈
∂Vπ

∂π

∣∣π = π1, π2 − π1

〉
=Γ · (IM − Fπ1)

−1
(IM − Fπ1) (IM − Fπ1)

−1
Eπ2

− Γ · (IM − Fπ1)
−1

(IM − Fπ2) (IM − Fπ1)
−1

Eπ1

=Γ · (IM − Fπ1)
−1

Eπ2 − Γ · (IM − Fπ1)
−1

(IM − Fπ2) (IM − Fπ1)
−1

Eπ1

=Γ · (IM − Fπ1)
−1

(IM − Fπ2)
(
(IM − Fπ2)

−1
Eπ2 − (IM − Fπ1)

−1
Eπ1

)
.

(15)
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The statement that Vαπ1+(1−α)π2 lies on the straight line between Vπ1 and Vπ2 is equivalent to that the directional
derivative of Vπ along the direction π2 − π1 at the point απ1 + (1 − α)π2 aligns with the direction of Vπ2 −Vπ1 .
That is, for any 0 ≤ α ≤ 1, there exists k ∈ R which is related to α such that the following equation holds〈

∂Vπ

∂π

∣∣
π=απ1+(1−α)π2

, π2 − π1

〉
= k (Vπ2 −Vπ1) . (16)

Plugging Eq. (13) and Eq. (14) into Eq. (16), LHS and RHS can be written as

LHS =Γ · (IM − Fπ)
−1

(IM − Fπ1) (IM − Fπ)
−1

Eπ2

− Γ · (IM − Fπ)
−1

(IM − Fπ2) (IM − Fπ)
−1

Eπ1 ,

RHS =k (Vπ2 −Vπ1)

=k
((

Ṽ + Γ · (IM − Fπ2)
−1

Eπ2

)
−
(
Ṽ + Γ · (IM − Fπ1)

−1
Eπ1

))
=kΓ ·

(
(IM − Fπ2)

−1
Eπ2 − (IM − Fπ1)

−1
Eπ1

)
.

Note that when M = 1, IM − Fπ is a scalar and Eπ ∈ Rd. In this case, for any 0 ≤ α ≤ 1, there exists k such that
LHS = RHS. To show this, define scalars b := (IM − Fπ), b1 := (IM − Fπ1), b2 := (IM − Fπ2). Then we can
express LHS = b1b2/b

2Γ (Eπ2/b2 −Eπ1/b1) and RHS = Γ (Eπ2/b2 −Eπ1/b1). Clearly letting k = b1b2/b
2 makes

Eq. (16) hold. As a result, Vαπ1+(1−α)π2 lies on the straight line between Vπ1 and Vπ2 when d(π1, π2) = 1.

A necessary condition for the statement Vαπ1+(1−α)π2 lies on the straight line between Vπ1 and Vπ2 is that the
directional derivative of Vπ along the direction π2 − π1 at the point π1 aligns with the direction of Vπ2 −Vπ1 , i.e.,
Eq. (16) when π = π1. Formally, there exists a scalar k such that〈

∂Vπ

∂π

∣∣
π=π1

, π2 − π1

〉
= k (Vπ2 −Vπ1) . (17)

Define Λ := (IM − Fπ2)
−1

Eπ2 − (IM − Fπ1)
−1

Eπ1 . Plugging Eq. (15) into LHS, we have

LHS =Γ · (IM − Fπ1)
−1

(IM − Fπ2)
(
(IM − Fπ2)

−1
Eπ2 − (IM − Fπ1)

−1
Eπ1

)
=Γ · (IM − Fπ1)

−1
(IM − Fπ2) Λ,

RHS can be rewritten as
RHS =kΓ · Λ.

By Lemma 15, Γ =
[(
γ(IS−M − γA)−1B

)⊤
, IM

]⊤
∈ RS×M and Γ has rank M ≤ S. Therefore, Γ has full column

rank. By Lemma 5, Eq. (17) is equivalent to the following equation:(
(IM − Fπ1)

−1
(IM − Fπ2)− kIM

)
Λ = 0. (18)

Note that Λ ∈ RM×D, and rank(Λ) ≤ min(M,D).

(1) When rank(Λ) = M , Λ has full row rank. This case also implies M ≤ D. By Theorem 3, the only solution to
XΛ = 0 is X = 0. Therefore, Eq. (18) is equal to

(IM − Fπ1)
−1

(IM − Fπ2)− kIM = 0.

Substituting the definition of Fπ as Fπ = γPπ(M)Γ in the above equation and rearrange the equation, we have

Pπ2(M)Γ =
1

γ
(IM − k (IM − γPπ1(M)Γ)) .

Moreover, to make Pπ2 a valid probability distribution vector, Pπ2 should satisfy Pπ21S = 1M . Therefore, Pπ2(M)
should satisfy Pπ2(M) [Γ,1S ] = [IM − k (IM − γPπ1(M)Γ) /γ,1M ].

When M = S, [Γ,1S ] ∈ RS×(S+1) has rank S. When M < S, Since [Γ,1S ] has S rows and rank at least M . Hence,
[Γ,1S ] has S rows and rank at least M in both cases. Fix k. By the rank-nullity theorem Theorem 3 and Lemma 4, for
s̄ ∈M, if the solution of Pπ2(s̄) exists, the dimension of the solution Pπ2(s̄) is at most S −M . On the other hand, if
no solution to Pπ2(s̄) exists, the dimension of the solution space is 0. Therefore, the dimension of solution space of
Pπ2(M) is at most M × (S −M).
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By varying k ∈ R, the dimension of solution space of Pπ2(M) is M × (S −M) + 1.

Since valid probability transition matrix Pπ2(M) requires that the row sums equal one, the ambient space Pπ2(M)
lies in has dimension M × (S − 1). Since the solution space of Pπ2(M) that satisfies Eq. (18) has dimension at most
M × (S −M) + 1 with rank(Λ) > 0, while the ambient space where Pπ2(M) resides has dimension M × (S − 1).
When M > 1, the dimension of the solution space is significantly lower than that of the full space. Therefore, the set of
points where Pπ2(M) satisfies Eq. (18) forms a subset of Lebesgue measure 0 in the M × (S − 1)-dimensional space.

(2) When 0 < rank(Λ) < M , the dimension of the solution set to XΛ = 0 is M × (M − rank(Λ)) by Theorem 3.
Let H be a possible solution to XΛ = 0. Then we have

(IM − Fπ1)
−1

(IM − Fπ2)− kIM = H.

Rewrite the above equation, we have

Pπ2(M)Γ =
1

γ
(IM − k (IM − γPπ1(M)Γ · (H+ kIM ))) .

Define G = {G|G = 1
γ (IM − k (IM − γPπ1(M)Γ (H+ kIM ))) ,HΛ = 0, k ∈ R}. Since the dimension of

the solution set to XΛ = 0 is M × (M − rank(Λ)) and IM is not a solution to XΛ = 0, we have dim(G) =
M × (M − rank(Λ)) + 1.

Fix G in G. Similar to the analysis of (1), the dimension of solution space of Pπ2(M) is at most M × (S −M).

Combining with the dimension of G, the dimension of solution space of Pπ2(M) that satisfies Eq. (18) is at most
M × (S −M) +M × (M − rank(Λ)) + 1 = M × (S − rank(Λ)) + 1. Since the solution space of Pπ2(M) that
satisfies Eq. (18) has dimension at most M × (S − rank(Λ)) + 1 with rank(Λ) > 0, while the ambient space where
Pπ2(M) resides has dimension M × (S − 1). When M > 1, the dimension of the solution space is significantly
lower than that of the full space. Therefore, according to results from measure theory, the set of points where Pπ2(M)
satisfies Eq. (18) forms a subset of Lebesgue measure 0 in the M × (S − 1)-dimensional space.

(3) When rank(Λ) = 0, we have

(IM − Fπ2)
−1

Eπ2 − (IM − Fπ1)
−1

Eπ1 = 0.

Plugging Eπ = rπ(M) + γPπ(M)Ṽ into the above equation and rearrange it, we have

rπ2(M) = (IM − Fπ2) (IM − Fπ1)
−1
(
rπ1(M) + γPπ1(M)Ṽ

)
− γPπ2(M)Ṽ.

When P and rπ1(M) are given, rπ2(M) has only one solution. Hence, the solution space of rπ2(M) that satisfies
Eq. (18) has dimension 0, while the ambient space where rπ2(M) resides has dimension M ×D. The dimension of the
solution space is significantly lower than that of the full space. Therefore, according to results from measure theory, the
set of points where rπ2(M) satisfies Eq. (18) forms a subset of Lebesgue measure 0 in the M ×D-dimensional space.

Theorem 4. Given a finite MDP (S,A,P, r, γ), where P is the transition probability kernel and r ≥ 0 is the reward
function. The endpoints for any edges on B(J(µ)) are deterministic policies and only differ in one state-action pair
almost surely.

Proof. Suppose π1 and π2 are two neighbouring vertices in J(µ). By Lemma 1, π1 and π2 that are vertices of J(µ) are
deterministic policies.

Lemma 19 shows that the edge connecting π1 and π2 can only be formed by the long-term return of policies that are
convex combination of π1 and π2, that is,

{αJπ1(µ) + (1− α)Jπ1(µ) | α ∈ [0, 1]} = {Jβπ1+(1−β)π2(µ) | β ∈ [0, 1]}.
However, if d(π1, π2) > 1, Lemma 20 shows that it is almost surely that

{αJπ1(µ) + (1− α)Jπ1(µ) | α ∈ [0, 1]} ̸= {Jβπ1+(1−β)π2(µ) | β ∈ [0, 1]}.
This leads to a contradiction. Therefore, we must have d(π1, π2) = 1. This concludes the proof.

Theorem 5. Let C be a convex polytope, and let V be the set of vertices of C. Let P denote the Pareto front of C,
with V(P) and F(P) representing the set of vertices and faces on the Pareto front, respectively. Let VP ⊆ V(P) and
FP ⊆ F(P) be subsets of the vertices and faces of the Pareto front, such that every face in FP is composed of vertices
in VP . Given a set of vertices T ⊆ V such that VP ⊆ T, then FP ⊆ F(Conv(T)).
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Proof. Pick a face F from FP . By Lemma 7, F is also on the boundary of C. Since the vertices of F belong to VP , we
can express F as:

F = P ∩ {x ∈ Rd : w⊤x = c},
where and w⊤x ≤ c for all x ∈ C. Moreover, since F is on the Pareto front, we have w > 0.

Given that VP ⊆ T, F is a slice of the convex polytope Conv(T). F is a valid face of Conv(T) only if w⊤x ≤ c for
all x ∈ Conv(T).

We proceed by contradiction. Suppose there exists x ∈ Conv(T) such that w⊤x > c. Since T ⊆ V and C = Conv(V),
it follows that Conv(T) ⊆ C. This would imply that w⊤(x − y) > 0 for some y ∈ F and x ∈ C. As w > 0, by
Lemma 8, this would imply that x dominates y, which contradicts the assumption that y is a Pareto optimal point of C.
Therefore, no such x can exist, and F is a valid face of Conv(T).

Thus, we conclude that FP ⊆ F(Conv(T)).

Consider a special case of Theorem 5 when VP = V(P) and FP = F(P), we have the following proposition.
Proposition 2. Let C be a convex polytope, and let V be the set of vertices of C. Let P denote the Pareto front of C,
with V(P) and F(P) representing the set of vertices and faces on the Pareto front, respectively. Given a set of vertices
T ⊆ V such that V(P) ⊆ T, then F(P) ⊆ F(Conv(T)).

E SUFFICIENCY OF TRAVERSING OVER EDGES

Lemma 21. (Existence of Neighborhood Edges on Pareto front of J(µ)) Suppose J(µ) contains multiple Pareto optimal
vertices. Let π be a Pareto optimal policy, and let N(Jπ(µ), J(µ)) represent all neighboring points of Jπ(µ) on the
boundary of J(µ). Then, there exists J ∈ N(Jπ(µ), J(µ)) such that the edge connecting J and Jπ(µ) lies on the Pareto
front.

Proof. By Lemma 1, J(µ) is a convex polytope. Given J ∈ N(Jπ(µ), J(µ)), J and Jπ1(µ) are neighboring vertices
on J(µ), and the edge between J and Jπ1(µ) is a 1-dimensional face of J(µ). By the definition of Definition 1, there
exists a vector wJ such that w⊤

J J
π1(µ) = w⊤

J J , and for any x ∈ J(µ) that not on the edge between J and Jπ1(µ), we
have w⊤

J J > w⊤
J x.

We first prove that there exists J ∈ N(Jπ(µ), J(µ)) such that wJ > 0. We prove this by contradiction. Assume
that for every J ∈ N(Jπ(µ), J(µ)), there does not exist wJ > 0.

By the definition of the Pareto front, if Jπ(µ) is not strictly dominated by J , meaning that Jπ(µ) is greater than or
equal to J in some dimensions and strictly smaller in others, then there must exist a positive vector wJ > 0. Hence,
if for every J ∈ N(Jπ(µ), J(µ)), wJ > 0 does not exist, it implies that either Jπ(µ) is strictly dominated by J or
J is strictly dominated by Jπ(µ). Since Jπ(µ) is on the Pareto front, no point in J(µ) can strictly dominate Jπ(µ).
Therefore, it must be the case that J is strictly dominated by Jπ(µ) for all J ∈ N(Jπ(µ), J(µ)). This implies that for
all J ∈ N(Jπ(µ), J(µ)) and any w > 0, we have w⊤(J − Jπ1(µ)) < 0.

We then show that Jπ(µ) dominates every point within J(µ). For any point x ∈ J(µ), we can express x as a linear
combination of Jπ(µ) and the neighboring points in N(Jπ(µ), J(µ)) with non-negative weight vector α:

x = Jπ(µ) +
∑

Ji∈N(Jπ(µ),J(µ))

αi(Ji − Jπ(µ)).

Consider any such point x and any vector w > 0. We have:

w⊤(x− Jπ(µ)) = w⊤

Jπ(µ) +
∑

Ji∈N(Jπ(µ),J(µ))

αi(Ji − Jπ(µ))− Jπ(µ)


= w⊤

 ∑
Ji∈N(Jπ(µ),J(µ))

αi(Ji − Jπ1(µ))


=

∑
Ji∈N(Jπ(µ),J(µ))

αiw
⊤(Ji − Jπ1(µ))

< 0.
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where the last inequality is because w⊤(Ji − Jπ1(µ)) < 0 for any Ji ∈ N(Jπ(µ), J(µ)) from previous analysis and
α > 0 component-wisely.

This implies that Jπ(µ) dominates every point within J(µ). However, this contradicts the condition that the multi-
objective MDP has more than one deterministic Pareto optimal policy. Hence, our assumption is wrong and there exists
J ∈ N(Jπ(µ), J(µ)) such that wJ > 0.

We next show that J , as well as the edge between J and Jπ1(µ), is on the Pareto front. Since there exists a
wJ > 0 such that w⊤

J (J − x) ≥ 0 for any x ∈ J(µ), it follows Lemma 8 that J is also Pareto optimal. Moreover, the
convex combination of J and Jπ1(µ), written as αJ + (1− α)Jπ1(µ) with 0 ≤ α ≤ 1, is also a solution to the linear
scalarization problem with weight vector wJ > 0. Hence, the convex combination of J and Jπ1(µ), i.e., the edge
connecting J and Jπ1(µ), is not strictly dominated by any point in J(µ) and thus lies on Pareto front.

F LOCALITY PROPERTY OF BOUNDARY OF J(µ) AND PARETO FRONT

This section provides the proofs for locality properties of the boundary of J(µ) and the Pareto front. We will ignore the
initial state distribution µ in this section for simplicity of notations.

Before presenting the proofs, we first recall some key notations. We denote the set of long-term returns by policies
in Π as J(µ). By Lemma 1, J is a convex polytope and vertices are the long-return of deterministic policies. Given
a polytope C and a vertex on the polytope x, we denote the set of neighbors on the polytope to x as N(x,C).
Suppose deterministic policy π whose long term return Jπ is a vertex on J, denote the set of deterministic policy
whose long-term returns composes N(Jπ, J) as Nπ(J

π, J). Let Conv(JΠ1 ∪ {Jπ}) be the convex hull constructed by
JΠ1 ∪ {Jπ}. We denote the set of deterministic policies whose long-term returns compose N(Jπ,Conv(JΠ1 ∪ {Jπ}))
as Nπ(J

π,Conv(JΠ1∪{Jπ})). Let Π1(π) be the set of deterministic policies that differ from π by only one state-action
pair.
Theorem 6. Let the long-term return of deterministic policy π, i.e., Jπ, be a vertex on J. Then, N(Jπ,Conv(JΠ1 ∪
{Jπ})) = N(Jπ, J) and Nπ(J

π,Conv(JΠ1 ∪ {Jπ})) = Nπ(J
π, J).

Proof. It is enough to get N(Jπ,Conv(JΠ1 ∪ {Jπ})) = N(Jπ, J) from Nπ(J
π,Conv(JΠ1 ∪ {Jπ})) = Nπ(J

π, J),
so we will focus on proving Nπ(J

π,Conv(JΠ1 ∪ {Jπ})) = Nπ(J
π, J).

We will prove Nπ(J
π,Conv(JΠ1 ∪ {Jπ})) = Nπ(J

π, J) in two steps: first prove Nπ(J
π, J) ⊆ Nπ(J

π,Conv(JΠ1 ∪
{Jπ})), and then prove Nπ(J

π,Conv(JΠ1 ∪ {Jπ})) ⊆ Nπ(J
π, J).

(1) Nπ(J
π, J) ⊆ Nπ(J

π,Conv(JΠ1 ∪ {Jπ})). We prove this by contradiction. Suppose there exists a deterministic
policy u such that u ∈ Nπ(J

π, J) and u /∈ Nπ(J
π,Conv(JΠ1 ∪ {Jπ})).

Suppose u ∈ Π1(π). Since u ∈ Nπ(J
π, J), Ju lies above all the facets formed by Jπ and the long-term return of other

policies, including the policies in Π1(π). Since u ∈ Π1(π), then Ju would also belong to N(Jπ,Conv(JΠ1 ∪ {Jπ}))
by the definition of the convex hull, contradicting the assumption that Ju /∈ N(Jπ,Conv(JΠ1 ∪ {Jπ})). Hence,
u /∈ Π1(π).

Thus, u ∈ Nπ(J
π, J) and u /∈ Π1(π) simutaneously, which contradicts Theorem 4 that Nπ(J

π, J) ⊆ Π1(π) almost
surely. This causes a contradiction, and therefore, Nπ(J

π, J) ⊆ Nπ(J
π,Conv(JΠ1 ∪ {Jπ})).

(2) Nπ(J
π,Conv(JΠ1 ∪ {Jπ})) ⊆ Nπ(J

π, J). We again proceed by contradiction. Suppose there exists a policy
v such that v ∈ Nπ(J

π,Conv(JΠ1 ∪ {Jπ})) and v /∈ Nπ(π, J). We denote the straight line between Jv and Jπ as
E(Jv, Jπ). Since v ∈ Nπ(π,Conv(J

Π1 ∪{Jπ})), E(Jv, Jπ) is an edge of Conv(JΠ1 ∪{Jπ})), implying E(J π̃, Jπ)
cannot lie below all facets whose vertices are Jπ and long-term returns of policies belonging to Nπ(π,Conv(J

Π1 ∪
{Jπ})).
Given the condition that v /∈ Nπ(π, J), it follows that E(Jv, Jπ) is not on the boundary of J, that is, E(Jv, Jπ)
lies below all facets of J, including the facets whose vertices correspond to π and policies belonging to Nπ(π, J).
By Nπ(J

π, J) ⊆ Nπ(J
π,Conv(JΠ1 ∪ {Jπ})) from (1), we have that E(Jv, Jπ) also lies below all facets whose

vertices are Jπ and the long-term returns of policies belonging to Nπ(π,Conv(J
Π1 ∪ {Jπ})). This contradicts the

fact that E(J π̃, Jπ) cannot lie below all facets whose vertices are Jπ and long-term returns of policies belonging to
Nπ(π,Conv(J

Π1 ∪ {Jπ})).
The assumption that there exists a policy v such that v ∈ Nπ(J

π,Conv(JΠ1 ∪ {Jπ})) and v /∈ Nπ(π, J) leads a
contradiction. Hence, Nπ(π,Conv(J

Π1 ∪ {Jπ})) ⊆ Nπ(π, J).
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Combining steps (1) and (2), we have Nπ(π,Conv(J
Π1∪{Jπ})) = Nπ(π, J) and N(π,Conv(JΠ1∪{Jπ})) = N(π, J).

This concludes the proof.

Lemma 22. Let P be a convex polytope, and let x be a vertex of P. Denote by V the set of all vertices of P that are
neighbors to x. Let C be the convex hull constructed by V∪ {x}, i.e., Conv(V∪ {x}), where V∪ {x} are the vertices
of C. Then, the set of faces of P that intersect at x, denoted as F(x,P), is the same as the set of faces of C that intersect
at x, denoted as F(x,C), i.e., F(x,P) = F(x,C).

Proof. We will prove the two set inclusions: F(x,P) ⊆ F(x,C) and F(x,C) ⊆ F(x,P).

(1) F(x,P) ⊆ F(x,C).

Suppose F is a face in F(x,P). Then, there exists a vector w and a scalar c such that w⊤x = c, and the face can
be written as F = P ∩ {z ∈ Rd : w⊤z = c}, where the vertices of F are a subset of V. Since C is the convex hull
constructed by V ∪ {x}, F is a slice contained in C.

For F to be a valid face of C, it must satisfy w⊤z ≤ c for all z ∈ C. We prove this by contradiction: suppose there
exists y ∈ C such that w⊤y > c. Therefore, y lies above all points in P in the direction of w. Since C is a subset of P
(because C is the convex hull of a subset of the vertices of P), this would imply that y lies above all points in C in the
direction of w, which contradicts the assumption that y ∈ C.

Therefore, F is also a valid face of C, implying F(x,P) ⊆ F(x,C).

(2) F(x,C) ⊆ F(x,P).

The argument is analogous to part (1). Suppose F is a face of C that intersects at x. Then F can be written as
F = C ∩ {y ∈ Rd : w⊤y = c}, where w⊤x = c, and w⊤y ≤ c for any y ∈ C. With the same analysis as in (1), F is
a slice contained in C. Since any point z ∈ P can be expressed as a linear combination of x and its neighboring vertices
vi ∈ V, we have:

w⊤z = w⊤

(
x+

∑
i

αi(vi − x)

)
≤ c,

where αi > 0, and w⊤x = c and w⊤vi ≤ c. Therefore, F is also a face of P.

Combining (1) and (2), we conclude that F(x,P) = F(x,C).

Proposition 3. Let the long-term return of deterministic policy π, i.e., Jπ , be a vertex on J. Let F(Jπ,Conv(JΠ1∪{Jπ})
be the set of faces of the convex hull constructed by JΠ1 ∪ {Jπ} that intersect at Jπ . Similarly, let F(Jπ, J) be the set
of faces of J that intersect at Jπ . Then, F(Jπ,Conv(JΠ1 ∪ {Jπ})) = F(Jπ, J).

Proof. By Theorem 6, we know that N(Jπ,Conv(JΠ1 ∪ {Jπ})) = N(Jπ, J). According to Lemma 22, if two sets of
vertices have the same set of neighbor vertices, then the sets of faces formed by those vertices are identical. Hence, we
conclude that F(Jπ,Conv(JΠ1 ∪ {Jπ})) = F(Jπ, J).

Proposition 4. Let π be a policy on the Pareto front of J. Let Π1,ND(π) ⊆ Π1(π) be the set of policies belonging
to Π1(π) that are not dominated by any other policies in Π1(π), and let N(Jπ,Conv(JΠ1,ND ∪ {Jπ})) be the set of
neighbors of Jπ in the convex hull constructed by JΠ1,ND ∪ {Jπ}. Similarly, let N(Jπ,P(J)) be the set of neighbors of
Jπ on the Pareto front of J. Then we have

N(Jπ,P(J)) ⊆ N(Jπ,Conv(JΠ1,ND ∪ {Jπ})).

Proof. By Lemma 7, the Pareto front lies on the boundary of J. Therefore, the neighbors of π on the Pareto front,
N(Jπ,P(J)), are the intersection of the set of vertices on J neighboring Jπ and the Pareto front. Formally, we have
N(Jπ,P(J)) = N(Jπ, J) ∩ P(J).

Define ND(Π1) as the set of all policies (including stochastic and deterministic policies) that are not dominated by any
other policies in Π1. Since the Pareto front consists of the long-term return of policies that are not dominated by any
other policies in Π, it follows that P(J) ⊆ JND(Π1). Thus, we have N(Jπ,P(J)) ⊆ N(Jπ, J) ∩ JND(Π1).

By Theorem 6, we know that N(Jπ,Conv(JΠ1 ∪ {Jπ})) = N(Jπ, J). Therefore, combining with N(Jπ,P(J)) ⊆
N(Jπ, J) ∩ JND(Π1), we can conclude:

N(Jπ,P(J)) ⊆ N(Jπ,Conv(JΠ1 ∪ {Jπ})) ∩ JND(Π1).
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Next, consider any point Ju ∈ N(Jπ,Conv(JΠ1 ∪{Jπ}))∩JND(Π1). By N(Jπ,Conv(JΠ1 ∪{Jπ})) ⊆ JΠ1 , we have
Ju ∈ JΠ1 ∩ JND(Π1). This means that u is in Π1(π) and is not dominated by any policy in Π1(π), thus u ∈ Π1,ND(π).
And since Ju is also a vertex of the convex hull constructed by JΠ1 ∪ {Jπ}, it does not lie below all facets formed
by the long-term return of any other policies belonging to Π1(π) and π. Since Π1,ND(π) ⊆ Π1(π), it follows that
Ju does not lie below all facets formed by the long-term return of any other policies in Π1,ND(π) and π. Therefore,
Ju ∈ N(Jπ,Conv(JΠ1,ND ∪ {Jπ})). Thus, we have:

N(π,Conv(JΠ1 ∪ {Jπ})) ∩ JND(Π1) ⊆ N(Jπ,Conv(JΠ1,ND ∪ {Jπ})).

Combining this with the previous result, we conclude:
N(Jπ,P(J)) ⊆ N(Jπ,Conv(JΠ1,ND ∪ {Jπ})).

Then we also have Nπ(J
π,P(J)) ⊆ Nπ(J

π,Conv(JΠ1,ND ∪ {Jπ})).

Proposition 5. Let π be a policy on the Pareto front of J. Let Π1,ND(π) ⊆ Π1(π) be the set of policies belonging to
Π1(π) that are not dominated by any other policies in Π1(π), and let F(Jπ,Conv(JΠ1,ND ∪ {Jπ})) be the set of faces
of the convex hull constructed by JΠ1,ND ∪ {Jπ} that intersect at Jπ. Similarly, let F(Jπ, P (J)) be the set of faces on
the Pareto front of J that intersect at Jπ . Then, we have:

F(Jπ, P (J)) ⊆ F(Jπ,Conv(JΠ1,ND ∪ {Jπ})).
Remark 1. Note that in this case, the faces of the convex hull Conv(Π1,ND ∪ {x}) that intersect at x may not
necessarily lie on J. However, we can use the condition N(π,P(J)) ⊆ N(π,Conv(Π1,ND)) from Proposition 4 and
the characteristics of the Pareto front from Theorem 5 to show that faces of the convex hull Conv(Π1,ND ∪ {x}) that
intersect at x lie on the Pareto front of J.

Proof. Since Nπ(J
π,Conv(JΠ1,ND ∪ {Jπ})) ∈ ΠD, then N(Jπ,Conv(JΠ1,ND ∪ {Jπ})) ⊆ J. By Proposition 4, we

have N(Jπ,P(J)) ⊆ N(Jπ,Conv(JΠ1,ND ∪ {Jπ})). By Theorem 5, the set of faces in Pareto front constructed by Jπ

and vertices belonging to N(Jπ,P(J)) is a subset of the set of faces of the convex hull constructed by JΠ1,ND ∪ {Jπ},
i.e., F(Jπ, P (J)) ⊆ F(Jπ,Conv(JΠ1,ND ∪ {Jπ})). This concludes our proof.

Proposition 6. (Restatement of Proposition 1) Let FP (J
π,Conv(JΠ1,ND ∪ {Jπ})) denote the set of faces of

F(Jπ,Conv(JΠ1,ND ∪ {Jπ})) that satisfying Lemma 3. Then, we have

F(Jπ, P (J)) = FP (J
π,Conv(JΠ1,ND ∪ {Jπ}))

Proof. We prove this by two inclusions: F(Jπ, P (J)) ⊆ FP (J
π,Conv(JΠ1,ND ∪ {Jπ})) and FP (J

π,Conv(JΠ1,ND ∪
{Jπ})) ⊆ F(Jπ, P (J)).

(1) F(Jπ, P (J)) ⊆ FP (J
π,Conv(JΠ1,ND ∪ {Jπ})). Let F ∈ F(Jπ, P (J)). Since Proposition 5 proves that

F(Jπ, P (J)) ⊆ F(Jπ,Conv(JΠ1,ND ∪ {Jπ})), we have F ∈ F(Jπ,Conv(JΠ1,ND ∪ {Jπ})).
Since F is a face on the Pareto front of J and Conv(JΠ1,ND ∪ {Jπ}) is a subset of J, F is also the Pareto front of
Conv(JΠ1,ND ∪ {Jπ}). Therefore, F satisfies Lemma 3 in Conv(JΠ1,ND ∪ {Jπ}) and F ∈ FP (J

π,Conv(JΠ1,ND ∪
{Jπ})). Thus, we have F(Jπ, P (J)) ⊆ FP (J

π,Conv(JΠ1,ND ∪ {Jπ})).
(2) FP (J

π,Conv(JΠ1,ND ∪ {Jπ})) ⊆ F(Jπ, P (J)). Let F ∈ FP (J
π,Conv(JΠ1,ND ∪ {Jπ})). By Lemma 8, there

exists a weight vector w > 0 such that w⊤(x − y) ≥ 0 for any x ∈ F and y ∈ Conv(JΠ1,ND ∪ {Jπ}). Since
JΠ1,ND ⊆ Conv(JΠ1,ND ∪ {Jπ}), the inequality also holds for any x ∈ F and y ∈ JΠ1,ND . For any z ∈ JΠ1 , z either
belongs to JΠ1,ND or is dominated by y ∈ JΠ1,ND . In both cases, w⊤(x− z) ≥ 0 implying x is not dominated by any
z ∈ JΠ1 . Thus, F is a Pareto optimal face of Conv(JΠ1 ∪ {Jπ}). Suppose that F written as the intersection of n ≥ 1
facets, i.e., F = ∩ni=1Fi, where Fi = Conv(JΠ1 ∪ {Jπ}) ∩ {x ∈ Rd : w⊤

i x = ci}, we can express F as:

F = Conv(JΠ1 ∪ {Jπ}) ∩

{
x ∈ Rd :

∑
i

αiw
⊤
i x =

∑
i

αici

}
,

where for any α ≥ 0. As F = Conv(JΠ1 ∪ {Jπ}) ∩ {x ∈ Rd : w⊤x = c}, there exists a non-negative α such that
w =

∑
i αiwi > 0. That is, there exists a non-negative linear combination of these facets Conv(JΠ1 ∪ {Jπ}) that

intersects on Jπ such that the linear combination is strictly positive.

As F(Conv(JΠ1 ∪ {Jπ})) = F(Jπ, J) by Proposition 3, there exists a non-negative linear combination of facets of
F(Jπ, J) that intersects on Jπ such that the combination is strictly positive. By Lemma 3 again, F ∈ F(Jπ, P (J)).

Combining (1) and (2) concludes the proof.
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G FIND PARETO FRONT ON CCS

By Lemma 9, each nonempty face F of a convex polytope can be written as the intersection of facets {Fi}i, i.e.,
F = ∩i(Fi).
Lemma 23. (Restatement of Lemma 3) Given a convex polytope C, a face F of C lies on the Pareto front if and only if
the following conditions hold:

• When F is a facet of C, i.e., dim(F) = dim(C)− 1, there exists w > 0 such that F = C ∩ {x ∈ Rd : w⊤x =
c0}.

• When 0 ≤ dim(F) < dim(C) − 1, and F is the intersection of facets of C, i.e., F = ∩iFi, where each facet
is written as Fi = C ∩ {x ∈ Rd : w⊤

i x = ci}, there exists a linear combination of the normal vectors with
weight vector α ≥ 0, such that

∑
i αiwi > 0.

Proof. When F = C∩{x ∈ Rd : w⊤x = c0} is a facet of C, by the definition of a valid linear inequality, the inequality
w⊤y ≤ c0 holds for all points y ∈ C. Since w > 0, for any x on F and any y ∈ C, we have w⊤(y − x) ≤ 0. By
Lemma 8, this is equivalent to that no point in C dominates x and F lies on the Pareto front.

When F is a lower-dimensional face of C, written as the intersection of n facets, i.e., F = ∩ni=1Fi, where Fi = C∩{x ∈
Rd : w⊤

i x = ci}, we can express F as:

F = C ∩

{
x ∈ Rd :

∑
i

αiw
⊤
i x =

∑
i

αici

}
,

where α ≥ 0. Since
∑

i αiwi > 0, for any x on F and any y ∈ C, there exists a vector w > 0 such that w⊤(y−x) ≤ 0.
Therefore, by Lemma 8, this is equivalent to no point in C strictly dominates x and F lies on the Pareto front.

Lemma 24. Let F be a face of J, and let ΠF be the set of deterministic policies corresponding to the vertices of F .
Then F can be constructed by the long-term returns of the convex combinations of ΠF , i.e.,

F =

{
Jπ

∣∣∣∣∣π(a|s) = ∑
πi∈ΠF

αiπi(a|s),α ≥ 0,
∑
i

αi = 1

}
.

Proof. By Lemma 1, J is a convex polytope, and its vertices correspond to deterministic policies. Since F is a face of
the convex polytope J, by the definition of a face, there exist w and c such that F =

{
x ∈ RD | w⊤x = c

}
∩ J, and

for any y ∈ J, w⊤y ≤ c.

Therefore, ΠF = argmaxπ∈ΠD
w⊤Jπ, where ΠD denotes the set of all deterministic policies.

By Lemma 14, the convex hull of ΠD, i.e.,
{
π | π(a|s) =

∑
πi∈ΠF

αiπi(a|s),α ≥ 0,
∑

i αi = 1
}

, con-
structs all policies (including stochastic and deterministic) that maximize w⊤Jπ. Thus, the long-
term returns of

{
π | π(a|s) =

∑
πi∈ΠF

αiπi(a|s),α ≥ 0,
∑

i αi = 1
}

construct F . Formally, F ={
Jπ | π(a|s) =

∑
πi∈ΠF

αiπi(a|s),α ≥ 0,
∑

i αi = 1
}

. This concludes the proof.

H COMPLEXITY COMPARISON BETWEEN OLS AND ALGORITHM 1

Let S, A, and D represent the state space size, the action space size, and the reward dimension, respectively. Let N
denote the number of vertices on the Pareto front.

For each iteration, OLS solves the single-objective MDP with a preference vector, removes obsolete preference vectors
with the new points, and computes new preference vectors. Solving the single-objective planning problem incurs a
complexity of O(Cso + Cpe), where Cso and Cpe represent the computational complexity of single-objective MDP
solver and policy evaluation, respectively. The complexity of comparing with the previous candidate Pareto optimal
policies and removing obsolete ones is O(ND), and the complexity of calculating a new preference vector is denoted
as Cwe. The computational complexity of OLS is O(N2D +NCwe +NCso +NCpe).

Algorithm 1 requires only a one-time single-objective planning step during the initialization phase to obtain the initial
deterministic Pareto-optimal policy. The overall computational complexity of our algorithm is O(Cso +NSACpe +

29



Published as a conference paper at ICLR 2025

NCND +NCcvx), where CND and Ccvx represent the computational complexity to select the non-dominated policies
and computing faces of the convex hull, respectively.

Specifically, we dive deeper into the computational complexity of each module.

• Cso. The computational complexity of single-objective planning is Cso = O
(
S4A+ S3A2

)
.

• Cpe. The computational complexity of the policy evaluation is Cpe = O(S3D).

• CND. CND refers to the complexity of finding Π1,ND, the set of non-dominated policies from Π1. Let
NND = |Π1,ND|. The non-dominated policies searching complexity is CND = O(SANNDD).

• Ccvx. Ccvx is the complexity of computing the convex hull faces formed by NND + 1 points that intersect
at the current policy. If the number of vertices of the output convex hull is Ncvx. By [1], the complexity
of the calculation of convex hull is O(NND logNcvx) when D ≤ 3 and O(NNDfNcvx/Ncvx), where fL =
O(L⌊D/2⌋/(⌊D/2⌋!)).

As Algorithm 1 directly searches the Pareto front, the total number of iterations corresponds to the number of vertices
on the Pareto front, avoiding the quadratic complexity introduced by the preference vector updates in OLS. Moreover,
note that calculating new weight in OLS requires calculating the vertices of the convex hull constructed by N +D + 2
hyperplanes of dimension D + 1, making it significantly more expensive than the local convex hull construction of
neighboring policies in our proposed algorithm. Hence, Cwe is much larger than Ccvx.

In conclusion, our algorithm induces total computational complexity ofO(S4A+S3A2+NS4A+NSANNDD+Ccvx),
while OLS has computation complexityO(N(S4A+S3A2)+NS3+N2D+NCwe). Given Ccvx < Cwe, our algorithm
is more efficient than OLS in all cases.

I SUPPORTING ALGORITHMS

For completeness, we provide the PPrune algorithm (Roijers, 2016), which identifies the non-dominated vector value
functions V∗ from a given set of vector value functions V. Note that, with slight abuse of notation, V here refers to the
set of vector value functions rather than the set of vertices used in the main text.

Algorithm 3 PPrune(V) (Roijers, 2016)

Input: A set of value vectors V
1: V∗ ← ∅
2: while V ̸= ∅ do
3: V ← the first element of V
4: for all V ′ ∈ V do
5: if V ′ ≻ V then
6: V ← V ′

7: end if
8: end for
9: Remove V and all vectors dominated by V from V

10: Add V to V∗

11: end while
12: return V∗

The benchmark algorithm retrieves the Pareto front in two steps: (1) evaluate all deterministic policies and compute the
convex hull of all non-dominated deterministic policies and (2) apply Algorithm 2 to identify the Pareto front. The
details of the benchmark algorithm are shown in Algorithm 4.

J EXPERIMENT RESULTS

We adopt the deep-sea-treasure setting from Yang et al. (2019a) and construct a scenario where the agent navigates a
grid world, making trade-offs between different objectives. At each step, the agent can move up, down, left, or right, and
the reward for each grid is generated randomly. We compare the performance of the OLS algorithm and the proposed
Pareto front searching algorithm under different grid sizes (varying numbers of rows and columns). The experiments
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Algorithm 4 Benchmark Algorithm

Input: MDP settings: (S,A,P, r, γ)
Output: the set of Pareto optimal faces P(Π) and the set of deterministic Pareto optimal policies V(Π)

1: Generate all deterministic policies ΠD.
2: Select non-dominated policies ΠD,ND from ΠD.
3: Calculate the convex hull formed by {Jπ | π ∈ ΠD,ND}.
4: Extract Pareto optimal faces P(Π) and vertices V(Π) from the convex hull with Algorithm 2.

were conducted on smaller grid sizes to ensure that the running time of OLS remained manageable. As shown in the
Fig. 7, the proposed algorithm consistently outperforms OLS in terms of efficiency across all tested settings.

We evaluate the trend of the number of vertices N in terms of S and A with the state space size ranging from 10 to 50
and the action space sizes ranging from 10 to 20. The reward dimension is 3. As shown in Fig. 8, the result shows
that the number of vertices grows approximately as N ≈ kS3A, where k is a constant number. Combined with the
computational complexity analysis O(S4A+ S3A2 +NS4A+NSANNDD+Ccvx), this demonstrates the scalability
of our algorithm.
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Figure 7: Pareto front of a simple MDP with S = 4,
A = 3, and D = 3.
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front searching algorithm and the benchmark algo-
rithm when D = 3.
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