
Randomized Exploration in Cooperative Multi-Agent
Reinforcement Learning

Hao-Lun Hsu→, Weixin Wang→, Miroslav Pajic, Pan Xu
Duke University

{hao-lun.hsu,weixin.wang,miroslav.pajic,pan.xu}@duke.edu

Abstract

We present the first study on provably efficient randomized exploration in coopera-
tive multi-agent reinforcement learning (MARL). We propose a unified algorithm
framework for randomized exploration in parallel Markov Decision Processes
(MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and
CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and
the Langevin Monte Carlo exploration (LMC) strategy, respectively, which are
flexible in design and easy to implement in practice. For a special class of parallel
MDPs where the transition is (approximately) linear, we theoretically prove that
both CoopTS-PHE and CoopTS-LMC achieve a Õ(d3/2H2

→
MK) regret bound

with communication complexity Õ(dHM
2), where d is the feature dimension, H

is the horizon length, M is the number of agents, and K is the number of episodes.
This is the first theoretical result for randomized exploration in cooperative MARL.
We evaluate our proposed method on multiple parallel RL environments, includ-
ing a deep exploration problem (i.e., N -chain), a video game, and a real-world
problem in energy systems. Our experimental results support that our framework
can achieve better performance, even under conditions of misspecified transition
models. Additionally, we establish a connection between our unified framework
and the practical application of federated learning.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has emerged as a potent tool with wide-ranging
applications in diverse fields including robotics [23, 54], gaming [74, 92, 84], and numerous real-
world systems [10, 25, 85]. This is particularly evident in cooperative scenarios, where MARL’s
effectiveness is enhanced through both direct and indirect communication channels among agents.
This requires MARL algorithms to adeptly and flexibly coordinate communications to optimize
the benefits of cooperation. One of the classic challenges in MARL is balancing exploration and
exploitation so that agents effectively utilize existing information while acquiring new knowledge.
Recent literature highlights the intricacies of this balance, focusing on cooperative exploration
strategies [27] and dynamic exploitation tactics [68]. Achieving this equilibrium is crucial for the
practical deployment of MARL systems in real-world scenarios, where unpredictability and the need
for rapid adaptation are prevalent [27, 14, 55].

Optimism in the Face of Uncertainty (OFU) is a popular strategy to address the exploration-
exploitation problem [1]. OFU strategy leads to numerous upper confidence bound (UCB)-type
algorithms in contextual bandits [18, 1, 50], single-agent reinforcement learning [36, 76], and more
recently multi-agent reinforcement learning [24, 56]. These algorithms compute statistical confidence
regions for the model or the value function, given the observed history, and perform the greedy

→Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

policy with respect to these regions, or upper confidence bounds. Though UCB-based methods give
out strong theoretical results, they often have poor performance in practice [61, 60]. For example,
Wang et al. [76] demonstrates that computing the confidence bonus necessitates advanced sensitivity
sampling and the expensive computation makes practical applications inefficient. It is worth noting
that UCB is mostly constructed based on a linear structure [18, 36]. NeuralUCB is a notable attempt
at a nonlinear version while it is infeasible in terms of computational complexity [94, 82].

Inspired by Thompson Sampling (TS) [73], posterior sampling for reinforcement learning (PSRL) [7,
95] involves maintaining a posterior distribution over the parameters of the Markov Decision Processes
(MDP) model parameters. Although conceptually simple, most existing TS methods require the
exact posterior or a good Laplacian approximation [83]. Recently, there have been advancements
in randomized exploration with approximate sampling. One important method is perturb-history
exploration (PHE) strategy, which involves introducing random perturbations in the action history
of the agent [45, 47, 32]. This randomized exploration approach diversifies the agent’s experience,
aiding in learning more robust strategies in environments with uncertainty and variability. Another
effective method is Langevin Monte Carlo (LMC) method [83, 33, 31, 42, 58, 34]. Notably, Ishfaq
et al. [33] maintains the simplicity and scalability of LMC, making it applicable in deep RL algorithms
by approximating the posterior distribution of the Q function.

Despite the aforementioned advancements of randomized exploration in bandits and single-agent
RL, there remains a scarcity of research on randomized exploration within cooperative MARL,
which motivates us to present the first investigation into provably efficient randomized exploration
in cooperative MARL, with both theoretical and empirical evidence. We specifically focus on the
applicability in parallel MDPs, aiming to facilitate faster learning and to improve policy optimization
with the same state and action spaces, allowing for leveraging similarities across MDPs. We
theoretically and empirically demonstrate that randomized exploration strategies can be extended to
the multi-agent setting and the benefit of randomized exploration instead of UCB can be significant
from single-agent to multi-agent setting.

In summary, our contributions are as follows:

• We propose a unified algorithm framework for learning parallel MDPs, and apply two TS-related
strategies PHE and LMC for exploration, which leads to the CoopTS-PHE and CoopTS-LMC
algorithms. Unlike conventional TS, which suffers from sampling errors due to Laplace approxima-
tion and expensive posterior computation [66, 46], our proposed algorithms only require adding
standard Gaussian noises to the dataset (CoopTS-PHE) or the gradient (CoopTS-LMC) when
performing Least-Square Value Iteration (LSVI), which is efficient in computation and avoids
sampling bias due to the Laplace approximation. Notably, both algorithms are easily implementable
which are more practical than UCB-based algorithms in deep MARL.

• When reduced to linear parallel MDPs, we theoretically prove that both CoopTS-PHE and CoopTS-
LMC with linear function approximation can achieve a regret bound Õ

(
d
3/2

H
2
→
M

(→
dMω +

→
K
))

with communication complexity Õ
(
(d+K/ω)MH

)
, where d is the feature dimension, H

is the horizon length, M is the number of agents, K is the number of episodes for each agent, and
ω is a parameter controlling the communication frequency. When ω = O(K/dM), our algorithms
attain Õ

(
d
3/2

H
2
→
MK

)
regret with Õ(dHM

2) communication complexity. This result matches
the best communication complexity in cooperative MARL [56], and the best regret bounds for
randomized RL in the single-agent setting (M = 1) [32, 33]. A comprehensive comparison with
baseline algorithms on episodic, non-stationary, linear MDPs is presented in Table 1.

• We further extend our theoretical analysis to the misspecified setting where both the transition
and reward are approximately linear up to an error ε and the MDPs could be heterogeneous
across agents, which is a generalized notion of misspecification [36]. We theoretically prove
when ε = O

(√
d/MK

)
, the cumulative regret for CoopTS-PHE matches the result in the linear

homogeneous MDP setting. Simultaneously, when ε = O
(√

1/MK
)
, the cumulative regret for

CoopTS-LMC matches the result in the linear homogeneous MDP setting. This result indicates that
CoopTS-PHE has a slightly higher tolerance on the model misspecification than CoopTS-LMC.

• We conduct extensive experiments on various benchmarks with comprehensive ablation studies,
including N -chain that requires deep exploration, Super Mario Bros task in a misspecified setting,
and a real-world problem in thermal control of building energy systems. Our empirical evaluation
demonstrates that our randomized exploration strategies outperform existing deep Q-network

2

Table 1: Comparison on episodic, non-stationary, linear MDPs. We define the average regret as the
cumulative regret divided by the total number of samples (transition pairs) used by the algorithm.
Here d is the feature dimension, H is the episode length, K is the number of episodes, and M is the
number of agents in a multi-agent setting.

Setting Algorithm Regret Average Regret Randomized Generalizable Communication
Exploration to Deep RL Complexity

single-
agent

OPT-RLSVI [88] Õ(d2H
5
2

→
K) Õ(d2H

3
2

√
1/K) ✁ ✂ –

LSVI-UCB [36] Õ(d
3
2H

2
→
K) Õ(d

3
2H

√
1/K) ✂ ✂ –

LSVI-PHE [32] Õ(d
3
2H

2
→
K) Õ(d

3
2H

√
1/K) ✁ ✁ –

LMC-LSVI [33] Õ(d
3
2H

2
→
K) Õ(d

3
2H

√
1/K) ✁ ✁ –

LSVI-ASE [34] Õ(dH2
→
K) Õ(dH

√
1/K) ✁ ✁ –

multi-
agent

Coop-LSVI [24] Õ(d
3
2H

2
→
MK) Õ(d

3
2H

√
1/MK) ✂ ✂ Õ

(
dHM

3
)

Asyn-LSVI [56] Õ(d
3
2H

2
→
K) Õ(d

3
2H

√
1/K) ✂ ✂ Õ

(
dHM

2
)

CoopTS-PHE (Ours) Õ(d
3
2H

2
→
MK) Õ(d

3
2H

√
1/MK) ✁ ✁ Õ

(
dHM

2
)

CoopTS-LMC (Ours) Õ(d
3
2H

2
→
MK) Õ(d

3
2H

√
1/MK) ✁ ✁ Õ

(
dHM

2
)

(DQN)-based baselines. We also show that these strategies in cooperative MARL can be adapted to
the existing federated RL framework when data transitions are not shared.

2 Preliminary

In parallel Markov Decision Processes (MDPs), M agents interact independently with their respective
discrete-time MDPs, sharing the same but independent state and action spaces. Each agent might
have its unique reward functions and transition kernels. Specifically, for agent m ↑ M, the associated
MDP is defined by the tuple MDP(S,A, H,Pm, rm). Here S and A are the state and action spaces,
respectively, H is the horizon length, Pm = {Pm,h}h↑[H] and rm = {rm,h}h↑[H] are the sets of
transition kernels and reward functions. For step h ↑ [H], Pm,h(·|s, a) is the probability measure in
the next state given the current state-action pair (s, a), rm,h : S ↓ A ↔ [0, 1] is the deterministic
reward function. The policy ϑm = {ϑm,h}h↑[H] is a sequence of decision rules, where ϑm,h : S ↔ A

is the deterministic policy at step h.

For agent m ↑ M, given any policy ϑ and transition P, to evaluate the policy effectiveness in the
m

th MDP, we define value function V
ω

m,h
(s) := Eω

[∑
H

h→=h
rm,h→(sm,h→ , am,h→)|sm,h = s

]
and Q

function Q
ω

m,h
(s, a) := Eω

[∑
H

h→=h
rm,h→(sm,h→ , am,h→)|sm,h = s, am,h = a

]
for any (h, s, a) ↑

[H] ↓ S ↓ A. The optimal policy is defined as ϑ→
m

, and we denote V
→
m,h

(s) = V
ω
↑
m

m,h
(s). For each

k ↑ [K], at the beginning of episode k, each agent m ↑ M receives the initial state s
k

m,1 chosen
arbitrarily by the environment. For each step h ↑ [H] in this episode, each agent m observes its current
state sk

m,h
, selects an action a

k

m,h
based on policy ϑ

k

m,h
, receives a reward rm,h(skm,h

, a
k

m,h
), and then

transitions to the next state s
k

m,h+1 based on the transition probability measure Pm,h(·|skm,h
, a

k

m,h
).

The reward defaults to 0 when the episode terminates at step H+1. The goal of agents is to minimize
the cumulative group regret after K episodes, which is defined as

Regret(K) =
∑

m↑M
∑

K

k=1

[
V

→
m,1

(
s
k

m,1

)
↗ V

ω
k

m

m,1

(
s
k

m,1

)]
.

3 Algorithm Design

In this section, we first present a unified algorithm framework for conducting randomized exploration
in cooperative MARL. Then we introduce two practical randomized exploration strategies.

3.1 Unified Algorithm Framework

A unified algorithm framework is presented in Algorithm 1, where each agent executes Least-Square
Value Iteration (LSVI) in parallel and makes decisions based on collective data obtained from
communication between each agent and the server. Before we describe the details of our algorithm,
we first define notations about the datasets stored on each agent’s local machine and the server.

3

Algorithm 1 Unified Algorithm Framework for Randomized Exploration in Parallel MDPs
1: Initialization: set U ser

h
(k), U loc

m,h
(k) = ↘.

2: for episode k = 1, ...,K do
3: for agent m ↑ M do
4: Receive initial state s

k

m,1.
5: V

k

m,H+1(·) ≃ 0.
6: {Q

k

m,h
(·, ·)}H

h=1 ≃Randomized Exploration ϖ Algorithm 2 or Algorithm 3
7: for step h = 1, ..., H do
8: a

k

m,h
≃ argmax

a↑A Q
k

m,h
(sk

m,h
, a).

9: Receive s
k

m,h+1 and rm,h.
10: U

loc
m,h

(k) ≃ U
loc
m,h

(k)
⋃(

s
k

m,h
, a

k

m,h
, s

k

m,h+1

)
.

11: if Condition then
12: SYNCHRONIZE ≃ True.
13: end if
14: end for
15: end for
16: if SYNCHRONIZE then
17: for step h = H, ..., 1 do
18: ⇐ AGENT: Send U

loc
m,h

(k) to SERVER.
19: SERVER: U loc

h
(k) ≃

⋃
m↑M U

loc
m,h

(k).
20: SERVER: U ser

h
(k) ≃ U

ser
h
(k)

⋃
U

loc
h

(k).
21: SERVER: Send U

ser
h
(k) to each AGENT.

22: ⇐ AGENT: Set U loc
m,h

(k) ≃ ↘.
23: end for
24: end if
25: end for

Index notation We define ks(k) (denoted as ks when no ambiguity arises) as the last episode
before episode k where synchronization happens. For episode k and step h, we define three datasets:

U
ser
h
(k) =

{(
s
ε

n,h
, a

ε

n,h
, s

ε

n,h+1

)}
n↑M,ε↑[ks]

, (3.1a)

U
loc
m,h

(k) =
{(

s
ε

m,h
, a

ε

m,h
, s

ε

m,h+1

)}k↓1

ε=ks+1
, (3.1b)

Um,h(k) = U
ser
h
(k)

⋃
U

loc
m,h

(k). (3.1c)

By definition, U ser
h
(k) is the dataset that is shared across all agents due to the latest synchronization at

episode ks. U loc
m,h

(k) is the unique data collected by agent m since episode ks. Then Um,h(k) is the
total dataset available for agent m at the current time. Let K(k) = |Um,h(k)| be the total number of
data points. For the simplicity of notation, we also re-order the data points in Um,h(k), and rename
the tuple (sε

m,h
, a

ε

m,h
, s

ε

m,h+1) as (sl, al, s↔l) such that we have Um,h(k) =
⋃K(k)

l=1 (sl, al, s↔l). In
fact, this can be done by the following one-to-one mapping

lm,k(n, ϱ) =

{
(ϱ ↗ 1)M + n ϱ ⇒ ks,

(M ↗ 1)ks + ϱ ks < ϱ ⇒ k ↗ 1.
(3.2)

Therefore, we use indices (s, a, s↔) ↑ Um,h(k) and l ↑ [K(k)] interchangeably for the summation
over set Um,h(k).

Algorithm interpretation At a high level, each episode k in Algorithm 1 consists of two stages.
The first stage (Lines 3-15) is parallelly executed by all agents and the second stage (Lines 16-24)
involves the communication among agents and the server.

In the first stage (Lines 3-15) of Algorithm 1, each agent m operates in two parts. The first part
(Line 6) updates estimated Q functions {Qk

m,h
}
H

h=1 through LSVI with a randomized exploration
strategy (Algorithm 2 or Algorithm 3, which will be introduced in Section 3.2). In particular, given
the estimated value functions V k

m,h+1(·) = maxa↑A Q
k

m,h
(·, a) at step h+ 1, we perform one step

4

robust backward Bellman update to obtain V
k

m,h
(·) at step h. And we initialize V

k

m,H+1(·) to be 0
(Line 5). In the second part (Lines 7-14), after obtaining the estimated Q functions, in each step h

we execute the greedy policy with respect to Q
k

m,h
and collect new data points which are added to

the local dataset U loc
m,h

(k) (Lines 8-10). Then we verify the synchronization condition (Lines 11-13).
In this paper, we mainly use three types of synchronization rules. (1) We can synchronize every c

episode where c is a user-defined constant, which is easy to implement in practice. (2) We can also
synchronize at the episode of b1, b2, ..., bn, with b representing the base of the exponential function.
This is guided by the intuition that agents require more transitions urgently at the early learning
stages. (3) Additionally, if we have a feature mapping ω(s, a) : S ↓A ↔ Rd, based on (3.1), we
define the following empirical covariance matrices.

ser!k

h
=

∑
(sl,al,s→l)↑U

ser
h

(k) ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

,

loc!k

m,h
=

∑
(sl,al,s→l)↑U

loc
m,h

(k) ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

,

!k

m,h
= ser!k

h
+ loc!k

m,h
+ ςI.

We synchronize as long as the following condition is met:

log
det

(
ser!k

h
+ loc!

k

m,h
+ ςI

)

det
(

ser!k

h
+ ςI

) ⇑
ω

(k ↗ ks)
, (3.3)

where ω is a communication control factor. In our experiments, we try all three rules and compare
their performance, which is discussed in detail in Appendix K.1.

The second stage (Lines 16-24) is executed only when the synchronization condition is satisfied.
First, all the agents upload their local transition set U loc

m,h
(k), i.e., the newly collected local data after

the last synchronization, to the server. Then, the server gathers all information together in U
ser
h
(k)

and sends it back to each agent. Finally, each agent resets the local transition set U loc
m,h

(k) ≃ ↘. Now
agent m can access the dataset Um,h(k) = U

ser
h
(k)

⋃
U

loc
m,h

(k), which contains the historical data of
all agents up to last synchronization and its local dataset.

3.2 Randomized Exploration Strategies

When we update the model parameter and estimate Q functions in Algorithm 1 (Line 6), we use
exploration strategies to avoid suboptimal policies. Previous work adopted Upper Confidence Bound
(UCB) exploration in the linear function class [24, 56] to estimate the Q function {Q

k

m,h
}
H

h=1.
Although UCB-based methods come with strong theoretical guarantees, they often perform poorly
in practice [16, 61, 60]. Moreover, UCB requires precise computation of the confidence set, which
is usually hard to be implemented beyond the linear structure. In contrast, randomized exploration
strategies offer more robust performance, flexibility in design, ease of implementation, and do not
require a linear structure.

We approximate the Q functions with the following function class F = {fw : S↓A ↔ R|fw(s, a) =
f(w;ω(s, a))}, where w ↑ Rd is the parameter and ω ↑ Rd is a feature mapping associated with
state-action pairs. Now we define the loss function for estimating the Q functions.

L
k

m,h
(w) =

∑K(k)
l=1 L

(
r
l

h
+ V

k

m,h+1(s
↔l), f

(
w;ωl

))
+ ς⇓w⇓

2
, (3.4)

where r
l

h
= rh

(
s
l
, a

l
)
, ωl = ω

(
s
l
, a

l
)
, and L is a user-specified loss function.

Perturbed-History Exploration The first strategy we use in Algorithm 1 is called the perturbed-
history exploration [45, 47, 32], displayed in Algorithm 2. We refer to the resulting algorithm as
CoopTS-PHE. In particular, we optimize the following randomized loss function, where we add
random Gaussian noises to the rewards and regularizer in (3.4).

L̃
k,n

m,h
(w) =

∑K(k)
l=1 L

((
r
l

h
+ φ

k,l,n

h

)
+ V

k

m,h+1(s
↔l), f

(
w;ωl

))
+ ς⇓w + εk,n

h
⇓
2
, (3.5)

where φ
k,l,n

h

i.i.d
⇔ N (0,↼2), εk,n

h
⇔ N (0,↼2I), and n ↑ [N]. Then we obtain the following perturbed

estimated parameter

w̃k,n

m,h
= argminw↑Rd L̃

k,n

m,h
(w). (3.6)

5

Note that we repeat the above steps for n = 1, . . . , N to obtain independent copies of parameters,
which is referred to as the multi-sampling process [32, 33]. Then we obtain the estimated Q function
Q

k

m,h
based on Line 7 in Algorithm 2. Finally, by maximizing Q

k

m,h
over action space A, we obtain

the estimated value function V
k

m,h
.

Algorithm 2 Perturbed-History Exploration
1: Input: multi-sampling number N ↑ N+, function class F = {fw : S ↓ A ↔ R|fw(s, a) =

f(w;ω(s, a))}.
2: for step h = H, ..., 1 do
3: for n = 1, ..., N do
4: Sample {φ

k,l,n

h
}l↑[K(k)]

i.i.d
⇔ N (0,↼2) and εk,n

h
⇔ N (0,↼2I) independently.

5: Solve w̃k,n

m,h
according to (3.6).

6: end for
7: Q

k

m,h
≃ min

{
maxn↑[N] f

(
w̃k,n

m,h
;ω

)
, H ↗ h+ 1

}+.
8: V

k

m,h
(·) ≃ maxa↑A Q

k

m,h
(·, a).

9: end for
10: Output: {Qk

m,h
(·, ·), V k

m,h
(·)}H

h=1.

Langevin Monte Carlo Exploration Next we introduce the Langevin Monte Carlo exploration
strategy [83, 33] in Algorithm 3, which stems from the Langevin dynamics [67, 8, 19, 81, 96].
Combining it with Algorithm 1 leads to our second proposed algorithm, CoopTS-LMC. Specifically,
we update the model parameter iteratively. For iterate j = 1, . . . , Jk, the update is given by

wk,j,n

m,h
= wk,j↓1,n

m,h
↗ ↽m,k↖L

k

m,h

(
wk,j↓1,n

m,h

)
+

√
2↽m,k⇀

↓1
m,k

ϑk,j,n
m,h

, (3.7)

where L
k

m,h
is defined in (3.4), ϑk,j,n

m,h
↑ Rd is a standard Gaussian noise, ↽m,k is the learning rate,

and ⇀m,k is the inverse temperature parameter. We similarly use the multi-sampling trick to obtain N

independent estimators and estimate Q function Q
k

m,h
by truncation based on Line 10 in Algorithm 3.

Algorithm 3 Langevin Monte Carlo Exploration
1: Input: multi-sampling number N ↑ N+, function class F = {fw : S ↓ A ↔

R|fw(s, a) = f(w;ω(s, a))}, step sizes {↽m,k}m↑M,k↑[K], inverse temperature parameters
{⇀m,k}m↑M,k↑[K].

2: for step h = H, ..., 1 do
3: for n = 1, ..., N do
4: wk,0,n

m,h
= w

k↓1,Jk↓1,n

m,h
.

5: for j = 1, ..., Jk do
6: Sample ϑk,j,n

m,h

i.i.d
⇔ N (0, I).

7: Update wk,j,n

m,h
by (3.7).

8: end for
9: end for

10: Q
k

m,h
≃ min

{
maxn↑[N] f

(
wk,Jk,n

m,h
;ω

)
, H ↗ h+ 1

}+.
11: V

k

m,h
(·) ≃ maxa↑A Q

k

m,h
(·, a).

12: end for
13: Output: {Qk

m,h
(·, ·), V k

m,h
(·)}H

h=1.

4 Theoretical Analysis

4.1 Homogeneous Parallel Linear MDPs

We provide theoretical analyses of our algorithms in the linear structure under the assumption of
linear function approximation and linear MDP setting. We first present the definition of linear MDPs.

6

Definition 4.1 (Linear MDP [36]). An MDP(S,A, H,P, r) is a linear MDP with feature map
ω : S ↓A ↔ Rd, if for any h ↑ [H], there exist d unknown measures µh = (µ1

h
, ..., µ

d

h
) over S and

an unknown vector ϖh ↑ Rd such that for any (s, a) ↑ S ↓A,

Ph(·|s, a) =
〈
ω(s, a),µh(·)

〉
, rh(s, a) =

〈
ω(s, a),ϖh

〉
.

Without loss of generality, we assume that for all (s, a) ↑ S ↓ A, ⇓ω(s, a)⇓ ⇒ 1 and
max{⇓µh(S)⇓, ⇓ϖh⇓} ⇒

→
d.

Throughout the analyses in this section, we assume the homogeneous parallel MDPs setting where
all agents share the same linear MDP defined in Definition 4.1. We also provide the results when
the MDPs across agents are approximately linear and heterogeneous in Section 4.2. Under the
linear MDP assumption, it is known that the Q-function admits a linear form [36, Proposition 2.3].
Consequently, we choose the loss function L in (3.4) to be the l2 loss and approximate the Q function
in the linear function class f(w;ωl) = w↗ωl.

Now we first present the regret bound for CoopTS-PHE.
Theorem 4.2. Under Definition 4.1, choose L to be l2 loss and linear function class f(w;ωl) =
w↗ωl in (3.4). In CoopTS-PHE (Algorithm 1+Algorithm 2), let N = C̃ log(⇁)/ log(c0) where
C̃ = Õ(d) and c0 = !(1), !(·) is the cumulative distribution function (CDF) of the standard normal
distribution. Let ς = 1 and 0 < ⇁ < 1. Under the determinant synchronization condition (3.3), we
obtain the following cumulative regret

Regret(K) = Õ
(
d

3
2H

2
→

M
(√

dMω +
→

K
))
,

with probability at least 1↗ ⇁.
Remark 4.3. When we choose ω = O(K/dM) in the synchronization condition (3.3), the cu-
mulative regret of CoopTS-PHE becomes Õ(d3/2H2

→
MK), which matches the result of UCB

exploration [24]. When M = 1, the regret becomes Õ(d3/2H2
→
K), which matches the existing best

randomized single-agent result [32, 33]. Note that if there is no communication at all and agents act
independently, with the same number of learning rounds (or samples), the cumulative regret becomes
Õ(M ·d

3/2
H

2
→
K). By incorporating communication, our regret bound in Theorem 4.2 is lower than

that of the independent setting by a factor
→
M . A similar strategy called rare-switching update with

a determinant synchronization condition has also been adopted in parallel bandit problems [69, 15].

Similarly, we have the following result for CoopTS-LMC.
Theorem 4.4. Under Definition 4.1, choose L to be l2 loss and linear function class f(w;ωl) =
w↗ωl in (3.4). In CoopTS-LMC (Algorithm 1+Algorithm 3), let N = C̄ log(⇁)/ log(c↔0) where
c
↔
0 = 1↗1/2

→
2eϑ and C̄ = Õ(d). Let 1/

√
⇀m,k = Õ

(
H
→
d
)

for all m ↑ M, ς = 1, and 0 < ⇁ <

1. For any episode k ↑ [K] and agent m ↑ M, let the learning rate ↽m,k = 1/
(
4ςmax

(
!k

m,h

))
, the

update number Jk = 2κk log(4HKMd) where κk = ςmax

(
!k

m,h

)
/ςmin

(
!k

m,h

)
is the condition

number of !k

m,h
. Under the determinant synchronization condition (3.3), we have

Regret(K) = Õ
(
d

3
2H

2
→

M
(√

dMω +
→

K
))
,

with probability at least 1↗ ⇁.
Remark 4.5. Note that CoopTS-PHE and CoopTS-LMC have the same order of regret. Hence the
discussion in Remark 4.3 also applies to CoopTS-LMC. We would also like to highlight that our
results are the first rigorous regret bounds for randomized MARL algorithms.

From the perspective of technical novelty, our analysis of randomized MARL algorithms is different
from that of UCB-based algorithms [24] because the model prediction error here contains randomness,
causing a more complex probability analysis and an additional approximation error. We would also
like to point out that in proofs for both CoopTS-LMC and CoopTS-PHE , we use a new ε-covering
technique to prove that the optimism lemma holds for all (s, a) ↑ S↓A instead of just the state-action
pairs encountered by the algorithm, which is essential for the regret analysis. This was ignored
by previous works [13] and its follow-up works [93, 33] that use the same regret decomposition
technique. Furthermore, the multi-agent setting and the communications from synchronization in
our algorithms also significantly increase the challenges in our analysis compared to randomized
exploration in the single-agent setting [32, 33].

7

Next we present the communication complexity of Algorithm 1 with synchronization condition (3.3).
Lemma 4.6. The total number of communication rounds between the agents and the server in
Algorithm 1 is bounded by CPX = Õ((d+K/ω)MH). Moreover, the total number of transferred
random bits only has a logarithmic dependence on the number of episodes K.
Remark 4.7. We provide a refined analysis in Appendix C to get this improved result based on that
of [24], which studied the same communication procedure as ours. When we choose ω = O(K/dM),
the communication complexity reduces to Õ(dHM

2), which only has a logarithmic dependence on
the number of episodes K. Additionally, we provide a rigorous analysis to show that the algorithm
only needs to communicate logarithm number of random bits throughout the learning process.

Note that Min et al. [56] studied the asynchronous setting where only one agent is active in each
episode, giving out the regret Õ(d3/2H2

→
K) with the communication complexity Õ(dHM

2). It is
interesting to see that our algorithm, though in the synchronous setting, has the same communication
complexity as the asynchronous variant. This implies that the asynchronous algorithm can only cir-
cumvent current communication by delaying it to the future but does not decrease the communication
complexity. In fact, the synchronous setting can learn the policy better in our work, which is indicated
by comparison of the average regret (the cumulative regret divided by the total number of samples
used by the algorithm) in Table 1. By achieving a matched communication complexity, we find that
synchronous and asynchronous settings have their own advantages and cannot replace each other.
This phenomenon can help us better understand the properties of these two communication schemes.

4.2 Misspecified Setting

In this part, we extend our theoretical analysis to the misspecified setting. In this setting, the transition
functions Pm,h and the reward functions rm,h are heterogeneous across different MDPs, which
is slightly more complicated than the homogeneous setting. Moreover, instead of assuming the
transition and reward are linear, we only require each individual MDP is a ε-approximate linear MDP
[36] where both the transition and reward are approximately linear up to an controlled error ε.
Definition 4.8 (Misspecified Parallel MDPs). For any 0 < ε ⇒ 1, and for any agent m ↑ M,
the corresponding MDP(S,A, H,Pm, rm) is a ε-approximate linear MDP with a feature map
ω : S ↓A ↔ Rd, for any h ↑ [H], there exist d unknown (signed) measures µh =

(
µ
(1)
h

, . . . , µ
(d)
h

)

over S and an unknown vector ϖh ↑ Rd such that for any (s, a) ↑ S ↓A, we have
Pm,h(· | s, a)↗

〈
ω(s, a),µh(·)

〉
TV ⇒ ε,

rm,h(s, a)↗ ↙ω(s, a),ϖh∝
 ⇒ ε,

where ⇓ · ⇓TV is the total variation norm, for two distributions P1 and P2, we define it as: ⇓P1 ↗

P2⇓TV = 1
2

∑
x↑! |P1(x)↗ P2(x)|. Without loss of generality, we assume that ⇓ω(s, a)⇓ ⇒ 1 for

all (s, a) ↑ S ↓A, and max
{
⇓µh(S)⇓, ⇓ϖh⇓

}
⇒

→
d for all h ↑ [H] and m ↑ M.

Remark 4.9. Note that our misspecified setting defined in Definition 4.8 is a generalized notion of
misspecification in [36]. Moreover, our misspecified setting is also more general and cover the small
heterogeneous setting mentioned in [24]. The triangle inequality can easily be used to derive small
heterogeneous setting from our misspecified setting, but not vice versa.

Next we state our regret bound for CoopTS-PHE in the misspecified setting.
Theorem 4.10 (Misspecified Regret Bound for CoopTS-PHE). In CoopTS-PHE (Algorithm 1+Al-
gorithm 2), under Definition 4.8 and determinant synchronization condition (3.3), with the same
initialization with Theorem 4.2, we obtain the following cumulative regret

Regret(K) = Õ


d

3
2H

2
→

M
(√

dMω +
→

K
)
+ dH

2
M

→

K
(√

dMω +
→

K
)
ε


,

with probability at least 1↗ ⇁.

Remark 4.11. When we choose ε = O
(√

d/MK
)
, the cumulative regret becomes

Õ
(
d

3
2H

2
→
M

(→
dMω +

→
K
))

. This matches the result of Theorem 4.2 in the linear MDP setting.

Similarly, we can have the following result for CoopTS-LMC.

8

Theorem 4.12 (Misspecified Regret Bound for CoopTS-LMC). In CoopTS-LMC (Algorithm 1+Al-
gorithm 3), under Definition 4.8 and determinant synchronization condition (3.3), with the same
initialization with Theorem 4.4 except that 1/

√
⇀m,k = Õ

(
H
→
d + H

→
MKdε

)
, we obtain the

following cumulative regret

Regret(K) = Õ


d

3
2H

2
→

M
(√

dMω +
→

K
)
+ d

3
2H

2
M

→

K
(√

dMω +
→

K
)
ε


,

with probability at least 1↗ ⇁.
Remark 4.13. When ε = O

(√
1/MK

)
, the cumulative regret becomes Õ

(
d

3
2H

2
→
M

(→
dMω +

→
K
))

. This matches the result of Theorem 4.4 in the linear MDP setting. By comparing Theo-
rems 4.10 and 4.12, we find the result of CoopTS-LMC has an extra

→
d factor worse than that of

CoopTS-PHE, causing the chosen ε in CoopTS-PHE has an extra
→
d order over that in CoopTS-LMC.

This indicates that CoopTS-PHE has better performance tolerance for the misspecified setting.

5 Experiments

In this section, we present an empirical evaluation of our proposed randomized exploration strategies
(i.e., CoopTS-PHE and CoopTS-LMC) with deep Q-networks (DQNs) [57] as the core algorithm
on varying tasks under multi-agent settings compared with several baselines: vanilla DQN, Double
DQN [28], Bootstrapped DQN [62], and Noisy-Net [26]). Given that all experiments are conducted
under multi-agent settings unless explicitly specified as a single-agent or centralized scenario, we
denote CoopTS-PHE as "PHE" and CoopTS-LMC as "LMC" in both experimental contexts and
figures. Note that we run all our experiments on Nvidia RTX A5000 with 24GB RAM. The
implementation of this work can be found at https://github.com/panxulab/MARL-CoopTS

(a) m=2 (b) m=3 (c) Mario (Parallel) (d) Mario (Federated)

Figure 1: Comparison among different exploration strategies in different environments. (a)-(b):
N -chain with N = 25. (c)-(d): Super Mario Bros. All results are averaged over 10 runs and the
shaded area represents the standard deviation.

5.1 N -chain

The N -chain [62] comprises a sequence of N states denoted as {sl}Nl=1. Assuming the existence of
m agents, all initiating their trajectories from s2, this study explores the dynamics of their movement
within the chain. At each time step, agents face the decision to move either left or right. Notably, each
agent incurs a nominal reward of r = 0.001 upon reaching state s1, while a more substantial reward
of r = 1 is obtained upon reaching the terminal state sN . The illustration of N -chain environment is
shown in Figure 3. With a horizon length of N+9, the optimal return is 10. We consider N = 25 with
the communication among agents in Figure 1 following the synchronization approach in Algorithm 1.
In Figure 1(a), we show that PHE and Bootstrapped DQN result in higher average episode return
among all agents while LMC can also eventually converge to a similar reward.

Upon increasing the number of agents to m = 3, we show in Figure 1(b) that our randomized
exploration methods outperform all other baselines. Notably, the fluctuation in PHE is observed to be
less pronounced against LMC. This observation lends support to our theoretical framework regarding
performance tolerance in the misspecified setting, as detailed in Section 4.2. The complete results for
N -chain and ablation studies can be found in Appendix K.1.

5.2 Super Mario Bros

Environmental heterogeneity, arising from various sources, is a prevalent challenge in practical
scenarios. In Section 4.2, we illustrate the extension of homogeneous parallel MDP to the misspecified

9

https://github.com/panxulab/MARL-CoopTS

setting. In the Super Mario Bros task [74], we examine a scenario where four agents, denoted as
m = 4, engage in learning within distinct environments. Despite these environments sharing the
same state space S , action space A, and reward function, their characteristics are different described
in Appendix K.2. The primary objective of the Super Mario Bros task is to train an agent capable
of advancing as far-right and rapidly as possible without collisions or falls. Utilizing preprocessed
images as input states, agents aim to select optimal actions from a set of 7 discrete actions.

Figure 1(c) visually depicts that both randomized exploration strategies outperform other baselines
in cooperative parallel learning. Notably, we observe that the superiority of LMC gets significant
against PHE unlike the results in N -chain in Figures 1(a) and 1(b). In the case of PHE, Gaussian
noise is introduced to the reward before applying the Bellman update, which can be viewed as a
method empirically approximating the posterior distribution of the Q function using a Gaussian
distribution. However, it is crucial to note that in practical scenarios, unlike the N -chain setting,
Gaussian distributions may not always provide an accurate approximation of the true posterior of the
Q function [33]. Here, transitions are shared among the four agents whenever the synchronization
condition in (3.3) is met. We also conducted extra experiments in this task extending our proposed
method to federated learning shown in Figure 1(d) with details in Appendix K.2.

5.3 Thermal Control of Building Energy Systems

Finally, we assess the efficacy of our randomized exploration strategies through their application to
a practical task within a sustainable energy system: BuildingEnv, as outlined in [85]. BuildingEnv
is designed to manage the heating supply in a multi-zone building, which involves addressing real-
world physical constraints and accounting for environmental shifts over time. The objective is to
meet user-defined temperature specifications while simultaneously minimizing overall electricity
consumption. We defer the environment details to Appendix K.3.

Figure 2: Evaluation performance at Tampa
(hot humid) in building energy systems. All
results are averaged over 10 runs.

With the availability of different cities in varying
weather types, we conduct experiments on multiple
cities in parallel and share their data following Al-
gorithm 1 for each exploration strategy. During the
evaluation, we deploy those trained policies to the
environment of each city/weather. We include all
methods as well as random action in Figure 2 for
a fair comparison. Specifically, we sample action
randomly from action space for random action. We
display the distribution of the return with probabil-
ity density in violin plots, indicating that our PHE
and LMC can perform better with a higher mean.
Additional results for other cities can be found in
Appendix K.3.

6 Conclusion

We proposed a unified algorithm framework for provably efficient randomized exploration in parallel
MDPs. By combining this unified algorithm framework with two TS-type randomized exploration
strategies, PHE and LMC, we obtained two algorithms for parallel MDPs: CoopTS-PHE and CoopTS-
LMC. These two algorithms are both flexible in design and easy to implement in practice. Under the
linear MDP setting, we derived the theoretical regret bounds and communication complexities of
CoopTS-PHE and CoopTS-LMC. This is the first result for randomized exploration in cooperative
MARL, matching the best existing regret bounds for single-agent RL [32, 33]. We also extended our
theoretical analysis to the misspecified setting. Our experiments on diverse RL parallel environments
verified that randomized exploration improves the balance between exploration and exploitation in
both homogeneous and heterogeneous settings. Future research directions includes extending our
randomized exploration algorithm to fully decentralized or federated learning settings. Additionally,
developing a more communication-efficient algorithm to reduce the substantial communication costs
in the general function class setting is another potential direction.

10

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. HH and MP were
supported in part by the ONR under agreement N00014-23-1-2206, AFOSR under the award number
FA9550-19-1-0169, and by the NSF under NAIAD Award 2332744 as well as the National AI
Institute for Edge Computing Leveraging Next Generation Wireless Networks, Grant CNS-2112562.
WW and PX were supported in part by the National Science Foundation (DMS-2323112) and the
Whitehead Scholars Program at the Duke University School of Medicine. The views and conclusions
in this paper are those of the authors and should not be interpreted as representing any funding agency.

References
[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.

Advances in neural information processing systems, 24, 2011. 1, 56, 57

[2] M. Abeille and A. Lazaric. Linear thompson sampling revisited. In Artificial Intelligence and
Statistics, pages 176–184. PMLR, 2017. 18

[3] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions with formulas, graphs,
and mathematical tables, volume 55. US Government printing office, 1968. 57

[4] P. Agrawal, J. Chen, and N. Jiang. Improved worst-case regret bounds for randomized least-
squares value iteration. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 6566–6573, 2021. 17

[5] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International Conference on Machine Learning, pages 127–135, 2013. 60

[6] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International conference on machine learning, pages 127–135. PMLR, 2013. 18

[7] S. Agrawal and R. Jia. Optimistic posterior sampling for reinforcement learning: worst-case
regret bounds. In Advances in Neural Information Processing Systems, volume 30, pages
1184–1194, 2017. 2, 17

[8] D. Bakry, I. Gentil, M. Ledoux, et al. Analysis and geometry of Markov diffusion operators,
volume 103. Springer, 2014. 6

[9] N. A. Bakshi, T. Gupta, R. Ghods, and J. Schneider. Guts: Generalized uncertainty-aware
thompson sampling for multi-agent active search. In IEEE International Conference on Robotics
and Automation (ICRA), pages 7735–7741. IEEE, 2023. 17

[10] A. L. Bazzan. Opportunities for multiagent systems and multiagent reinforcement learning in
traffic control. Autonomous Agents and Multi-Agent Systems, 18:342–375, 2009. 1

[11] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized
control of markov decision processes. Mathematics of Operations Research, 27(4):819–840,
2002. 17

[12] C. Boutilier. Planning, learning and coordination in multiagent decision processes. In Theoreti-
cal Aspects of Rationality and Knowledge, 1996. 17

[13] Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy optimization. In
International Conference on Machine Learning, pages 1283–1294. PMLR, 2020. 7, 22

[14] G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement learning: A
bayesian approach. In Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, pages 709–716, 2003. 1

[15] J. Chan, A. Pacchiano, N. Tripuraneni, Y. S. Song, P. Bartlett, and M. I. Jordan. Parallelizing
contextual bandits. arXiv preprint arXiv:2105.10590, 2021. 7

[16] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. Advances in neural
information processing systems, 24, 2011. 5, 18

11

[17] Y. Chen, P. Dong, Q. Bai, M. Dimakopoulou, W. Xu, and Z. Zhou. Society of agents: Regret
bounds of concurrent thompson sampling. Advances in Neural Information Processing Systems,
pages 7587–7598, 2022. 17

[18] W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 208–214. JMLR Workshop and Conference Proceedings, 2011. 1, 2

[19] A. S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
densities. Journal of the Royal Statistical Society Series B: Statistical Methodology, 79(3):
651–676, 2017. 6

[20] C. Dann, M. Mohri, T. Zhang, and J. Zimmert. A provably efficient model-free posterior sam-
pling method for episodic reinforcement learning. Advances in neural information processing
systems, 34, 2021. 17

[21] M. Dimakopoulou and B. V. Roy. Coordinated exploration in concurrent reinforcement learning.
Proceedings of the 35th International Conference on Machine Learning, pages 1271–1279,
2018. 17

[22] M. Dimakopoulou, I. Osband, and B. V. Roy. Scalable coordinated exploration in concurrent
reinforcement learning. Advances in Neural Information Processing Systems, pages 4219–4227,
2018. 17

[23] G. Ding, J. J. Koh, K. Merckaert, B. Vanderborght, M. M. Nicotra, C. Heckman, A. Roncone,
and L. Chen. Distributed reinforcement learning for cooperative multi-robot object manipulation.
In Proceedings of the 2020 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS, pages 1831–1833. ACM, 2020. 1

[24] A. Dubey and A. Pentland. Provably efficient cooperative multi-agent reinforcement learning
with function approximation. arXiv preprint arXiv:2103.04972, 2021. 1, 3, 5, 7, 8, 17, 19, 22

[25] Y. Fei and R. Xu. Cascaded gaps: Towards logarithmic regret for risk-sensitive reinforcement
learning. In International Conference on Machine Learning, pages 6392–6417. PMLR, 2022. 1

[26] M. Fortunato, M. G. Azar, B. Piot, et al. Noisy networks for exploration. In International
Conference on Learning Representations, 2018. 9, 17, 58

[27] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and Z. Wang. Exploration in deep
reinforcement learning: From single-agent to multiagent domain. IEEE Transactions on Neural
Networks and Learning Systems, 2023. 1

[28] H. V. Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double qlearning. In
Annual AAAI Conference on Artificial Intelligence (AAAI), 2016. 9, 58

[29] E. Hillel, Z. S. Karnin, T. Koren, R. Lempel, and O. Somekh. Distributed exploration in
multi-armed bandits. Advances in Neural Information Processing Systems, 26, 2013. 17

[30] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012. 56

[31] T. Huix, M. Zhang, and A. Durmus. Tight regret and complexity bounds for thompson sampling
via langevin monte carlo. In F. Ruiz, J. Dy, and J.-W. van de Meent, editors, Proceedings
of The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of
Proceedings of Machine Learning Research, pages 8749–8770. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/huix23a.html. 2

[32] H. Ishfaq, Q. Cui, V. Nguyen, A. Ayoub, Z. Yang, Z. Wang, D. Precup, and L. Yang. Ran-
domized exploration in reinforcement learning with general value function approximation. In
International Conference on Machine Learning, pages 4607–4616. PMLR, 2021. 2, 3, 5, 6, 7,
10, 17, 56, 57

[33] H. Ishfaq, Q. Lan, P. Xu, A. R. Mahmood, D. Precup, A. Anandkumar, and K. Azizzadenesheli.
Provable and practical: Efficient exploration in reinforcement learning via langevin monte
carlo. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=nfIAEJFiBZ. 2, 3, 6, 7, 10, 17, 22, 56, 59

12

https://proceedings.mlr.press/v206/huix23a.html
https://openreview.net/forum?id=nfIAEJFiBZ

[34] H. Ishfaq, Y. Tan, Y. Yang, Q. Lan, J. Lu, A. R. Mahmood, D. Precup, and P. Xu. More efficient
randomized exploration for reinforcement learning via approximate sampling. Reinforcement
Learning Journal, 3:1211–1235, 2024. 2, 3

[35] M. Jafarnia-Jahromi, R. Jain, and A. Nayyar. A bayesian learning algorithm for unknown
zero-sum stochastic games with an arbitrary opponent. In International Conference on Artificial
Intelligence and Statistics, pages 3880–3888. PMLR, 2024. 17

[36] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning Theory, pages 2137–2143. PMLR,
2020. 1, 2, 3, 7, 8, 17, 56

[37] H. Jin, Y. Peng, W. Yang, S. Wang, and Z. Zhang. Federated reinforcement learning with
environment heterogeneity. In International Conference on Artificial Intelligence and Statistics,
pages 18–37. PMLR, 2022. 64

[38] T. Jin, P. Xu, J. Shi, X. Xiao, and Q. Gu. Mots: Minimax optimal thompson sampling. In
International Conference on Machine Learning, pages 5074–5083. PMLR, 2021. 17

[39] T. Jin, P. Xu, X. Xiao, and A. Anandkumar. Finite-time regret of thompson sampling algorithms
for exponential family multi-armed bandits. Advances in Neural Information Processing
Systems, 35:38475–38487, 2022.

[40] T. Jin, X. Yang, X. Xiao, and P. Xu. Thompson sampling with less exploration is fast and
optimal. In International Conference on Machine Learning, pages 15239–15261. PMLR, 2023.
17

[41] T. Jin, H.-L. Hsu, W. Chang, and P. Xu. Finite-time frequentist regret bounds of multi-agent
thompson sampling on sparse hypergraphs. In Annual AAAI Conference on Artificial Intelligence
(AAAI), 2024. 17

[42] A. Karbasi, N. L. Kuang, Y. Ma, and S. Mitra. Langevin thompson sampling with logarithmic
communication: Bandits and reinforcement learning. In A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 15828–15860. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/karbasi23a.html. 2, 17

[43] R. M. Kretchmar. Parallel reinforcement learning. In The 6th World Conference on Systemics,
Cybernetics, and Informatics, 2002. 17

[44] N. Kuang, M. Yin, et al. Posterior sampling with delayed feedback for reinforcement learning
with linear function approximation. Advances in neural information processing systems, 2023.
17

[45] B. Kveton, C. Szepesvari, M. Ghavamzadeh, and C. Boutilier. Perturbed-history exploration in
stochastic multi-armed bandits, 2019. 2, 5

[46] B. Kveton, M. Zaheer, C. Szepesvari, L. Li, M. Ghavamzadeh, and C. Boutilier. Randomized
exploration in generalized linear bandits. In International Conference on Artificial Intelligence
and Statistics, pages 2066–2076. PMLR, 2020. 2, 18

[47] B. Kveton, M. Zaheer, C. Szepesvari, L. Li, M. Ghavamzadeh, and C. Boutilier. Randomized
exploration in generalized linear bandits. In S. Chiappa and R. Calandra, editors, Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pages 2066–2076. PMLR, 26–28 Aug 2020.
URL https://proceedings.mlr.press/v108/kveton20a.html. 2, 5

[48] P. Landgren, V. Srivastava, and N. E. Leonard. On distributed cooperative decision-making in
multiarmed bandits. In 2016 European Control Conference (ECC), pages 243–248. IEEE, 2016.
17

13

https://proceedings.mlr.press/v202/karbasi23a.html
https://proceedings.mlr.press/v202/karbasi23a.html
https://proceedings.mlr.press/v108/kveton20a.html

[49] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661–670, 2010. 60

[50] L. Li, Y. Lu, and D. Zhou. Provably optimal algorithms for generalized linear contextual bandits.
In International Conference on Machine Learning, pages 2071–2080. PMLR, 2017. 1

[51] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization
in heterogeneous networks. In Proceedings of Machine Learning and Systems, volume 2, pages
429–450, 2020. 17

[52] Z. Li, Y. Li, Y. Zhang, T. Zhang, and Z.-Q. Luo. Hyperdqn: A randomized exploration method
for deep reinforcement learning. In International Conference on Learning Representations,
2022. 17

[53] J. Lidard, U. Madhushani, and N. E. Leonard. Provably efficient multi-agent reinforcement
learning with fully decentralized communication. In 2022 American Control Conference (ACC),
pages 3311–3316. IEEE, 2022. 17

[54] B. Liu, L. Wang, and M. Liu. Lifelong federated reinforcement learning: a learning architecture
for navigation in cloud robotic systems. IEEE Robotics and Automation Letters, 4(4):4555–4562,
2019. 1

[55] Z. Liu, J. Zhang, Z. Liu, H. Du, Z. Wang, D. Niyato, M. Guizani, and B. Ai. Cell-free xl-mimo
meets multi-agent reinforcement learning: Architectures, challenges, and future directions.
IEEE Wireless Communications, 31(4):155–162, 2024. 1

[56] Y. Min, J. He, T. Wang, and Q. Gu. Cooperative multi-agent reinforcement learning: asyn-
chronous communication and linear function approximation. In International Conference on
Machine Learning, pages 24785–24811. PMLR, 2023. 1, 2, 3, 5, 8, 17

[57] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015. 9, 58, 65

[58] A. Mousavi-Hosseini, T. Farghly, Y. He, K. Balasubramanian, and M. A. Erdogdu. Towards a
complete analysis of langevin monte carlo: Beyond poincaré inequality, 2023. 2

[59] T. Nguyen-Tang and R. Arora. On sample-efficient offline reinforcement learning: Data diversity,
posterior sampling and beyond. Advances in neural information processing systems, 2023. 17

[60] I. Osband and B. Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In International conference on machine learning, pages 2701–2710. PMLR, 2017. 2,
5, 17

[61] I. Osband, D. Russo, and B. Van Roy. (more) efficient reinforcement learning via posterior
sampling. Advances in Neural Information Processing Systems, 26, 2013. 2, 5, 17

[62] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped dqn.
Advances in neural information processing systems, 29, 2016. 9, 17, 58

[63] I. Osband, B. Van Roy, and Z. Wen. Generalization and exploration via randomized value
functions. In International Conference on Machine Learning, pages 2377–2386. PMLR, 2016.
17

[64] I. Osband, J. Aslanides, and A. Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in neural information processing systems, 31, 2018. 17

[65] S. Qiu, Z. Dai, H. Zhong, Z. Wang, Z. Yang, and T. Zhang. Posterior sampling for competitive
rl: Function approximation and partial observation. Advances in neural information processing
systems, 2023. 17

[66] C. Riquelme, G. Tucker, and J. Snoek. Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling. In International Conference on
Learning Representations, 2018. 2, 18

14

[67] G. O. Roberts and R. L. Tweedie. Exponential convergence of langevin distributions and their
discrete approximations. Bernoulli, pages 341–363, 1996. 6

[68] C. Rojas-Córdova, A. J. Williamson, J. A. Pertuze, and G. Calvo. Why one strategy does not
fit all: a systematic review on exploration–exploitation in different organizational archetypes.
Review of Managerial Science, 17(7):2251–2295, 2023. 1

[69] Y. Ruan, J. Yang, and Y. Zhou. Linear bandits with limited adaptivity and learning distributional
optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 74–87, 2021. 7

[70] D. Russo. Worst-case regret bounds for exploration via randomized value functions. Advances
in neural information processing systems, 32:14410–14420, 2019. 17

[71] M. Strens. A bayesian framework for reinforcement learning. In International Conference on
Machine Learning, pages 943–950. PMLR, 2000. 17

[72] M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(56):1633–1685, 2009. 17

[73] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3-4):285–294, 1933. 2, 17

[74] J.-J. Tsay, C.-C. Chen, and J.-J. Hsu. Evolving intelligent mario controller by reinforcement
learning. In International Conference on Technologies and Applications of Artificial Intelligence,
pages 266–272, 2011. 1, 10

[75] R. Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018. 56

[76] R. Wang, R. R. Salakhutdinov, and L. Yang. Reinforcement learning with general value function
approximation: Provably efficient approach via bounded eluder dimension. Advances in Neural
Information Processing Systems, 33:6123–6135, 2020. 1, 2

[77] Y. Wang, J. Hu, X. Chen, and L. Wang. Distributed bandit learning: Near-optimal regret with
efficient communication. In International Conference on Learning Representations, 2020. 17

[78] Z. Wang and M. Zhou. Thompson sampling via local uncertainty. In International Conference
on Machine Learning, pages 10115–10125. PMLR, 2020. 17

[79] Q. Xie, Y. Chen, Z. Wang, and Z. Yang. Learning zero-sum simultaneous-move markov games
using function approximation and correlated equilibrium. In Proceedings of Thirty Third
Conference on Learning Theory, volume 125, pages 3674–3682. PMLR, 2020. 17

[80] W. Xiong, H. Zhong, C. Shi, C. Shen, and T. Zhang. A self-play posterior sampling algorithm
for zero-sum markov games. In International Conference on Machine Learning, pages 24496–
24523. PMLR, 2022. 17

[81] P. Xu, J. Chen, D. Zou, and Q. Gu. Global convergence of langevin dynamics based algorithms
for nonconvex optimization. Advances in Neural Information Processing Systems, 31, 2018. 6

[82] P. Xu, Z. Wen, H. Zhao, and Q. Gu. Neural contextual bandits with deep representation and
shallow exploration. In International Conference on Learning Representations, 2021. 2

[83] P. Xu, H. Zheng, E. V. Mazumdar, K. Azizzadenesheli, and A. Anandkumar. Langevin monte
carlo for contextual bandits. In International Conference on Machine Learning, pages 24830–
24850. PMLR, 2022. 2, 6, 17, 18

[84] D. Ye, G. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu, F. Qiu, H. Yu, et al.
Towards playing full moba games with deep reinforcement learning. Advances in Neural
Information Processing Systems, 33:621–632, 2020. 1

15

[85] C. Yeh, V. Li, R. Datta, J. Arroyo, N. Christianson, C. Zhang, Y. Chen, M. Hosseini, A. Golmo-
hammadi, Y. Shi, Y. Yue, and A. Wierman. Sustaingym: A benchmark suite of reinforcement
learning for sustainability applications. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track. PMLR, 2023. 1, 10, 65, 66

[86] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness
of PPO in cooperative multi-agent games. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022. 17

[87] C. Yu, X. Yang, J. Gao, J. Chen, Y. Li, J. Liu, Y. Xiang, R. Huang, H. Yang, Y. Wu, and Y. Wang.
Asynchronous multi-agent reinforcement learning for efficient real-time multi-robot cooperative
exploration. In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS, pages 1107–1115. ACM, 2023. 17

[88] A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequentist regret
bounds for randomized least-squares value iteration. In International Conference on Artificial
Intelligence and Statistics, pages 1954–1964. PMLR, 2020. 3, 17

[89] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Başar. Fully decentralized multi-agent reinforcement
learning with networked agents. In International Conference on Machine Learning, volume 80,
pages 5872–5881. PMLR, 2018. 17

[90] W. Zhang, D. Zhou, L. Li, and Q. Gu. Neural thompson sampling. In International Conference
on Learning Representations, 2021. 60

[91] Y. Zhang, G. Qu, P. Xu, Y. Lin, Z. Chen, and A. Wierman. Global convergence of localized
policy iteration in networked multi-agent reinforcement learning. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 7(1):1–51, 2023. 17

[92] Y. Zhao, I. Borovikov, J. Rupert, C. Somers, and A. Beirami. On multi-agent learning in team
sports games. arXiv preprint arXiv:1906.10124, 2019. 1

[93] H. Zhong and T. Zhang. A theoretical analysis of optimistic proximal policy optimization in
linear markov decision processes. Advances in Neural Information Processing Systems, 36,
2023. 7

[94] D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with ucb-based exploration. In Interna-
tional Conference on Machine Learning, pages 11492–11502, 2020. 2, 60

[95] Y. Zhou, J. Li, and J. Zhu. Posterior sampling for multi-agent reinforcement learning: solv-
ing extensive games with imperfect information. In International Conference on Learning
Representations, 2019. 2, 17

[96] D. Zou, P. Xu, and Q. Gu. Faster convergence of stochastic gradient langevin dynamics for
non-log-concave sampling. In Uncertainty in Artificial Intelligence, pages 1152–1162. PMLR,
2021. 6

16

A Related Work

Cooperative Multi-Agent Reinforcement Learning Cooperative MARL is closely intertwined
with the domain of multi-agent multi-armed bandits, exemplified by decentralized algorithms featuring
communication across a network or hypergraphs [48, 91, 41] and distributed settings [29, 77].
Cooperative MARL manifests primarily in two categories: multi-agent MDPs [12, 89, 79, 24] and
parallel MDPs [11, 24, 53, 11, 56]. In the realm of cooperative multi-agent robotics, the former is
employed to formulate optimal multi-agent policies across the distributed system [86, 87]. On the
other hand, homogeneous parallel MDPs leverage inter-agent communication to expedite learning
processes [43]. Additionally, heterogeneous parallel MDPs establish connections to heterogeneous
federated learning [51] and exhibit improved generalizability in transfer learning scenarios [72].

We focus on parallel MDPs in this paper, where agents interact with the environment simultaneously
to tackle shared challenges within extensive and distributed systems [43]. Recently, Dubey and
Pentland [24] proposed the Coop-LSVI algorithm, extending the LSVI-UCB algorithm [36] in single-
agent RL to MARL with linear MDPs. In a parallel RL setting with asynchronous communication,
Min et al. [56] builds upon Coop-LSVI while relinquishing compatibility with heterogeneous MDPs.
Meanwhile, Lidard et al. [53] focuses on fully decentralized multi-agent UCB Q-learning in a tabular
setting, maintaining polynomial space complexity even as the number of agents increases. However, it
is worth noting that neither of the previous works [24, 56] in non-tabular cooperative MARL provides
experimental validation for the efficacy of their proposed communication strategies. The gap arises
from their reliance on LSVI-UCB as the core algorithm, wherein optimism is instantiated through
UCB. Empirical evidence suggests that UCB-based approaches tend to underperform in practical
scenarios [61, 60, 33]. Moreover, the computational demands of LSVI-UCB become untenable due
to the necessity of recurrently computing the feature covariance matrix for updating the UCB bonus
function. On the other hand, distributed applications of parallel MDPs in TS-based concurrent RL
algorithms have been explored [21, 22, 17]. Specifically, Dimakopoulou and Roy [21] proposed a
tabular model learning method based on seed sampling for coordinated exploration. This approach
was further generalized to address intractable state spaces in [22] and supported by a Bayesian regret
bound in [17]. However, none of these studies consider the communication complexity associated
with efficient cooperative strategies. Therefore, randomized exploration in this work is critical to
make these algorithm designs practical.

Randomized Exploration The roots of randomized exploration, particularly TS, can be traced back
to its success in bandit problems [73]. Randomized exploration strategies can typically exhibit superior
performance in practical applications due to avoidance of early convergence to suboptimal actions
[38–40]. Furthermore, these strategies demonstrate robustness in the face of noise and uncertainty,
particularly within non-stationary environments [78, 9]. This success has extended to Langevin
Monte Carlo Thompson Sampling (LMCTS), which has been applied to various domains, including
linear bandits, generalized linear bandits, and neural contextual bandits [83]. The exploration of
posterior sampling techniques in RL has gained prominence, building upon the foundation laid by
TS [71, 7]. Randomized Least-Square Value Iteration (RLSVI) is an approach that leverages random
perturbations to approximate the posterior, with frequentist regret analysis applied under the tabular
MDP setting [63], inspiring subsequent works focusing on theoretical analyses aimed at improving
worst-case regret under tabular MDPs [70, 4], with extensions to the linear setting [88, 32, 20]. In
addition to theoretical advancements, several practical algorithms have been proposed based on
RLSVI to approximate posterior samples of Q functions in deep RL. These approaches involve
ensembles of randomly initialized neural networks [62, 64] and noise injection into the parameters
of the neural network [26, 52]. With the success of LMCTS [83] in bandit domains, the exploration
of randomized methods has expanded to alternative approaches like LMC in tabular RL [42] and
linear MDPs with neural network approximation [33]. Further works delve into the realm of random
exploration from the perspectives of delayed feedback [44] and offline RL [59].

While posterior sampling demonstrates superiority in various contexts, its theoretical foundations in
the multi-agent setting remain underexplored. Existing research predominantly focuses on two-player
zero-sum games, considering both Bayesian [95, 35] and frequentist regrets [80, 65]. There is no
existing work studying randomized exploration for cooperative multi-agent settings.

17

B Instantiation of the Proposed Algorithms in the Linear Function Class

In this section, we specifically discuss our TS-related algorithms in the linear structure, which is
under the assumption of linear function approximation and linear MDP setting.

Recall from the loss function in (3.4), here we choose L to be l2 loss and linear function class
f(w;ωl) = w↗ωl. By solving this least-square regression problem, we obtain the unperturbed
regression estimator wk

m,h
. In the linear setting, we have the closed-form solution

wk

m,h
= (!k

m,h
)↓1bk

m,h
, (B.1)

where !k

m,h
and bk

m,h
are defined as follows

!k

m,h
=

K(k)

l=1

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

+ ςI,

bk
m,h

=

K(k)

l=1

[
rh

(
s
l
, a

l
)
+ V

k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)
.

A natural way of doing randomized exploration is to add a noise N (0,↼2(!k

m,h
)↓1) to wk

m,h
and

get the estimated parameter w̄k

m,h
. Then we can construct estimated Q function Q

k

m,h
(·, ·) =

min{ω(·, ·)↗w̄k

m,h
, H ↗ h + 1}+. We call this method as CoopTS, which is aligned with other

linear TS algorithms [6, 2]. In what follows, we theoretically show that our proposed algorithms are
equivalent or approximately converge to the CoopTS algorithm in the linear function approximation
setting.

For CoopTS-PHE (Algorithm 1+Algorithm 2), let the function approximation in (3.5) be linear
and choose L to be the squared loss. By solving this least-square regression problem, we obtain
the perturbed regression estimator w̃k,n

m,h
in CoopTS-PHE. The following proposition conveys that

CoopTS-PHE is actually equivalent to CoopTS.

Proposition B.1 (Equivalent to CoopTS). The output w̃k,n

m,h
by CoopTS-PHE is equivalent to adding

a Gaussian vector to the unperturbed regression estimator wk

m,h
, i.e., w̃k,n

m,h
= wk

m,h
+ ϱk,n

m,h
, where

ϱk,n

m,h
⇔ N (0,↼2(!k

m,h
)↓1).

For CoopTS-LMC (Algorithm 1+Algorithm 3), let function approximation in (3.4) be linear and
choose L to be l2 loss to get the loss function. Then after finishing the LMC update, we get the
estimated parameter wk,Jk,n

m,h
and construct the model approximation of Q function. The following

proposition conveys that the distribution of wk,Jk

m,h
converges to the posterior distribution of Thompson

Sampling exploration. The proof of this proposition is given in [83].
Proposition B.2 (Approximately equivalent to CoopTS [83]). If the epoch length Jk in Al-
gorithm 3 is sufficiently large, the distribution of wk,Jk

m,h
converges to Gaussian distribution

N (wk

m,h
,⇀

↓1
m,k

(!k

m,h
)
↓1

).

Propositions B.1 and B.2 indicate that the results of our two randomized exploration strategies
are closely related to CoopTS. As we have mentioned above, in CoopTS, the estimated parameter
w̄k

m,h
is sampled from the normal distribution N (wk

m,h
,↼

2(!k

m,h
)↓1). However, in practice, this

sampling is often executed in this way: we sample ς ⇔ N (0, I) first, then we calculate w̄k

m,h
=

wk

m,h
+ ↼(!k

m,h
)↓

1
2ς and obtain the estimated parameter. Nevertheless, computing

(
!k

m,h

)↓ 1
2

can be computationally expensive, often requiring at least O(d3) operations with the Cholesky
decomposition, making it impractical for high-dimensional machine learning challenges. Additionally,
the Gaussian distribution used in Thompson Sampling may not effectively approximate the posterior
distribution in more complex bandit models than the linear MDP due to their intricate structures.

Moreover, as pointed out by recent work [16, 66, 46, 83], the Laplace approximation-based Thompson
Sampling exhibits a constant approximation error in the estimation of the posterior distribution.
Therefore, it necessitates a careful redesign of the covariance matrix to ensure effective performance.

18

Advantages of PHE and LMC As mentioned above, computing
(
!k

m,h

)↓ 1
2 can be computationally

expensive. However, Perturbed-History exploration and Langevin Monte Carlo exploration can avoid
this. For PHE, by only adding i.i.d random Gaussian noise to perturb reward and regularizer, its
performance will be equivalent to TS. For LMC, by only performing noisy gradient descent, we can
do the randomized exploration, resulting in similar performance compared with TS. Additionally,
these two methods can easily be implemented to general function class while Thompson Sampling
usually cannot be generalized except for the linear setting. In summary, these two methods are both
flexible in design and easy to implement in practice.

Communication cost We emphasize that agents can just send compressed statistics to the server
under the linear setting, which can largely reduce communication cost. In the linear function class,
we can calculate the closed-form solution of the regression problem (B.1). In this case, when
synchronization process is met, all the agents will only need to send their calculated local statistics
loc!k

m,h
and locbk

m,h
to help solve the regression problem. This communication cost is much smaller

because ! is only a d↓d matrix and b is only a d-dimensional vector, where d is the feature dimension
in linear MDP assumption. This can also avoid privacy disclosure through communications.

Nevertheless, in the general function class setting, our proposed algorithms still require sharing
all the collected datasets, which will cause relatively large communication cost. Additionally, in
Appendix K.2, we also propose a federated setting algorithm Algorithm 4. In this setting, instead of
sharing collected datasets, agents can just share the weight of the collected estimated Q functions,
which can largely reduce the communication cost.

C Analysis of the Communication Complexity of Algorithm 1

The proof of the communication complexity is largely inspired by that in [24]. However, we provide
a refined analysis here, and thus obtain an improved communication complexity Õ(dHM

2), in
contrast with the Õ(dHM

3) complexity in their paper. We also discussed this in Remark 4.7 and
showed that our result matches that of a recently proposed asynchronous algorithm. Moreover, we do
a careful calculation of the total number of transferred random bits and show it only has a dependence
on the number of episodes K.

Proof of Lemma 4.6. We assume ↼ = {↼1, . . . ,↼n} as the synchronization episodes, where ↼i ↑ [K],
we also denote ↼0 = 0. To bound the number of synchronization n, we separate ↼ into two parts with
an undetermined term ▷

I1 = {i ↑ [n]|↼i ↗ ↼i↓1 ⇒ ▷},

I2 = {i ↑ [n]|↼i ↗ ↼i↓1 > ▷}.

Then we have n = |I1|+ |I2|. Note that

K ⇑ ↼n =
n

i=1

(↼i ↗ ↼i↓1) ⇑


i↑I2

(↼i ↗ ↼i↓1) > |I2|▷.

Then we have |I2| < K/▷. Then note that
n

i=1

log


det(!ϑi

m,h
)

det(!ϑi↓1

m,h
)


⇑



i↑I1

log


det(!ϑi

m,h
)

det(!ϑi↓1

m,h
)



⇑



i↑I1

ω

↼i ↗ ↼i↓1

⇑ |I1|
ω

▷
. (C.1)

Define !K

h
=

∑
m↑M

∑
K

k=1 ω
(
z
k

m,h

)
ω
(
z
k

m,h

)↗
+ ςI where z

k

m,h
=

(
s
k

m,h
, a

k

m,h

)
. On the other

hand, we have
n

i=1

log


det(!ϑi

m,h
)

det(!ϑi↓1

m,h
)


= log


det(!ϑn

m,h
)

det(!ϑ0
m,h

)



19

⇒ log


det(!K

h
)

det(ςI)



⇒ d log(1 +MK/d), (C.2)

where the first inequality holds due to the trivial fact that A ↭ B ′ det(A) ⇒ det(B), the second
inequality follow from Lemma J.2 and the fact that ⇓ω(·)⇓2 ⇒ 1. Combine (C.1) and (C.2), then we
have |I1| ⇒ d▷/ω log(1 +MK/d). Finally, we choose ▷ = K/d, then we have

n ⇒
K

▷
+

d▷

ω
log


1 +

MK

d


=


d+

K

ω


log


1 +

MK

d


.

When one synchronization occurs, communications between agents and the server will occur M
times because we have M agents in total. Recall from Lines 16-24 in Algorithm 1, also note that
in one synchronization episode, communications will happen H times between every agent and the
server. Finally, the upper bound of communication complexity is

CPX = Õ
(
(d+K/ω)MH

)
.

Next we consider the total number of transferred random bits. We first calculate the communication
bits per round. Under the linear setting, we can calculate the closed-form solution of the regression
problem ŵk

m,h
= (!k

m,h
)↓1bk

m,h
, where

!k

m,h
=

∑K(k)
l=1 ω

(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

+ ςI,

bk
m,h

=
∑K(k)

l=1 [rh
(
s
l
, a

l
)
+ V

k

m,h+1(s
↔l)]ω

(
s
l
, a

l
)
.

Note that l ↑ [K(k)] is equivalent to (s, a, s↔) ↑ Um,h(k), and the index set Um,h(k) consists of
U

ser
h
(k) and U

loc
m,h

(k). Therefore, the empirical covariance matrix !k

m,h
and the vector bk

m,h
can

be decomposed into the summation of the local matrices and vectors on each agent. When the
synchronization occurs, agents just need to send their local statistics loc!k

m,h
and locbk

m,h
to the server

to help solve the regression problem on each agent.

For the local empirical covariance matrix loc!k

m,h

loc!k

m,h
=

∑
(sl,al,s→l)↑U

loc
m,h

(k) ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

,

this is the summation of up to K d↓ d matrices. Note that ⇓ω(s, a)⇓ ⇒ 1, thus it is easy to see that
the entries of each matrix, namely, ω

(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗, are bounded by 1. Therefore, the entries

in loc!k

m,h
are bounded by K. For each entry in this matrix, it suffices to use O(logK) bits to

communicate between the server and the agent. Thus in each round, O(d2 logK) bits are needed to
send the matrix loc!k

m,h
.

For the local vector locbk
m,h

locbk
m,h

=
∑

(sl,al,s→l)↑U
loc
m,h

(k)[rh
(
s
l
, a

l
)
+ V

k

m,h+1(s
↔l)]ω

(
s
l
, a

l
)
,

this is a d-dimensional vector. Note that rh is bounded by 1, V k

m,h+1 is bounded by H and is linear
with ω by definition, which indicates we only need to communicate a d-dimensional vector w̄k

m,h
to

obtain V
k

m,h+1. Similar to the above analysis, in each round, O(d log(K(H + 1))) bits are needed to
send the vector locbk

m,h
.

Therefore, the total bits of communication still only has a logarithmic dependency on the number of
episodes K. This completes the proof.

D Proof of the Regret Bound for CoopTS-LMC

The general framework for CoopTS-LMC and CoopTS-PHE is closely similar. To make the article
more concise, we first prove CoopTS-LMC completely, which is a bit more complicated. Then we
can simplify the following similar proof for CoopTS-PHE in Appendix G.

20

D.1 Supporting Lemmas

Before deriving the regret bound for CoopTS-LMC, we first provide the necessary technical lemmas
for our regret analysis. Note that the loop (Line 3-9) in Algorithm 3 is to do multi-sampling for N
times. To simplify the notations, we eliminate the index n before Lemma D.7 because the previous
lemmas have nothing to do with multi-sampling.
Definition D.1 (Model prediction error). For any (m, k, h) ↑ M↓ [K]↓ [H], we define the model
error associated with the reward rh,

l
k

m,h
(s, a) = rh(s, a) + PhV

k

m,h+1(s, a)↗Q
k

m,h
(s, a).

Definition D.2 (Filtration). For any (m, k, h) ↑ M↓ [K]↓ [H], we define the filtration Fm,k,h as

Fm,k,h = ω

({(
s
ω

n,i, a
ω

n,i

)}
(n,ω,i)↑M↓[k↔1]↓[H]

⋃{(
s
k

n,i, a
k

n,i

)}
(n,i)↑[m↔1]↓[H]

⋃{(
s
k

m,i, a
k

m,i

)}
i↑[h]

)
.

Proposition D.3. In Algorithm 3, the parameter wk,Jk

m,h
satisfies the Gaussian distribution

N
(
µk,Jk

m,h
,”k,Jk

m,h

)
, where mean vector and the covariance matrix are defined as

µk,Jk

m,h
= AJk

k
...AJ1

1 w1,0
m,h

+
k

i=1

AJk

k
...AJi+1

i+1

(
I↗AJi

i

)
wi

m,h
,

”k,Jk

m,h
=

k

i=1

1

⇀m,i

AJk

k
...AJi+1

i+1

(
I↗A2Ji

i

)
(!i

m,h
)↓1(I+Ai)

↓1AJi+1

i+1 ...AJk

k
,

where Ai = I↗ 2↽m,i!i

m,h
for i ↑ [k].

Lemma D.4. For any (m, k, h) ↑ M ↓ [K] ↓ [H], the unperturbed estimated parameter wk

m,h

satisfies wk

m,h

 ⇒ 2H
√
Mkd/ς.

Lemma D.5. Let ς = 1 in Algorithm 3. For any fixed 0 < ⇁ < 1, with probability at least 1↗ ⇁
2,

for any (m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A, we have
ω(s, a)↗wk,Jk

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒

5


2d log(1/⇁)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 .

Lemma D.6. Let ς = 1 in Algorithm 3. For any fixed 0 < ⇁ < 1, with probability at least 1↗ ⇁, for
any (m, k, h) ↑ M↓ [K]↓ [H], we have

wk,Jk

m,h

 ⇒
16

3
Hd

→

MK +


2K

3⇀K⇁
d
3/2 def

= Bϖ,

Lemma D.7. Let ς = 1 in Algorithm 3. For any fixed 0 < ⇁ < 1, with probability at least 1↗ ⇁, for
all (m, k, h) ↑ M↓ [K]↓ [H], we have




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒ 3H
→

dCϖ,

where Cϖ =

1
2 log(K + 1) + log


2
↘
2KBω/2NMHK

H


+ log 3

ϖ

1/2
and Bϖ is defined in Lemma D.6.

Lemma D.8. Let ς = 1 in Algorithm 3. Under Definition 4.1, for any fixed 0 < ⇁ < 1, with
probability at least 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A, we have

ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
 ⇒ 5H

→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 .

Lemma D.9 (Error bound). Let ς = 1 in Algorithm 3. Under Definition 4.1, for any fixed 0 < ⇁ < 1,
with probability at least 1↗ ⇁↗ ⇁

2, for any (m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A,
we have

↗l
k

m,h
(s, a) ⇒


5H

→

dCϖ + 5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(

”k

m,h

)
↓1

,

where Cϖ is defined in Lemma D.7.

21

Lemma D.10 (Optimism). Let ς = 1 in Algorithm 3 and c
↔
0 = 1 ↗ 1

2
↘
2eω

. Under Definition 4.1,

for any fixed 0 < ⇁ < 1, with probability at least 1↗ |C(ε)|c↔0
N
↗ 2⇁ where |C(ε)| ⇒ (3/ε)d, for all

(m,h, k) ↑ M↓ [H]↓ [K] and for all (s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) ⇒ ▷ϖε,

where ▷ϖ =
→
MK

(
2H

→
d+Bϖ/NMHK

)
.

Remark D.11. Here we point out that in our proofs for both CoopTS-LMC and CoopTS-PHE, we
use a new ε-covering technique to prove that the optimism lemma holds for all (s, a) ↑ S ↓ A

instead of just the state-action pairs encountered by the algorithm, which is essential in applying this
lemma to bound the term Eω↑ [lk

m,h
(sm,h, am,h)|sm,1 = s

k

m,1] in (D.2) in the regret analysis. This
was ignored by previous works [13, 33] that use the same regret decomposition technique in the
single-agent setting.

The following lemma gives the upper bound of self-normalized term summation in the multi-agent
setting, which is first introduced by Lemma 9 in [24]. To make our analysis complete, we give out
the proof in the Appendix E.9 where we make some necessary modifications compared with Lemma
9 in [24].
Lemma D.12. Let Algorithm 2 run for any K > 0, M ⇑ 1, and ω as the communication control
factor. Define !K

h
=

∑
m↑M

∑
K

k=1 ω
(
s
k

m,h
, a

k

m,h

)
ω
(
s
k

m,h
, a

k

m,h

)↗
+ ςI, then we have



m↑M

K

k=1

ω(sk
m,h

, a
k

m,h
)

(”k

m,h
)↓1 ⇒


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω + 2



MK log


det(!K

h
)

det(ςI)


.

The following lemma shows that we can decompose the regret of Algorithm 2 into three different
components. The proof of this lemma closely resembles Lemma 4.2 in [13] for the single-agent
setting. When we fix the agent m ↑ M, it is totally same as Lemma 4.2 in [13].
Lemma D.13. [13, Lemma 4.2] Define the operators and the following terms:

(Jm,hf)(s) =
〈
f(s, ·),ϑ→

m,h
(·|s)

〉
, (Jm,k,hf)(s) =

〈
f(s, ·),ϑk

m,h
(·|s)

〉
,

Dm,k,h,1 =
(
Jm,k,h

(
Q

k

m,h
↗Q

ωm,k

m,h

))(
s
k

m,h

)
↗

(
Q

k

m,h
↗Q

ωm,k

m,h

)(
s
k

m,h
, a

k

m,h

)
, (D.1)

Dm,k,h,2 =
(
Pm,h

(
V

k

m,h+1 ↗ V
ωm,k

m,h+1

))(
s
k

m,h
, a

k

m,h

)
↗
(
V

k

m,h+1 ↗ V
ωm,k

m,h+1

)(
s
k

m,h+1

)
.

Then we can decompose the regret into the following form:

Regret(K) =


m↑M

K

k=1

V
→
m,1

(
s
k

m,1

)
↗ V

ω
k

m

m,1

(
s
k

m,1

)

=


m↑M

K

k=1

H

h=1

Eω↑
[〈
Q

k

m,h
(sm,h, ·),ϑ

→
m,h

(·, |sm,h)↗ ϑ
k

m,h
(·|sm,h)

〉
|sm,1 = s

k

m,1

]

  
(i)

+


m↑M

K

k=1

H

h=1

(Dm,k,h,1 +Dm,k,h,2)

  
(ii)

+


m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

  
(iii)

.

D.2 Regret Analysis

In this part, we give out the proof of Theorem 4.4, the regret bound for CoopTS-LMC.

22

Proof of Theorem 4.4. Based on the result from Lemma D.13, we do the regret decomposition first

Regret(K) =


m↑M

K

k=1

V
→
m,1

(
s
k

m,1

)
↗ V

ω
k

m

m,1

(
s
k

m,1

)

=


m↑M

K

k=1

H

h=1

Eω↑
[〈
Q

k

m,h
(sm,h, ·),ϑ

→
m,h

(·, |sm,h)↗ ϑ
k

m,h
(·|sm,h)

〉
|sm,1 = s

k

m,1

]

  
(i)

+


m↑M

K

k=1

H

h=1

(Dm,k,h,1 +Dm,k,h,2)

  
(ii)

+


m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

  
(iii)

.

(D.2)

Next, we will bound the above three terms, respectively.

Bounding Term (i) in (D.2): for the policy ϑ
k

m,h
, we have



m↑M

K

k=1

H

h=1

Eω↑
[〈
Q

k

m,h
(sm,h, ·),ϑ

→
m,h

(·, |sm,h)↗ ϑ
k

m,h
(·|sm,h)

〉
|sm,1 = s

k

m,1

]
⇒ 0. (D.3)

This is because by definition ϑ
k

m,h
is the greedy policy for Qk

m,h
.

Bounding Term (ii) in (D.2): note that 0 ⇒ Q
k

m,h
⇒ H ↗ h + 1 ⇒ H , based on (D.1), for any

(m, k, h) ↑ M↓ [K]↓ [H], we have |Dm,k,h,1| ⇒ 2H and |Dm,k,h,2| ⇒ 2H . Note that Dm,k,h,1 is
a martingale difference sequence E[Dm,k,h,1|Fm,k,h] = 0. By applying Azuma-Hoeffding inequality,
with probability at least 1↗ ⇁/3, we have



m↑M

K

k=1

H

h=1

Dm,k,h,1 ⇒ 2
√
2MH3K log(6/⇁).

Note that Dm,k,h,2 is also a martingale difference sequence. By applying Azuma-Hoeffding inequality,
with probability at least 1↗ ⇁/3, we have



m↑M

K

k=1

H

h=1

Dm,k,h,2 ⇒ 2
√
2MH3K log(6/⇁).

By taking union bound, with probability at least 1↗ 2⇁/3, we have



m↑M

K

k=1

H

h=1

Dm,k,h,1 +


m↑M

K

k=1

H

h=1

Dm,k,h,2 ⇒ 4
√
2MH3K log(6/⇁). (D.4)

Bounding Term (iii) in (D.2): based on Lemmas D.9 and D.10, by taking union bound, with
probability at least 1↗ |C(ε)|c↔0

N
↗ 2⇁↔ ↗MHK(⇁↔ + ⇁

↔2), we have



m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

⇒



m↑M

K

k=1

H

h=1

(
▷ϖ→ε↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

⇒ HMK▷ϖ→ε+


m↑M

K

k=1

H

h=1


5H

→

dCϖ→ + 5


2d log(

→
N/⇁↔)

3⇀K

+
4

3


ω(sk

m,h
, a

k

m,h
)

(”k

m,h
)↓1

23

= HMK▷ϖ→ε+


5H

→

dCϖ→ + 5


2d log(

→
N/⇁↔)

3⇀K

+
4

3


H

h=1



m↑M

K

k=1

ω(sk
m,h

, a
k

m,h
)

(”k

m,h
)↓1

⇒ HMK▷ϖ→ε+


5H

→

dCϖ→ + 5


2d log(

→
N/⇁↔)

3⇀K

+
4

3



↓

H

h=1


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω + 2



MK log


det(!K

h
)

det(ςI)



⇒ HMK▷ϖ→ε+


5H

→

dCϖ→ + 5


2d log(

→
N/⇁↔)

3⇀K

+
4

3



↓H


d(log(1 +MK/d) + 1)M

→
ω + 2

√
MKd log(1 +MK/d)


.

The first inequality follows from Lemma D.10, the second inequality follows from Lemma D.9, the
third inequality follows from Lemma D.12, the last inequality holds due to Lemma J.2 and the fact
that ⇓ω(·)⇓2 ⇒ 1.

Here we choose ε = dH

√
d/MK/▷ϖ→ = Õ(

√
1/dHM3K4N) and choose 1↘

ϱK

= 20H
→
dCϖ→ +

16
3 , we have

∑

m↑M

K∑

k=1

H∑

h=1

(
Eε↑

[
l
k

m,h(sm,h, am,h)|sm,1 = s
k

m,1

]
→ l

k

m,h

(
s
k

m,h, a
k

m,h

))
↑ Õ

(
dH

2(
dM

↓
ε +

↓

dMK
))
,

(D.5)

occurs with probability at least 1↗ |C(ε)|c↔0
N
↗ 2⇁↔ ↗MHK(⇁↔ + ⇁

↔2).

We set ⇁↔ = ⇁/12(MHK + 1) and choose N = C̄ log(⇁)/ log(c↔0) where C̄ = Õ(d), then we have

1↗ |C(ε)|c↔0
N
↗ 2⇁↔ ↗MHK(⇁↔ + ⇁

↔2) ⇑ 1↗ ⇁/3.

Combining Terms (i)(ii)(iii) together: Based on (D.3), (D.4) and (D.5). By taking union bound, we
get that the final regret bound for CoopTS-LMC is Õ

(
dH

2
(
dM

→
ω +

→
dMK

))
with probability at

least 1↗ ⇁.

E Proof of Supporting Lemmas in Appendix D

E.1 Proof of Proposition D.3

Recall from Algorithm 3, the LMC update rule is

wk,j

m,h
= wk,j↓1

m,h
↗ ↽m,k↖L

k

m,h

(
wk,j↓1

m,h

)
+
√

2↽m,k⇀
↓1
m,k

ϑk,j
m,h

,

where we have ↖L
k

m,h

(
wk,j↓1

m,h

)
= 2

(
!k

m,h
wk,j↓1

m,h
↗ bk

m,h

)
. Plug in the above formula, then we

can calculate that

wk,Jk

m,h
= wk,Jk↓1

m,h
↗ 2↽m,k

(
!k

m,h
wk,Jk↓1

m,h
↗ bk

m,h

)
+

√
2↽m,k⇀

↓1
m,k

ϑk,Jk

m,h

=
(
I↗ 2↽m,k!

k

m,h

)
wk,Jk↓1

m,h
+ 2↽m,kb

k

m,h
+

√
2↽m,k⇀

↓1
m,k

ϑk,Jk

m,h

=
(
I↗ 2↽m,k!

k

m,h

)Jkwk,0
m,h

+
Jk↓1

l=0

(I↗ 2↽m,k!
k

m,h
)l

2↽m,kb

k

m,h
+

√
2↽m,k⇀

↓1
m,k

ϑk,Jk↓l

m,h



=
(
I↗ 2↽m,k!

k

m,h

)Jkwk,0
m,h

+ 2↽m,k

Jk↓1

l=0

(
I↗ 2↽m,k!

k

m,h

)l
bk
m,h

24

+
√

2↽m,k⇀
↓1
m,k

Jk↓1

l=0

(
I↗ 2↽m,k!

k

m,h

)l
ϑk,Jk↓l

m,h
,

where the third equality follows from iteration. Denote that Ai = I ↗ 2↽m,i!i

m,h
. Moreover, we

choose the step size such that 0 < ↽m,i < 1/
(
2ςmax

(
!i

m,h

))
. Thus we have

wk,Jk

m,h
= AJk

k
w

k↓1,Jk↓1

m,h
+ 2↽m,k

Jk↓1

l=0

Al

k
!k

m,h
wk

m,h
+
√

2↽m,k⇀
↓1
m,k

Jk↓1

l=0

Al

k
ϑk,Jk↓l

m,h

= AJk

k
w

k↓1,Jk↓1

m,h
+ (I↗Ak)

(
I+Ak + ...+AJk↓1

k

)
wk

m,h
+

√
2↽m,k⇀

↓1
m,k

Jk↓1

l=0

Al

k
ϑk,Jk↓l

m,h

= AJk

k
w

k↓1,Jk↓1

m,h
+
(
I↗AJk

k

)
wk

m,h
+
√

2↽m,k⇀
↓1
m,k

Jk↓1

l=0

Al

k
ϑk,Jk↓l

m,h

= AJk

k
...AJ1

1 w1,0
m,h

+
k

i=1

AJk

k
...AJi+1

i+1

(
I↗AJi

i

)
wi

m,h

+
k

i=1

√
2↽m,i⇀

↓1
m,i

AJk

k
...AJi+1

i+1

Ji↓1

l=0

Al

i
ϑi,Ji↓l

m,h
,

where the first equality holds because bk
m,h

= !k

m,h
wk

m,h
and w

k↓1,Jk↓1

m,h
= wk,0

m,h
, the third equality

follows from the fact that I+A+ ...+An↓1 = (I↗An)(I↗A)↓1, and the fourth equality holds
because of iteration.

Note that ϑi,Ji↓l

m,h
⇔ N (0, I), based on the property of multivariate Gaussian distribution, we have

wk,Jk

m,h
⇔ N

(
µk,Jk

m,h
,”k,Jk

m,h

)
. Then we can directly get the mean vector

µk,Jk

m,h
= AJk

k
...AJ1

1 w1,0
m,h

+
k

i=1

AJk

k
...AJi+1

i+1

(
I↗AJi

i

)
wi

m,h
.

Next we will calculate the covariance matrix ”k,Jk

m,h
. For simplicity, we define Mi =√

2↽m,i⇀
↓1
m,i

AJk

k
...AJi+1

i+1 , thus we have

Mi

Ji↓1

l=0

Al

i
ϑi,Ji↓l

m,h
⇔ N


0,

Ji↓1

l=0

MiA
l

i

(
MiA

l

i

)↗


⇔ N


0,Mi


Ji↓1

l=0

A2l
i


M↗

i


.

Thus we get the covariance matrix ”k,Jk

m,h
,

”k,Jk

m,h
=

k

i=1

Mi


Ji↓1

l=0

A2l
i


M↗

i

=
k

i=1

2↽m,i⇀
↓1
m,i

AJk

k
...AJi+1

i+1


Ji↓1

l=0

A2l
i


AJi+1

i+1 ...AJk

k

=
k

i=1

2↽m,i⇀
↓1
m,i

AJk

k
...AJi+1

i+1

(
I↗A2Ji

i

)
(I↗A2

i
)↓1AJi+1

i+1 ...AJk

k

=
k

i=1

1

⇀m,i

AJk

k
...AJi+1

i+1

(
I↗A2Ji

i

)(
!i

m,h

)↓1
(I+Ai)

↓1AJi+1

i+1 ...AJk

k
,

where the third equality follows from the fact that I+A+ ...+An↓1 = (I↗An)(I↗A)↓1. Here
we complete the proof.

25

E.2 Proof of Lemma D.4

Proof. Note that wk

m,h
=

(
!k

m,k

)↓1
bk
m,h

, we can calculate that
wk

m,h

 =

(
!k

m,h

)↓1
bk
m,h



=


(
!k

m,h

)↓1 

(sl,al,s→l)↑Um,h(k)

[
rh

(
s
l
, a

l
)
+ V

k

m,h+1(s
↔l)
]
ω
(
s
l
, a

l
)


⇒
1
→
ς

√
K(k)




(sl,al,s→l)↑Um,h(k)

[rh
(
s
l
, a

l
)
+ V

k

m,h+1(s
↔l)
]
ω
(
s
l
, a

l
)2

(”k

m,h
)↓1

1/2

⇒
2H
→
ς

√
K(k)




(sl,al,s→l)↑Um,h(k)

ω(sl, al)
2
(”k

m,h
)↓1

1/2

⇒ 2H
√
K(k)d/ς

⇒ 2H
√
Mkd/ς,

where the first inequality follows from Lemma J.3, the second inequality is due to 0 ⇒ V
k

m,h
⇒

H ↗ h + 1, 0 ⇒ rh ⇒ 1 and ⇓ω(s, a)⇓ ⇒ 1, the third inequality follows from Lemma J.4, and the
last inequality holds because K(k) = (M ↗ 1)ks + k ↗ 1 ⇒ Mk.

E.3 Proof of Lemma D.5

Proof. We separate the error into two terms and bound them, respectively,
ω(s, a)↗wk,Jk

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒
ω(s, a)↗


wk,Jk

m,h
↗ µk,Jk

m,h


  

I1

+
ω(s, a)↗


µk,Jk

m,h
↗ wk

m,h


  

I2

.

(E.1)

Bounding Term I1 in (E.1): by Cauchy-Schwarz inequality, we have
ω(s, a)↗


wk,Jk

m,h
↗ µk,Jk

m,h

 ⇒
ω(s, a)


#

k,J
k

m,h

·

wk,Jk

m,h
↗ µk,Jk

m,h


(#

k,J
k

m,h
)↓1

.

By choosing ↽m,k ⇒ 1/(4ςmax(!k

m,h
)) for all k and m, then we have

1

2
I ↭ Ak = I↗ 2↽m,k!

k

m,h
↭ (1↗ 2↽m,kςmin(!

k

m,h
))I, (E.2)

3

2
I ↭ I+Ak = 2I↗ 2↽m,k!

k

m,h
↭ 2I.

Recall the definition of ”k,Jk

m,h
in Proposition D.3. By choosing ⇀m,i = ⇀K for all i ↑ [k] and

m ↑ M, then we have

ω(s, a)↗”k,Jk

m,h
ω(s, a)

=
k

i=1

1

⇀m,i

ω(s, a)↗AJk

k
...AJi+1

i+1

(
I↗A2Ji

i

)(
!i

m,h

)↓1
(I+Ai)

↓1AJi+1

i+1 ...AJk

k
ω(s, a)

⇒
2

3⇀m,i

k

i=1

ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
↗AJi

i

(
!i

m,h

)↓1
AJi

i


AJi+1

i+1 ...AJk

k
ω(s, a)

=
2

3⇀K

k↓1

i=1

ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
↗
(
!i+1

m,h

)↓1

AJi+1

i+1 ...AJk

k
ω(s, a)

↗
2

3⇀K

ω(s, a)↗AJk

k
...AJ1

1 (!1
m,h

)↓1AJ1
1 ...AJk

k
ω(s, a)

26

+
2

3⇀K

ω(s, a)↗(!k

m,h
)↓1ω(s, a),

where the first inequality follows from (E.2). By the definition of !i

m,h
and Woodbury formula, we

have

(
!i

m,h

)↓1
↗
(
!i+1

m,h

)↓1
=

(
!i

m,h

)↓1
↗


!i

m,h
+



(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

↓1

= (!i

m,h
)↓1φ(In +φ↗(!i

m,h
)↓1φ)↓1φ↗(!i

m,h
)↓1

,

where φ is a matrix with the dimension of d↓ n, n is the number difference of ω
(
s
l
, a

l
)

between
(
!i

m,h

)↓1 and
(
!i+1

m,h

)↓1 (i.e. we concatenate all ω
(
s
l
, a

l
)

into the matrix φ). Note that n ⇒ M ,
then we have

ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
↗
(
!i+1

m,h

)↓1

AJi+1

i+1 ...AJk

k
ω(s, a)

= ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
φ(In +φ↗(!i

m,h

)↓1
φ)↓1φ↗(!i

m,h

)↓1

AJi+1

i+1 ...AJk

k
ω(s, a)

⇒ ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
φφ↗(!i

m,h

)↓1
AJi+1

i+1 ...AJk

k
ω(s, a)

=
ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
φ
2
2

⇒
AJk

k
...AJi+1

i+1 (!i

m,h
)↓1/2ω(s, a)

2
2
·
(!i

m,h
)↓1/2φ

2
F

⇒

k

j=i+1


1↗ 2↽m,jςmin

(
!j

m,h

)2Jj

tr
(
φ↗(!i

m,h

)↓1
φ
)
⇓ω(s, a)⇓2(”i

m,h
)↓1 ,

where ⇓·⇓F is Frobenius norm and the last inequality is due to ⇓!↓ 1
2X⇓

2
F

= tr(X↗!↓1X) and
(E.2). Thus we have

∥∥ω(s, a)
∥∥2

!
k,J

k

m,h

↑
2

3ϑK

k∑

i=1

k∏

j=i+1

(
1→ 2ϖm,jϱmin

(
!j

m,h

))2Jj

tr
(
ε↗(!i

m,h

)↔1
ε
)
↔ω(s, a)↔2(”i

m,h
)↓1

+
2

3ϑK

↔ω(s, a)↔2(”k

m,h
)↓1 .

Using the inequality
→
a2 + b2 ⇒ a+ b for a, b > 0, we get

∥∥ω(s, a)
∥∥
!

k,J
k

m,h

↑

√
2

3ϑK

(k∑

i=1

k∏

j=i+1

(
1→ 2ϖm,jϱmin(!

j

m,h
)
)
Jj

tr(ε↗(!i

m,h)
↔1ε)

1
2 ↔ω(s, a)↔(”i

m,h
)↓1

+ ↔ω(s, a)↔(”k

m,h
)↓1



def
= gkm,h(ω(s, a)).

Note that

”k,Jk

m,h

↓1/2
wk,Jk

m,h
↗ µk,Jk

m,h


⇔ N (0, Id). By the Gaussian concentration property, we

have

P



”k,Jk

m,h

↓1/2
wk,Jk

m,h
↗ µk,Jk

m,h

 ⇑

√
4d log(1/⇁)


⇒ ⇁

2
.

Then we have

P
ω(s, a)↗wk,Jk

m,h
↗ ω(s, a)↗µk,Jk

m,h

 ⇑ 2gk
m,h

(ω(s, a))
√
d log(1/⇁)



⇒ P
ω(s, a)↗wk,Jk

m,h
↗ ω(s, a)↗µk,Jk

m,h

 ⇑ 2
√
d log(1/⇁)⇓ω(s, a)⇓

#
k,J

k

m,h



⇒ P
ω(s, a)


#

k,J
k

m,h

·

wk,Jk

m,h
↗ µk,Jk

m,h


(#

k,J
k

m,h
)↓1

⇑ 2
√
d log(1/⇁)⇓ω(s, a)⇓

#
k,J

k

m,h



= P


(
”k,Jk

m,h

)↓1/2(
wk,Jk

m,h
↗ µk,Jk

m,h

) ⇑ 2
√

d log(1/⇁)


27

⇒ ⇁
2
. (E.3)

Bounding Term I2 in (E.1): Recall from Proposition D.3, we have

µk,Jk

m,h
= AJk

k
...AJ1

1 w1,0
m,h

+
k

i=1

AJk

k
...AJi+1

i+1

(
I↗AJi

i

)
wi

m,h

= AJk

k
...AJ1

1 w1,0
m,h

+
k↓1

i=1

AJk

k
...AJi+1

i+1 (wi

m,h
↗ wi+1

m,h
)↗AJk

k
...AJ1

1 w1
m,h

+ wk

m,h

= AJk

k
...AJ1

1 (w1,0
m,h

↗ w1
m,h

) +
k↓1

i=1

AJk

k
...AJi+1

i+1 (wi

m,h
↗ wi+1

m,h
) + wk

m,h
.

Then we can get

ω(s, a)↗(µk,Jk

m,h
↗ wk

m,h
)

= ω(s, a)↗AJk

k
...AJ1

1 (w1,0
m,h

↗ w1
m,h

)
  

I21

+ω(s, a)↗
k↓1

i=1

AJk

k
...AJi+1

i+1 (wi

m,h
↗ wi+1

m,h
)

  
I22

.

In Algorithm 3, we choose w1,0
m,h

= 0 and w1
m,h

= (!1
m,h

)↓1b1
m,h

= 0. Thus we have I21 = 0. To
bound term I22, we use the inequalities in (E.2) and Lemma D.4, we have

I22 ⇒


k↓1

i=1

ω(s, a)↗AJk

k
...AJi+1

i+1 (wi

m,h
↗ wi+1

m,h
)


⇒

k↓1

i=1

k

j=i+1


1↗ 2↽m,jςmin(!

j

m,h
)
Jj

⇓ω(s, a)⇓(⇓wi

m,h
⇓+ ⇓wi+1

m,h
⇓)

⇒

k↓1

i=1

k

j=i+1


1↗ 2↽m,jςmin(!

j

m,h
)
Jj

⇓ω(s, a)⇓
(
2H

√
Mid/ς+ 2H

√
M(i+ 1)d/ς

)

⇒ 4H
√
MKd/ς

k↓1

i=1

k

j=i+1


1↗ 2↽m,jςmin(!

j

m,h
)
Jj

⇓ω(s, a)⇓.

Thus we get

ω(s, a)↗
(
µk,Jk

m,h
↗ wk

m,h

)
⇒ 4H

√
MKd/ς

k↓1

i=1

k

j=i+1


1↗ 2↽m,jςmin(!

j

m,h
)
Jj

⇓ω(s, a)⇓.

(E.4)

Substituting (E.3) and (E.4) into (E.1), with probability at least 1↗ ⇁
2, we have

ω(s, a)↗wk,Jk

m,h
→ ω(s, a)↗ wk

m,h



↑ 4H


MKd/ϱ

k↔1∑

i=1

k∏

j=i+1

(
1→ 2ϖm,jϱmin(!

j

m,h
)
)
Jj

↔ω(s, a)↔+ 2


2d log(1/ς)

3ϑK

↔ω(s, a)↔(”k

m,h
)↓1

+ 2


2d log(1/ς)

3ϑK

k∑

i=1

k∏

j=i+1

(
1→ 2ϖm,jϱmin(!

j

m,h
)
)
Jj

tr
(
ε↗(!i

m,h

)↔1
ε
) 1

2 ↔ω(s, a)↔(”i

m,h
)↓1

def
= W. (E.5)

Here we choose ↽m,j = 1/(4ςmax(!
j

m,h
)) and set κj = ςmax

(
!j

m,h

)
/ςmin

(
!j

m,h

)
, then we have


1↗ 2↽m,jςmin

(
!j

m,h

)Jj

= (1↗ 1/2κj)
Jj .

28

We want to have (1↗ 1/2κj)Jj < φ, it suffices to choose Jj such that

Jj ⇑
log(1/φ)

log
(

1
1↓1/2ςj

) .

Note that 1/2κj ⇒ 1/2, we have log(1/(1↗ 1/2κj)) ⇑ 1/2κj because e↓x
> 1↗ x for 0 < x < 1.

Therefore, we only need to pick Jj ⇑ 2κj log(1/φ).

Also note that 1 ⇑ ⇓ω(s, a)⇓ ⇑
→
ς⇓ω(s, a)⇓(”i

m,h
)↓1 and tr

(
φ↗(!i

m,h

)↓1
φ
)
⇒ M due to the

fact that n ⇒ M . By setting φ = 1/(4HMKd) and ς = 1, we obtain

W ↑

k↔1∑

i=1

φ
k↔i4H


MKd/ϱ↔ω(s, a)↔+ 2


2d log(1/ς)

3ϑK

(
↔ω(s, a)↔(”k

m,h
)↓1 +

k↔1∑

i=1

φ
k↔i

↓

M↔ω(s, a)↔



↑

k↔1∑

i=1

φ
k↔i4H


MKd/ϱ

↓

MK↔ω(s, a)↔(”k

m,h
)↓1

+ 2


2d log(1/ς)

3ϑK

(
↔ω(s, a)↔(”k

m,h
)↓1 +

k↔1∑

i=1

φ
k↔i

M

↓

K↔ω(s, a)↔(”k

m,h
)↓1



↑

k↔1∑

i=1

φ
k↔i↔1

↔ω(s, a)↔(”k

m,h
)↓1 + 2


2d log(1/ς)

3ϑK

(
↔ω(s, a)↔(”k

m,h
)↓1 +

k↔1∑

i=1

φ
k↔i↔1

↔ω(s, a)↔(”k

m,h
)↓1



↑

(
5


2d log(1/ς)

3ϑK

+
4
3


↔ω(s, a)↔(”k

m,h
)↓1 ,

where the second inequality follows from ⇓ω(s, a)⇓(”k

m,h
)↓1 ⇑ 1/

√
K(k) + 1⇓ω(s, a)⇓ ⇑

1/
→
MK⇓ω(s, a)⇓, the fourth inequality follows from

∑
k↓1
i=1 φ

k↓i↓1 =
∑

k↓2
i=0 φ

i
< 1/(1↗φ) ⇒ 4/3.

Finally we have

P
ω(s, a)↗wk,Jk

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒

5


2d log(1/⇁)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1



⇑ P
ω(s, a)↗wk,Jk

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒ W



⇑ 1↗ ⇁
2
.

This completes the proof.

E.4 Proof of Lemma D.6

Proof. Recall that wk,Jk

m,h
⇔ N

(
µk,Jk

m,h
,”k,Jk

m,h

)
. Let εk,Jk

m,h
= wk,Jk

m,h
↗ µk,Jk

m,h
⇔ N (0,”k,Jk

m,h
), thus

we have
wk,Jk

m,h

 =
µk,Jk

m,h
+ εk,Jk

m,h

 ⇒
µk,Jk

m,h

+
εk,Jk

m,h

. (E.6)

Bounding
µk,Jk

m,h

 in (E.6): Based on Proposition D.3, we have

µk,Jk

m,h

 =
AJk

k
. . .AJ1

1 w1,0
m,h

+
k

i=1

AJk

k
. . .AJi+1

i+1

(
I↗AJi

i

)
wi

m,h



⇒

k

i=1

AJk

k
. . .AJi+1

i+1

(
I↗AJi

i

)
F
·
wi

m,h



⇒ 2H
√
MKd/ς

k

i=1

AJk

k
. . .AJi+1

i+1

(
I↗AJi

i

)
F

⇒ 2Hd

√
MK/ς

k

i=1

⇓Ak⇓
Jk

2 . . . ⇓Ai+1⇓
Ji+1

2

(I↗AJi

i

)
2

29

⇒ 2Hd

√
MK/ς

k

i=1

k

j=i+1

(
1↗ 2↽m,jςmin

(
!j

m,h

))Jj
(
⇓I⇓2 +

Ai

Ji

2

)

⇒ 2Hd

√
MK/ς

k

i=1

k

j=i+1

(
1↗ 2↽m,jςmin

(
!j

m,h

))Jj
(
1 +

(
1↗ 2↽m,iςmin

(
!i

m,h

))Jj
)
,

where the second inequality holds from Lemma D.4, the third inequality follows from the fact
that rank

(
AJk

k
. . .AJi+1

i+1

(
I ↗ AJi

i

))
⇒ d and ⇓X⇓2 ⇒ ⇓X⇓F ⇒ rank(X)⇓X⇓2 where ⇓X⇓2 =

↼max(X).

Recall that in Lemma D.5, we set Jj ⇑ 2κj log(1/φ) where κj = ςmax

(
!j

m,h

)
/ςmin

(
!j

m,h

)
,

φ = 1/(4HMKd) and ς = 1, thus we get

µk,Jk

m,h

 ⇒ 2Hd

√
MK/ς

k

i=1

(φk↓i + φ
k↓i+1)

⇒ 4Hd

√
MK/ς

≃

i=0

φ
i

⇒
16

3
Hd

→

MK.

Bounding
εk,Jk

m,h

 in (E.6): Note that εk,Jk

m,h
⇔ N

(
0,”k,Jk

m,h

)
, using Gaussian concentration

Lemma J.5, we have

P
εk,Jk

m,h

 ⇒


1

⇁
tr
(
”k,Jk

m,h

)
⇑ 1↗ ⇁.

Recall from Proposition D.3, we have

tr
(
”k,Jk

m,h

)
=

k

i=1

1

⇀m,i

tr
(
AJk

k
. . .AJi+1

i+1

(
I↗A2Ji

i

)
(!i

m,h
)↓1(I+Ai)

↓1AJi+1

i+1 . . .AJk

k

)

⇒

k

i=1

1

⇀m,i

tr
(
AJk

k

)
. . . tr

(
AJi+1

i+1

)
tr
(
I↗A2Ji

i

)
tr
((
!i

m,h

)↓1)
tr
((
I+Ai)

↓1
)

↓ tr
(
AJi+1

i+1

)
. . . tr

(
AJk

k

)
,

where the inequality holds due to Lemma J.6. Recall from (E.2) that, when ↽m,k ⇒ 1/(4ςmax(!k

m,h
))

for all k and m, we have AJi

i
↭ (1↗ 2↽m,kςmin(!k

m,h
))JjI, set ς = 1, then we obtain

tr(AJi

i
) ⇒ tr

(
1↗ 2↽m,kςmin

(
!k

m,h

))JjI

⇒ d

(
1↗ 2↽m,kςmin

(
!k

m,h

))Jj

⇒ dφ ⇒ 1.

Similarly, we have I↗A2Ji

i
↭

(
1↗ 1

22Ji

)
I, then we get

tr(I↗A2Ji

i
) ⇒


1↗

1

22Ji


d < d.

Also, based on (I+Ai)↓1 ↭ 2
3I, we have

tr
(
(I+Ai)

↓1
)
⇒

2

3
d.

Note that ςmax
((
!i

m,h

)↓1)
⇒ 1, we have

tr
((
!i

m,h

)↓1)
⇒


ς
((
!i

m,h

)↓1)
⇒ d.

Combine the above results together and choose ⇀m,i = ⇀K for all i ↑ [K] and m ↑ M, we have

tr
(
”k,Jk

m,h

)
⇒

K

i=1

1

⇀m,i

·
2

3
· d

3 =
2

3⇀K

Kd
3
.

30

Then we have

P
εk,Jk

m,h

 ⇒


1

⇁
·

2

3⇀K

Kd3


⇑ P

εk,Jk

m,h

 ⇒


1

⇁
tr
(
”k,Jk

m,h

)
⇑ 1↗ ⇁.

Combine above results together: with probability at least 1↗ ⇁, we have

wk,Jk

m,h

 ⇒
16

3
Hd

→

MK +


2K

3⇀K⇁
d
3/2

.

This completes the proof.

E.5 Proof of Lemma D.7

Proof. Based on Lemma D.6, for any fixed n ↑ [N], with probability at least 1 ↗ ⇁, for any
(m, k, h) ↑ M↓ [K]↓ [H], we have

wk,Jk,n

m,h

 ⇒
16

3
Hd

→

MK +


2K

3⇀K⇁
d
3/2

.

By taking union over n,m, k, h, we have for all (m, k, h) ↑ M ↓ [K] ↓ [H] and for all n ↑ [N],
with probability 1↗ ⇁/2, we have

wk,Jk,n

m,h

 ⇒
16

3
Hd

→

MK +


4NMHK2

3⇀K⇁
d
3/2 = Bϖ/2NMHK . (E.7)

Based on Lemma J.7 and Lemma J.9, we have that for any ε > 0 and ⇁ > 0, with probability at least
1↗ ⇁/2,




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒


4H2


d

2
log


k + ς

ς


+ d log


Bϖ/2NMHK

ε


+ log

3

⇁

]
+

8k2ε2

ς

1/2

⇒ 2H


d

2
log


k + ς

ς


+ d log


Bϖ/2NMHK

ε


+ log

3

⇁

]1/2
+

2
→
2kε

→
ς

.

Here we set ς = 1, ε = H

2
↘
2k

, with probability at least 1↗ ⇁/2, we have




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒ 2H
→

d


1

2
log(k + 1) + log


Bϖ/2NMHK

H

2
↘
2k


+ log

3

⇁

]1/2
+H

⇒ 3H
→

d


1

2
log(K + 1) + log


2
→
2KBϖ/2NMHK

H


+ log

3

⇁

]1/2
. (E.8)

By applying union bound between (E.7) and (E.8), and define that Cϖ =

1
2 log(K + 1) + log 3

ϖ
+

log


2
↘
2KBω/2NMHK

H

1/2
, finally we obtain that for all (m, k, h) ↑ M↓ [K]↓ [H],




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒ 3H
→

dCϖ,

with probability at least 1↗ ⇁.

31

E.6 Proof of Lemma D.8

Proof. We denote the inner product over S by ↙·, ·∝S . Based on Ph(·|s, a) =
〈
ω(s, a), µh(·)

〉
S in

Definition 4.1, we have
PhV

k

m,h+1(s, a) = ω(s, a)↗

µh, V

k

m,h+1


S

= ω(s, a)↗
(
!k

m,h

)↔1(
!k

m,h

)
µh, V

k

m,h+1


S

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

+ ϱI



µh, V

k

m,h+1


S

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)(
PhV

k

m,h+1

)(
s
l
, a

l
)
+ ϱI


µh, V

k

m,h+1


S


.

(E.9)

Here the last equality uses Ph(·|s, a) =
〈
ω(s, a),µh(·)

〉
S again. Then we can separate the following

error into three parts,

ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

= ω(s, a)↗
(
!k

m,h

)↓1 

(sl,al,s→l)↑Um,h(k)

[
rh

(
s
l
, a

l
)
+ V

k

m,h+1(s
↔l)
]
ω
(
s
l
, a

l
)
↗ rh(s, a)

↗ ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)(
PhV

k

m,h+1

)(
s
l
, a

l
)
+ ςI

〈
µh, V

k

m,h+1

〉
S



= ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]


  
(i)

+ ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


↗ rh(s, a)

  
(ii)

↗ ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S  

(iii)

. (E.10)

Here the first equality holds due to (E.9). We now provide an upper bound for each of the terms in
(E.10).

Bounding Term (i) in (E.10): using Cauchy-Schwarz inequality and Lemma D.7, with probability at
least 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A, we have

ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]


⇒




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇓ω(s, a)⇓(”k

m,h
)↓1

⇒ 3H
→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 . (E.11)

Bounding Term (ii) in (E.10): we first note that

ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


→ rh(s, a)

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


→ ω(s, a)↗ϑh

32

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)
→!k

m,hϑh



= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)
→

∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

ϑh → ϱIϑh



= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)
→

∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
rh

(
s
l
, a

l
)
→ ϱϑh



= →ϱω(s, a)↗
(
!k

m,h

)↔1
ϑh, (E.12)

where the first and fourth equality holds due to the definition rh(s, a) =
〈
ω(s, a),ϖh

〉
from Defini-

tion 4.1, the third equality uses the definition of !k

m,h
. Next we can obtain that

↗ςω(s, a)↗
(
!k

m,h

)↓1
ϖh ⇒ ς⇓ω(s, a)⇓(”k

m,h
)↓1⇓ϖh⇓(”k

m,h
)↓1

⇒

→

ς⇓ω(s, a)⇓(”k

m,h
)↓1⇓ϖh⇓

⇒

→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 , (E.13)

where we use the fact that ςmax
((
!k

m,h

)↓1)
⇒ 1/ς and ⇓ϖh⇓ ⇒

→
d from Definition 4.1. By

Combining (E.12) and (E.13), we obtain

ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

rh

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


↗ rh(s, a) ⇒
→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 .

(E.14)

Bounding Term (iii) in (E.10): we have

ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S ⇒ ς⇓ω(s, a)⇓(”k

m,h
)↓1

〈µh, V
k

m,h+1

〉
S


(”k

m,h
)↓1

⇒

→

ς⇓ω(s, a)⇓(”k

m,h
)↓1

〈µh, V
k

m,h+1

〉
S



⇒ H

→

ς⇓ω(s, a)⇓(”k

m,h
)↓1⇓µh⇓

⇒ H

→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 , (E.15)

where the second inequality holds due to the fact that ςmax
((
!k

m,h

)↓1)
⇒ 1/ς, the third inequality

uses the fact that V k

m,h+1 ⇒ H and the last inequality follows from ⇓µh⇓ ⇒
→
d in Definition 4.1.

Combine Terms (i)(ii)(iii) together: combine (E.11), (E.14) and (E.15), then set ς = 1, with
probability at least 1↗ ⇁, we get
ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
 ⇒


3HCϖ +

→

ςd+H

→

ςd


⇓ω(s, a)⇓(”k

m,h
)↓1

⇒ 5H
→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 ,

This completes the proof.

E.7 Proof of Lemma D.9

Proof. Recall from Definition D.1,

↗l
k

m,h
(s, a) = Q

k

m,h
(s, a)↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

= min
{
max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
, H ↗ h+ 1

}+
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

⇒ max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

= max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h
+ ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

33

⇒ max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h


  

I1

+
ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)


  
I2

.

Bounding Term I1: based on Lemma D.5, for any fixed n ↑ [N], for any (m,h, k) ↑ M↓[H]↓[K]
and for any (s, a) ↑ S ↓A, with probability at least 1↗ ⇁

2, we have

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒

5


2d log(1/⇁)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 .

By taking union bound over n, we have for all n ↑ [N], with probability 1↗ ⇁
2, we have

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒

5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 .

This indicates, for any (m,h, k) ↑ M ↓ [H] ↓ [K] and (s, a) ↑ S ↓ A, with probability at least
1↗ ⇁

2, we have

Term I1 = max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒

5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 .

(E.16)

Bounding Term I2: based on Lemma D.8, with probability at least 1 ↗ ⇁, for any (m,h, k) ↑

M↓ [H]↓ [K] and (s, a) ↑ S ↓A, we have
ω(s, a)↗ wk

m,h
↗ r

k

h
(s, a)↗ PhV

k

m,h+1(s, a)
 ⇒ 5H

→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 .

Combine the two result above, by taking union bound, with probability at least 1↗ ⇁ ↗ ⇁
2, for any

(m,h, k) ↑ M↓ [H]↓ [K] and (s, a) ↑ S ↓A, we have

↗l
k

m,h
(s, a) ⇒


5H

→

dCϖ + 5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 .

This completes the proof.

E.8 Proof of Lemma D.10

Proof. Recall from Definition D.1,

l
k

m,h
(s, a) = rh(s, a) + PhV

k

m,h+1(s, a)↗Q
k

m,h
(s, a).

Note that

Q
k

m,h
(s, a) = min

{
max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
, H ↗ h+ 1

}+
⇒ max

n↑[N]
ω(x, a)↗wk,Jk,n

m,h
.

Note that ⇓ω(s, a)⇓(”k

m,h
)↓1 ⇒

√
1/ς⇓ω(s, a)⇓ ⇒ 1 for all ω(s, a). Define C(ε) to be a ε-cover of

{
ω | ⇓ω⇓(”k

m,h
)↓1 ⇒ 1

}
. Based on Lemma J.8, we have |C(ε)| ⇒ (3/ε)d.

First, for any fixed ω(s, a) ↑ C(ε), based on the results in Proposition D.3, we have that
ω(s, a)↗wk,Jk,n

m,h
⇔ N


ω(s, a)↗µk,Jk

m,h
,ω(s, a)↗”k,Jk

m,h
ω(s, a)


for any fixed n ↑ [N]. Now we

define

Zk =
rh(s, a) + PhV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h√
ω(s, a)↗”k,Jk

m,h
ω(s, a)

.

When |Zk| < 1, by Gaussian concentration Lemma J.10, we have

P

ω(s, a)↗wk,Jk,n

m,h
⇑ rh(s, a) + PhV

k

m,h+1(s, a)


34

= P

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗µk,Jk

m,h√
ω(s, a)↗”k,Jk

m,h
ω(s, a)

⇑
rh(s, a) + PhV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h√
ω(s, a)↗”k,Jk

m,h
ω(s, a)



= P

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗µk,Jk

m,h√
ω(s, a)↗”k,Jk

m,h
ω(s, a)

⇑ Zk



⇑
1

2
→
2ϑ

exp(↗Z
2
k
/2)

⇑
1

2
→
2eϑ

.

Consider the numerator of Zk:
rh(s, a) + PhV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h



⇒
rh(s, a) + PhV

k

m,h+1(s, a)↗ ω(s, a)↗ wk

m,h

+
ω(s, a)↗ wk

m,h
↗ ω(s, a)↗µk,Jk

m,h

.

Based on Lemma D.8, with probablity at least 1↗ ⇁, we have

|rh(s, a) + PhV
k

m,h+1(s, a)↗ ω(s, a)↗ wk

m,h
| ⇒ 5H

→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 ,

From (E.4), we have

ω(s, a)↗
(
µk,Jk

m,h
↗ wk

m,h

)
⇒ 4H

√
MKd/ς

k↓1

i=1

k

j=i+1


1↗ 2↽m,jςmin(!

j

m,h
)
Jj

⇓ω(s, a)⇓.

Recall the proof of Lemma D.5, we set ↽m,j = 1/(4ςmax(!
j

m,h
)), Jj ⇑ 2κj log(1/φ), then we have

for all j ↑ [K], (1↗ 2↽m,jςmin(!
j

m,h
))Jj ⇒ φ, set φ = 1/4HMKd and ς = 1, we have

ω(s, a)↗ wk

m,h
↗ ω(s, a)↗µk,Jk

m,h

 ⇒ 4H
→

MKd

k↓1

i=1

φ
k↓i

⇓ω(s, a)⇓

⇒

k↓1

i=1

φ
k↓i↓1 1

4MHKd
4H

→

MKd

→

MK⇓ω(s, a)⇓(”k

m,h
)↓1

⇒
4

3
⇓ω(s, a)⇓(”k

m,h
)↓1 .

So, with probablity at least 1↗ ⇁, we have

rh(s, a) + PhV
k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h

 ⇒

5H

→

dCϖ +
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 . (E.17)

Consider the denominator of Zk: recall from the definition of ”k,Jk

m,h
from Proposition D.3, then we

have

ω(s, a)↗”k,Jk

m,h
ω(s, a)

=
k∑

i=1

1
ϑm,i

ω(s, a)↗AJk

k
. . .A

Ji+1
i+1

(
I→A2Ji

)(
!i

m,h

)↔1
(I+Ai)

↔1A
Ji+1
i+1 . . .AJk

k
ω(s, a)

↗

k∑

i=1

1
2ϑm,i

ω(s, a)↗AJk

k
. . .A

Ji+1
i+1

(
I→A2Ji

)(
!i

m,h

)↔1
A

Ji+1
i+1 . . .AJk

k
ω(s, a),

where we used the fact that 1
2I ↭ (I+Ak)↓1. Then we have

ω(s, a)↗”k,Jk

m,h
ω(s, a)

↗

k∑

i=1

1
2ϑm,i

ω(s, a)↗AJk

k
. . .A

Ji+1
i+1

((
!i

m,h

)↔1
→AJi

i

(
!i

m,h

)↔1
AJi

i

)
A

Ji+1
i+1 . . .AJk

k
ω(s, a)

35

=
1

2ϑK

k↔1∑

i=1

ω(s, a)↗AJk

k
. . .A

Ji+1
i+1

((
!i

m,h

)↔1
→

(
!i+1

m,h

)↔1)
A

Ji+1
i+1 . . .AJk

k
ω(s, a)

→
1

2ϑK

ω(s, a)↗AJk

k
. . .AJ1

1

(
!1

m,h

)↔1
AJ1

1 . . .AJk

k
ω(s, a)

+
1

2ϑK

ω(s, a)↗
(
!k

m,h

)↔1
ω(s, a).

By the definition of !i

m,h
and Woodbury formula, we have

(
!i

m,h

)↓1
↗
(
!i+1

m,h

)↓1
=

(
!i

m,h

)↓1
↗


!i

m,h
+



(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

↓1

= (!i

m,h
)↓1φ

(
In +φ↗(!i

m,h
)↓1φ

)↓1
φ↗(!i

m,h
)↓1

,

where φ is a matrix with the dimension of d↓ n, n is the number difference of ω
(
s
l
, a

l
)

between
(
!i

m,h

)↓1 and
(
!i+1

m,h

)↓1 (i.e. we concatenate all ω
(
s
l
, a

l
)

in to the matrix φ). Note that n ⇒ M ,
we have

ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
↗
(
!i+1

m,h

)↓1

AJi+1

i+1 ...AJk

k
ω(s, a)

= ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
φ(In +φ↗(!i

m,h

)↓1
φ)↓1φ↗(!i

m,h

)↓1

AJi+1

i+1 ...AJk

k
ω(s, a)

⇒ ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
φφ↗(!i

m,h

)↓1
AJi+1

i+1 ...AJk

k
ω(s, a)

=
ω(s, a)↗AJk

k
...AJi+1

i+1

(
!i

m,h

)↓1
φ
2
2

⇒
AJk

k
...AJi+1

i+1 (!i

m,h
)↓1/2ω(s, a)

2
2
·
(!i

m,h
)↓1/2φ

2
F

⇒

k

j=i+1


1↗ 2↽m,jςmin

(
!j

m,h

)2Jj

tr
(
φ↗(!i

m,h

)↓1
φ
)
⇓ω(s, a)⇓2(”i

m,h
)↓1 ,

where ⇓·⇓F is Frobenius norm and the last inequality is due to ⇓!↓ 1
2X⇓

2
F

= tr(X↗!↓1X) and
(E.2). Therefore, we have

ω(s, a)↗”k,Jk

m,h
ω(s, a)

⇑
1

2⇀K

⇓ω(s, a)⇓2(”k

m,h
)↓1 ↗

1

2⇀K

k

i=1

(
1↗ 2↽m,iςmin

(
!i

m,h

))2Ji

⇓ω(s, a)⇓2(”1
m,h

)↓1

↗
1

2⇀K

k↓1

i=1

k

j=i+1

(
1↗ 2↽m,jςmin

(
!j

m,h

))2Jj tr
(
φ↗(!i

m,h

)↓1
φ
)
⇓ω(s, a)⇓2(”i

m,h
)↓1 .

Similar to the proof of Lemma D.5, note that tr
(
φ↗(!i

m,h
)↓1φ

)
⇒ M , when we choose Jj ⇑

2κj log(3kM), we have

⇓ω(s, a)⇓
#

k,J
k

m,h

⇑
1

2
→
⇀K


⇓ω(s, a)⇓(”k

m,h
)↓1 ↗

⇓ω(s, a)⇓

(3KM)k
↗

k↓1

i=1

→
M

(3kM)k↓i
⇓ω(s, a)⇓



⇑
1

2
→
⇀K


⇓ω(s, a)⇓(”k

m,h
)↓1 ↗

1

3
→
kM

⇓ω(s, a)⇓ ↗
1

6
→
kM

⇓ω(s, a)⇓



⇑
1

4
→
⇀K

⇓ω(s, a)⇓(”k

m,h
)↓1 , (E.18)

where we used the fact that ςmin

((
!k

m,h

)↓1)
⇑ 1/kM and ⇓ω(s, a)⇓(”k

m,h
)↓1 ⇑ 1/

→
kM⇓ω(s, a)⇓.

Therefore, according to (E.17) and (E.18), with probablity at least 1↗ ⇁, it holds that

|Zk| =


rh(s, a) + PhV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h√
ω(s, a)↗”k,Jk

m,h
ω(s, a)



36

⇒
5H

→
dCϖ +

4
3

1
4
↘
ϱK

,

which implies |Zk| < 1 when 1↘
ϱK

= 20H
→
dCϖ +

16
3 .

Till now we have proved that for any fixed ω(s, a) ↑ C(ε) and for all (m,h, k) ↑ M↓ [H]↓ [K],
for any fixed n ↑ [N], with probablity at least 1↗ ⇁, we have

P

ω(s, a)↗wk,Jk,n

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a) ⇑ 0

⇑

1

2
→
2eϑ

.

By taking union bound over n ↑ [N], with probablity at least 1↗ ⇁, we have

P

max
n↑[N]

{
ω(s, a)↗wk,Jk,n

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
}
⇑ 0


⇑ 1↗


1↗

1

2
→
2eϑ

N

= 1↗ c
↔
0
N
,

where c↔0 = 1↗ 1
2
↘
2eω

. Therefore, for any fixed ω(s, a) ↑ C(ε) and for all (m,h, k) ↑ M↓[H]↓[K],

with probability at least (1↗ ⇁)
(
1↗ c

↔
0
N
)
> 1↗ ⇁ ↗ c

↔
0
N , we have

max
n↑[N]

{
ω(s, a)↗wk,Jk,n

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
}
⇑ 0. (E.19)

Next for any ω = ω(s, a), we can find ω↔
↑ C(ε) such that ⇓ω ↗ ω↔

⇓(”k

m,h
)↓1 ⇒ ε. We define

”ω = ω↗ ω↔. Recall from Definition 4.1, we have

rh(s, a) + PhV
k

m,h+1(s, a) = ω(s, a)↗ϖh + ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S

def
= ω(s, a)↗wk

m,h
,

where wk

m,h
= ϖh +

〈
µh, V

k

m,h+1

〉
S . Note that max{⇓µh(S)⇓, ⇓ϖh⇓} ⇒

→
d and V

k

m,h+1 ⇒

H ↗ h ⇒ H , thus we have
wk

m,h

 ⇒ ⇓ϖh⇓+
〈µh, V

k

m,h+1

〉
S

 ⇒

→

d+H

→

d ⇒ 2H
→

d.

Then we define the regression error ”wk

m,h
= wk

m,h
↗wk,Jk,n

m,h
. Thus we have

max
n↑[N]

{
ω(s, a)↗wk,Jk,n

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
}
= max

n↑[N]

{
↗ ω(s, a)↗”wk

m,h

}
.

Then by Cauchy-Schwarz inequality, we have

ω↗”wk

m,h
= ω↔↗”wk

m,h
+”ω↗”wk

m,h

⇑ ω↔↗”wk

m,h
↗ ⇓”ω⇓ ·

”wk

m,h



⇑ ω↔↗”wk

m,h
↗

→

MKε
”wk

m,h

.
By triangle inequality, with probability at least 1↗ ⇁, we have

”wk

m,h

 ⇒
wk

m,h

+
wk,Jk,n

m,h

 ⇒ 2H
→

d+Bϖ/NMHK

Denote ▷ϖ =
→
MK

(
2H

→
d + Bϖ/NMHK

)
. Then, for all (m,h, k) ↑ M ↓ [H] ↓ [K], with

probability at least 1↗ ⇁, we have

max
n↑[N]

{
ω↗”wk

m,h

}
⇑ max

n↑[N]

{
ω↔↗”wk

m,h

}
↗ ▷ϖε.

Recall from (E.19), by taking union bound, with probability at least 1 ↗ |C(ε)|c↔0
N

↗ 2⇁, for all
(m,h, k) ↑ M↓ [H]↓ [K] and for all (s, a) ↑ S ↓A, we have

max
n↑[N]

{
ω↗”wk

m,h

}
⇑ ↗▷ϖε.

Finally, with probability at least 1↗ |C(ε)|c↔0
N
↗ 2⇁, for all (m,h, k) ↑ M↓ [H]↓ [K] and for all

(s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) ⇒ ▷ϖε.

This completes the proof.

37

E.9 Proof of Lemma D.12

Proof. For simplicity, we denote (sk
m,h

, a
k

m,h
) as zk

m,h
. Then we consider the following mappings

(◁M , ◁K) : [MK] ↔ [M]↓ [K],

◁M (ϱ) = ϱ(modM), ◁K =

⌈
ϱ

M

⌉
,

where we set ◁M (ϱ) = M if M |ϱ . Next, for any ϱ ⇑ 0, we define

!̄ε

h
= ςI+

εM

u=1

ω

z
φK(u)
φM (u),h


ω

z
φK(u)
φM (u),h

↗
, for ϱ > 0,

!̄0
h
= ςI, for ϱ = 0.

We denote ↼ = {↼1, . . . ,↼n} as the synchronization episodes, where ↼i ↑ [K], we also denote
↼0 = 0. Then we separate the episodes k = 1, . . . ,K into two groups based on the following
condition,

1 ⇒
det(!̄ϑi

h
)

det(!̄ϑi↓1

h
)
⇒ 3. (E.20)

Note that the left inequality always holds due to !̄ϑi↓1

h
↭ !̄ϑi

h
and the trivial fact that A ↭ B ′

det(A) ⇒ det(B). Then we define that I1 = {k ↑ N+
, k ↑ [↼i↓1,↼i), ⇐i ↑ [n]|(E.20) is true}

and I2 = {k ↑ N+
, k ↑ [↼i↓1,↼i), ⇐i ↑ [n]|(E.20) is false}, then [K] = I1 ∞ I2 ∞ {K}. For any

k ↑ [↼i↓1,↼i) and k ↑ I1, note that !̄ϑi↓1

h
↭ !k

m,h
↭ !̄k

h
↭ !̄ϑi

h
, thus for any m ↑ M, we have

ω
(
z
k

m,h

)
(”k

m,h
)↓1 ⇒

ω
(
z
k

m,h

)
(”̄k

h
)↓1


det(!̄k

h
)

det(!k

m,h
)

⇒
ω

(
z
k

m,h

)
(”̄k

h
)↓1


det(!̄ϑi

h
)

det(!̄ϑi↓1

h
)

⇒ 2
ω

(
z
k

m,h

)
(”̄k

h
)↓1 , (E.21)

where the first inequality follows from Lemma J.12, the second inequality follows from the trivial
fact that A ↭ B ′ det(A) ⇒ det(B), and the final inequality holds because k ↑ I1. Then we will
bound the summation for k ↑ I1 and k ↑ I2, respectively.



k↑I1⇐{K}



m↑M
⇓ω(zk

m,h
)⇓(”k

m,h
)↓1 ⇒


MK



m↑M



k↑I1⇐{K}

⇓ω(zk
m,h

)⇓2
(”k

m,h
)↓1

⇒ 2


MK



m↑M



k↑I1⇐{K}

⇓ω(zk
m,h

)⇓2
(”̄k

h
)↓1

⇒ 2

√√√√MK



m↑M

K

k=1

⇓ω(zk
m,h

)⇓2
(”̄k

h
)↓1

⇒ 2



MK log


det(!K

h
)

det(ςI)


,

where the first inequality follows from Cauchy-Schwarz inequality, the second inequal-
ity holds due to (E.21), the final equality follows from Lemma J.1 and !K

h
=

∑
m↑M

∑
K

k=1 ω
(
s
k

m,h
, a

k

m,h

)
ω
(
s
k

m,h
, a

k

m,h

)↗
+ ςI.

For any interval [↼i↓1,↼i), define ”i = ↼i ↗ ↼i↓1 ↗ 1, we calculate that

ϑi↓1

k=ϑi↓1

ω(zk
m,h

)

(”k

m,h
)↓1 ⇒

√√√√”i

ϑi↓1

k=ϑi↓1

ω(zk
m,h

)
2
(”k

m,h
)↓1

38

⇒

√√√√”i log


det(!ϑi↓1

m,h
)

det(!ϑi↓1

m,h
)



⇒
→
ω,

where the last inequality follows from the synchronization condition (3.3).

Define Rh =
⌈
log


det(”K

h
)

det(↼I)

⌉
, note that ↼n ⇒ K, then we can find that

Rh ⇑ log


det(!̄ϑn

h
)

det(!̄ϑ0
h
)


=

n

i=1

log


det(!̄ϑi

h
)

det(!̄ϑi↓1

h
)


.

We can claim that I2 has at most Rh synchronization episodes, otherwise

Rh ⇑

n

i=1

log


det(!̄ϑi

h
)

det(!̄ϑi↓1

h
)


⇑



i↑{i|ϑi↓1↑I2}

log


det(!̄ϑi

h
)

det(!̄ϑi↓1

h
)


⇑ Rh log 3,

which causes the contradiction. Thus I2 has at most Rh intervals, then we get


k↑I2



m↑M

ω(zk
m,h

)

(”k

m,h
)↓1 ⇒ RhM

→
ω ⇒


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω.

Finally, we can bound the total summation,



m↑M

K

k=1

ω(zk
m,h

)

(”k

m,h
)↓1 ⇒



m↑M



k↑I2

ω(zk
m,h

)

(”k

m,h
)↓1 +



m↑M



k↑I1⇐{K}

⇓ω(zk
m,h

)⇓(”k

m,h
)↓1

⇒


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω + 2



MK log


det(!K

h
)

det(ςI)


.

This completes the proof.

F Proof of the Regret Bound for CoopTS-LMC in Misspecified Setting

In this section, we prove the regret bound for CoopTS-LMC in the misspecified setting. The regret
analysis, the essential supporting lemmas and their corresponding proofs are almost same as what we
have presented in Appendix D and Appendix E. Here we mainly point out the differences of proof
between these two settings.

F.1 Supporting Lemmas

Definition F.1 (Model prediction error). For any (m, k, h) ↑ M↓ [K]↓ [H], we define the model
error associated with the reward rm,h,

l
k

m,h
(s, a) = rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗Q
k

m,h
(s, a).

Lemma F.2. Let ς = 1 in Algorithm 3. Under Definition 4.8, for any fixed 0 < ⇁ < 1, with
probability at least 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A, we have

ω(s, a)↗ wk

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a)


⇒
(
5H

→

dCϖ + 3Hε

→

MKd
)
⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε,

where Cϖ is defined in Lemma D.7.

Proof of Lemma F.2. Recall from Definition 4.8, we have
Pm,hV

k

m,h+1(s, a)↗ ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S

 ⇒
Pm,h(· | s, a)↗

〈
ω(s, a),µh(·)

〉
1
⇓V

k

m,h+1⇓≃

⇒ 2H
Pm,h(· | s, a)↗

〈
ω(s, a),µh(·)

〉
TV

39

⇒ 2Hε,

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows
from the fact that ⇓V k

m,h+1⇓≃ ⇒ H and P2, ⇓P1 ↗ P2⇓TV = 1
2

∑
x↑ω |P1(x)↗ P2(x)| =

1
2⇓P1 ↗

P2⇓1 for two distributions P1 and P2, note that here we regard distribution as infinite dimensional
vector, the third inequality follows from Definition 4.8. Define ”m,1 = Pm,hV

k

m,h+1(s, a) ↗

ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S , thus |”m,1| ⇒ 2Hε. Then we have

Pm,hV
k

m,h+1(s, a) (F.1)

= ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S +”m,1

= ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

+ ςI


〈
µh, V

k

m,h+1

〉
S +”m,1

= ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗〈

µh, V
k

m,h+1

〉
S



+ ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S +”m,1

= ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)(
Pm,hV

k

m,h+1

)(
s
l
, a

l
)


↗ ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

”m,1ω
(
s
l
, a

l
)


+ ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S +”m,1. (F.2)

Based on (F.1), we can separate the following error into four parts,

ω(s, a)↗ wk

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a)

= ω(s, a)↗
(
!k

m,h

)↓1 

(sl,al,s→l)↑Um,h(k)

[
rm,h

(
s
l
, a

l
)
+ V

k

m,h+1(s
↔l)
]
ω
(
s
l
, a

l
)
↗ rm,h(s, a)

↗ ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)(
Pm,hV

k

m,h+1

)(
s
l
, a

l
)


+”m,1ω(s, a)
↗(!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


↗ ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S ↗”m,1

= ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ Pm,hV
k

m,h+1

)(
s
l
, a

l
)]


  
(i)

+ ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

rm,h

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


↗ rm,h(s, a)

  
(ii)

↗ ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S  

(iii)

+”m,1ω(s, a)
↗(!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


↗”m,1

  
(iv)

. (F.3)

40

We now provide an upper bound for each of the terms in (F.3).

Bounding Term (i) in (F.3): same as (E.11) in Appendix E.6, with probability at least 1↗ ⇁, we have

|Term (i)| ⇒ 3H
→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 . (F.4)

Bounding Term (ii) + Term (iv) in (F.3): define ”m,2 = rm,h(s, a)↗ ω(s, a)↗ϖh, then we have
|”m,2| ⇒ ε due to Definition 4.8. Next we have

ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rm,h

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


→ rm,h(s, a)

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rm,h

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


→ ω(s, a)↗ϑh →!m,2

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rm,h

(
s
l
, a

l
)
ω
(
s
l
, a

l
)
→!k

m,hϑh


→!m,2

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
rm,h

(
s
l
, a

l
)

→

∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

ϑh → ϱIϑh


→!m,2

= ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
!m,2 → ϱIϑh


→!m,2

= →ϱω(s, a)↗
(
!k

m,h

)↔1
ϑh +!m,2ω(s, a)

↗(!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


→!m,2

  
(v)

, (F.5)

where the third equality uses the definition of !k

m,h
. By Combining (F.5) and (E.13) in Appendix E.6,

we obtain

|Term (ii) + Term (iv)| ⇒
→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 + |Term (iv) + Term (v)|. (F.6)

Then we calculate that

|Term (iv) + Term (v)|

=

(”m,1 +”m,2)ω(s, a)
↗(!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


↗ (”m,1 +”m,2)



⇒ |”m,1 +”m,2| ·

ω(s, a)
↗(!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
+ |”m,1 +”m,2|

⇒ 3Hε⇓ω(s, a)⇓(”k

m,h
)↓1



(sl,al,s→l)↑Um,h(k)

ω(sl, al)

(”k

m,h
)↓1 + 3Hε

⇒ 3Hε⇓ω(s, a)⇓(”k

m,h
)↓1


K(k)



(sl,al,s→l)↑Um,h(k)

ω(sl, al)
2
(”k

m,h
)↓1

 1
2

+ 3Hε

⇒ 3Hε

→

MKd⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε, (F.7)

where the second inequality follows from Cauchy-Schwarz inequality and the fact that |”m,1 +
”m,2| ⇒ |”m,1| + |”m,2| ⇒ 2Hε + ε ⇒ 3Hε, the third inequality holds because of Cauchy-
Schwarz inequality, and the last inequality holds because K(k) ⇒ MK and Lemma J.4. Substitute
(F.7) into (F.6), we have

|Term (ii) + Term (iv)| ⇒
(
3Hε

→

MKd+
→

ςd
)
⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε. (F.8)

41

Bounding Term (iii) in (F.3): same as (E.15) in Appendix E.6, we have

|Term (iii)| ⇒ H

→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 . (F.9)

Combine all the terms in (F.3) together: by using triangle inequality in (F.3), we combine (F.4),
(F.8) and (F.9), then set ς = 1, with probability at least 1↗ ⇁, we get

ω(s, a)↗ wk

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a)


⇒


3H

→

dCϖ +
→

d+H

→

d+ 3Hε

→

MKd


⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε

⇒
(
5H

→

dCϖ + 3Hε

→

MKd
)
⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε.

This completes the proof.

Lemma F.3 (Error bound). Let ς = 1 in Algorithm 3. Under Definition 4.8, for any fixed 0 < ⇁ < 1,
with probability at least 1↗ ⇁↗ ⇁

2, for any (m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A,
we have

↗l
k

m,h
(s, a) ⇒


5H

→

dCϖ + 3Hε

→

MKd+ 5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε,

where Cϖ is defined in Lemma D.7.

Proof of Lemma F.3. We do the same process as that in Appendix E.7, and we have

↗l
k

m,h
(s, a) ⇒ max

n↑[N]

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h


  

(i)

+
ω(s, a)↗ wk

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a)


  
(ii)

.

Bounding Term (i): based on (E.16), for any (m,h, k) ↑ M↓ [H]↓ [K] and (s, a) ↑ S ↓A, with
probability at least 1↗ ⇁

2, we have

max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
↗ ω(s, a)↗ wk

m,h

 ⇒

5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 .

Bounding Term (ii): based on Lemma F.2, for all (m,h, k) ↑ M↓ [H]↓ [K] and (s, a) ↑ S ↓A,
we have
ω(s, a)↗ wk

m,h → r
k

h(s, a)→ PhV
k

m,h+1(s, a)
 ↑

(
5H

↓

dCϑ + 3H↼

↓

MKd
)
↔ω(s, a)↔(”k

m,h
)↓1 + 3H↼.

Combine the two result above, by taking union bound, with probability at least 1↗ ⇁ ↗ ⇁
2, we have

↗l
k

m,h
(s, a) ⇒


5H

→

dCϖ + 3Hε

→

MKd+ 5


2d log

(→
N/⇁

)

3⇀K

+
4

3


⇓ω(s, a)⇓(”k

m,h
)↓1 + 3Hε.

This completes the proof.

Lemma F.4 (Optimism). Let ς = 1 in Algorithm 3 and c
↔
0 = 1↗ 1

2
↘
2eω

. Under Definition 4.8, for

any fixed 0 < ⇁ < 1, with probability at least 1 ↗ |C(ε)|c↔0
N

↗ 2⇁ where |C(ε)| ⇒ (3/ε)d, for all
(m,h, k) ↑ M↓ [H]↓ [K] and for all (s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) ⇒ ▷ϖε+ 3Hε,

where ▷ϖ =
→
MK

(
2H

→
d+Bϖ/NMHK

)
.

42

Proof of Lemma F.4. This proof is similar to the proof in Appendix E.8, we just prove the part that
for fixed ω ↑ C(ε). Recall from Definition F.1,

l
k

m,h
(s, a) = rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗Q
k

m,h
(s, a).

Note that

Q
k

m,h
(s, a) = min

{
max
n↑[N]

ω(s, a)↗wk,Jk,n

m,h
, H ↗ h+ 1

}+
⇒ max

n↑[N]
ω(x, a)↗wk,Jk,n

m,h
.

Here we define

Zk =
rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h
↗ (”m,1 +”m,2)√

ω(s, a)↗”k,Jk

m,h
ω(s, a)

,

where ”m,1 = Pm,hV
k

m,h+1(s, a) ↗ ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S ,”m,2 = rm,h(s, a) ↗

ω(s, a)↗ϖh. Based on the results in Proposition D.3, we have that ω(s, a)↗wk,Jk,n

m,h
⇔

N


ω(s, a)↗µk,Jk

m,h
,ω(s, a)↗”k,Jk

m,h
ω(s, a)


, for any fixed n ↑ [N]. When |Zk| < 1, by Gaussian

concentration Lemma J.10, we have

P
(
rm,h(s, a) + Pm,hV

k

m,h+1(s, a)→ ω(s, a)↗wk,Jk,n

m,h
↑ (!m,1 +!m,2)

)

= P
(
ω(s, a)↗wk,Jk,n

m,h
↗ rm,h(s, a) + Pm,hV

k

m,h+1(s, a)→ (!m,1 +!m,2)
)

= P

ω(s, a)↗wk,Jk,n

m,h
→ ω(s, a)↗µk,Jk

m,h
ω(s, a)↗”k,Jk

m,h
ω(s, a)

↗
rm,h(s, a) + Pm,hV

k

m,h+1(s, a)→ (!m,1 +!m,2)→ ω(s, a)↗µk,Jk

m,h
ω(s, a)↗”k,Jk

m,h
ω(s, a)



= P

ω(s, a)↗wk,Jk,n

m,h
→ ω(s, a)↗µk,Jk

m,h
ω(s, a)↗”k,Jk

m,h
ω(s, a)

↗ Zk



↗
1

2
↓
2↽

exp(→Z
2
k/2)

↗
1

2
↓
2e↽

.

Consider the numerator of Zk:
rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h
↗ (”m,1 +”m,2)



⇒
rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗ ω(s, a)↗ wk

m,h
↗ (”m,1 +”m,2)


  

I1

+
ω(s, a)↗ wk

m,h
↗ ω(s, a)↗µk,Jk

m,h


  

I2

. (F.10)

Bounding Term I1 in (F.10): recall the proof of Lemma F.2, we do the almost same error decompo-
sition as (F.3) with the only difference of adding term (”m,1 +”m,2)

ω(s, a)↗ wk

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a) + (”m,1 +”m,2)

= ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ Pm,hV
k

m,h+1

)(
s
l
, a

l
)]


  
(i)

+ ω(s, a)↗
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

rm,h

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


↗ rm,h(s, a)

  
(ii)

↗ ςω(s, a)↗
(
!k

m,h

)↓1〈
µh, V

k

m,h+1

〉
S  

(iii)

43

+”m,1ω(s, a)
↗(!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


+”m,2

  
(iv)

. (F.11)

We now provide an upper bound for each of the terms in (F.11).

Bounding Term (i) in (F.11): almost same as (E.11) in Appendix E.6 with the only difference
between Ph and Pm,h, with probability at least 1↗ ⇁, we have

|Term (i)| ⇒ 3H
→

dCϖ⇓ω(s, a)⇓(”k

m,h
)↓1 . (F.12)

Bounding Term (ii) + Term (iv) in (F.11): we do the same calculation as that in the proof of
Lemma F.2, based on (F.5), we have

Term (ii) = ω(s, a)↗
(
!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

rm,h

(
s
l
, a

l
)
ω
(
s
l
, a

l
)


→ rm,h(s, a)

= →ϱω(s, a)↗
(
!k

m,h

)↔1
ϑh +!m,2ω(s, a)

↗(!k

m,h

)↔1


∑

(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


→!m,2

  
(v)

.

(F.13)

By Combining (F.13) and (E.13) in Appendix E.6, we obtain

|Term (ii) + Term (iv)| ⇒
→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 + |Term (iv) + Term (v)|. (F.14)

Then we calculate that

|Term (iv) + Term (v)| = |”m,1 +”m,2| ·

ω(s, a)
↗(!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)


⇒ 3Hε⇓ω(s, a)⇓(”k

m,h
)↓1



(sl,al,s→l)↑Um,h(k)

ω(sl, al)

(”k

m,h
)↓1

⇒ 3Hε⇓ω(s, a)⇓(”k

m,h
)↓1


K(k)



(sl,al,s→l)↑Um,h(k)

ω(sl, al)
2
(”k

m,h
)↓1

 1
2

⇒ 3Hε

→

MKd⇓ω(s, a)⇓(”k

m,h
)↓1 , (F.15)

where the first inequality follows from Cauchy-Schwarz inequality and the fact that |”m,1+”m,2| ⇒

3Hε, the second inequality holds because of Cauchy-Schwarz inequality, and the last inequality
holds because K(k) ⇒ MK and Lemma J.4. Substitute (F.15) into (F.14), we have

|Term (ii) + Term (iv)| ⇒
(
3Hε

→

MKd+
→

ςd
)
⇓ω(s, a)⇓(”k

m,h
)↓1 . (F.16)

Bounding Term (iii) in (F.11): same as (E.15) in Appendix E.6, we have

|Term (iii)| ⇒ H

→

ςd⇓ω(s, a)⇓(”k

m,h
)↓1 . (F.17)

Combine all the terms in (F.11) together: by using triangle inequality in (F.11), we combine (F.12),
(F.16) and (F.17), then set ς = 1, with probability at least 1↗ ⇁, we get

ω(s, a)↗ wk

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a) + (”m,1 +”m,2)


⇒
(
5H

→

dCϖ + 3Hε

→

MKd
)
⇓ω(s, a)⇓(”k

m,h
)↓1 .

Bounding Term I2 in (F.10): same as the proof in Appendix E.8, we have
ω(s, a)↗ wk

m,h
↗ ω(s, a)↗µk,Jk

m,h

 ⇒ 4

3
⇓ω(s, a)⇓(”k

m,h
)↓1 .

44

So, with probability at least 1↗ ⇁, we have
rm,h(s, a) + Pm,hV

k

m,h+1(s, a)→ ω(s, a)↗µk,Jk

m,h

 ↑
(
5H

↓

dCϑ + 3H↼

↓

MKd+
4
3


↔ω(s, a)↔(”k

m,h
)↓1 .

(F.18)

Consider the denominator of Zk: same as the proof in Appendix E.8, with (E.18), we have

⇓ω(s, a)⇓
#

k,J
k

m,h

⇑
1

4
→
⇀K

⇓ω(s, a)⇓(”k

m,h
)↓1 , (F.19)

where we used the fact that ςmin

((
!k

m,h

)↓1)
⇑ 1/k and ⇓ω(s, a)⇓(”k

m,h
)↓1 ⇑ 1/

→
k⇓ω(s, a)⇓2.

Therefore, according to (F.18) and (F.19), with probability at least 1↗ ⇁, it holds that

|Zk| =


rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗ ω(s, a)↗µk,Jk

m,h√
ω(s, a)↗”k,Jk

m,h
ω(s, a)



⇒


5H

→
dCϖ + 3Hε

→
MKd+ 4

3


⇓ω(s, a)⇓(”k

m,h
)↓1

1
4
↘
ϱK

⇓ω(s, a)⇓(”k

m,h
)↓1

=
5H

→
dCϖ + 3Hε

→
MKd+ 4

3
1

4
↘
ϱK

,

which implies |Zk| < 1 when 1↘
ϱK

= 20H
→
dCϖ + 12Hε

→
MKd+ 16

3 .

Now we have already proved that, for any fixed n ↑ [N], with probability at least 1↗ ⇁, we have

P

rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗ ω(s, a)↗wk,Jk,n

m,h
⇒ (”m,1 +”m,2)


⇑

1

2
→
2eϑ

.

By taking union bound over n ↑ [N], with probablity at least 1↗ ⇁, we have

P

max
n↑[N]

{
ω(s, a)↗wk,Jk,n

m,h
↗ rm,h(s, a)↗ Pm,hV

k

m,h+1(s, a)
}
⇑ ↗(”m,1 +”m,2)



⇑ 1↗

1↗

1

2
→
2eϑ

N

= 1↗ c
↔
0
N
,

where c
↔
0 = 1↗ 1

2
↘
2eω

. Finally, with probability at least (1↗ ⇁)
(
1↗ c

↔
0
N
)
, for all (s, a) ↑ S ↓A,

we have

l
k

m,h
(s, a) ⇒ 3Hε.

Till now we have completed the proof of fixed ω ↑ C(ε). Follow the proof in Appendix E.8, we can
get the final result.

F.2 Regret Analysis

In this part, we give out the proof of Theorem 4.12, the regret bound for CoopTS-LMC in the
misspecified setting.

Proof of Theorem 4.12. This proof is almost same as the proof in Appendix D.2. We do the same
regret decomposition (D.2) and obtain the same bound for Term(i) (D.3) and Term(ii) (D.4). Next
we bound Term (iii) with new lemmas in the misspecified setting.

Bounding Term (iii) in (D.2): based on Lemma F.3 and Lemma F.4, by taking union bound, with
probability at least 1↗ |C(ε)|c↔0

N
↗ 2⇁↔ ↗MHK(⇁↔ + ⇁

↔2), we have



m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

45

⇒



m↑M

K

k=1

H

h=1


↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

)
+ ▷ϖ→ε+ 3Hε



⇒



m↑M

K

k=1

H

h=1


5H

→

dCϖ→ + 3Hε

→

MKd+ 5


2d log

(→
N/⇁↔

)

3⇀K

+
4

3


ω(sk

m,h
, a

k

m,h
)

(”k

m,h
)↓1

+ ▷ϖ→ε+ 6Hε



= HMK▷ϖ→ε+ 6H2
MKε +


5H

→

dCϖ→ + 3Hε

→

MKd+ 5


2d log

(→
N/⇁↔

)

3⇀K

+
4

3



↓

H

h=1



m↑M

K

k=1

ω(sk
m,h

, a
k

m,h
)

(”k

m,h
)↓1

⇒ HMK▷ϖ→ε+ 6H2
MKε +


5H

→

dCϖ→ + 3Hε

→

MKd+ 5


2d log

(→
N/⇁↔

)

3⇀K

+
4

3



↓

H

h=1


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω + 2



MK log


det(!K

h
)

det(ςI)



⇒ HMK▷ϖ→ε+ 6H2
MKε +


5H

→

dCϖ→ + 3Hε

→

MKd+ 5


2d log

(→
N/⇁↔

)

3⇀K

+
4

3



↓H


d(log(1 +MK/d) + 1)M

→
ω + 2

√
MKd log(1 +MK/d)



= Õ


d

3
2H

2
→

M
(√

dMω +
→

K
)
+ d

3
2H

2
M

→

K
(√

dMω +
→

K
)
ε


. (F.20)

The first inequality follows from Lemma F.4, the second inequality follows from Lemma F.3, the
third inequality follows from Lemma D.12, the last inequality holds due to Lemma J.2 and the fact
that ⇓ω(·)⇓2 ⇒ 1, the last equality follows from 1↘

ϱK

= 20H
→
dCϖ→ + 12Hε

→
MKd+ 16

3 , which
we define in Lemma F.4.

The probability calculation is same as that in Appendix D.2. By combining Terms (i)(ii)(iii) together,
we get that the final regret bound for CoopTS-LMC in misspecified setting is

Õ


d

3
2H

2
→

M
(√

dMω +
→

K
)
+ d

3
2H

2
M

→

K
(√

dMω +
→

K
)
ε


,

with probability at least 1↗ ⇁. Here we finish the proof.

G Proof of the Regret Bound for CoopTS-PHE

Before getting the regret bound for CoopTS-PHE, we first present some essential technical lemmas
required for our analysis.

G.1 Supporting Lemmas

Proposition G.1. The difference between the perturbed estimated parameter w̃k,n

m,h
and unperturbed

estimated parameter wk

m,h
satisfies the Gaussian distribution,

ϱk,n

m,h
= w̃k,n

m,h
↗ wk

m,h
⇔ N


0,↼2

(
!k

m,h

)↓1

,

where wk

m,h
=

(
!k

m,h

)↓1
∑

(sl,al,s→l)↑Um,h(k)

[
rh + V

k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

is the unperturbed
estimated parameter.

Next we will define some good events that hold with high probability to help prove the critical lemmas
in this section.

46

Lemma G.2 (Good events). For any fixed 0 < ⇁ < 1, with some constant c > 0, we define the
following random events

G
k

m,h
(ϱ, ⇁)

def
=

{
max
n↑[N]

ϱk,n

m,h


”k

m,h

⇒ c1↼
→

d

}
,

G(M,K,H, ⇁)
def
=

⋂

m↑M

⋂

k⇒K

⋂

h⇒H

G
k

m,h
(ϱ, ⇁),

where c1 = c

√
log(dNMKH/⇁). Then the event G(M,K,H, ⇁) occurs with probability at least

1↗ ⇁.
Lemma G.3. Let ς = 1 in Algorithm 2. For any fixed 0 < ⇁ < 1, conditioned on the event
G(M,K,H, ⇁), with probability 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H], we have




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒ 3H
→

dDϖ,

where we define Dϖ =

1
2 log(K + 1) + log


6
↘
2K(2H

↘
MKd+c1ϑ

↘
d)

H


+ log 1

ϖ

1/2
.

Lemma G.4. Let ς = 1 in Algorithm 2. Under Definition 4.1, for any fixed 0 < ⇁ < 1, conditioned
on the event G(M,K,H, ⇁), with probability 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H] and for any
(s, a) ↑ S ↓A, we have

ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
 ⇒ 5H

→

dDϖ⇓ω(s, a)⇓(”k

m,h
)↓1 . (G.1)

Lemma G.5 (Optimism). Let ς = 1 in Algorithm 2 and set c0 = !(1). Under Definition 4.1,
conditioned on the event G(M,K,H, ⇁), with probability at least 1↗ |C(ε)|cN0 ↗ ⇁ where |C(ε)| ⇒
(3/ε)d, for all (m, k, h) ↑ M↓ [K]↓ [H] and for all (s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) ⇒ Aϖε,

where Aϖ = c1↼
→
d+ 5H

→
dDϖ = Õ(Hd).

Lemma G.6 (Error bound). Let ς = 1 in Algorithm 2. Under Definition 4.1, for any fixed 0 < ⇁ < 1,
conditioned on the event G(M,K,H, ⇁), with probability 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H]
and for any (s, a) ↑ S ↓A, we have

↗l
k

m,h
(s, a) ⇒ c2Hd⇓ω(s, a)⇓(”k

m,h
)↓1 ,

where c2 = Õ(1).

G.2 Regret Analysis

In this part, we give out the proof of Theorem 4.2, the regret bound for CoopTS-PHE.

Proof of Theorem 4.2. Based on the result from Lemma D.13, we do the regret decomposition first

Regret(K) =


m↑M

K

k=1

V
→
m,1

(
s
k

m,1

)
↗ V

ω
k

m

m,1

(
s
k

m,1

)

=


m↑M

K

k=1

H

h=1

Eω↑
[〈
Q

k

m,h
(sm,h, ·),ϑ

→
m,h

(·, |sm,h)↗ ϑ
k

m,h
(·|sm,h)

〉
|sm,1 = s

k

m,1

]

  
(i)

+


m↑M

K

k=1

H

h=1

(Dm,k,h,1 +Dm,k,h,2)

  
(ii)

47

+


m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

  
(iii)

.

(G.2)
Next, we will bound the above three terms, respectively.

Bounding Term (i) in (G.2): for the policy ϑ
k

m,h
, we have



m↑M

K

k=1

H

h=1

Eω↑
[〈
Q

k

m,h
(sm,h, ·),ϑ

→
m,h

(·, |sm,h)↗ ϑ
k

m,h
(·|sm,h)

〉
|sm,1 = s

k

m,1

]
⇒ 0. (G.3)

This is because by definition ϑ
k

m,h
is the greedy policy for Qk

m,h
.

Bounding Term (ii) in (G.2): note that 0 ⇒ Q
k

m,h
⇒ H ↗ h + 1 ⇒ H , based on (D.1), for any

(m, k, h) ↑ M↓ [K]↓ [H], we have |Dm,k,h,1| ⇒ 2H and |Dm,k,h,2| ⇒ 2H . Note that Dm,k,h,1 is
a martingale difference sequence E[Dm,k,h,1|Fm,k,h] = 0. By applying Azuma-Hoeffding inequality,
with probability at least 1↗ ⇁/3, we have



m↑M

K

k=1

H

h=1

Dm,k,h,1 ⇒ 2
√
2MH3K log(6/⇁).

Note that Dm,k,h,2 is also a martingale difference sequence. By applying Azuma-Hoeffding inequality,
with probability at least 1↗ ⇁/3, we have



m↑M

K

k=1

H

h=1

Dm,k,h,2 ⇒ 2
√
2MH3K log(6/⇁).

By taking union bound, with probability at least 1↗ 2⇁/3, we have



m↑M

K

k=1

H

h=1

Dm,k,h,1 +


m↑M

K

k=1

H

h=1

Dm,k,h,2 ⇒ 4
√
2MH3K log(6/⇁). (G.4)

Bounding Term (iii) in (G.2): conditioned on the event G(M,K,H, ⇁
↔), based on Lemma G.6 and

Lemma G.5, by taking union bound, with probability at least 1↗ |C(ε)|cN0 ↗ ⇁
↔
↗MHK⇁

↔, we have



m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

⇒



m↑M

K

k=1

H

h=1

(
Aϖ→ε↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

⇒ HMKAϖ→ε+


m↑M

K

k=1

H

h=1

c2dH
ω(sk

m,h
, a

k

m,h
)

(”k

m,h
)↓1

⇒ HMKAϖ→ε+ c2dH

H

h=1


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω + 2



MK log


det(!K

h
)

det(ςI)



⇒ HMKAϖ→ε+ c2dH ·H


d(log(1 +MK/d) + 1)M

→
ω + 2

√
MKd log(1 +MK/d)


.

The first inequality follows from Lemma G.5, the second inequality holds due to Lemma G.6, the
third inequality follows from Lemma D.12, the last inequality holds due to Lemma J.2 and the fact
that ⇓ω(·)⇓2 ⇒ 1.

Here we choose ε = dH

√
d/MK/Aϖ→ = Õ(

√
d/MK). Conditioned on the event G(M,K,H, ⇁

↔),
we have
∑

m↑M

K∑

k=1

H∑

h=1

(
Eε↑

[
l
k

m,h(sm,h, am,h)|sm,1 = s
k

m,1

]
→ l

k

m,h

(
s
k

m,h, a
k

m,h

))
↑ Õ

(
dH

2(
dM

↓
ε +

↓

dMK
))
,

(G.5)

48

with probability at least 1↗|C(ε)|cN0 ↗⇁
↔
↗MHK⇁

↔. Based on Lemma G.2, the event G(M,K,H, ⇁
↔)

occurs with probability at least 1↗ ⇁
↔. Therefore, (G.5) occurs with probability at least

(
1↗ ⇁

↔)(1↗ |C(ε)|cN0 ↗ ⇁
↔
↗MHK⇁

↔)
.

We set ⇁↔ = ⇁/6(MHK + 2) and choose N = C̃ log(⇁)/ log(c0) where C̃ = Õ(d), then we have
(
1↗ ⇁

↔)(1↗ |C(ε)|cN0 ↗ ⇁
↔
↗MHK⇁

↔)
⇑ 1↗ ⇁/3.

Combining Terms (i)(ii)(iii) together: Based on (G.3), (G.4) and (G.5). By taking union bound, we
get that the final regret bound for CoopTS-PHE is Õ

(
dH

2
(
dM

→
ω +

→
dMK

))
with probability at

least 1↗ ⇁.

H Proof of Supporting Lemmas in Appendix G

H.1 Proof of Proposition G.1

Proof. Based on (3.5), we can calculate that

w̃k,n

m,h
=

(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

[(
rh

(
s
l
, a

l
)
+ φ

k,l,n

h

)
+ V

k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)
↗ ςεk,n

h



= wk

m,h
+
(
!k

m,h

)↓1




(sl,al,s→l)↑Um,h(k)

φ
k,l,n

h
ω
(
s
l
, a

l
)
↗ ςεk,n

h


, (H.1)

where wk

m,h
=

(
!k

m,h

)↓1
∑

(sl,al,s→l)↑Um,h(k)

[
rh + V

k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

is the unperturbed

estimated parameter. Since φ
k,l,n

h
⇔ N (0,↼2), for l ↑ [K(k)], based on the property of Gaussian

distribution, we have

φ
k,l,n

h
ω
(
s
l
, a

l
)
⇔ N


0,↼2ω

(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

,

Since εk,n
h

⇔ N (0,↼2I), we can calculate the covariance matrix of the second term in (H.1),

(
!k

m,h

)↓1
Cov




(sl,al,s→l)↑Um,h(k)

φ
k,l,n

h
ω
(
s
l
, a

l
)
↗ ςεk,n

h


(
!k

m,h

)↓1

=
(
!k

m,h

)↓1
↼
2




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

+ ςI


(
!k

m,h

)↓1

= ↼
2
(
!k

m,h

)↓1
!k

m,h

(
!k

m,h

)↓1

= ↼
2
(
!k

m,h

)↓1
.

It is obvious that the mean of the second term in (H.1) is 0. Thus, we have

ϱk,n

m,h
= w̃k,n

m,h
↗ wk

m,h
⇔ N


0,↼2

(
!k

m,h

)↓1

.

This completes the proof.

H.2 Proof of Lemma G.2

Proof. Recall that in Proposition G.1, we have
{
ϱk,n

m,h

}
⇔ N


0,↼2

(
!k

m,h

)↓1

.

By Lemma J.10, for fixed n ↑ [N], with probability at least 1↗ ⇁, we have
ϱk,n

m,h


”k

m,h

⇒ c

√
d↼2 log(d/⇁).

49

By applying union bound over N samples, we have

P

max
n↑[N]

ϱk,n

m,h


”k

m,h

⇒ c

√
d↼2 log(d/⇁)


⇑ 1↗N⇁.

Now we define c1 = c

√
log(dNMKH/⇁), and we define the event

G
k

m,h
(ϱ, ⇁)

def
=

{
max
n↑[N]

ϱk,n

m,h


”k

m,h

⇒ c1↼
→

d

}
.

Thus for any fixed m, h and k, the event Gk

m,h
(ϱ, ⇁) occurs with a probability of at least 1↗⇁/MKH .

By taking union bound over all (m,h, k) ↑ M↓ [H]↓ [K], we have

P
(
G(M,K,H, ⇁)

)
= P


⋂

m↑M

⋂

k⇒K

⋂

h⇒H

G
k

m,h
(ϱ, ⇁)


⇑ 1↗ ⇁.

This completes the proof.

H.3 Proof of Lemma G.3

Proof. Based on the result in Lemma D.4, for any (m,h, k) ↑ M↓ [H]↓ [K], we have
wk

m,h

 ⇒ 2H
√
Mkd/ς.

By recalling the construction of !k

m,h
, it is trivial to find that ςmin

(
!k

m,h

)
⇑ ς. Conditioned on the

event G(M,K,H, ⇁), we have
→

ς
ϱk,n

m,h

 ⇒
ϱk,n

m,h


”k

m,h

⇒ c1↼
→

d.

Then by triangle inequality, for all n ↑ [N], we obtain the upper bound
w̃k,n

m,h

 =
wk

m,h
+ ϱk,n

m,h

 ⇒ 2H
√

Mkd/ς+ c1↼
√

d/ς.

Based on the result from Lemma J.7 and Lemma J.9, we have that, for any ε > 0, and for all
(m, k, h) ↑ M↓ [K]↓ [H], with probability at least 1↗ ⇁, we have




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒


4H2

[
d

2
log


k + ς

ς


+ d log


3
(
2H

√
Mkd/ς+ c1↼

√
d/ς

)

ε


+ log

1

⇁

]
+

8k2ε2

ς

1/2

⇒ 2H

[
d

2
log


k + ς

ς


+ d log


3
(
2H

√
Mkd/ς+ c1↼

√
d/ς

)

ε


+ log

1

⇁

]1/2

+
2
→
2kε

→
ς

.

Here we set ς = 1, ε = H

2
↘
2k

, with probability at least 1↗ ⇁, we have




(sl,al,s→l)↑Um,h(k)

ω
(
s
l
, a

l
)[(

V
k

m,h+1 ↗ PhV
k

m,h+1

)(
s
l
, a

l
)]

(”k

m,h
)↓1

⇒ 2H
→

d

[
1

2
log(K + 1) + log


6
→
2K

(
2H

→
MKd+ c1↼

→
d
)

H


+ log

1

⇁

]1/2

+H

⇒ 3H
→

dDϖ,

where we define Dϖ =

1
2 log(K +1)+ log


6
↘
2K(2H

↘
MKd+c1ϑ

↘
d)

H


+ log 1

ϖ

1/2
. Here we finish

the proof.

50

H.4 Proof of Lemma G.4

Proof. This proof is almost same as the proof of Lemma D.8 in Appendix E.6. The only difference is
the Term (i) in (E.10). Here based on Lemma G.6, conditioned on the event G(M,K,H, ⇁), with
probability 1↗ ⇁, we have

Term (i) ⇒ 3H
→

dDϖ⇓ω(s, a)⇓(”k

m,h
)↓1 .

Finally, conditioned on the event G(M,K,H, ⇁), with probability 1 ↗ ⇁, for all (m, k, h) ↑ M ↓

[K]↓ [H] and for any (s, a) ↑ S ↓A, we have
ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
 ⇒

(
3H

→

dDϖ +H

→

d+
→

d
)
⇓ω(s, a)⇓(”k

m,h
)↓1

⇒ 5H
→

dDϖ⇓ω(s, a)⇓(”k

m,k
)↓1 .

Here we finish the proof.

H.5 Proof of Lemma G.5

Proof. Recall from Definition 4.1, we have

rh(s, a) + PhV
k

m,h+1(s, a) = ω(s, a)↗ϖh + ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S

def
= ω(s, a)↗wk

m,h
,

where wk

m,h
= ϖh +

〈
µh, V

k

m,h+1

〉
S . Note that max{⇓µh(S)⇓, ⇓ϖh⇓} ⇒

→
d and V

k

m,h+1 ⇒

H ↗ h ⇒ H , thus we have
wk

m,h

 ⇒ ⇓ϖh⇓+
〈µh, V

k

m,h+1

〉
S



⇒

→

d+H

→

d

⇒ 2H
→

d.

Then we define the regression error ”wk

m,h
= wk

m,h
↗ wk

m,h
. For any (m,h, k) ↑ M↓ [H]↓ [K]

and any (s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) = rh(s, a) + PhV

k

m,h+1(s, a)↗Q
k

m,h
(s, a)

= rh(s, a) + PhV
k

m,h+1(s, a)↗min
{
H ↗ h+ 1, max

n↑[N]
ω(s, a)↗


wk

m,h
+ ϱk,n

m,h

}+

⇒ max
{
ω(s, a)↗wk

m,h
↗ (H ↗ h+ 1),ω(s, a)↗wk

m,h
↗ max

n↑[N]
ω(s, a)↗


wk

m,h
+ ϱk,n

m,h

}

⇒ max
{
0,ω(s, a)↗”wk

m,h
↗ max

n↑[N]
ω(s, a)↗ϱk,n

m,h

}
, (H.2)

where the last inequality holds because |rh| ⇒ 1 and V
k

m,h+1 ⇒ H ↗ h, this indicates rh(s, a) +

PhV
k

m,h+1(s, a) = ω(s, a)↗wk

m,h
⇒ H↗h+1. Note that ⇓ω(s, a)⇓(”k

m,h
)↓1 ⇒

√
1/ς⇓ω(s, a)⇓ ⇒

1 for all ω(s, a). Define C(ε) to be a ε-cover of
{
ω | ⇓ω⇓(”k

m,h
)↓1 ⇒ 1

}
. Based on Lemma J.8, we

have |C(ε)| ⇒ (3/ε)d.

First, for any fixed ω(s, a) ↑ C(ε), we have
{
ω↗ϱk,n

m,h

}
⇔ N


0,↼2

⇓ω⇓2(”k

m,h
)↓1


.

Use the property of Gaussian distribution, we obtain

P

ω↗ϱk,n

m,h
↗ ↼⇓ω⇓(”k

m,h
)↓1 ⇑ 0


= !(↗1).

By taking union bound over n ↑ [N], we obtain

P

max
n↑[N]

{
ω↗ϱk,n

m,h
↗ ↼⇓ω⇓(”k

m,h
)↓1

}
⇑ 0


⇑ 1↗ (1↗ !(↗1))N = 1↗ !(1)N = 1↗ c

N

0 .

51

By applying union bound over C(ε), with probability 1↗ |C(ε)|cN0 , for all ω ↑ C(ε), we have

max
n↑[N]

{
ω↗ϱk,n

m,h
↗ ↼⇓ω⇓(”k

m,h
)↓1

}
⇑ 0. (H.3)

Then, for any ω = ω(s, a), we can find ω↔
↑ C(ε) such that ⇓ω ↗ ω↔

⇓(”k

m,h
)↓1 ⇒ ε. Define

”ω = ω↗ ω↔, we have

ω↗ϱk,n

m,h
↗ ω↗”wk

m,h
= ω↔↗ϱk,n

m,h
↗ ω↔↗”wk

m,h
+”ω↗ϱk,n

m,h
↗”ω↗”wk

m,h

⇑ ω↔↗ϱk,n

m,h
↗ ⇓ω↔

⇓(”k

m,h
)↓1

”wk

m,h


”k

m,h

↗ ⇓”ω⇓(”k

m,h
)↓1

ϱk,n

m,h


”k

m,h

↗ ⇓”ω⇓(”k

m,h
)↓1

”wk

m,h


”k

m,h

⇑ ω↔↗ϱk,n

m,h
↗ ⇓ω↔

⇓(”k

m,h
)↓1

”wk

m,h


”k

m,h

↗ ε
(ϱk,n

m,h


”k

m,h

+
”wk

m,h


”k

m,h

)
. (H.4)

Conditioned on the event G(M,K,H, ⇁), we have
ϱk,n

m,h


”k

m,h

⇒ c1↼
→

d.

For any vector x ↑ Rd, we have

x↗”wk

m,h
= x↗(wk

m,h
↗ wk

m,h

)

= x↗(!k

m,h

)↓1

!k

m,h
wk

m,h
↗

 

(sl,al,s→l)↑Um,h(k)

[
rh + V

k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

= x↗(!k

m,h

)↓1
K(k)

l=1

ω
(
s
l
, a

l
)
ω
(
s
l
, a

l
)↗

wk

m,h
+ ςwk

m,h

↗

K(k)

l=1

[
rh + V

k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

= x↗(!k

m,h

)↓1

wk

m,h
+

K(k)

l=1

[
PhV

k

m,h+1 ↗ V
k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

,

where the third equality holds due to the definition of !k

m,h
. We set x = !k

m,h
”wk

m,h
. By using

Cauchy-Schwarz inequality, we have

”wk

m,h

2
”k

m,h

= ”wk

m,h

↗

wk

m,h
+

K(k)

l=1

[
PhV

k

m,h+1 ↗ V
k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

⇒
”wk

m,h


”k

m,h

·

w
k

m,h
+

K(k)

l=1

[
PhV

k

m,h+1 ↗ V
k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

(”k

m,h
)↓1

.

This indicates that with probability at least 1↗ ⇁, for all (m,h, k) ↑ M↓ [H]↓ [K], we have

”wk

m,h


”k

m,h

⇒
wk

m,h


(”k

m,h
)↓1 +


K(k)

l=1

[
PhV

k

m,h+1 ↗ V
k

m,h+1

(
s
↔l)]ω

(
s
l
, a

l
)

(”k

m,h
)↓1

⇒
wk

m,h

+ 3H
→

dDϖ

⇒ 5H
→

dDϖ,

where the second inequality holds because of Lemma G.3. Then for all (m,h, k) ↑ M↓ [H]↓ [K],
with probability at least 1↗ ⇁, (H.4) becomes

max
n↑[N]

{
ω↗ϱk,n

m,h
↗ ω↗”wk

m,h

}

52

⇑ max
n↑[N]

{
ω↔↗ϱk,n

m,h
↗ ⇓ω↔

⇓(”k

m,h
)↓1

”wk

m,h


”k

m,h

}
↗ ε

(
c1↼

→

d+ 5H
→

dDϖ

)
.

Now we choose ↼ = Õ(H
→
d) and guarantee that ↼ > 5H

→
dDϖ ⇑

”wk

m,h


”k

m,h

, this is

achievable through calculation. Define Aϖ = c1↼
→
d + 5H

→
dDϖ = Õ(Hd). Then, for all

(m,h, k) ↑ M↓ [H]↓ [K], with probability at least 1↗ ⇁, we have

max
n↑[N]

{
ω↗ϱk,n

m,h
↗ ω↗”wk

m,h

}
⇑ max

n↑[N]

{
ω↔↗ϱk,n

m,h
↗ ↼⇓ω↔

⇓(”k

m,h
)↓1

}
↗Aϖε.

Recall from (H.3), by taking union bound, with probability at least 1 ↗ |C(ε)|cN0 ↗ ⇁, for all
(m,h, k) ↑ M↓ [H]↓ [K] and for all (s, a) ↑ S ↓A, we have

max
n↑[N]

{
ω↗ϱk,n

m,h
↗ ω↗”wk

m,h

}
⇑ ↗Aϖε.

Finally, recall from (H.2), we have, with probability at least 1 ↗ |C(ε)|cN0 ↗ ⇁, for all (m,h, k) ↑
M↓ [H]↓ [K] and for all (s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) ⇒ Aϖε.

This completes the proof.

H.6 Proof of Lemma G.6

Proof. Recall the definition of model prediction error in Definition D.1, we get

↗l
k

m,h
(s, a) = Q

k

m,h
(s, a)↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

= min
{
max
n↑[N]

ω(s, a)↗

wk

m,h
+ ϱk,n

m,h


, H ↗ h+ 1

}+
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

⇒ max
n↑[N]

ω(s, a)↗

wk

m,h
+ ϱk,n

m,h


↗ rh(s, a)↗ PhV

k

m,h+1(s, a)

= max
n↑[N]

ω(s, a)↗ϱk,n

m,h
↗


rh(s, a) + PhV

k

m,h+1(s, a)↗ ω(s, a)↗ wk

m,h



⇒

rh(s, a) + PhV
k

m,h+1(s, a)↗ ω(s, a)↗ wk

m,h

+ max
n↑[N]

ω(s, a)↗ϱk,n

m,h

.

Based on Lemma G.4, conditioned on the event G(M,K,H, ⇁), with probability 1 ↗ ⇁, for all
(m, k, h) ↑ M↓ [K]↓ [H] and for any (s, a) ↑ S ↓A, we have

ω(s, a)↗ wk

m,h
↗ rh(s, a)↗ PhV

k

m,h+1(s, a)
 ⇒ 5H

→

dDϖ⇓ω(s, a)⇓(”k

m,h
)↓1 (H.5)

Conditioned on the event G(M,K,H, ⇁), for all (m,h, k) ↑ M ↓ [H] ↓ [K] and for any (s, a) ↑
S ↓A, we have

max
n↑[N]

ω(s, a)↗ϱk,n

m,h

 ⇒ c1↼
→

d⇓ω(s, a)⇓(”k

m,h
)↓1 . (H.6)

Combine (H.5) and (H.6), then use ↼ defined in Lemma G.5. Conditioned on the event G(M,K,H, ⇁),
with probability 1↗ ⇁, for all (m,h, k) ↑ M↓ [H]↓ [K] and for any (s, a) ↑ S ↓A, we get

↗l
k

m,h
(s, a) ⇒

(
5H

→

dDϖ + c1↼
→

d
)
⇓ω(s, a)⇓(”k

m,h
)↓1

⇒ c2Hd⇓ω(s, a)⇓(”k

m,h
)↓1 ,

where c2 = Õ(1). Here we completes the proof.

I Proof of the Regret Bound for CoopTS-PHE in Misspecified Setting

In this section, we prove the regret bound for CoopTS-PHE in the misspecified setting. The regret
analysis, the essential supporting lemmas and their corresponding proofs are very similar to what we
have presented in Appendix G and Appendix H. Here we mainly point out the differences of proof
between these two settings.

53

I.1 Supporting Lemmas

Lemma I.1. Let ς = 1 in Algorithm 2. Under Definition 4.8, for any fixed 0 < ⇁ < 1, conditioned
on the event G(M,K,H, ⇁), with probability 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H] and for any
(s, a) ↑ S ↓A, we have
ω(s, a)↗ wk

m,h → rh(s, a)→ PhV
k

m,h+1(s, a)
 ↑

(
5H

↓

dDϑ + 3H↼

↓

MKd
)
↔ω(s, a)↔(”k

m,h
)↓1 + 3H↼,

(I.1)

where Dϖ is defined in Lemma G.3.

Proof of Lemma I.1. This proof is almost same as the proof of Lemma F.2, with the only difference
in bounding Term(i) in (F.3). Here (F.4) becomes

|Term(i)| ⇒ 3H
→

dDϖ⇓ω(s, a)⇓(”k

m,h
)↓1 .

Finally we can get the desired result.

Lemma I.2 (Optimism). Let ς = 1 in Algorithm 2 and set c0 = !(1). Under Definition 4.8,
conditioned on the event G(M,K,H, ⇁), with probability at least 1↗ |C(ε)|cN0 ↗ ⇁ where |C(ε)| ⇒
(3/ε)d, for all (m, k, h) ↑ M↓ [K]↓ [H] and for all (s, a) ↑ S ↓A, we have

l
k

m,h
⇒ Aϖε+ 3Hε,

where Aϖ = c1↼
→
d+ 5H

→
dDϖ = Õ(Hd).

Proof of Lemma I.2. This proof is similar to the proof in Appendix H.5. In the previous part, we
have defined

”m,1 = Pm,hV
k

m,h+1(s, a)↗ ω(s, a)↗
〈
µh, V

k

m,h+1

〉
S ,

”m,2 = rm,h(s, a)↗ ω(s, a)↗ϖh,

where |”m,1| ⇒ 2Hε and |”m,2| ⇒ ε. Thus we have

rm,h(s, a) + Pm,hV
k

m,h+1(s, a) = ω(s, a)↗wk

m,h
+”m,1 +”m,2,

where wk

m,h
= ↙µh, V

k

m,h+1

〉
S +ϖh. Then we define ”wk

m,h
= wk

m,h
↗ wk

m,h
. For any (m,h, k) ↑

M↓ [H]↓ [K] and any (s, a) ↑ S ↓A, we have

l
k

m,h
(s, a) = rm,h(s, a) + Pm,hV

k

m,h+1(s, a)↗Q
k

m,h
(s, a)

= rm,h(s, a) + Pm,hV
k

m,h+1(s, a)↗min
{
H ↗ h+ 1, max

n↑[N]
ω(s, a)↗


wk

m,h
+ ϱk,n

m,h

}+

⇒ max
{
ω(s, a)↗wk

m,h
↗ (H ↗ h+ 1),ω(s, a)↗wk

m,h
↗ max

n↑[N]
ω(s, a)↗


wk

m,h
+ ϱk,n

m,h

}

+”m,1 +”m,2

⇒ max
{
0,ω(s, a)↗”wk

m,h
↗ max

n↑[N]
ω(s, a)↗ϱk,n

m,h

}
+ 3Hε. (I.2)

In Appendix H.5, we have proved that with probability at least 1↗ |C(ε)|cN0 ↗ ⇁, for all (m,h, k) ↑
M↓ [H]↓ [K] and for all (s, a) ↑ S ↓A, we have

max
n↑[N]

{
ω↗ϱk,n

m,h
↗ ω↗”wk

m,h

}
⇑ ↗Aϖε.

Substitute it into (I.2), we can get the final result.

Lemma I.3 (Error bound). Let ς = 1 in Algorithm 2. Under Definition 4.8, for any fixed 0 < ⇁ < 1,
conditioned on the event G(M,K,H, ⇁), with probability 1↗ ⇁, for all (m, k, h) ↑ M↓ [K]↓ [H]
and for any (s, a) ↑ S ↓A, we have

↗l
k

m,h
(s, a) ⇒

(
c2Hd+ 3Hε

→

MKd
)
⇓ω(s, a)⇓(”k

h
)↓1 + 3Hε,

where c2 = Õ(1) is same as that in Lemma G.6.

54

Proof of Lemma I.3. Similar to the proof in Appendix H.6, using (H.6) in Appendix H.6 and (I.1),
we have

↗l
k

m,h
(s, a) ⇒

rh(s, a) + PhV
k

m,h+1(s, a)↗ ω(s, a)↗ wk

m,h

+ max
n↑[N]

ω(s, a)↗ϱk,n

m,h



⇒
(
5H

→

dDϖ + 3Hε

→

MKd+ c1↼
→

d
)
⇓ω(s, a)⇓(”k

h
)↓1 + 3Hε

⇒
(
c2Hd+ 3Hε

→

MKd
)
⇓ω(s, a)⇓(”k

h
)↓1 + 3Hε,

where c2 = Õ(1) is same as that in Lemma G.6. Here we completes the proof.

I.2 Regret Analysis

In this part, we give out the proof of Theorem 4.10, the regret bound for CoopTS-PHE in the
misspecified setting.

Proof of Theorem 4.10. This proof is almost same as the proof in Appendix G.2. We do the same
regret decomposition (G.2) and obtain the same bound for Term (i) (G.3) and Term (ii) (G.4). Next
we bound Term (iii) with new lemmas in misspecified setting.

Bounding Term (iii) in (G.2): conditioned on the event G(M,K,H, ⇁
↔), based on Lemma I.3 and

Lemma I.2, by taking union bound, with probability at least 1↗ |C(ε)|c↔0
N
↗ ⇁

↔
↗MHK⇁

↔, we have



m↑M

K

k=1

H

h=1

(
Eω↑

[
l
k

m,h
(sm,h, am,h)|sm,1 = s

k

m,1

]
↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

))

⇒



m↑M

K

k=1

H

h=1


↗ l

k

m,h

(
s
k

m,h
, a

k

m,h

)
+Aϖ→ε+ 3Hε



⇒



m↑M

K

k=1

H

h=1

(
c2dH + 3Hε

→

MKd
)
⇓ω(s, a)⇓(”k

h
)↓1 + 3Hε +Aϖ→ε+ 3Hε



= HMKAϖ→ε+ 6H2
MKε +

(
c2dH + 3Hε

→

MKd
) H

h=1



m↑M

K

k=1

ω(sk
m,h

, a
k

m,h
)

(”k

m,h
)↓1

⇒ HMKAϖ→ε+ 6H2
MKε +

(
c2dH + 3Hε

→

MKd
)

↓

H

h=1


log


det(!K

h
)

det(ςI)


+ 1


M

→
ω + 2



MK log


det(!K

h
)

det(ςI)



⇒ HMKAϖ→ε+ 6H2
MKε +

(
c2dH + 3Hε

→

MKd
)

↓H


d(log(1 +MK/d) + 1)M

→
ω + 2

√
MKd log(1 +MK/d)



= Õ


d

3
2H

2
→

M
(√

dMω +
→

K
)
+ dH

2
M

→

K
(√

dMω +
→

K
)
ε


.

The first inequality follows from Lemma I.2, the second inequality holds due to Lemma I.3, the third
inequality follows from Lemma D.12, the last inequality holds due to Lemma J.2 and the fact that
⇓ω(·)⇓2 ⇒ 1, and again we choose ε = dH

√
d/MK/Aϖ→ = Õ(

√
d/MK).

The probability calculation is same as that in Appendix G.2. By combining Terms (i)(ii)(iii) together,
we get that the final regret bound for CoopTS-PHE in misspecified setting is

Regret(K) = Õ


d

3
2H

2
→

M
(√

dMω +
→

K
)
+ dH

2
M

→

K
(√

dMω +
→

K
)
ε


,

with probability at least 1↗ ⇁. Here we finish the proof.

55

J Auxiliary Lemmas

Lemma J.1. [1, Lemma 11] Let {Xt}
≃
t=1 be a sequence in Rd, V is d↓ d positive definite matrix

and define V̄t = V +
∑

t

s=1 XsX↗
s

. Then, we have that

log


det(V̄n)

det(V)


⇒

n

t=1

⇓Xt⇓
2
V̄↓1

t↓1
.

Further, if ⇓Xt⇓2 ⇒ L for all t, then
n

t=1

min
{
1, ⇓Xt⇓

2
V̄↓1

t↓1

}
⇒ 2

(
log det(V̄n)↗ log detV

)

⇒ 2
(
d log

((
trace(V) + nL

2
)
/d

)
↗ log detV

)
,

and finally, if ςmin(V) ⇑ max
(
1, L2

)
then

n

t=1

⇓Xt⇓
2
V̄↓1

t↓1
⇒ 2 log

det(V̄n)

det(V)
.

Lemma J.2. [1, Lemma 10] Suppose X1,X2, . . . ,Xt ↑ Rd and for any 1 ⇒ s ⇒ t, ⇓Xs⇓2 ⇒ L.
Let V̄t = ςI+

∑
t

s=1 XsX↗
s

for some ς > 0. Then,

det
(
V̄t

)
⇒

(
ς+ tL

2
/d

)d
.

Lemma J.3. [32, Lemma D.5] Let A ↑ Rd⇑d be a positive definite matrix where its largest
eigenvalue ςmax(A) ⇒ ς. Let x1, ...,xk be k vectors in Rd. Then it holds that

A
k

i=1

xi

 ⇒

→

ςk

 k

i=1

⇓xi⇓
2
A

1/2

.

Lemma J.4. [36, Lemma D.1] Let !t = ςI +
∑

t

i=1 ωiω↗
i

, where ωi ↑ Rd and ς > 0. Then it
holds that

t

i=1

ω↗
i
(!t)

↓1ωi ⇒ d.

Lemma J.5. [33, Lemma D.1] Given a multivariate normal distribution X ⇔ N (0,”), we have,

P

⇓X⇓ ⇒


1

⇁
tr(”)


⇑ 1↗ ⇁.

Lemma J.6. [30] If A and B are positive semi-definite square matrices of the same size, then

0 ⇒ [tr(AB)]2 ⇒ tr
(
A2

)
tr
(
B2

)
⇒ [tr(A)]2[tr(B)]2.

Lemma J.7. [36, Lemma D.4] Let {si}≃i=1 be a stochastic process on state space S with corre-
sponding filtration {Fi}

≃
i=1. Let {ωi}

≃
i=1 be an Rd-valued stochastic process where ωi ↑ Fi↓1, and

⇓ωi⇓ ⇒ 1. Let !k = ςI+
∑

k

i=1 ωiω↗
i

. Then for any ⇁ > 0, with probability at least 1↗ ⇁, for all
k ⇑ 0, and any V ↑ V with sup

s↑S |V (s)| ⇒ H , we have


k

i=1

ωi{V (si)↗ E[V (si) | Fi↓1]}


2

”↓1
k

⇒ 4H2


d

2
log


k + ς

ς


+ log

N↽

⇁

]
+

8k2ε2

ς
,

where N↽ is the ε-covering number of V with respect to the distance dist(V, V ↔) = sup
s↑S |V (s)↗

V
↔(s)|.

Lemma J.8. [75, Covering number of Euclidean ball] For any ε > 0, N↽, the ε-covering number of
the Euclidean ball of radius B > 0 in Rd satisfies

N↽ ⇒


1 +

2B

ε

d

⇒


3B

ε

d

.

56

Lemma J.9. Let V denote a class of functions mapping from S to R with the following parametric
form

V (·) = max
a↑A

{
min

{
max
n↑[N]

ω(·, a)↗wn
, H ↗ h+ 1

}+}
,

where the parameter wn satisifies ⇓wn
⇓ ⇒ B for all n ↑ [N] and for all (x, a) ↑ S ↓ A, we

have ⇓ω(x, a)⇓ ⇒ 1. Let NV,↽ be the ε-covering number of V with respect to the distance dist
(V, V ↔) = sup

s↑S
V (s)↗ V

↔(s)
. Then

NV,↽ ⇒


3B

ε

d

.

Proof. Consider any two functions V1, V2 ↑ V with parameters {wn

1 }n↑[N] and {wn

2 }n↑[N], respec-
tively. Then we have

dist(V1, V2) ⇒ sup
s,a

 max
n↑[N]

ω(s, a)↗wn

1 ↗ max
n↑[N]

ω(s, a)↗wn

2



⇒ sup
s,a

 max
n↑[N]


ω(s, a)↗wn

1 ↗ ω(s, a)↗wn

2



⇒ sup
⇓ε⇓⇒1

max
n↑[N]

ω↗wn

1 ↗ ω↗wn

2



= max
n↑[N]

sup
⇓ε⇓⇒1

ω↗(wn

1 ↗wn

2)


⇒ max
n↑[N]

sup
⇓ε⇓⇒1

⇓ω⇓
wn

1 ↗wn

2



⇒ max
n↑[N]

wn

1 ↗wn

2

.

Let Nw,↽ denote the ε-covering number of {w ↑ Rd
| ⇓w⇓ ⇒ B}. Then, Lemma J.8 implies

Nw,↽ ⇒


1 +

2B

ε

d

⇒


3B

ε

d

.

For any V1 ↑ V , we consider its corresponding parameters {wn

1 }n↑[N]. For any n ↑ [N], we can
find wn

2 such that ⇓wn

1 ↗wn

2 ⇓ ⇒ ε, then we can get V2 ↑ V with parameters {wn

2 }n↑[N]. Then we
have dist(V1, V2) ⇒ maxn↑[N] ⇓w

n

1 ↗wn

2 ⇓ ⇒ ε. Thus, we have,

NV,↽ ⇒ Nw,↽ ⇒


1 +

2B

ε

d

⇒


3B

ε

d

.

This completes the proof.

Lemma J.10. [3] Suppose Z is a Gaussian random variable Z ⇔ N (µ,↼2), where ↼ > 0. For
0 ⇒ z ⇒ 1, we have

P(Z > µ+ z↼) ⇑
1

→
8ϑ

e
↓z

2

2 , P(Z < µ↗ z↼) ⇑
1

→
8ϑ

e
↓z

2

2 .

And for z ⇑ 1, we have
e
↓z

2
/2

2z
→
ϑ

⇒ P(|Z ↗ µ| > z↼) ⇒
e
↓z

2
/2

z
→
ϑ

.

Lemma J.11. [32, Lemma D.2] Consider a d-dimensional multivariate normal distribution
N
(
0, A!↓1

)
where A is a scalar. Let ↼1,↼2, . . . ,↼N be N independent samples from the dis-

tribution. Then for any ⇁ > 0

P

max
j↑[M]

⇓↼j⇓” ⇒ c

√
dA log(d/⇁)


⇑ 1↗M⇁,

where c is some absolute constant.
Lemma J.12. [1, Lemma 12] Let A, B and C be positive semi-definite matrices such that A =
B+C. Then we have that

sup
x ⇔=0

x↗Ax

x↗Bx
⇒

det(A)

det(B)
.

57

Figure 3: The N-Chain environment [62].

K Additional Experimental Details

We conduct comprehensive experiments investigating the exploration strategies for DQN under a
multi-agent setting. For all the Q networks in our experiments, we use ReLU as our activation
function. Given that all experiments are conducted under multi-agent settings unless explicitly
specified as a single-agent or centralized scenario, we denote our methods: CoopTS-PHE as "PHE"
and CoopTS-LMC as "LMC" in experimental contexts and figures. In addition to our methods,
the baselines we selected are either commonly used (DQN [57], DDQN [28]) or with competitive
empirical performance (Bootstrapped DQN [62], NoisyNet DQN [26]). Both Bootstrapped DQN
and NoisyNet DQN are randomized exploration methods. Bootstrapped DQN uses finite ensembles
to generate the randomized value functions and views them as approximate posterior samples of
Q-value functions. NoisyNet DQN injects noise into the parameters of neural networks to aid efficient
exploration. For those figures which aim to compare among different m agents within a single plot,
we use Total Episodes to indicate the total number of training samples for a direct comparison. Note
that the shaded areas on all figures represent the standard deviation.

Table 2: The swept hyper-parameters in N-Chain for PHE

Hyper-parameter Values

Learning Rate ↽k {10↓1
, 3↓10↓2

, 10↓2
, 3↓10↓3

, 10↓3
, 3↓10↓4

, 10↓4
}

No Target Networks {1, 2, 4, 8}
Reward Noise {0, 10↓410↓3

, 10↓2
, 10↓1

, 1.0}
Regularization Noise {0, 10↓410↓3

, 10↓2
, 10↓1

, 1.0}

Table 3: The swept hyper-parameters in N-Chain for LMC

Hyper-parameter Values

Learning Rate ↽k {10↓1
, 3↓10↓2

, 10↓2
, 3↓10↓3

, 10↓3
, 3↓10↓4

, 10↓4
}

Bias Factor ▷ {1.0, 0.1, 0.01}
Inverse Temperature ⇀m,k {100, 102, 104, 106, 108}
No Update Jk {1, 4, 16, 32}

K.1 N -chain

We commence by presenting the comprehensive results for N = 25 in Figure 4, illustrating that
our randomized exploration methods exhibit greater suitability in realistic scenarios characterized
by an increasing number of agents. This superiority is particularly evident under two potential
circumstances: (1) where there are more limitations on computation or data access from each source
in the real world, and (2) when parallel learning from multiple sources can significantly enhance
runtime efficiency.

Subsequently, we provide a more comprehensive study to investigate the exploration capabilities
facilitated by parallel training. Preliminary experiments are conducted with a reduced state space,
specifically considering N = 10. The study aims to investigate exploration capabilities across varying
agent counts, specifically within the set m ↑ {1, 2, 3, 4}.

We list the details of all swept hyper-parameters in N -chain for PHE and LMC in Table 2 and Table 3,
respectively. Specifically, PHE is trained with reward noise φ

k,l,n

h
= 10↓2 and regularizer noise

58

Table 4: Hyper-parameters used in the N-chain

Hyper-parameter PHE LMC DQN Bootstrapped
DQN

Noisy
DQN

DDQN

Discount Factor ς 0.99 0.99 0.99 0.99 0.99 0.99
Learning Rate ↽k 3↓ 10↓2 10↓4 3↓ 10↓2 3↓ 10↓2 3↓ 10↓2 3↓ 10↓2

Hidden Activation Relu Relu Relu Relu Relu Relu
Output Activation Linear Linear Linear Linear Linear Linear
No Update Jk 1 4 1 1 1 1
No Target Networks 2 1 1 4 1 1
Batch Size 32 32 32 32 32 32
NN size 32↓ 32 32↓ 32 32↓ 32 32↓ 32 32↓ 32 32↓ 32

(a) m=2 (b) m=3 (c) m=4

Figure 4: Comparison among different exploration strategies in N -chain with N = 25. All results
are averaged over 10 runs.

εk,n
h

= 10↓3 in (3.5) and LMC is trained with ⇀m,k = 102 and in (3.7) and optimized by Adam
SGLD [33] with ▷1 = 0.9, ▷2 = 0.999 and bias factor ▷ = 0.1. The final hyper-parameters used in
N -chain are presented in Table 4.

Performance Consistency with Varying m In the investigation detailed in Figure 5, we explore
parallel learning without inter-agent communication. Note that the x-axis implies the total training
episodes from m agents. Consequently, while multiple agents engage in simultaneous policy learning,
each agent independently formulates its policies without the exchange of transition information. The
discernible trend in this scenario is that an increase in the number of agents sharing the total episodes
results in a slower rate of policy learning. Notably, despite this temporal discrepancy, all learning
trajectories eventually approximate convergence towards the optimal dashed line.

(a) PHE (b) LMC

Figure 5: Rewards with averaged over 10 independent runs for different numbers of agents among
algorithms without communication. Note that when m = 1, one agent indicates a centralized setting.

59

(a) m=2 (b) m=3 (c) m=4

(d) m=2 (e) m=3 (f) m=4

Figure 6: Different number of agents m with different synchronization strategies as well as the
single-agent and no communication settings in N = 10. Top: PHE, Bottom: LMC

(a) m=2 (b) m=3 (c) m=4

Figure 7: Performance with different number of agents m compared with bandit-inspired exploration
in N = 10.

Different Synchronization Conditions To further demonstrate the efficiency of parallel learning
with communication, we compare different synchronization conditions in Section 3.1. Specifically,
we denote synchronization (1) in every constant step as constant, (2) following exponential func-
tion as exponential, and (3) based on (3.3) as linear. To have a fair comparison among different
synchronization conditions, we firstly record the empirical number of synchronization via linear
condition in average, and then we consider constant value for constant condition and select proper
base b for exponential condition with a similar number of synchronization. Figure 6 illustrates that
any synchronization condition can improve learning efficiency but still with centralized learning as
an upper bound. Note that the x-axis implies the total training episodes from m agents.

Performance Compared with Bandit-inspired Methods Since one of our proposed random
exploration strategies, PHE is a variant of approximated TS, it is fair for us to investigate the
performance of other exploration methods from bandit algorithms with the integration of DQN. We
mainly compare both TS and UCB under neural network (i.e., NeuralTS [90] and NeuralUCB [94])
and linear (i.e., LinTS [5] and LinUCB [49]) settings. We show that a performance gap exists between
linear approaches and other neural-based methods even in a small-scale exploration problem with
N = 10 in Figure 7. Note that the x-axis implies the total training episodes from m agents.

60

Figure 8: Computation time with different exploration strategies. Note that the x-axis indicates the
neural network size, i.e., 32_2 implies two layers with 32 neurons in each layer.

(a) m=1 (centralized), N=25 (b) m=2 (no communication), N=25

Figure 9: Hyper-parameter tuning of inverse temperature (inv temp) ⇀m,k for LMC with N = 25: (a)
centralized setting m = 1 (b) 2 agents without communication m = 2.

Computational Time We have demonstrated that both NeuralTS and NeuralUCB exhibit conver-
gence to performance levels comparable to our proposed randomized exploration strategies (i.e., PHE
and LMC) when considering the case of N = 10 with m = 4 under the synchronization condition
(linear), as outlined in (3.3). However, we argue that the scalability of both methods is limited
due to their associated computational costs. To substantiate this assertion, we conduct experiments
across all methods including DQN baselines with N = 10 and m = 4 over 104 steps with varying
neural network sizes, such as [32, 32, 32], which signifies three layers with 32 neurons in each layer.
Importantly, the length of the chain N has no bearing on the running time.

In Figure 8, we show the computational time of all methods under different neural network sizes.
The solid lines represent the average computational time over 10 random seeds and the shaded area
represents the standard deviation. We observe that NeuralTS and NeuralUCB have heavy running
time consistently with varying network sizes. Although the computation time of LMC is still higher
than other remaining approaches, we observe that it maintains a similar computation time with
different neural network sizes, which can still be scaled up to more complex problems with larger
neural networks.

61

(a) PHE (b) LMC

Figure 10: Different buffer size with N = 25 between single agent (centralized) and 2 agents (no
communication). Note that the full buffer indicates the size of the total episodes. Each agent in no
communication setting only occupies half of the total episodes. Therefore, two curves (full buffer,
half buffer) in no communication are consistent.

(a) PHE (b) LMC

Figure 11: Different synchronization strategies as well as the single-agent and no communication
settings in N = 25.

Hyper-parameter Tuning of Inverse Temperature ⇀m,k Subsequently, we scale the problem to
N = 25. Given the extended horizon, the demand for exploration intensifies, leading us to conduct
hyper-parameter tuning for the inverse temperature parameter ⇀m,k in LMC, as illustrated in Figure 9.
It is crucial to note that the efficacy of learning is significantly influenced by the exploration capacity
in both centralized learning and parallel learning without communication. Our observations reveal
a discernible gap between centralized and parallel learning, a departure from the pattern observed
in Figure 5. We posit that the disparity may stem from issues associated with the replay buffer
size in off-policy RL algorithms. Specifically, when the replay buffer exhausts its capacity for new
transitions, the incoming transition replaces the oldest one.

Hyper-parameter Tuning of Buffer Size Therefore, we present a performance comparison be-
tween a solitary agent (m = 1) and a scenario involving two agents (m = 2) in Figure 10 with
different buffer sizes. Full buffer and half buffer indicate the replay buffer’s capacity to store the
complete set and half of the transitions during training, respectively. We observe that the learning
process is more efficient with less buffer size in a centralized setting because having an excessively
large replay buffer may potentially impede the efficiency of the learning process. Furthermore, the
gap between centralized setting and paralleling learning still exists among different buffer sizes.
Therefore, we focus on the setting of less buffer size with different synchronization conditions

62

Figure 12: Gap reduction improvement with prioritized experience replay for parallel learning without
communication. Note that the same settings with standard and prioritized experience replay are in the
same-ish color.

(a) SuperMarioBros-1-1-
v0

(b) SuperMarioBros-1-2-
v0

(c) SuperMarioBros-1-3-
v0

(d) SuperMarioBros-1-4-
v0

Figure 13: Illustrations of 4 different environments in Super Mario Bros task.

in Figure 11. We conclude that linear condition results in competitive performance in both PHE
and LMC in the N -chain problem and we report all exploration strategies with linear condition in
Section 5.1. Note that the x-axis in Figure 10 and Figure 11 represent the total training episodes from
m agents.

Ablation Study of Sampling Mechanism To reduce the reward gap, we adopt a better sampling
mechanism in the replay buffer with prioritized experience replay (PER). In Figure 12, parallel
learning without inter-agent communication can increase reward with PER, where the x-axis repre-
sents the total training episodes from m agents. However, centralized learning with PER improves
faster convergence with similar performance and the trends for linear condition curves are similar.
Therefore, the gap between centralized and parallel learning without communication is reduced
with PER. Note that the main experimental results in Figure 1 are based on standard experience
replay because standard sampling in linear condition has similar performance against PER with faster
training time.

K.2 Super Mario Bros

While cooperative parallel learning enhances training efficiency through data sharing, challenges
emerge when handling data from devices capturing images or audio due to privacy concerns in
real-world applications. In response, our approach extends randomized exploration strategies to a
federated reinforcement learning framework as shown in Algorithm 4, from Algorithm 1, which
incorporates parameter synchronization among Q neural networks (Line 14-19 in Algorithm 4) rather
than relying on the conventional practice of sharing agents’ transitions. Note that the synchronization

63

Table 5: Hyper-parameters used in the Super Mario Bros

Hyper-parameter PHE LMC DQN Bootstrapped
DQN

Noisy
DQN

DDQN

Discount Factor ς 0.9 0.9 0.9 0.9 0.9 0.9
Learning Rate ↽k 10↓2 3↓ 10↓4 10↓2 10↓2 10↓2 10↓2

Hidden Activation Relu Relu Relu Relu Relu Relu
Output Activation Linear Linear Linear Linear Linear Linear
No Update Jk 1 4 1 1 1 1
No Target Networks 2 1 1 4 1 1
Batch Size 32 32 32 32 32 32

follows the format as in Algorithm 1 to update Q functions with horizon h ↑ H . However, in practice,
we can directly update the weight of the neural network to reduce the communication cost.

The training process unfolds within a federated reinforcement learning framework, wherein local
updates and global aggregations are iteratively executed [37]. Specifically, each agent iterates through
multiple local updates of its value function, followed by server-mediated averaging of these functions
across all agents, constituting a form of parameter sharing. Note that the transitions are not accessible
among agents, leading us to directly synchronize all agents with parameter sharing every constant
local iteration instead of synchronization condition in (3.3). We use the same architecture for all the
experiments in the Super Mario Bros task with the preprocessed images as the input states and 7
discrete actions in action space.

Particularly, we construct 3 convolutional neural network layers with width [32, 64, 32], followed by 2
fully connected layers with the output of action space in the Q network. The detailed hyper-parameters
for Super Mario Bros task are presented in Table 5.

Algorithm 4 Unified Algorithm Framework for Randomized Exploration in Federated Learning
1: for episode k = 1, ...,K do
2: for agent m ↑ M do
3: Receive initial state s

k

m,1.
4: V

k

m,H+1(·) ≃ 0.
5: {Q

k

m,h
(·, ·)}H

h=1 ≃Randomized Exploration ϖ Algorithm 2 or Algorithm 3
6: for step h = 1, ..., H do
7: a

k

m,h
≃ argmax

a↑A Q
k

m,h
(sk

m,h
, a).

8: Receive s
k

m,h+1 and rh.
9: if Condition then

10: SYNCHRONIZE ≃ True.
11: end if
12: end for
13: end for
14: if SYNCHRONIZE then
15: for step h = H, ..., 1 do
16: Q̄

k

m
≃

1
M

∑
M

m=1 Q
k

m,h

17: Q
k

m,h
≃ Q̄

k

m,h
, ⇐m

18: end for
19: end if
20: end for

K.3 Thermal Control of Building Energy Systems

BuildingEnv encompasses the regulation of heat flow in a multi-zone building to sustain a desired
temperature setpoint. We focus on one pre-defined building called "office small" in different cities
with varying weather types, i.e., Tampa (Hot Humid), Tucson (Hot Dry), Rochester (Cold Humid),
and Great Falls (Cold Dry). Each episode is designed to span a single day, comprising 5-minute time
intervals (H = 288, ϱ = 5/60 hours).

64

Table 6: Hyper-parameters used in the building energy systems

Hyper-parameter PHE LMC DQN Bootstrapped
DQN

Noisy
DQN

DDQN

Discount Factor ς 0.99 0.99 0.99 0.99 0.99 0.99
Learning Rate ↽k 3↓ 10↓3 3↓ 10↓3 3↓ 10↓3 3↓ 10↓3 3↓ 10↓3 3↓ 10↓3

Hidden Activation Relu Relu Relu Relu Relu Relu
Output Activation Linear Linear Linear Linear Linear Linear
No Update Jk 1 8 1 1 1 1
No Target Networks 2 1 1 4 1 1
Batch Size 32 32 32 32 32 32
NN size 64↓ 64 64↓ 64 64↓ 64 64↓ 64 64↓ 64 64↓ 64

(a) Tampa (hot humid) (b) Tucson (hot dry)

(c) Rochester (cold humid) (d) Great Falls (cold dry)

Figure 14: Evaluation performance at different cities in building energy systems

Observation Space The state at time step t, denoted as s(t) ↑ RM+4, encompasses the temper-
atures Ti(t) of each zone, where i ↑ M , along with four additional properties: Q

GHI(t), Q̄p(t),
TG(t), and TE(t). Specifically, QGHI(t) represents the heat gain from solar irradiance, Q̄p(t) de-
notes the heat acquired from occupant activities, while TG(t) and TE(t) signify the ground and
outdoor environment temperatures, respectively.

Action Space The continuous version of the action a(t) ↑ [↗1, 1]M controls the heating of M
zones. However, since our randomized exploration strategies use DQN [57] as the backbone, we
adopt the multi-discrete action space defined in [85], which is a vector of action spaces. Then we
convert the multi-discrete action space to a single discrete action space with action mapping.

Reward Function The primary objective is to minimize energy consumption while ensuring the
maintenance of temperature within a specified comfort range. Therefore, the reward is penalized with
both temperature deviations and HVAC energy consumption as follows:

r(t) = ↗(1↗ ⇀)⇓a(t)⇓2 ↗ ⇀⇓T
target(t)↗ T (t)⇓2,

where T
target(t) = [T target

1 (t), T target
2 (t), ..., T target

M
(t)] are the target temperatures and T

(
t) =

[T1(t), T2(t), ..., TM (t)] are the actual zonal temperatures. The parameter ⇀ is the trade-off be-
tween the energy consumption and temperature deviation penalties.

65

We execute experiments following the united framework in Algorithm 1, synchronizing every constant
number of steps across diverse weather conditions in varying cities. The hyper-parameters we used are
in Table 6. Subsequently, we evaluate the performance of all methods in distinct cities, as illustrated
in Figure 14. Notably, our proposed random exploration strategies demonstrate a consistently higher
mean return across all cities. However, it is worth highlighting that DQN in Figure 14(c) and
Noisy-Net in Figure 14(d) exhibit lower returns compared to random actions. This outcome can be
attributed to the discrete action space configuration [85]. In addition, we observe that maintaining
thermal control of buildings is more challenging in cold weather conditions compared to hot weather
conditions.

66

	Introduction
	Preliminary
	Algorithm Design
	Unified Algorithm Framework
	Randomized Exploration Strategies

	Theoretical Analysis
	Homogeneous Parallel Linear MDPs
	Misspecified Setting

	Experiments
	N-chain
	Super Mario Bros
	Thermal Control of Building Energy Systems

	Conclusion
	Related Work
	Instantiation of the Proposed Algorithms in the Linear Function Class
	Analysis of the Communication Complexity of algo:generalframework
	Proof of the Regret Bound for CoopTS-LMC
	Supporting Lemmas
	Regret Analysis

	Proof of Supporting Lemmas in Parallel MDP Proofs with homogeneity (LMC)
	Proof of pro:gaussparam
	Proof of lem:estparaboundPHE
	Proof of lem:qbound
	Proof of lem:weightboundLMC
	Proof of lem:esterror
	Proof of lemevent
	Proof of lem:errorboundlmc
	Proof of lem:optimismlmc
	Proof of lem:coorsumphiboundPHE

	Proof of the Regret Bound for CoopTS-LMC in Misspecified Setting
	Supporting Lemmas
	Regret Analysis

	Proof of the Regret Bound for CoopTS-PHE
	Supporting Lemmas
	Regret Analysis

	Proof of Supporting Lemmas in Parallel MDP Proofs with homogeneity (PHE)
	Proof of prop:equivalenttoTS
	Proof of lem:goodeventsPHE
	Proof of lem:esterrorPHE
	Proof of lem:eventbellmanerrorPHE
	Proof of lem:optimismPHE
	Proof of lem:errorboundPHE

	Proof of the Regret Bound for CoopTS-PHE in Misspecified Setting
	Supporting Lemmas
	Regret Analysis

	Auxiliary Lemmas
	Additional Experimental Details
	N-chain
	Super Mario Bros
	Thermal Control of Building Energy Systems

