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Abstract

We study o!-dynamics Reinforcement Learn-
ing (RL), where the policy is trained on a
source domain and deployed to a distinct
target domain. We aim to solve this prob-
lem via online distributionally robust Markov
decision processes (DRMDPs), where the
learning algorithm actively interacts with the
source domain while seeking the optimal per-
formance under the worst possible dynam-
ics that is within an uncertainty set of the
source domain’s transition kernel. We pro-
vide the first study on online DRMDPs with
function approximation for o!-dynamics RL.
We find that DRMDPs’ dual formulation can
induce nonlinearity, even when the nominal
transition kernel is linear, leading to error
propagation. By designing a d-rectangular
uncertainty set using the total variation dis-
tance, we remove this additional nonlinear-
ity and bypass the error propagation. We
then introduce DR-LSVI-UCB, the first prov-
ably e”cient online DRMDP algorithm for
o!-dynamics RL with function approxima-
tion, and establish a polynomial suboptimal-
ity bound that is independent of the state and
action space sizes. Our work makes the first
step towards a deeper understanding of the
provable e”ciency of online DRMDPs with
linear function approximation. Finally, we
substantiate the performance and robustness
of DR-LSVI-UCB through di!erent numeri-
cal experiments.
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1 INTRODUCTION

The Markov decision process (MDP) is a prevalent
model in dynamic decision-making and reinforcement
learning (Puterman, 2014; Sutton and Barto, 2018).
A central challenge in employing MDPs in various
applications lies in the lack of knowledge of model
parameters, notably the transition kernels. Existing
studies mostly hinge on the assumption that the en-
vironment in which a policy is trained is identical to
that in which it is deployed. However, in practical
scenarios where this assumption is violated, standard
RL methods are prone to severe failures (Farebrother
et al., 2018; Packer et al., 2018; Zhao et al., 2020), a
phenomenon known as the sim-to-real gap. Infectious
disease control (Laber et al., 2018; Liu et al., 2023a)
exemplifies such a case wherein an agent trains poli-
cies on simulators extensively utilized in environmen-
tal studies. Nonetheless, these simulators cannot fully
capture the environmental evolution complexity, and
environmental changes may also occur over time, fur-
ther contributing to the sim-to-real gap. Another in-
stance is found in robotics learning, where slight varia-
tions between training and testing environments, such
as terrain or target parameters, may lead to task fail-
ure (Maitin-Shepard et al., 2010; Tobin et al., 2017;
Peng et al., 2018).

Learning under the sim-to-real gap can be conceptu-
alized as an o!-dynamics RL problem (Koos et al.,
2012; Wulfmeier et al., 2017; Eysenbach et al., 2020;
Jiang et al., 2021), where an agent trains a policy in
an accessible source domain, such as a simulator or the
present environment, then deploys the learned policy
in a distinct target domain, which could be the real en-
vironment the agent encounters during operation or a
future changing environment. The dynamics shift be-
tween environments necessitates a robust strategy for
policy learning in the source domain, ensuring that the
policy can work e!ectively in di!erent yet structurally
similar target domains.

Distributionally robust Markov decision process (DR-
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MDPs) (Satia and Lave Jr, 1973; Nilim and El Ghaoui,
2005; Iyengar, 2005) address the sim-to-real gap chal-
lenge by modeling the uncertainty of transition ker-
nels. It aims to learn a robust policy that performs
well under the worst-case transition kernel within the
uncertainty set defined based on the source environ-
ment (Xu and Mannor, 2006; Wiesemann et al., 2013;
Zhang et al., 2021; Yang et al., 2022; Panaganti et al.,
2022; Shi and Chi, 2022; Yang et al., 2023b; Shen
et al., 2024). Existing DRMDP research can be catego-
rized based on the assumption on the source domain:
(i) planning problems where the exact model is as-
sumed known, (ii) learning under a generative model,
and (iii) learning from o#ine datasets utilizing spe-
cific data coverage assumptions. However, in practice,
formulating and solving a planning problem is often
infeasible due to imperfect knowledge or complexity of
the source domain. Similarly, an accurate generative
model representing the source domain is usually un-
available. Additionally, most data coverage assump-
tions require the datasets have su”cient coverage of
distributions induced by the optimal policy under any
transition kernel in the uncertainty set. Since the op-
timal policy is usually unknown and there are infinite
number of transition kernels in the uncertainty set,
practical verification of data coverage assumptions is
intractable. Thus, when incremental collection of data
through active interactions with the source domain
is feasible, online algorithms without relying on ad-
ditional oracles or data coverage assumptions about
the optimal policy will be preferred. We refer to this
as the online DRMDP problem.

Another significant challenge in RL is the ubiquitous
presence of applications with arbitrarily large state
and action spaces, which require suitable function ap-
proximations to alleviate the curse of dimensionality.
Although approaches based on linear function approx-
imation have exhibited theoretical and empirical suc-
cess in numerous settings under standard MDP (Bhan-
dari et al., 2018; Modi et al., 2020; Jin et al., 2020; He
et al., 2023, 2021; Yang and Wang, 2020), DRMDP
encounters additional di”culties when combined with
linear function approximations since the dual formu-
lation in worst-case analyses may induce extra non-
linearity, even when the source domain transition ker-
nel is linear (Tamar et al., 2014; Pinto et al., 2017;
Derman et al., 2018; Mankowitz et al., 2019; Der-
man et al., 2020; Zhang et al., 2021; Badrinath and
Kalathil, 2021). Consequently, the theoretical under-
standing of online DRMDPs with function approxima-
tion remains elusive, even when the approximation is
linear. This leads to the open question:

When is it possible to design a provably e!cient
algorithm for online DRMDPs

with linear function approximation?

In this work, we provide the first analysis of online
DRMDP with linear function approximation where
an agent actively interacts with the source domain to
learn a robust policy.

Our main contributions are summarized as follows.

• We first investigate the di!erences in applying lin-
ear function approximation in DRMDPs with un-
certainty sets defined on di!erent probability di-
vergence metrics. We show that the strong dual-
ity for Chi-square or Kullback-Leibler (KL) based
DRMDPs induces additional nonlinearity which can
cause severe error amplification and regret accu-
mulation (see Remark 4.4 for more details). We
then identify a feasible setting that assumes a d-
rectangular linear DRMDP and a total variation
(TV) based uncertainty set, which permits linear
representations on the robust Q-functions, and by-
passes the error amplification and regret accumula-
tion.

• We introduce a model-free online algorithm, viz.,
DR-LSVI-UCB, based on the LSVI-UCB algorithm
in the non-robust setting (Jin et al., 2020). The de-
sign of the DR-LSVI-UCB incorporates a robust Up-
per Confidence Bonus (UCB) quantity and a trun-
cated estimation of the robust state-action value
function at the MDP’s fail state, both of which are
explicitly devised for the online DRMDP setting (re-
fer to Remark 4.5 for more details).

• We prove an average suboptimality bound for DR-
LSVI-UCB in the order of Õ(

√
H4d4/K), where H

is the horizon length, d the feature dimension, and
K the number of episodes. Our result matches the
average regret1 bound of its non-robust counterpart
LSVI-UCB (Jin et al., 2020) regarding H and K,
but is worse regarding feature dimension by a factor
of

→
d. To the best of our knowledge, this is the first

non-asymptotic suboptimality bound for online DR-
MDPs with linear function approximation, which
guarantees e”cient robust learning in o!-dynamics
RL. Interestingly, when reduced to the tabular set-
ting where d = SA with S and A being the state and
action space sizes, the average suboptimality gap of
DR-LSVI-UCB exactly matches the average regret
bound of LSVI-UCB, indicating tabular DRMDPs
with a TV uncertainty set might not be more chal-
lenging than the standard tabular MDP.

• We perform numerical experiments to illustrate the
e”cacy of DR-LSVI-UCB on a simulated linear
MDP environment and an emulated American put
option environment (Tamar et al., 2014). Our

1Since in DRMDP, we trade o! the performance in the
source domain for the robustness in the target domain, we
evaluate a robust algorithm by its suboptimality gap from
the optimal robust policy, comparable to the average regret
in standard MDP, i.e., the cumulative regret divided by K.
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results demonstrate that the policies derived by
DR-LSVI-UCB are robust against dynamics shifts,
further substantiating our theoretical findings.

2 RELATED WORK

Episodic Linear MDP Our study focuses on the
episodic linear MDP setting. Specifically, we assume
the nominal transition probability in our DRMDP ad-
mits the linear MDP structure. There has been a re-
cent surge in research on episodic linear MDPs (Yang
and Wang, 2020; Jin et al., 2020; Modi et al., 2020;
Zanette et al., 2020; Wang et al., 2020a; He et al., 2021;
Wagenmaker et al., 2022; Ishfaq et al., 2023; He et al.,
2023). The most relevant study to ours is the seminal
work of Jin et al. (2020), which introduced a model-
free online algorithm, LSVI-UCB, for standard RL.
Through a ‘Hoe!ding-type’ exploration bonus, LSVI-
UCB can actively explore the nominal environment
and achieves a Õ(

→
d3H4K) regret bound. However,

the episodic linear MDP setting still remains under-
studied in the context of DRMDPs.

DRMDPs Numerous works have extensively stud-
ied the DRMDP framework under di!erent settings.
Xu and Mannor (2006); Wiesemann et al. (2013);
Yu and Xu (2015); Mannor et al. (2016); Goyal and
Grand-Clement (2023) studied the DRMDP assum-
ing the exact environment is known, and establishing
DRMDPs as classic planning problems. Zhou et al.
(2021); Yang et al. (2022); Panaganti and Kalathil
(2022); Xu et al. (2023); Shi et al. (2023); Yang et al.
(2023a) studied the DRMDP assuming the access to a
generative model. Panaganti et al. (2022); Shi and Chi
(2022); Blanchet et al. (2023) studied the DRMDP in
the o#ine RL setting assuming strong data coverage
or concentratability conditions. Moreover, Dong et al.
(2022) studied the online DRMDP under the episodic
tabular MDP setting. They proposed a model-based
algorithm ROPO, which achieves an average subop-
timality bound of Õ(

√
H4S2A/K) under the (s, a)-

rectangular assumption. However, their method can-
not deal with settings where state space size S and
action space size A are large or infinite in practical
applications.

DRMDPs with linear function approximation

Tamar et al. (2014) first proposed to use linear func-
tion approximation to solve DRMDPs with large state
and action spaces, and provided an asymptotic con-
vergence guarantee for their sampling-based approach.
Badrinath and Kalathil (2021) proposed a model-free
online algorithm based on linear projection, and pro-
vided the corresponding asymptotic convergence guar-
antee. Recently, Ma et al. (2022) pointed out that the
nonlinearity of DRMDPs might make linear projection

fall short, resulting in poor decision-making. Ma et al.
(2022) then studied the novel d-rectangular linear DR-
MDP that naturally admits linear representations of
the robust state-action value function. They studied
the o#ine setting and proposed two value iteration
based algorithms under the uniformly well-explored
dataset assumption and the su”cient coverage of the
optimal policy assumption, respectively. Blanchet
et al. (2023) also studied the o#ine d-rectangular lin-
ear DRMDP based on the robust partial coverage as-
sumption. However, the data coverage assumptions
cannot be verified and guaranteed in practice as we
discussed in Remark 5.4. Thus, an online algorithm,
which automates the acquisition of the optimal robust
policy through actively interacting with the source do-
main, for the episodic d-rectangular linear DRMDP is
in need.

3 DISTRIBUTIONALLY ROBUST
MDP WITH LINEAR FUNCTION
APPROXIMATION

3.1 Preliminaries

A finite horizon Markov decision process can be de-
noted as MDP(S,A, H, P, r). Here S and A are the
state and action spaces, H ↑ Z+ is the horizon length,
P = {Ph}Hh=1 and r = {rh}Hh=1 are the set of tran-
sition kernels and reward functions, respectively. For
each step h ↑ [H], we denote Ph(·|s, a) as the transi-
tion probability measure over the next state if action
a is taken at state s, and rh : S ↓ A ↔ [0, 1] is the
deterministic reward function, which for simplicity is
assumed to be known.

A non-stationary Markov policy ω = {ωh}Hh=1 is a se-
quence of decision rules, where ωh : S ↔ $(A) is the
policy at step h and $(A) is the probability simplex
defined over the action space A. For any transition
kernel P and any policy ω, we define the value func-
tion and the state-action value function (viz., the Q-
function) at step h as

V ω,P

h
(s) := EP

[∑
H

t=h
rt(st, at)

∣∣sh = s,ω
]
,

Qω,P

h
(s, a) := EP

[∑
H

t=h
rt(st, at)

∣∣sh = s, ah = a,ω
]
.

As the rewards are bounded in [0, 1], thus any value
function and Q-function are bounded in [0, H].

A finite horizon distributionally robust Markov deci-
sion process (DRMDP) is formally defined by a tuple
DRMDP(S,A, H,Uω(P 0), r). Here, P 0 = {P 0

h
}H
h=1 is

the set of nominal transition kernels, and Uω(P 0) =⊗
h→[H] U

ω

h
(P 0

h
) denotes an uncertainty set centered

around the nominal transition kernel with an uncer-
tainty level ε ↗ 0. Uω

h
(P 0

h
) is often defined as a ball

centered around P 0
h

with radius ε based on di!erent
probability divergence measures (Iyengar, 2005; Yang
et al., 2022; Xu et al., 2023).
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In contrast with the standard MDP where only the
nominal transition kernel P 0 is considered, in DR-
MDPs, we consider all transition kernels within the un-
certainty set Uω(P 0). Then for h ↑ [H] and any policy
ω, we define the robust value function V ε,ω

h
: S ↔ R as

the value function under the worst possible transition
kernel within the uncertainty set:

V ω,ε

h
(s) = infP→Uω(P0) V

ω,P

h
(s), →(h, s) ↑ [H]↓ S.

Accordingly, we define the robust state-action value
function as Qε,ω

h
(s, a) = infP→Uω(P 0) Q

ε,P

h
(s, a), for

any (h, s, a) ↑ [H]↓ S ↓A.

We then define the optimal robust value function and
optimal robust state-action value function: ↘(h, s, a) ↑
[H] ↓ S ↓ A, V ϑ,ω

h
(s) = sup

ε→! V ε,ω

h
(s), Qϑ,ω

h
(s, a) =

sup
ε→! Qε,ω

h
(s, a), where % is the set of all (possibly

randomized and nonstationary) policies. Then the
optimal robust policy ωϑ = {ωϑ

h
}H
h=1, defined as the

policy that achieves the optimal robust value func-
tion, is given by ωϑ = arg sup

ε→! V ε,ω

h
(s), for any

(h, s) ↑ [H] ↓ S. Our goal is to learn the optimal
robust policy by actively interacting with the nom-
inal environment within K episodes. At the begin-
ning of episode k, the agent receives an initial state
sk1 . Denote ωk as the current policy of the agent. We

use V ϑ,ε

1 (sk1) ↔ V ω
k
,ε

1 (sk1) to measure the suboptimality
of policy ωk at episode k. Hence, we are interested
in the average suboptimality of an algorithm after K
episodes, i.e., AveSubopt(K), defined as follows

AveSubopt(K) = 1
K

∑
K

k=1

[
V ϑ,ε

1 (sk1)↔ V ω
k
,ε

1 (sk1)
]
.

3.2 d-Rectangular Linear DRMDP

In this paper, we define the uncertainty set Uω

h
(P 0

h
)

based on a linear structure of the nominal transition
kernel P 0

h
, called the linear MDP (Jin et al., 2020; Wei

et al., 2021; Wagenmaker et al., 2022; He et al., 2023).

Assumption 3.1. (Linear MDP) Given a known
state-action feature mapping ω : S ↓ A ↔ Rd sat-
isfying

∑
d

i=1 ϑi(s, a) = 1, ϑi(s, a) ↗ 0, for any
(i, s, a) ↑ [d] ↓ S ↓ A, we assume the reward func-
tion {rh}Hh=1 and nominal transition kernels {P 0

h
}H
h=1

have linear structures. Specifically, for any (h, s, a) ↑
[H]↓ S ↓A, rh(s, a) = ≃ω(s, a),εh⇐, and P 0

h
(·|s, a) =

≃ω(s, a),µ0
h
(·)⇐, where {εh}Hh=1 are known vectors with

bounded norm ⇒εh⇒2 ⇑
→
d and {µh}Hh=1 are unknown

probability measures over S.

Assumption 3.1 is slightly stronger than the linear
MDP studied in the standard RL literature. Following
similar works in DRMDPs (Ma et al., 2022; Blanchet
et al., 2023), we assume the coordinates of the fea-
ture mapping ω(·, ·) to be positive and add up to one,
which could be achieved by normalization. Meanwhile,
the factor measures {µh}Hh=1 are required to be proper
probability measures. Under these additional con-
straints, the nominal transition kernel P 0

h
(·|s, a) can

be seen as a mixture of factor distributions µh(·) with
the aggregated feature ϑ(s, a) determining the weights.

To incorporate the linear structure of P 0 into the
uncertainty set Uω

h
(P 0

h
), we adopt the notion of d-

rectangular uncertainty set (Ma et al., 2022; Goyal
and Grand-Clement, 2023). More specifically, we as-
sume Uω(P 0) is parameterized by {µ0

h
}H
h=1 and can

be decomposed into U
ε

h
(P 0

h ) =
⊗

(s,a)→S↑A U
ε

h
(s, a;µ0

h),

where U
ε

h
(s, a;µ0

h) = {
∑

d

i=1 εi(s, a)µh,i(·) : µh,i(·) ↑

U
ε

h,i
(µ0

h,i), →i ↑ [d]}, and U
ε

h,i
(µ0

h,i) is defined as

U
ε

h,i
(µ0

h,i) =
{
µ : µ ↑ ”(S), D(µ||µ0

h,i) ↗ ϑ
}
. (3.1)

Here D(·||·) is a probability divergence metric that will
be instantiated later. We remark that the factor un-
certainty sets {Uω

h,i
(µ0

h,i
)}i→[d] are independent of the

state-action pair (s, a), and also independent with each
other. As we will show in the proof of Proposition 4.3,
these attributes are essential in deriving that, for all
policies, the robust Q-functions are always linear in
the feature mapping ω(·, ·).

3.3 Robust Bellman Equation and the

Optimal Policy in DRMDPs

We show that the robust value function and the robust
Q-function defined in DRMDPs satisfy the following
robust Bellman equation. We denote [PhV ](s, a) =
Es→↑Ph(·|s,a)[V (s↓)] for simplicity.

Proposition 3.2. (Robust Bellman equation) Under
the d-rectangular linear DRMDP setting, for any nom-
inal transition kernel P 0 = {P 0

h
}H
h=1 and any station-

ary policy ω = {ωh}Hh=1, the following robust Bellman
equation holds: for any (h, s, a) ↑ [H]↓ S ↓A,

Qω,ε

h
(s, a) = rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
[PhV

ω,ε

h+1](s, a)

V ω,ε

h
(s) = Ea↓ωh(·|s)

[
Qω,ε

h
(s, a)

]
. (3.2)

Furthermore, it is well-known that the optimal (ro-
bust) value function can be achieved by a determin-
istic and stationary policy in standard MDPs (Sutton
and Barto, 2018; Agarwal et al., 2019) and tabular
DRMDPs with (s, a)-rectangular assumption (Iyengar,
2005; Nilim and El Ghaoui, 2005). Similarly, we show
that the optimal robust value function and Q-function
can be achieved by a deterministic and stationary pol-
icy ωϑ in the d-rectangular linear DRMDP.

Proposition 3.3. (Existence of the optimal policy)
Assume the nominal transition kernel P 0 satisfies As-
sumption 3.1 and the uncertainty set Uω(P 0) is defined
as in Section 3.2. Then there exists a deterministic and
stationary policy ωϑ such that V ω

ε
,ε

h
(s) = V ϑ,ε

h
(s) and

Qω
ε
,ε

h
(s, a) = Qϑ,ε

h
(s, a), for any (h, s, a) ↑ [H]↓ S ↓A.

The results in Propositions 3.2 and 3.3 have been used
in existing analyses of DRMDPs without proof (Ma
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et al., 2022; Blanchet et al., 2023). For completeness,
we provide their proofs in Appendix B. With these
results, we can safely restrict the policy class % to the
deterministic and stationary one. This leads to the
robust Bellman optimality equation:

Qϑ,ε

h
(s, a) = rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
[PhV

ϑ,ε

h+1](s, a)

V ϑ,ε

h
(s) = maxa→A Qϑ

h(s, a). (3.3)

(3.3) suggests that the optimal robust policy is greedy
with respect to the optimal robust Q-function. There-
fore, it su”ces to estimate Q↔,ω

h
to find ω↔.

3.4 DRMDPs with TV divergence

In this work, we focus on the total variation (TV) dis-
tance as the probability divergence metric employed
in defining the uncertainty set (3.1). Given any two
probability distributions P and Q, the TV divergence,
denoted by DTV (P⇒Q), can be expressed as

DTV (P↘Q) = 1/2
∫
S |P (s)↔Q(s)|ds. (3.4)

The optimization problem in (3.2) has the following
dual formulation under the TV uncertainty set.

Proposition 3.4. (Strong duality for TV (Shi et al.,
2023, Lemma 4)). Given any probability measure µ0

over S, a fixed uncertainty level ε, the uncertainty set
Uω(µ0) = {µ : µ ↑ $(S), DTV (µ||µ0) ⇑ ε}, and any
function V : S ↔ [0, H], we obtain

infµ→Uω(µ0) Es↓µV (s) = max
ϖ→[Vmin,Vmax]

{
Es↓µ0 [V (s)]ϖ

↔ϑ
(
ϖ↔mins→ [V (s↔)]ϖ

)}
, (3.5)

where [V (s)]ϖ = min{V (s),ϖ}, Vmin = mins V (s) and
Vmax = maxs V (s). Notably, the range of ϖ can be
relaxed to [0, H] without impacting the optimization.

4 ROBUST LEAST SQUARE
VALUE ITERATION WITH UCB
EXPLORATION

4.1 Linear Representation of the Robust

State-Action Value Function

Recall the strong duality in (3.5), we need to solve
the minimization problem, mins→ [V (s↓)]ϖ, which is
challenging when it is not convex with respect to s↓

and computationally ine”cient when S is large. To
overcome this issue, we make the same fail-state as-
sumption made in the function approximation setting
(Panaganti et al., 2022) and show that it is compatible
with the d-rectangular linear DRMDP.

Assumption 4.1. (Fail-state) The linear MDP has
a ‘fail state’ sf , such that for all (h, a) ↑ [H] ↓ A,
rh(sf , a) = 0, P 0

h
(sf |sf , a) = 1.

The existence of fail states is natural in many real-
world applications such as the collapse of a robot in

robotics (Panaganti et al., 2022). As another exam-
ple in the context of cancer treatments, patients could
die, or the cancer may advance further, during the
course of a finite-stage treatment process (Goldberg
and Kosorok, 2012; Zhao et al., 2018; Liu et al., 2023b),
both of which could be considered as fail states.

We show that Assumption 4.1 is compatible with the
linear MDP structure. In particular, we show that we
can extend the original d-rectangular linear DRMDP
as follows. First, we define a new feature mapping
ω̃ : S ↓A ↔ Rd+1 based on the original one:

ω̃(sf , a) = [1, 0, · · · , 0]↗, →a ↑ A,

ω̃(s, a) =
[
0,ω(s, a)↗

]↗
, →(s, a) ↑ S/{sf}↓A.

It is easy to verify that
∑

d+1
i=1 ε̃i(s, a) = 1, →(s, a) ↑ S↓A,

and ϑ̃i(s, a) ↗ 0, ↘i ↑ [d + 1]. Let ε̃h = [0,ε↗
h ]↗, and

µ̃0
h(·) = [ϱsf (·),µ

0
h(·)

↗]↗, where ϱsf is the Dirac delta
distribution with mass at sf . We can show that the
reward functions and transition kernels are still linear
based on the new notations. Then we can define the
same d-rectangular uncertainty set as in Section 3.2.
For simplicity, we assume the fail-state assumption
holds in the original linear MDP in this paper.

Remark 4.2. Under Assumption 4.1, Proposition 3.4
can be further simplified. For any function V :
S ↔ [0, H] with mins→S V (s) = V (sf ) = 0, we have
infµ→Uω(µ0) Es↑µV (s) = maxϖ→[0,H]{Es↑µ0 [V (s)]ϖ ⇓
εϖ}. Then with the fail state sf , for any (ω, h, a) ↑
%↓[H]↓A, we haveQε,ω

h
(sf , a) = 0, and V ε,ω

h
(sf ) = 0.

Now we show that the robust Q-function Qε,ω

h
(·, ·) is

linear in the feature mapping ω(·, ·) for any policy ω.

Proposition 4.3. Under Assumptions 3.1 and 4.1, for
any (ω, s, a, h) ↑ %↓S↓A↓[H], the robust Q-function
Qε,ω

h
(s, a) has a linear form as follows:

Qω,ε

h
(s, a) = ≃ω(s, a),εh + ϑω,ε

h
⇐1{s ⇒= sf},

where ϑω,ε

h
= (ςω,ε

h,1 , . . . , ς
ω,ε

h,d
)↗, ςω,ε

h,i
= maxϖ→[0,H]{

zωh,i(ϖ)↔ ϑϖ}, and zωh,i(ϖ) = Eµ
0
h,i [V ω,ε

h+1(s
↔)]ϖ.

Therefore, with the known feature mapping ω(·, ·),
it su”ces to estimate the weight vectors {ϑε,ω

h
}H
h=1

to recover the robust Q-functions. Based on Propo-
sition 4.3, we can iteratively perform backward in-
duction to estimate the robust Q-functions. Specifi-
cally, given any estimated robust Q-function at step
h+1, Qk

h+1(s, a), and estimated robust value function
V k

h+1(s) = maxa→A Qk

h+1(s, a), the one step backward
induction leads to the following linear term

〈
ω(s, a),εh + ϑε,k

h

〉
1{s ⇒= sf},

where ςω
h,i

:= maxϖ→[0,H]{zh,i(ϖ)⇓ εϖ} and zh,i(ϖ) :=

Eµ
0
h,i [V k

h+1(s
↓)]ϖ, for any i ↑ [d]. According to the lin-

ear structure defined in Assumption 3.1 on the nom-
inal transition kernel, zh,i(ϖ) is the parameter of the
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following linear formulation,
[
P0
h

[
V k

h+1

]
ϖ

]
(s, a) =

〈
ω(s, a), zh(ϖ)

〉
,

which is an expectation with respect to the nominal
transition kernel P 0

h
. Therefore, we can collect tra-

jectories {(sϱ
h
, aϱ

h
, sϱ

h+1)}
k↗1
ϱ=1 and estimate zh,i(ϖ) from

samples. In particular, we will solve the following ridge
regression problem with regularizer φ > 0,

ẑh(ϖ)= argminz→Rd

∑
k↘1
ϱ=1

([
V k

h+1(s
ϱ

h+1)
]
ϖ

↔ωϱ↗
h z

)2
+ φ↘z↘22, (4.1)

with the close-form solution being

ẑh(ϖ) =
(
#k

h

)↘1[∑k↘1
ϱ=1 ω

ϱ

h[V
k

h+1(sh+1)]ϖ
]
, (4.2)

where ωϱ

h
is a shorthand notation for ω(sϱ

h
, aϱ

h
), and

&k

h
=

∑
k↗1
ϱ=1 ω

ϱ

h
(ωϱ

h
)↘+φI. We then approximate ϑω,k

h

by ς̂ω,k
h,i

= maxϖ→[0,H]{ẑh,i(ϖ)⇓εϖ}, i ↑ [d], and obtain
the estimated robust Q-function at step h:

Qk

h(s, a) =
〈
ω(s, a),εh + ϑ̂ε,k

h

〉
1{s ⇒= sf}. (4.3)

Remark 4.4. Thanks to the linear representation of
the robust Q-function in terms of ω(·, ·) (Proposi-
tion 4.3) and the linear dependence on the value func-
tion V (s) in strong duality (Proposition 3.4), we can
apply ridge regression with the estimated value func-
tion V k

h+1(s
↔) as the target.

In comparison, the strong duality under KL uncer-
tainty set (Shi and Chi, 2022) is infµ→Uω(µ0) Es↓µV (s) =

maxϖ→[0,H/ε]{↔ϖ logEs↓µ0 [e↘V (s)/ϖ] ↔ ϖϑ}. Since the
expectation is nonlinear in the value function V (s),
we have to apply ridge regression with exp(⇓V (s)/ϖ)
as the target, and take logarithm back to the ap-
proximator (see (8) - (10) of Ma et al. (2022) for
details). This logarithm operation could amplify
the approximation error by exp(H), which leads to
the O(exp(H/↼)) term in Theorem 4.1 of Ma et al.
(2022). This amplified error could accumulate through
the backward induction and ultimately lead to an
O(exp(H2)) term in the regret bound of online DR-
MDPs. Similar argument applies to the Chi-square
divergence based uncertainty set, with the strong du-
ality infµ→Uω(µ0) Es↓µV (s) = maxϖ→[0,H]{Es↓µ0 [V (s)]ϖ ↔√

ϑVars↓µ0([V (s)]ϖ)} (Shi et al., 2023). The non-
linearity could lead to O(H) error amplification in the
regression approximation and O(HH) error accumu-
lation in the regret bound in online DRMDPs. This
justifies our choice of TV distance in the definition of
the d-rectangular uncertainty set.

4.2 UCB Exploration in DRMDP

In online DRMDPs, the ridge estimator in (4.3) is not
su”cient for finding the optimal robust policy due to

being greedy on past data that provides only partial
information of the environment. Hence, we propose to
incorporate a robust Upper Confidence Bonus (UCB)
in the Q-function estimation to explore the source en-
vironment to avoid such myopic behavior.

We present our algorithm DR-LSVI-UCB in Algo-
rithm 1. In each episode, DR-LSVI-UCB consists of
two phases. In Phase 1 (Lines 2-14), it updates the ro-
bust Q-function estimation through backward induc-
tion. Specifically, the parameters used to form the ro-
bust Q-function estimation are updated by first solving
ridge regressions according to (4.1) and then solving
optimization problems derived from Proposition 3.4.
Next, a robust UCB is added to the Q-function estima-
tion, whose exact form will be discussed in Remark 4.5.
Finally, we truncate the robust Q-function at the fail
state, by setting Qk,ω

h
(sf , a) = 0 for any a ↑ A. In

Phase 2 (Lines 15-17), it executes the greedy policy
associated with the estimated robust Q-function to ex-
plore the source domain, and collects a new trajectory.

Remark 4.5. In Line 9 of Algorithm 1, we denote
ϖϑ

i = argmax
ϖ→[0,H]{z

k

h,i(ϖ) ↔ ϑϖ} for any i ↑ [d]. Then
we compute ςε,k

h,i
= zkh,i(ϖ

ϑ

i )↔ ϑϖϑ

i , where zkh,i(ϖ
ϑ

i ) is the
i-th element of vector zk

h
(ϖϑ

i
). This immediately im-

plies that we have to solve d distinct ridge regressions
in Line 8 to obtain di!erent coordinates of ϑω,k

h
. This

further leads to our design of the robust UCB term in
Line 11, ↼

∑
d

i=1 εi(s, a)[1
↗
i (#

k

h)
↘1

1i]
1/2, which consists

of d di!erent upper confidence bonuses. This design is
motivated from the optimism principle used in stan-
dard MDPs (Azar et al., 2017; Jin et al., 2020), where
a bonus term proportional to the approximation error
is added to guide exploration. A distinctive feature of
the robust UCB term in Algorithm 1 is that the ap-
proximation error arises from d ridge regressions, due
to the d-rectangular uncertainty set.

Remark 4.6. In practice, Algorithm 1 extends to
broader scenarios, where uncertainty level ε varies
across di!erent uncertainty sets {U

ε

h,i
(µ0

h,i)}
d,H

i,h=1. We
denote ϖ = {ϑh,i}

d,H

i,h=1, where εh,i is the uncertainty
level for the i-th factor uncertainty set at step h. To
generalize Algorithm 1, we simply replace ε in Line
9 with εh,i. This updated algorithm handles varied
uncertainty levels with ϖ chosen to satisfy various ob-
jectives. Importantly, due to the bounded range of
{ϑh,i}

d,H

i,h=1 in [0, 1] and the independence of factor un-
certainty sets, heterogeneity in uncertainty level does
not impact our analysis. Therefore, the modified algo-
rithm maintains the average suboptimality bound of
the original algorithm, as depicted in Section 5.

5 MAIN THEORETICAL RESULTS

Now we present our main result for Algorithm 1.
Theorem 5.1. Under Assumptions 3.1 and 4.1, there
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Algorithm 1 DR-LSVI-UCB

Require: Parameters ↼ > 0 and φ > 0
1: for episode k = 1, · · · ,K do

2: Receive the initial state sk1 .
3: for stage h = H, · · · , 1 do

4: #k

h ⇑
∑

k↘1
ϱ=1 ω(s

ϱ

h, a
ϱ

h)ω(s
ϱ

h, a
ϱ

h)
↗ + φI

5: if h = H then

6: ϑω,k

h
⇔ 0

7: else

8: Update zk
h
(ϖ) according to (4.2).

9: ςω,k
h,i

⇔ maxϖ→[0,H]{zkh,i(ϖ)⇓ εϖ}, i ↑ [d]
10: end if

11: $k

h(s, a) ⇑ ↼
∑

d

i=1 εi(s, a)[1
↗
i (#

k

h)
↘1

1i]
1/2

12: Qk,ε

h
(s, a) ⇑ min{ω(s, a)↗(εh + ϑε,k

h
) +

$k

h(s, a), H ↔ h+ 1}+ 1{s ⇒= sf}

13: ωk

h(s) ⇑ argmax
a→A Qk,ε

h
(s, a)

14: end for

15: for stage h = 1, · · · , H do

16: Take the action ak
h
⇔ ωk

h
(sk

h
), and receive the

next state sk
h+1.

17: end for

18: end for

exists an absolute constant c > 0 such that, for any
fixed p ↑ (0, 1), if we set φ = 1 and ↼ = c · dH

→
↽ with

↽ = log(3dKH/p) in Algorithm 1, then with proba-
bility at least 1⇓ p the average suboptimality of DR-
LSVI-UCB satisfies

AveSubopt(K) ↗
√

2H3 log(3/p)/K

+ 2↼/K
∑

K

k=1

∑
H

h=1

∑
d

i=1 ε
k

h,i

√
1↗
i
(#k

h
)↘11i︸ ︷ 

d-rectangular estimation error

, (5.1)

where ϑk

h,i
is the i-th element of ωk

h
= ω(sk

h
, ak

h
) and

1i is the one hot vector with its i-th entry being 1.

The d-rectangular estimation error in (5.1) resembles
the regression error

∑
K

k=1

∑
H

h=1

√
(ωk

h
)↗(#k

h
)↘1ωk

h
in

the standard episodic linear MDP literature (Jin et al.,
2020; He et al., 2021, 2023). However, it cannot be eas-
ily bounded by the elliptical potential lemma (Abbasi-
Yadkori et al., 2011, Lemma 11), as its summands are
not quadratic terms ⇒ϑk

h
⇒(”k

h
)↑1 but weighted sum of

diagonal elements of (&k

h
)↗1, i.e.,

∑
d

i=1 ε
k

h,i[(#
k

h)
↘1]1/2

ii
.

As shown in Remark 4.5, this term primarily originates
from the necessity to solve d distinct ridge regressions
at each episode k and step h, due to the structure
of the d-rectangular uncertainty set. This represents
a unique challenge in DRMDPs analysis with linear
function approximation. Similar terms also appear in
the proof of Theorem 4.1 in Ma et al. (2022) and The-
orem 6.3 in Blanchet et al. (2023), which share our
setting. However, their final results do not explicitly
showcase this due to strong coverage assumptions on
o#ine dataset, which may not hold in practice and are
inapplicable to the o!-dynamics learning setting in our

paper, which requires active and incremental data col-
lection via interaction with the source environment.

In the following, we will instantiate the average sub-
optimality bound in Theorem 5.1 on di!erent exam-
ples. We start with the tabular MDP, where the num-
ber of states and actions are finite. We set dimension
d = |S|↓ |A| and the feature mapping ω(s, a) = e(s,a)
as the canonical basis in Rd. Then the d-rectangular
assumption degenerates to the (s, a)-rectangular as-
sumption (Goyal and Grand-Clement, 2023). It turns
out that with this specific structure of feature map-
ping ω(s, a) = e(s,a), we can bound the d-rectangular
estimation error without further assumption.

Corollary 5.2. Under the setting of tabular MDP
with |S| = S and |A| = A, there exists an absolute
constant c > 0 such that, for any fixed p ↑ (0, 1), if we
set φ and ↼ in Algorithm 1 as in Theorem 5.1, then
with probability at least 1 ⇓ p, the average subopti-
mality of DR-LSVI-UCB is at most Õ(

√
H4S3A3/K).

Note that d = SA in the tabular setting. Our re-
sult in Corollary 5.2 aligns with the average regret
bound Õ(

√
H4d3/K) of LSVI-UCB in standard MDP,

which can be derived by dividing the cumulative regret
bound in Theorem 3.1 of Jin et al. (2020) by K. In ad-
dition, Dong et al. (2022) also studied the online DR-
MDP problem under the (s, a)-rectangular assumption
and proposed an algorithm with an average subop-
timality bound of Õ(

√
H4S2A/K), improving our re-

sult by a factor of
→
SA. However, their algorithm is

model-based and only designed for (s, a)-rectangular
robust tabular MDPs, which is not extendable to the
function approximation setting. In contrast, our DR-
LSVI-UCB algorithm is model-free and amenable to
function approximation. Moreover, DR-LSVI-UCB is
designed for the more general d-rectangular linear DR-
MDPs, covering a broader scope than solely the (s, a)-
rectangular robust tabular MDPs.

Next, we consider the general d-rectangular linear DR-
MDP setting. Under an assumption on the inherent
structure of linear MDP, we have the following average
suboptimality bound.

Corollary 5.3. For all (ω, h) ↑ %↓ [H], assume that

Eε[ω(sh, ah)ω(sh, ah)↘] ↗ ϖI, (5.2)

where ϖ > 0. Then there exists an absolute constant
c > 0 such that, for any fixed p ↑ (0, 1), if we set φ
and ↼ in Algorithm 1 as in Theorem 5.1, then with
probability at least 1⇓ p the average suboptimality of
DR-LSVI-UCB is at most Õ(

√
d2H4/(ϖ2K)).

Remark 5.4. Note that ϖ represents the lower bound
of the smallest eigenvalue of Eε[ω(sh, ah)ω(sh, ah)↘],
which can be upper bounded by 1/d (Wang et al.,
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2020b). When ϖ = O(1/d), Corollary 5.3 suggests an
average suboptimality bound of Õ(

√
d4H4/K). More-

over, Blanchet et al. (2023) studied the o#ine set-
ting of d-rectangular linear DRMDP with TV uncer-
tainty set. Under the robust partial coverage assump-
tion on the o#ine dataset, their model-based algo-
rithm P2MPO achieves Õ(

√
d4H4/c†K) suboptimality

bound, where c† is a problem dependent constant re-
lated to the robust partial coverage assumption. If
we further assume c† = O(1), then the suboptimality
bound of P2MPO is the same as DR-LSVI-UCB.

In contrast with P2MPO, DR-LSVI-UCB does not re-
quire a precollected o#ine dataset satisfying the strong
coverage assumption, which is unrealistic in practice.
In particular, the robust partial coverage assumption
requires that the o#ine dataset has su”cient cover-
age of distributions induced by the optimal robust
policy and any transition kernel in the uncertainty
set. Since the optimal robust policy is unknown, and
there are infinite transition kernels in the uncertainty
set, it’s practically impossible to verify this robust
partial coverage assumption. Instead, our algorithm
employs an online incremental approach to explore
data through active interactions with the source do-
main. Additionally, we can numerically compute the
d-rectangular estimation error in (5.1), and then ac-
quire a specific value of the high probability upper
bound of the average suboptimality according to (5.1).

In addition, P2MPO is computationally intractable.
For example, even when the model space in their al-
gorithm is specified for d-rectangular linear DRMDPs,
their algorithm requires exact solution of a supremum
problem, sup

ς→V , over the value function class to ob-

tain a confidence region P̂h, and the solution of an in-
fimum problem, inf

Ph→P̂h

, over the confidence region

P̂h (see (3.1) and (6.1) in Blanchet et al. (2023) for
details). These requirements make P2MPO computa-
tionally intractable. In contrast, our proposed DR-
LSVI-UCB algorithm is not only statistically e”cient,
but also computationally e”cient.

Remark 5.5. When ϖ = O(1/d), the average sub-
optimality bound of DR-LSVI-UCB, Õ(

√
d4H4/K),

matches the average regret bound Õ(
√

d3H4/K) for
LSVI-UCB in standard linear MDPs (Jin et al., 2020,
Theorem 3.1) with respect to horizon length H and
number of episodes K. However, our result in the ro-
bust setting incurs an extra

→
d term concerning the

feature dimension. This factor emerges from the neces-
sity for Algorithm 1 to solve d distinct ridge regressions
to estimate the parameter of the d-rectangular uncer-
tainty set (refer to Lines 8, 9, 12 of Algorithm 1). An
intriguing open question remains whether this addi-
tional

→
d factor can be mitigated through algorithm

design or a more refined analysis.

6 EXPERIMENTS

In this section, we compare DR-LSVI-UCB with
its non-robust counterpart, LSVI-UCB (Jin et al.,
2020), on two o!-dynamics RL problems. All
numerical experiments were conducted on a Mac-
Book Pro with a 2.6 GHz 6-Core Intel CPU.
The implementation of our DR-LSVI-UCB algo-
rithm is available at https://github.com/panxulab/
Distributionally-Robust-LSVI-UCB.

6.1 Simulated O!-Dynamics Linear MDPs

We first construct a linear MDP as the source domain,
where the learning horizon H = 3, and the state space
is S = {x1, · · · , x5}. At each step, the action a is cho-
sen from A = {⇓1, 1}4 ↖ R4. The initial state is al-
ways x1, which can transit to x2, x4 or x5 with nonzero
probabilities, where x4 and x5 are absorbing states.
From x2, the next state can be x3, x4 or x5, and from
x3, it can only transit to x4 or x5. We design the tran-
sition probabilities and rewards such that they both
depend on ≃⇀, a⇐, which is bounded in [⇓⇒⇀⇒1, ⇒⇀⇒1] by
the definition of A, where ⇀ ↑ R4 is a hyperparameter
of the MDP instance. We verify that this MDP sat-
isfies Assumption 3.1 with d = 4. We then construct
target domains by perturbing the transition probabil-
ity at x1 of the source domain such that the divergence
is up to q ↑ (0, 1) in TV distance. Due to the space
limit, we defer more details on the construction and
verification of the source domain as well as the pertur-
bation of the target domain to Appendix A.1.

In our experiments, we consider di!erent source MDP
instances by setting ⇒⇀⇒1 ↑ {0.1, 0.2, 0.3}. To imple-
ment the uncertainty set in DR-LSVI-UCB, we use
heterogeneous uncertain levels εh,i for h ↑ [H] and
i ↑ [d] as we discussed in Remark 4.6. In particu-
lar, we set ε1,4 = 0.5 and εh,i = 0 for all other cases.
We evaluate di!erent policies based on their average
rewards achieved in the target domain, which are il-
lustrated in Figure 1. It can be seen that LSVI-UCB
outperforms DR-LSVI-UCB when the dynamics shift
is small, but significantly underperforms when the dy-
namics shift is moderate or substantial, which verifies
the robustness of our DR-LSVI-UCB. We also con-
duct an ablation study on the e!ect of di!erent values
of ε1,4 on the performance of DR-LSVI-UCB, which is
deferred to Appendix A.1 due to the space limit.

6.2 Simulated American Put Option

We then evaluate our algorithm in a simulated Amer-
ican put option problem (Tamar et al., 2014; Zhou
et al., 2021; Ma et al., 2022). There is a price model in
this problem, which is assumed to follow the Bernoulli

https://github.com/panxulab/Distributionally-Robust-LSVI-UCB
https://github.com/panxulab/Distributionally-Robust-LSVI-UCB
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(a) ↘↽↘1 = 0.1, ϑ1,4 = 0.5 (b) ↘↽↘1 = 0.2, ϑ1,4 = 0.5 (c) ↘↽↘1 = 0.3, ϑ1,4 = 0.5

Figure 1: Simulation results under di!erent source domains. The x-axis represents the perturbation level corre-
sponding to di!erent target environments. ε1,4 is the uncertainty level in our DR-LSVI-UCB algorithm.

(a) ϑ = 0.3 (b) ϑ = 0.4 (c) ϑ = 0.5

Figure 2: Results for the simulated American put option problem. ε is the uncertainty level in DR-LSVI-UCB.

distribution

sh+1 =

{
1.02sh, w.p. pu
0.98sh, w.p. 1⇓ pu,

(6.1)

where pu ↑ (0, 1) is the probability that the price goes
up in the next step. The initial price s0 is generated
uniformly from [95, 105]. At each step h, an agent can
take one of the two actions: exercising the option (ae)
or not exercising the option (ane). If exercising the
option, the agent receives a reward of max{0, 100⇓sh},
and the next state would be the exit state. If not
exercising the option, the agent receives 0 reward, and
the next state sh+1 is generated based on the Bernoulli
distribution in (6.1). We limit the number of trading
steps to H.

In order to employ linear function approximation, we
construct a feature mapping ϑ : S ↓ A ↔ Rd+1 mo-
tivated by Ma et al. (2022). Specifically, we first con-
struct the set of anchor states, {si}di=1, where s1 = 80,
si+1 ⇓ si = $ and $ = 60/d. Then we define,

ϑ(sh, a) =

{
[⇁1(sh), · · · ,⇁d(sh), 0], if a = ae
[0, · · · , 0,max{0, 100⇓ sh}], if a = ane,

where ⇁i(s) = max{0, 1 ⇓ |sh ⇓ si|/$}, i ↑ [d]. In
our simulation, we set the price-up probability of the
source domain to pu = 0.5, maximum trading steps H
to 10, and the feature dimension d to 20. Moreover,

we consider various target domains, each with a price-
up probability falling within the range of [0.15, 0.85].
We conduct experiments on di!erent uncertainty lev-
els ε for DR-LSVI-UCB, and plot the average rewards
for LSVI-UCB and DR-LSVI-UCB on target domains
in Figure 2. It can be seen that the average rewards
of robust policies are more stable over di!erent target
domains. In particular, DR-LSVI-UCB outperforms
LSVI-UCB under worst-cases when the price-up prob-
ability of the target domain is much higher than that
of the source domain.

7 CONCLUSION

We studied o!-dynamics RL under the framework of
online DRMDPs with linear function approximation.
We proposed a model-free algorithm DR-LSVI-UCB,
which learns the optimal robust policy through active
interaction with the source domain. This is the first
provably e”cient DRMDP algorithm for o!-dynamics
RL with function approximation. We established the
first non-asymptotic suboptimality bound for this set-
ting, which is independent of state and action space
sizes. We validated the performance and robustness
of DR-LSVI-UCB on carefully designed instances. It
remains an intriguing open question whether the the-
oretical bounds for online DRMDPs can match that of
standard linear MDPs. It is also of great interest to
derive lower bounds on d-rectangular linear DRMDPs
to see its fundamental limits.
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A EXPERIMENT SETUP AND ADDITIONAL RESULTS

In this section, we provide additional details and more experimental results for our numerical study in Section 6.

A.1 Simulated Linear MDP

We first describe the details about the construction of the source and target linear MDPs in Section 6.1 and
then provide the implementation of our method. We also present more ablation study on the robustness of our
method with respect to the input parameter ε1,4 which stands for the uncertainty level.

x1 x2 x3

x4

x5

(1 ↘ p)(1 ↘ ς ↘ ≃φ, a⇐)

p(1 ↘ ς ↘ ≃φ, a⇐)

ς + ≃φ, a⇐

(1 ↘ p)(1 ↘ ς ↘ ≃φ, a⇐)

p(1 ↘ ς ↘ ≃φ, a⇐)

ς + ≃φ, a⇐

1 ↘ ς ↘ ≃φ, a⇐

ς + ≃φ, a⇐

1

1

(a) The source MDP environment.

x1 x2 x3

x4

x5

(1 ↘ ς ↘ ≃φ, a⇐)

q(ς + ≃φ, a⇐)

(1 ↘ q)(ς + ≃φ, a⇐)

(1 ↘ p)(1 ↘ ς ↘ ≃φ, a⇐)

p(1 ↘ ς ↘ ≃φ, a⇐)

ς + ≃φ, a⇐

1 ↘ ς ↘ ≃φ, a⇐

ς + ≃φ, a⇐

1

1

(b) The target MDP environment.

Figure 3: The source and the target linear MDP environments. The value on each arrow represents the transition
probability. For the source MDP, there are five states and three steps, with the initial state being x1, the fail
state being x4, and x5 being an absorbing state with reward 1. The target MDP on the right is obtained by
perturbing the transition probability at the first step of the source MDP, with others remaining the same.

Construction of the linear MDP The source environment MDP is showed in Figure 3(a). We recall that
the learning horizon is H = 3, the state space is S = {xi}5i=1, and the action space is A = {⇓1, 1}4 ↖ R4. The
initial state in each episode is always x1. We construct the feature mapping ϑ : S ↓ A ↔ Rd with d = 4 as
follows:

ϑ(x1, a) = (1⇓ ϱ ⇓ ≃⇀, a⇐, 0, 0, ϱ + ≃⇀, a⇐)↘,
ϑ(x2, a) = (0, 1⇓ ϱ ⇓ ≃⇀, a⇐, 0, ϱ + ≃⇀, a⇐)↘,
ϑ(x3, a) = (0, 0, 1⇓ ϱ ⇓ ≃⇀, a⇐, ϱ + ≃⇀, a⇐)↘,
ϑ(x4, a) = (0, 0, 1, 0)↘,

ϑ(x5, a) = (0, 0, 0, 1)↘,

where the ϱ and ⇀ are hyperparameters. We then define the reward parameters ε = {εh}3h=1 as

ε1 = (0, 0, 0, 0)↘, ε2 = (0, 0, 0, 1)↘ and ε3 = (0, 0, 0, 1)↘,

and the factor distributions {µh}2h=1 as

µ1 = µ2 = ((1⇓ p)ϱx2 + pϱx4 , (1⇓ p)ϱx3 + pϱx4 , ϱx4 , ϱx5)
↘, (A.1)

where the ϱx is a Dirac measure which puts an atom on element x, and p is a hyperparameter. With these
notations, we define the linear reward functions as

rh(s, a) = ω(s, a)↘εh, ↘(h, s, a) ↑ [H]↓ S ↓A,
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(a) ↘↽↘1 = 0.1, ϑ1,4 = 0.5 (b) ↘↽↘1 = 0.2, ϑ1,4 = 0.5 (c) ↘↽↘1 = 0.3, ϑ1,4 = 0.5

(d) ↘↽↘1 = 0.1, ϑ1,4 = 0.4 (e) ↘↽↘1 = 0.2, ϑ1,4 = 0.4 (f) ↘↽↘1 = 0.3, ϑ1,4 = 0.4

(g) ↘↽↘1 = 0.1, ϑ1,4 = 0.3 (h) ↘↽↘1 = 0.2, ϑ1,4 = 0.3 (i) ↘↽↘1 = 0.3, ϑ1,4 = 0.3

Figure 4: Simulation results under di!erent source domains. The x-axis represents the perturbation level corre-
sponding to di!erent target environments. ε1,4 is the input uncertainty level for our DR-LSVI-UCB algorithm.

and the linear transition kernels as

Ph(·|s, a) = ω(s, a)↘µh(·), ↘(h, s, a) ↑ [H]↓ S ↓A.

Note that by construction, x4 is a fail state in this MDP as (i) Ph(x4|x4, a) = 1, ↘(h, a) ↑ [H] ↓ A, and
(ii) rh(x4, a) = 0, ↘(h, a) ↑ [H] ↓ A. Thus, it is easy to verify that the constructed source MDP satisfies
Assumptions 3.1 and 4.1. In our simulation, we set p = 0.001, ϱ = 0.3, ⇀ = (1/⇒⇀⇒1, 1/⇒⇀⇒1, 1/⇒⇀⇒1, 1/⇒⇀⇒1)↘
and ⇒⇀⇒1 = {0.1, 0.2, 0.3}. Next, we construct several target domains, as showed in Figure 3(b), by perturbing
the source domain. Specifically, we only perturb the factor distributions µ1 in (A.1) for the fist step of the MDP,
which is changed to

µperturbed
1 =

(
ϱx2 , ϱx3 , ϱx4 , (1⇓ q)ϱx5 + qϱx4

)↘
, (A.2)

where q is a factor that controls the perturbation level. In our simulation, we consider di!erence values of q in
the range [0, 1]. Moreover, We train policies in the source domain through 100 epochs, and test those policies by
computing the average reward in target domains through 100 epochs.

Ablation study We also conduct additional experiments to study the impact of ε1,4 on the robustness of our
algorithm. In particular, we vary the value of ε1,4 in the range {0.3, 0.4, 0.5} and set all other εh,i = 0. Results
of ablation study are showed in Figure 4.

To interpret the results, we first delve deeper into the source linear MDP in Figure 3(a). Note that x5 is an
absorbing state, and rh(x5, a) = 1, ↘(h, a) ↑ [H] ↓ A. For any (s, a, h) ↑ {x1, x2, x3, x4} ↓ A ↓ [H], we have
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rh(s, a) ⇑ ϱ + ⇒⇀⇒1 < 1. Thus, the maximum reward is obtained from transitions starting from x5, which can
then be regarded as the goal state. Thus, in the source domain, the optimal strategy at the first step is to take
action (1, 1, 1, 1), which leads to the largest transition probability, ϱ + ⇒⇀⇒1, to x5. However, in target domains,
if action (1, 1, 1, 1) is taken at the first step, it results in a probability of (1 ⇓ q)(ϱ + ⇒⇀⇒1) for transitioning to
state x5, and also a non-negligible probability of q(ϱ + ⇒⇀⇒1) for transitioning to the fail state x4. Intuitively,
when q is large enough, action (1, 1, 1, 1) loses its advantage as it with high probability could cause a failure.
Concretely, some calculation shows that when

q >
4⇓ 2(ϱ + ⇒⇀⇒1)(3⇓ ϱ ⇓ ⇒⇀⇒1)

(4⇓ 2(ϱ + ⇒⇀⇒1))
, (A.3)

the optimal action at the first step would be (⇓1,⇓1,⇓1,⇓1), otherwise action (1, 1, 1, 1) would be the optimal
action. Thus, the optimal policies learned in the source domain by the LSVI-UCB algorithm, which is non-
robust, would fail in target domains where the perturbation level q satisfies (A.3). This is consistent with our
observation for all the settings in Figure 4, where we see a significant performance drop of LSVI-UCB when the
perturbation level increases.

In contrast, the performance of DR-LSVI-UCB is more robust to the dynamics shift between the source and
target domains, as exemplified in Figure 4(a). In scenarios where the MDP instance parameter ⇀ remains the
same, such as in Figures 4(a), 4(d) and 4(g), the performance of DR-LSVI-UCB gradually becomes more robust
in the target domain as the uncertainty level, characterized by the parameter ε1,4, increases. This is because when
ε1,4 is large enough, it become more likely that the uncertainty set considered by DR-LSVI-UCB will include
the transition kernel of the target domain. This finding aligns with our theoretical analysis of the proposed
DR-LSVI-UCB algorithm.

B PROOF OF MAIN RESULTS

In this section, we provide the proofs of the robust Bellman equation, the existence of the optimal robust policy,
and the linear representation of the robust Q-function.

B.1 Proof of Proposition 3.2

We first prove the robust Bellman equation for d-rectangular linear DRMDPs. Specifically, we will prove the
following stronger statement: there exists a set of transition kernels P̃ε = {P̃ε

h
}H
h=1 satisfying P̃ε

h
↑ Uω

h
(P 0

h
),

such that

1. Robust Bellman equation holds,

V ε,ω

h
(s) = Ea↑εh(·|s)

[
Qε,ω

h
(s, a)

]
, (B.1a)

Qε,ω

h
(s, a) = rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)

[
V ε,ω

h+1(s
↓)
]
. (B.1b)

2. The following expressions for robust value function and robust Q-function hold,

V ε,ω

h
(s) = V

ε,{P̃ϑ

i
}H

i=h

h
(s), (B.2a)

Qε,ω

h
(s, a) = Q

ε,{P̃ϑ

i
}H

i=h

h
(s, a). (B.2b)

Proof. We prove this proposition by induction. First, we start at the last stage H. The conclusion holds trivially
because no transitions are involved. Suppose the conclusion holds for stage h + 1, say there exist transition
kernels {P̃ε

i
}H
i=h+1 such that

V ε,ω

h+1(s) = V
ε,{P̃ϑ

i
}H

i=h+1

h+1 (s). (B.3)

By the definition of Qε,ω

h
, we have for any (s, a) ↑ S ↓A,

Qε,ω

h
(s, a) = inf

P→Uω(P 0)
E{Pi}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]
(B.4)



Zhishuai Liu, Pan Xu

= inf
Pi→Uω

i
(P 0

i
),h≃i≃H

E{Pi}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]

= rh(s, a) + inf
Pi→Uω

i
(P 0

i
),h≃i≃H

∫

S
Ph(ds

↓|s, a)E{Pi}H

i=h+1

[
H∑

i=h+1

ri(si, ai)
∣∣∣sh+1 = s↓,ω

]

⇑ rh(s, a) + inf
Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

∫

S
Ph(ds

↓|s, a)E{P̃i}H

i=h+1

[
H∑

i=h+1

ri(si, ai)
∣∣∣sh+1 = s↓,ω

]
. (B.5)

For d-rectangular linear DRMDP, the uncertainty sets {Uω

h
(s, a;µ0

h
)}(s,a)→S⇐A are closed, and the factor uncer-

tainty sets {Uω

h,i
}H,d

h,i=1 are decoupled from the state-action pair (s, a). Thus, there exists a valid distribution P̃ε

h

such that for any (s, a) ↑ S ↓A,

P̃ε

h
(·|s, a) = arg inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

∫

S
Ph(ds

↓|s, a)E{P̃i}H

i=h+1

[
H∑

i=h+1

ri(si, ai)
∣∣∣sh+1 = s↓,ω

]
. (B.6)

Then by (B.3) and the definition of V ε,ω

h
and V ε,P

h
, we have

Qε,ω

h
(s, a) ⇑ rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

∫

S
Ph(ds

↓|s, a)V ε,{P̃ϑ

i
}H

i=h+1

h+1 (s↓) (B.7)

= rh(s, a) + inf
Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

∫

S
Ph(ds

↓|s, a)V ε,ω

h+1(s
↓) (B.8)

= rh(s, a) + inf
Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

∫

S
Ph(ds

↓|s, a) inf
Pi→Uω

i
(P 0

i
),h+1≃i≃H

V
ε,{Pi}H

i=h+1

h+1 (s↓) (B.9)

= rh(s, a) + inf
Pi→Uω

i
(P 0

i
),h≃i≃H

∫

S
Ph(ds

↓|s, a)V ε,{Pi}H

i=h+1

h+1 (s↓) (B.10)

= rh(s, a) + inf
P→Uω(P 0)

∫

S
Ph(ds

↓|s, a)V ε,{Pi}H

i=h+1

h+1 (s↓),

where (B.7) follows from (B.5) and the definition of V ε,P

h+1 , (B.8) follows from (B.3), and (B.9) follows from the
definition of V ε,ω

h+1. Note that the RHS of (B.10) equals to Qε,ω

h
(s, a). Therefore, all the inequalities are actually

equations. On the other hand, from (B.8) we have

Qε,ω

h
(s, a) = rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

∫

S
Ph(ds

↓|s, a)V ε,ω

h+1(s
↓).

This finishes the proof of Statement (B.1b) for step h.

On the other hand, by combining (B.6) and (B.5), we have

Qε,ω

h
(s, a) = E{P̃ϑ

i
}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]
= Q

ε,{P̃ϑ

i
}H

i=h

h
(s, a), (B.11)

which proves the existence of {P̃ε

i
}H
i=h

in Statement (B.2b).

Based on the existence of {P̃ε

i
}H
i=h

, next we prove Statement (B.1a) and Statement (B.2a). By the definition of
V ε,ω

h
, we have

V ε,ω

h
(s) = inf

Pi→Uω

i
(P 0

i
),h≃i≃H

E{Pi}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s,ω

]

= inf
Pi→Uω

i
(P 0

i
),h≃i≃H

∑

a→A
ωh(a|s)E{Pi}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]

⇑
∑

a→A
ωh(a|s)E{P̃ϑ

i
}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]
. (B.12)
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By applying (B.11) to (B.12), we further have

V ε,ω

h
(s) ⇑

∑

a→A
ωh(a|s)Qε,ω

h
(s, a) (B.13)

=
∑

a→A
ωh(a|s) inf

Pi→Uω

i
(P 0

i
),h≃i≃H

E{Pi}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]
(B.14)

= inf
Pi→Uω

i
(P 0

i
),h≃i≃H

∑

a→A
ωh(a|s)E{Pi}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s, ah = a,ω

]
, (B.15)

where (B.14) follows form the definition of Qε,ω

h
. Now note that the RHS of (B.15) equals to V ε,ω

h
(s). Therefore

all the inequalities are actually equations. On the other hand, by (B.13) we have

V ε,ω

h
(s) =

∑

a→A
ωh(a|s)Qε,ω

h
(s, a). (B.16)

This proves (B.1a) for stage h. By combining (B.16) with (B.11), we further have

V ε,ω

h
(s) = E{P̃ϑ

i
}H

i=h

[
H∑

i=h

ri(si, ai)
∣∣∣sh = s,ω

]
.

This proves Statement (B.2a) the V ε,ω

h
for stage h. Finally, by using an induction argument, we can finish the

proof of the Statement (B.1) and (B.2). Thus, we finish the proof of Proposition 3.2.

B.2 Proof of Proposition 3.3

We then prove the existence of the optimal robust policy for the d-rectangular linear DRMDP.

Proof. We first define a policy ω̃ = {ω̃h}Hh=1 such that for all h ↑ [H],

ω̃h(s) = argmax
a→A

{
rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)V

ϑ,ω

h+1(s)

}
. (B.17)

Next we show that ω̃ is optimal, i.e., for all (h, s) ↑ [H]↓ S,

V ε̃,ω

h
(s) = V ϑ,ω

h
(s).

We prove this by induction. For the last stage H, the conclusion holds trivially:

V ϑ,ω

H
(s) = sup

ε→!
V ε,ω

H
(s) = sup

ε→!
E
[
rH(sH , aH)|sH = s,ω

]
= max

a→A
rH(s, a) = V ε̃,ω

H
(s).

Now suppose that the conclusion hold for stage h+ 1, i.e., for all s ↑ S

V ε̃,ω

h+1(s) = V ϑ,ω

h+1(s).

By Proposition 3.2, we have

V ε̃,ω

h
(s) = Ea↑ε̃h(·|s)


Qε̃,ω

h
(s, a)



= Ea↑ε̃h(·|s)


rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)


V ε̃,ω

h+1(s
↓)


= Ea↑ε̃h(·|s)


rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)

[
V ϑ,ω

h+1(s)
]

(B.18)

= max
a→A


rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)

[
V ϑ,ω

h+1(s)
]
, (B.19)
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where (B.18) follows from the induction assumption and (B.19) follows from the definition of ω̃h in (B.17).

On the other hand, by the definition of V ϑ,ω

h
(s), for any s ↑ S, we have

V ϑ,ω

h
(s) = sup

ε→!
V ε,ω

h
(s)

= sup
ε→!

Ea↑εh(·|s)
[
Qε,ω

h
(s, a)

]
(B.20)

= sup
ε→!

Ea↑εh(·|s)


rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)

[
V ε,ω

h+1(s
↓)
]

(B.21)

⇑ sup
ε→!

Ea↑εh(·|s)


rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)

[
V ϑ,ω

h+1(s
↓)
]

(B.22)

= max
a→A

E

rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
Es→↑Ph(·|s,a)

[
V ϑ,ω

h+1(s)
]
,

where (B.20) and (B.21) follow from Proposition 3.2, (B.22) is due to the fact that V ϑ,ω

h+1(s
↓) ↗ V ε,ω

h+1(s
↓), ↘s↓ ↑ S.

Then by (B.19), we have V ϑ,ω

h
(s) ⇑ V ε,ω

h
(s), ↘s ↑ S. Trivially, we also have V ϑ,ω

h
(s) ↗ V ε,ω

h
(s) holds for all s ↑ S.

Consequently, we obtain V ϑ,ω

h
(s) = V ε,ω

h
(s), ↘s ↑ S. By using an induction argument, we finish the proof.

B.3 Proof of Proposition 4.3

Next, we prove that for any policy ω, the robust Q-function Qε,ω

h
(·, ·) is always linear with respect to the feature

mapping ω(·, ·). Before presenting the proof, we first recall and define some notions. First recall the fail state
that is denoted as sf . The feature mapping ω̃ : S ↓A ↔ Rd+1 is defined as

ω̃(sf , a) = [1, 0, · · · , 0]↘, a ↑ A,

ω̃(s, a) = [0,ω(s, a)↘]↘, ↘(s, a) ↑ S/{sf}↓A.

Accordingly, we define

ε̃h =
[
0,ε↘

h

]↘
, µ̃0

h
(·) =

[
ϱsf (·),µ0

h
(·)↘

]↘
,

where ϱsf is the delta distribution with mass at sf . Then the reward function {r̃h}Hh=1 and nominal transition

kernel P̃ 0 = {P̃ 0
h
}H
h=1 have the following structures:

r̃h(s, a) = ≃ω̃(s, a), ε̃h⇐, P̃ 0
h
(·|s, a) = ≃ω̃(s, a), µ̃0

h
(·)⇐, ↘(h, s, a) ↑ [H]↓ S ↓A. (B.23)

Given uncertainty level ε, the uncertainty set centered around the nominal transition kernel {P̃ 0
h
}H
h=1 is defined

as

Ũω(P̃ 0) =


h→[H]

Ũω

h
(P̃ 0

h
), Ũω

h
(P̃ 0

h
) =



(s,a)→S⇐A

Ũω

h
(s, a; µ̃0

h
),

Ũω

h,i
(s, a; µ̃0

h,i
) =

 d+1∑

i=1

ϑ̃i(s, a)µ̃h,i(·) : µ̃h,i ↑ Ũω

h,i
(µ̃0

h,i
), ↘i ↑ [d+ 1]


,

Ũω

h,1(µ̃
0
h,1) = ϱ(sf ), Ũω

h,i
(µ̃0

h,i
) =


µ̃h,i : µ̃h,i ↑ $(S), DTV (µ̃h,i||µ̃0

h,i
) ⇑ ε


, i ↑ [d+ 1]/{1}.

Further, we denote [xi]i→[d] as a vector with the i-th entry being xi. Using these notions, we are ready to prove
Proposition 4.3.

Proof. Based on the Proposition 3.4 and the linear MDP structure in (B.23), the robust Bellman equation can
be written as

Qε,ω

h
(s, a) = r̃h(s, a) + inf

P̃h(·|s,a)→Ũω

h
(s,a;µ̃0

h
)
E
s→↑P̃h(·|s,a)V

ε,ω

h+1(s
↓)

=

ω̃(s, a), ε̃h


+ inf

µ̃h,i→Ũω

h,i
(µ̃0

h,i
), i→[d+1]


ω̃(s, a),

[
Es→↑µ̃h,i

V ε,ω

h+1(s
↓)
]
i→[d+1]


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=


ω̃(s, a), ε̃h +


inf

µ̃h,i→Ũω

h,i
(µ̃0

h,i
)
Es→↑µ̃h,i

V ε,ω

h+1(s
↓)



i→[d+1]


(B.24)

=


ω̃(s, a), ε̃h +


max

ϖ→[0,H]


Eµ̃

0
h,i


V ε,ω

h+1



ϖ

⇓ εϖ


i→[d+1]



=

ω̃(s, a), ε̃h + ϑ̃ε,ω

h


,

where ϑ̃ε,ω

h
= [ς̃ε,ω

h,i
]i→[d+1], ς̃

ε,ω

h,i
= maxϖ→[0,H]{z̃εh,i(ϖ) ⇓ εϖ}, z̃ε

h,i
(ϖ) = Eµ̃

0
h,i [V ε,ω

h+1(s
↓)]ϖ, and (B.24) holds due

to the fact that ω̃(s, a) ↗ 0 and {µ̃h,i}i→[d+1] are independent across dimensions, and thus the infimum can be

moved elementwisely into the inner product. Note that θ̃h,1 = 0 and ς̃ε,ω
h,1 = 0, we have

Qε,ω

h
(s, a) =


ϑ(s, a),εh + ϑε,ω

h


1{s ↙= sf},

where ϑε,ω

h
= [ςε,ω

h,i
]i→[d], ς

ε,ω

h,i
= maxϖ→[0,H]{zεh,i(ϖ)⇓ εϖ}, and zε

h,i
(ϖ) = Eµ

0
h,i [V ε,ω

h+1(s
↓)]ϖ.

C PROOF OF THE MAIN RESULTS

In this section, we provide the proofs of our main theoretical results presented in Section 5.

Notation: Throughout this section, we denote value function as V k,ω

h
(s) = maxa Q

k,ω

h
(s, a), feature vector

ωk

h
= ω(sk

h
, ak

h
). For a vector x, we denote (x)j as its j-th entry. And we denote [xi]i→[d] as a vector with the

i-th entry being xi. For two d dimensional vectors a and b, we denote a ⇑ b as the fact that ai⇓ bi ⇑ 0, ↘i ↑ [d].
For a matrix A, denote φi(A) as the i-th eigenvalue of A. For two matrices A and B, we denote A ⇑ B as the
fact that B ⇓A is a positive semidefinite matrix.

C.1 Proof of Theorem 5.1

To begin with, we provide the technical lemmas that will be useful in our proof. The following concentration
lemma bounds the error of the least-squares value iteration.

Lemma C.1. Under the setting of Theorem 5.1, let cφ be the constant in our definition of ↼. There exists an
absolute constant C that is independent of cφ such that for any p ↑ [0, 1], if we let E be the event that for any
(k, h) ↑ [K]↓ [H],



k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ

⇓

P0
h


V k,ω

h+1



ϖ


(sϱ

h
, aϱ

h
)



2

(”k

h
)↑1

⇑ C · d2H2 log[3(cφ + 1)dT/p],

then P(E) ↗ 1⇓ p/3.

The following lemma states that Qk,ω

h
in Algorithm 1 can always be an upper bound of Qϑ,ω

h
with high confidence.

Lemma C.2. (UCB) Under the setting of Theorem 5.1, on the event E defined in Lemma C.1, we have

↘(s, a, h, k) ↑ S ↓A↓ [H]↓ [K], Qk,ω

h
(s, a) ↗ Qϑ,ω

h
(s, a).

Next, we present a recursive formula, which is useful in proving Theorem 5.1.

Lemma C.3. (Recursive Formula) Let ϱk,ω
h

= V k,ω

h
(sk

h
)⇓ V ε

k
,ω

h
(sk

h
), and

ζk,ω
h+1 = E

s↑Ph(·|skh,ak

h
)

[
V k,ω

h+1(s)⇓ V ε
k
,ω

h+1 (s)
]
⇓ ϱk,ω

h+1.

Then on the event defined in Lemma C.1, we have the following: for any (k, h) ↑ [K]↓ [H]:

ϱk,ω
h

⇑ ϱk,ω
h+1 + ζk,ω

h+1 + 2↼
d∑

i=1


ϑk

h,i
1↘
i
(&k

h
)↗1ϑk

h,i
1i.

Finally, we are ready to prove the main theorem.
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Proof of Theorem 5.1. Condition on the event E defined in Lemma C.1, by Lemma C.2 and Lemma C.3 we have:

AveSubopt(K) =
1

K

K∑

k=1

[
V ϑ,ω

1 (sk1)⇓ V ε
k
,ω

1 (sk1)
]

⇑ 1

K

K∑

k=1

H∑

h=1

ζk,ω
h

 ︷︷ ︸
(i)

+
2↼

K

K∑

k=1

H∑

h=1

d∑

i=1


ϑk

h,i
1↘
i
(&k

h
)↗1ϑk

h,i
1i

 ︷︷ ︸
(ii)

. (C.1)

For the first term (i), {ζk,ω
h

} is a martingale di!erence sequence satisfying |ζk,ω
h

| ⇑ H for all (k, h) ↑ [K] ↓ [H].
Therefore, by the Azuma-Hoe!ding inequality, for any t > 0, we have

P
( K∑

k=1

H∑

h=1

ζk,ω
h

> t

)
⇑ exp

(
⇓t2

2KH ·H2

)
.

Hence with probability at least 1⇓ p/3, we have

(i) =
1

K

K∑

k=1

H∑

h=1

ζk,ω
h

⇑ H

√
2H log(3/p)

K
. (C.2)

Maintaining the second term, thus we have

AveSubopt(K) ⇑ H

√
2H log(3/p)

K
+

2↼

K

K∑

k=1

H∑

h=1

d∑

i=1


ϑk

h,i
1↘
i
(&k

h
)↗1ϑk

h,i
1i. (C.3)

This completes the proof of Theorem 5.1.

In the rest of this section, we prove Corollaries 5.2 and 5.3 respectively to further bound the term (ii) in (C.1).

C.2 Proof of Corollary 5.2

Proof. To prove Corollary 5.2, it remains to bound the term (ii) in (C.1) using the structure of tabular MDP.
Under tabular MDP, We set dimension d = |S|↓ |A| and the feature mapping ω(s, a) = e(s,a) as the canonical
basis in Rd. Define

Nk

h
(s, a) =

k↗1∑

ϱ=1

1{(sϱ
h
, aϱ

h
) = (s, a)}, Nk

h
= [Nk

h
(s, a)](s,a)→S⇐A.

By the definition of feature mapping and &k

h
, we have

&k

h
=

k↗1∑

ϱ=1

ωϱ

h
(ωϱ

h
)↘ + φI = diag(Nk

h
+ φ1),

where 1 is the vector with all entries being 1. By our choice of φ, we have

(ii) =
2↼

K

K∑

k=1

H∑

h=1

1
Nk

h
(sk

h
, ak

h
) + 1

⇑ 2↼

K

H∑

h=1

K∑

k=1

1
Nk

h
(sk

h
, ak

h
)

=
2↼

K

H∑

h=1

∑

(s,a)→S⇐A

N
K

h
(s,a)∑

i=1

1→
i
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⇑ 4↼

K

H∑

h=1

∑

(s,a)→S⇐A


NK

h
(s, a) (C.4)

⇑ 4↼

K

H∑

h=1

√
SA

∑

(s,a)→S⇐A

NK

h
(s, a) (C.5)

=
4↼

K
H
→
SAK, (C.6)

where (C.4) follows from the fact that
∑

N

i=1
1⇒
i
⇑

→
N , (C.5) follows from Cauchy-Schwarz inequality. Substitute

(C.6) into (C.3) and with our choice of ↼ = cφ · dH
√
log 3dHK/p and the fact d = SA we have

AveSubopt(K) ⇑ H

√
2H log(3/p)

K
+

4cφ · SAH
√
log 3SAHK/p

K
H
→
SAK

⇑
c(SA)3/2H2

√
log 3SAHK/p→
K

,

which completes the proof.

C.3 Proof of Corollary 5.3

The proof of this corollary requires the following concentration inequality.

Lemma C.4. (Tropp, 2012, Matrix Azuma inequality) Consider a finite adapted sequence {Xk} of self-adjoint
matrices in dimension d, and a fixed sequence {Ak} of self-adjoint matrices that satisfy

Ek↗1[Xk] = 0 and X2
k
⇑ A2

k
almost surely.

Compute the variance parameter

▷2 :=


∑

k

A2
k

.

Then, for all t ↗ 0,

P

φmax

(∑

k

Xk

)
↗ t


⇑ d · e↗t

2
/8↼2

.

Proof of Corollary 5.3. Based on the proof of Theorem 5.1, it remains to bound the term (ii) in (C.1) using the
condition in (5.2). By Cauchy–Schwarz inequality we have

(ii) ·K = 2↼
K∑

k=1

H∑

h=1

d∑

i=1


ϑk

h,i
1↘
i
(&k

h
)↗1ϑk

h,i
1i

= 2↼
K∑

k=1

H∑

h=1

d∑

i=1

ϑk

h,i


1↘
i
(&k

h
)↗11i

⇑ 2↼
K∑

k=1

H∑

h=1

d∑

i=1

ϑk

h,i


φmax

(
(&k

h
)↗1

)
(C.7)

= 2↼
K∑

k=1

H∑

h=1


φmax

(
(&k

h
)↗1

)

= 2↼
K∑

k=1

H∑

h=1

√
1

φmin(&k

h
)
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⇑ 2↼
→
K

H∑

h=1

√√√√
K∑

k=1

1

φmin(&k

h
)
,

where (C.7) follows by the fact for any matrix A, φmin ⇑ Aii ⇑ φmax, where Aii is the i-th diagonal element of
A.

Next we bound φmin(&k

h
). First, fix (k, h) ↑ [K]↓ [H]. Recall that &k

h
=

∑
k↗1
ϱ=1 ω

ϱ

h
(ωϱ

h
)↘ + φI, we have

&k

h
⇓ E

[
&k

h

]
=

k↗1∑

ϱ=1

[
ωϱ

h
(ωϱ

h
)↘ ⇓ Eεϖ

[
ωϱ

h
(ωϱ

h
)↘

]]
=

k↗1∑

ϱ=1

Xϱ

h
,

where Xϱ

h
= ωϱ

h
(ωϱ

h
)↘ ⇓ Eεϖ [ωϱ

h
(ωϱ

h
)↘]. Then {Xϱ

h
} is a matrix martingale di!erence sequence. Note that

⇒ωϱ

h
(ωϱ

h
)↘⇒op ⇑ 1, then we have

⇒Xϱ

h
⇒op ⇑ ⇒ωϱ

h
(ωϱ

h
)↘⇒op + ⇒Eεϖ

[
ωϱ

h
(ωϱ

h
)↘

]
⇒op ⇑ 1 + Eεϖ

[
⇒ωϱ

h
(ωϱ

h
)↘⇒op

]
⇑ 2,

so ⇒(Xϱ

h
)2⇒op ⇑ ⇒Xϱ

h
⇒2op ⇑ 4. Then we have (Xϱ

h
)2 ⇑ 4I and ▷2 := ⇒

∑
k↗1
ϱ=1 4I⇒op = 4(k⇓ 1). By Lemma C.4, for

any tk ↗ 0 we have

P

φmax

(
⇓

k↗1∑

ϱ=1

Xϱ

h

)
↗ tk


⇑ d · e↗t

2
k
/32(k↗1).

Let tk =
√
32k log(3d/ϱ), then with probability at least 1⇓ ϱ/3, we have

k↗1∑

ϱ=1

Xϱ

h
↗ ⇓tkI.

Let ϱ = p/KH and define

E† =

{
k↗1∑

ϱ=1

Xϱ

h
↗ ⇓tkI : ↘(k, h) ↑ [K]↓ [H]

}
,

then by union bound we have P(E†) ↗ 1⇓ p/3.

By (5.2), we have

E
[
&k

h

]
=

k∑

ϱ=1

Eεϖ

[
ωϱ

h
(ωϱ

h
)↘ + φI

]
↗ ϖ(k ⇓ 1)I + φI.

Condition on E†, we have

&k

h
= &k

h
⇓ E&k

h
+ E&k

h
↗ ⇓tkI + E&k

h
.

Thus, we have

φmin(&
k

h
) ↗ max


ϖ(k ⇓ 1) + φ⇓

√
32k log(3dKH/p),φ


.

By our choice of φ, then we have

K∑

k=1

1

φmin(&k

h
)
⇑

K∑

k=1

1

max{ϖ(k ⇓ 1) + 1⇓
√
32k log(3dHK/p), 1}

(C.8)

Next, we bound the RHS of (C.8). In particular, our goal is to discuss when ϖ(k⇓1)+1⇓
√
32k log(3dHK/p) is

the larger term compared to 1 and can be lower bounded by ϖk/2. To this end, we solve the following inequality

ϖk

2
⇑ ϖ(k ⇓ 1)⇓

√
32k log(3dHK/p). (C.9)
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It turns out that when k ↗ 128
ϖ2 log 3dHK

p
, (C.9) holds. Thus, we further bound (C.8) as follows

K∑

k=1

1

φmin(&k

h
)
⇑ 128

ϖ2
log

3dHK

p
+

K∑

k=1

2

ϖ · k

⇑ 128

ϖ2
log

3dHK

p
+

2

ϖ
logK, (C.10)

where (C.10) follows from the fact that
∑

K

k=1 1/k ⇑ logK. Therefore the term (ii) can be bounded as

(ii) ⇑ 2↼
H∑

h=1

√√√√ 1

K

K∑

k=1

1

φmin(&k

h
)
⇑ 2H

↼→
K

√
128

ϖ2
log

3dHK

p
+

2

ϖ
logK. (C.11)

Finally combining (C.1), (C.2) and (C.11) and with our choice of ↼ = cφ · dH
√
log 3dKH/p, we conclude that

with probability 1⇓ p:

AveSubopt(K) ⇑ 2H
→
H log(3/p)→

K
+

2↼H→
K

√
128

ϖ2
log

3dHK

p
+

2

ϖ
logK ⇑ cdH2 log(3dHK/p)

ϖ
→
K

,

for some absolute constant c. This concludes the proof.

D PROOF OF TECHNICAL LEMMAS

D.1 Proof of Lemma C.1

In this section, we prove Lemma C.1. Before the proof, we first present several auxiliary lemmas.

The following lemma states that the linear weights in Algorithm 1 are bounded.

Lemma D.1. For any (k, h) ↑ [K]↓ [H], denote the weight wω,k

h
= εh+ϑω,k

h
in Algorithm 1, then wω,k

h
satisfies

⇒wω,k

h
⇒2 ⇑ 2H

√
dk/φ.

The following lemma presents a uniform self-normalized concentration over all value functions V within a function
class V and all parameters ϖ with the interval [0, H].

Lemma D.2. Let {xϱ}⇑ϱ=1 be a stochastic process on the state space S with corresponding filtration {Fϱ}⇑ϱ=0.

Let {ωϱ}⇑ϱ=1 be an Rd-valued stochastic process with ωϱ ↑ Fϱ↗1, and ⇒ωϱ⇒ ⇑ 1. Let &k = φI +
∑

k↗1
ϱ=1 ωϱω↘

ϱ
,

then for any ϱ > 0, with probability at least 1 ⇓ ϱ, for all k ↗ 0, any ϖ ↑ [0, H] and any V ↑ V such that
sup

x
|V (x)| ⇑ H, we have


k∑

ϱ=1

ωϱ

[
V (xϱ )

]
ϖ
⇓ E

[[
V (xϱ )

]
ϖ
|Fϱ↗1

]
2

”↑1
k

⇑ 8H2


d

2
log

k + φ

φ
+ log

N↽1

ϱ
+ log

N↽2

ϱ



+
16k2◁21

φ
+

8k2◁22
φ

,

where N↽1 is the ◁1 covering number of the interval [0, H] with respect to the distance dist(ϖ1,ϖ2) = |ϖ1 ⇓ ϖ2|,
and N↽2 is the ◁2 covering number of V with respect to the distance dist(V1, V2) = sup

x
|V1(x)⇓ V2(x)|.

Lemma D.3. (Covering number of the function class V) Let V denote a class of functions mapping from S to
R with the following parametric form

V (·) = min


max

a


w↘ω(·, a) + ↼

d∑

i=1


ϑi(·, a)1↘

i
&↗1ϑi(·, a)1i


, H


,

where the parameters (w,↼,&,ϖ) satisfy ⇒w⇒ ⇑ L, ↼ ↑ [0, B], φmin(&) ↗ φ and ϖ ↑ [0, H]. Assume ⇒ω(s, a)⇒ ⇑
1 for all (s,a) pairs, and let N↽ be the ◁-covering number of V with respect to the distance dist(V1, V2) =
sup

x
|V1(x)⇓ V2(x)|. Then

logN↽ ⇑ d log(1 + 4L/◁) + d2 log
[
1 + 8d1/2B2/(φ◁2)

]
.
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Lemma D.4. (Vershynin, 2018, Covering number of an interval) Denote the ◁-covering number of the closed
interval [a, b] for some real number b > a with respect to the distance metric d(ϖ1,ϖ2) = |ϖ1 ⇓ ϖ2| as N↽([a, b]).
Then we have N↽([a, b]) ⇑ 3(b⇓ a)/◁.

Proof of Lemma C.1. For all (k, h) ↑ [K]↓[H], by Lemma D.1 we have ⇒wω,k

h
⇒ ⇑ 2H

√
dk/φ. By the construction

of &k

h
, the minimum eigenvalue of &k

h
is lower bounded by φ. By combining Lemmas D.2 to D.4, for any fix ◁ > 0

, set ◁1 = ◁2 = ◁, we have



k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ

⇓

P0
h


V k,ω

h+1



ϖ


(sϱ

h
, aϱ

h
)



2

(”k

h
)↑1

⇑ 4H2


d

2
log

k + φ

φ
+ d log

(
1 +

8H
→
dk

◁
→
φ

)
+ d2 log

(
1 +

8d1/2↼2

◁2φ

)
+ log

3H

◁
+ log

3

p


+

24k2◁2

φ
. (D.1)

In Algorithm 1, we choose parameters φ = 1 and ↼ = cφdH↽, where cφ is an absolute constant. Finally, picking
◁ = dH/k, by (D.1), there exists an absolute C > 0 that is independent of cφ such that



k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ

⇓

P0
h


V k,ω

h+1



ϖ


(sϱ

h
, aϱ

h
)



2

(”k

h
)↑1

⇑ C · d2H2 log
3(cφ + 1)dKH

p
,

which completes the proof.

D.2 Proof of Lemma C.2

Before the proof of Lemma C.2, we present a lemma bounding the di!erence between the value function main-
tained in Algorithm 1 (without bonus) and the true value function of any policy ω.

Lemma D.5. For any fixed policy ω, on the event E defined in Lemma C.1, we have for all (s, a, h, k) ↑
S/{sf}↓A↓ [H]↓ [K] that:

≃ω(s, a),εh + ϑω,k

h
⇐ ⇓Qε,ω

h
(s, a) = inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

[
PhV

k,ω

h+1

]
(s, a)

⇓ inf
Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

[
PhV

ε,ω

h+1

]
(s, a) +$k

h
(s, a),

for some $k

h
(s, a) that satisfies |$k

h
(s, a)| ⇑ ↼

∑
d

i=1


ϑi(s, a)1↘

i
(&k

h
)↗1ϑi(s, a)1i.

Proof of Lemma C.2. We prove this lemma by induction. Starting at step H ⇓ 1. Since V k,ω

H
(s) = V ϑ,ω

H
(s) =

maxa rH(s, a), by Lemma D.5 we have

∣∣ω(s, a),εH↗1 + ϑω,k

H↗1


⇓Qϑ,ω

H↗1(s, a)
∣∣ ⇑ ’k

H↗1(s, a),

where ’k

H↗1(s, a) is the bonus at step H ⇓ 1 used in Algorithm 1. Therefore, we know

Qk,ω

H↗1 = min


ω(s, a),εH↗1 + ϑω,k

H↗1


+ ’k

H↗1(s, a), H

↗ Qϑ,ω

H↗1(s, a).

Suppose the statement holds at stage h+ 1, Qk,ω

h+1(s, a) ↗ Qϑ,ω

h+1(s, a) for any (s, a) ↑ S ↓A, then we have

V k,ω

h+1(s) = Qk,ω

h+1(s,ω
k

h+1(s)) ↗ Qk,ω

h+1(s,ω
ϑ

h+1(s)) ↗ Qϑ,ω

h+1(s,ω
ϑ

h+1(s)) = V ϑ,ω

h+1(s), ↘s ↑ S,

where the first inequality holds by the fact that ωk

h+1 is the greedy policy with respect to Qk,ω

h+1, and the second

inequality holds by the induction assumption that Qk,ω

h+1(s, a) ↗ Qϑ,ω

h+1(s, a), ↘(s, a) ↑ S ↓A. Thus, we have

inf
Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

[
PhV

k,ω

h+1

]
(s, a)⇓ inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

[
PhV

ϑ,ω

h+1

]
(s, a) ↗ 0. (D.2)
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Again by Lemma D.5 we have
∣∣∣

ω(s, a),εh + ϑω,k

h


⇓Qϑ,ω

h
(s, a)⇓

(
inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

[
PhV

k,ω

h+1

]
(s, a)⇓ inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)

[
PhV

ϑ,ω

h+1

]
(s, a)

)∣∣∣

⇑ ↼
d∑

i=1


ϑi(s, a)1↘

i
(&k

h
)↗1ϑi(s, a)1i.

By (D.2) we have

Qk,ω

h
(s, a) = min


ω(s, a),εh + ϑω,k

h


+ ’k

h
(s, a), H ⇓ h+ 1


↗ Qϑ,ω

h
(s, a),

which concludes the proof.

D.3 Proof of Lemma C.3

Proof. By Algorithm 1 and the definition of ωk, we have

ϱk,ω
h

= V k,ω

h
(sk

h
)⇓ V ε

k
,ω

h
(sk

h
) = Qk,ω

h
(sk

h
, ak

h
)⇓Qε

k
,ω

h
(sk

h
, ak

h
).

By Lemma D.5 we have

ϱk,ω
h

⇑ inf
Ph(·|skh,ak

h
)→Uω

h
(sk

h
,a

k

h
;µ0

h
)

[
PhV

k,ω

h+1

]
(sk

h
, ak

h
)⇓ inf

Ph(·|skh,ak

h
)→Uω

h
(sk

h
,a

k

h
;µ0

h
)

[
PhV

ε
k
,ω

h+1

]
(sk

h
, ak

h
)

+ 2↼
d∑

i=1


ϑk

h,i
1↘
i
(&k

h
)↗1ϑk

h,i
1i. (D.3)

For the di!erence on the RHS, we have

inf
Ph(·|skh,ak

h
)→Uω

h
(sk

h
,a

k

h
;µ0

h
)

[
PhV

k,ω

h+1

]
(sk

h
, ak

h
)⇓ inf

Ph(·|skh,ak

h
)→Uω

h
(sk

h
,a

k

h
;µ0

h
)

[
PhV

ε
k
,ω

h+1

]
(sk

h
, ak

h
)

=


ω(sk

h
, ak

h
),


max

ϖi→[0,H]


Eµ

0
h,i

[
V k,ω

h+1(s)
]
ϖi

⇓ εϖi



i→[d]



⇓

ω(sk

h
, ak

h
),


max

ϖi→[0,H]


Eµ

0
h,i

[
V ε

k
,ω

h+1 (s)
]
ϖi

⇓ εϖi



i→[d]



⇑

ω(sk

h
, ak

h
),


max

ϖi→[0,H]


Eµ

0
h,i

[
V k,ω

h+1(s)
]
ϖi

⇓ Eµ
0
h,i

[
V ε

k
,ω

h+1 (s)
]
ϖi



i→[d]


.

By Lemma C.2, we have for all s ↑ S,

V k,ω

h+1(s) = Qk,ω

h+1(s,ω
k

h+1(s)) ↗ Qk,ω

h+1(s,ω
ϑ

h+1(s)) ↗ Qϑ,ω

h+1(s,ω
ϑ

h+1(s)).

Since ωϑ is the greedy policy with respect to Qϑ,ω

h+1, we have

V k,ω

h+1(s) ↗ Qϑ,ω

h+1(s,ω
k

h+1(s)) ↗ Qε
k
,ω

h+1 (s,ω
k

h+1(s)) = V ε
k
,ω

h+1 (s).

Then we have,

inf
Ph(·|skh,ak

h
)→Uω

h
(sk

h
,a

k

h
;µ0

h
)

[
PhV

k,ω

h+1

]
(sk

h
, ak

h
)⇓ inf

Ph(·|skh,ak

h
)→Uω

h
(sk

h
,a

k

h
;µ0

h
)

[
PhV

ε
k
,ω

h+1

]
(sk

h
, ak

h
)

⇑

ω(sk

h
, ak

h
),Eµ0

h

[
V k,ω

h+1(s)⇓ V ε
k
,ω

h+1 (s)
]

=
[
Ph

[
V k,ω

h+1 ⇓ V ε
k
,ω

h+1

]]
(sk

h
, ak

h
)

=
[
Ph

[
V k,ω

h+1 ⇓ V ε
k
,ω

h+1

]]
(sk

h
, ak

h
)⇓

[
V k,ω

h+1(s
k

h+1)⇓ V ε
k
,ω

h+1 (sk
h+1)

]
+
[
V k,ω

h+1(s
k

h+1)⇓ V ε
k
,ω

h+1 (sk
h+1)

]

= ζk,ω
h+1 + ϱk,ω

h+1. (D.4)

Then we complete the proof by substituting (D.4) into (D.3).
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E PROOF OF SUPPORTING LEMMAS

In this section, we provide the proofs of the supporting lemmas we used in Appendix D.

E.1 Proof of Lemma D.1

The proof of Lemma D.1 will use the following fact.

Lemma E.1. (Jin et al., 2020, Lemma D.1) Let &t = φI +
∑

t

i=1 ωiω↘
i
, where ωi ↑ Rd and φ > 0. Then:

t∑

i=1

ω↘
i
(&t)

↗1ωi ⇑ d.

Proof of Lemma D.1. Denote ϖi = argmax
ϖ→[0,H]{zkh,i(ϖ)⇓ εϖ}, i ↑ [d]. For any vector v ↑ Rd, we have

∣∣v↘wω,k

h

∣∣ =

∣∣∣∣∣v
↘εh + v↘


max

ϖ→[0,H]
{zk

h,i
(ϖ)⇓ εϖ}



i→[d]

∣∣∣∣∣

⇑
∣∣v↘εh

∣∣+

∣∣∣∣∣v
↘


max
ϖ→[0,H]

{zk
h,i

(ϖ)⇓ εϖ}


i→[d]

∣∣∣∣∣

⇑
→
d⇒v⇒2 +H⇒v⇒1 +

∣∣∣∣∣v
↘
(

(&k

h
)↗1

k↗1∑

ϱ=1

ωϱ

h
[max

a

Qk,ω

h+1(s
ϱ

h+1, a)]ϖi

)

i



i→[d]

∣∣∣∣∣ (E.1)

⇑
→
d⇒v⇒2 +H

→
d⇒v⇒2 +

√√√√
 k↗1∑

ϱ=1

v↘(&k

h
)↗1v

 k↗1∑

ϱ=1

(ωϱ

h
)↘(&k

h
)↗1(ωϱ

h
)


·H (E.2)

⇑ 2H⇒v⇒2
√
dk/φ. (E.3)

We note that the term [((&k

h
)↗1

∑
k↗1
ϱ=1 ω

ϱ

h
[maxa Q

k,ω

h+1(s
ϱ

h+1, a)]ϖi
)i]i→[d] in (E.1) is constructed by first taking out

the i-th coordinate of the ridge solution vector, (&k

h
)↗1

∑
k↗1
ϱ=1 ω

ϱ

h
[maxa Q

k,ω

h+1(s
ϱ

h+1, a)]ϖi
↑ Rd, ↘i ↑ [d], and then

concatenating all d values into a vector. Inequality (E.1) is due to the fact that ε ⇑ 1, (E.2) is due to the fact
that Qk,ω

h
⇑ H, and (E.3) is due to Lemma E.1 and the fact that the minimum eigenvalue of &k

h
is lower bounded

by φ. The remainder of the proof follows from the fact that ⇒wω,k

h
⇒2 = maxv:⇓v⇓2=1 |v↘wω,k

h
|.

E.2 Proof of Lemma D.2

The proof of Lemma D.2 requires the following results on the concentration of self-normalized processes.

Lemma E.2 (Concentration of Self-Normalized Processes). (Abbasi-Yadkori et al., 2011, Theorem 1) Let {◁t}⇑t=1

be a real-valued stochastic process with corresponding filtration {Ft}⇑t=0. Let ◁t|Ft↗1 be mean-zero and ▷-
subGaussian; i.e. E[◁t|Ft↗1] = 0, and

↘φ ↑ R, E[e⇀↽t |Ft↗1] ⇑ e⇀
2
↼
2
/2.

Let {ωt}⇑t=1 be an Rd-valued stochastic process where ϑt is Ft↗1 measurable. Assume &0 is a d ↓ d positive
definite matrix, and let &t = &0 +

∑
t

s=1 ωsω↘
s
. Then for any ϱ > 0, with probability at least 1⇓ ϱ, we have for

all t ↗ 0: 
t∑

s=1

ωs◁s


2

”↑1
t

⇑ 2▷2 log


det(&t)1/2 det(&0)↗1/2

ϱ


.

Proof of Lemma D.2. For any V ↑ V and ϖ ↑ [0, H], we know there exists a ϖ̃ in the ◁1-covering and a Ṽ in the
◁2 covering such that

V = Ṽ +$V , sup
x

|$V (x)| ⇑ ◁,

ϖ = ϖ̃+$ϖ, |$ϖ| ⇑ ◁.
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This gives the following decomposition:


k∑

ϱ=1

ωϱ

[
V (xϱ )

]
ϖ
⇓ E

[[
V (xϱ )

]
ϖ
|Fϱ↗1

]
2

”↑1
k

⇑ 2


k∑

ϱ=1

ωϱ

[
Ṽ (xϱ )

]
ϖ
⇓ E

[[
Ṽ (xϱ )

]
ϖ
|Fϱ↗1

]
2

”↑1
k

+ 2


k∑

ϱ=1

ωϱ

[
V (xϱ )

]
ϖ
⇓
[
Ṽ (xϱ )

]
ϖ
⇓ E

[[
V (xϱ )

]
ϖ
⇓
[
Ṽ (xϱ )

]
ϖ
|Fϱ↗1

]
2

”↑1
k

⇑ 4


k∑

ϱ=1

ωϱ

[
Ṽ (xϱ )

]
ϖ̃
⇓ E

[[
Ṽ (xϱ )

]
ϖ̃
|Fϱ↗1

]
2

”↑1
k

+ 4


k∑

ϱ=1

ωϱ

[
Ṽ (xϱ )

]
ϖ
⇓
[
Ṽ (xϱ )

]
ϖ̃
⇓ E

[[
Ṽ (xϱ )

]
ϖ
⇓
[
Ṽ (xϱ )

]
ϖ̃
|Fϱ↗1

]
2

”↑1
k

+ 2


k∑

ϱ=1

ωϱ

[
V (xϱ )

]
ϖ
⇓
[
Ṽ (xϱ )

]
ϖ
⇓ E

[[
V (xϱ )

]
ϖ
⇓
[
Ṽ (xϱ )

]
ϖ
|Fϱ↗1

]
2

”↑1
k

.

We can apply Lemma E.2 and a union bound to the first term, and the second and the third term can be bounded
by 16k2◁21/φ and 8k2◁22/φ, respectively. Therefore we complete the proof.

E.3 Proof of Lemma D.3

The proof of Lemma D.3 will use the following fact.

Lemma E.3. (Jin et al., 2020, Covering Number of Euclidean Ball) For any ◁ > 0, the ◁-covering number of
the Euclidean ball in Rd with radius R > 0 is upper bounded by (1 + 2R/◁)d.

Proof of Lemma D.3. The argument is similar to the proof of Lemma D.6 in Jin et al. (2020). Denote A = ↼2&↗1,
so we have

V (·) = min


max

a


w

↘ω(·, a) +
d∑

i=1


ϑi(·, a)1↘

i
Aϑi(·, a)1i


, H


, (E.4)

for ⇒w⇒ ⇑ L and ⇒A⇒ ⇑ B2φ↗1. For any two functions V1, V2 ↑ V, let them take the form in (E.4) with
parameters (w1, A1) and (w2, A2), respectively. Then since both min{·, H} and maxa are contraction maps, we
have

dist(V1, V2) ⇑ sup
x,a

∣∣∣∣


w

↘
1 ω(x, a) +

d∑

i=1


ϑi(x, a)1↘

i
A1ϑi(x, a)1i


⇓

w

↘
2 ω(x, a) +

d∑

i=1


ϑi(x, a)1↘

i
A2ϑi(x, a)1i

∣∣∣∣

⇑ sup
ω:⇓ω⇓≃1

∣∣∣∣


w

↘
1 ω+

d∑

i=1


ϑi1

↘
i
A1ϑi1i


⇓

w

↘
2 ω+

d∑

i=1


ϑi1

↘
i
A2ϑi1i

∣∣∣∣

⇑ sup
ω:⇓ω⇓≃1

∣∣(w1 ⇓w2)
↘ω

∣∣+ sup
ω:⇓ω⇓≃1

d∑

i=1


ϑi1

↘
i
(A1 ⇓A2)ϑi1i (E.5)

⇑ ⇒w1 ⇓w2⇒+
√
⇒A1 ⇓A2⇒ sup

ω:⇓ω⇓≃1

d∑

i=1

⇒ϑi1i⇒

⇑ ⇒w1 ⇓w2⇒+
√
⇒A1 ⇓A2⇒F , (E.6)

where (E.5) follows from triangular inequlaity and the fact that |
→
x⇓→

y| ⇑
√
|x⇓ y|, ↘x, y ↗ 0. For matrices,

⇒ · ⇒ and ⇒ · ⇒F denote the matrix operator norm and Frobenius norm respectively.



Zhishuai Liu, Pan Xu

Let Cw be an ◁/2-cover of {w ↑ Rd|⇒w⇒2 ⇑ L} with respect to the 2-norm, and CA be an ◁2/4-cover of
{A ↑ Rd⇐d|⇒A⇒F ⇑ d1/2B2φ↗1} with respect to the Frobenius norm. By Lemma E.3, we know:

∣∣Cw
∣∣ ⇑

(
1 + 4L/◁

)d
,

∣∣CA
∣∣ ⇑

[
1 + 8d1/2B2/(φ◁2)

]d2

.

By (E.6), for any V1 ↑ V, there exists w2 ↑ Cw and A2 ↑ CA such that V2 parametrized by (w2, A2) satisfies
dist(V1, V2) ⇑ ◁. Hence, it holds that N↽ ⇑ |Cw| · |CA|, which leads to

logN↽ ⇑ log |Cw|+ log |CA| ⇑ d log(1 + 4L/◁) + d2 log
[
1 + 8d1/2B2/(φ◁2)

]
.

This concludes the proof.

E.4 Proof of Lemma D.5

Proof. For all (s, a, h) ↑ S/{sf}↓A↓ [H], we have

Qε,ω

h
(s, a) = ≃ω(s, a),εh + ϑε,ω

h
⇐ = rh(s, a) + inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)
[PhV

ε,ω

h+1](s, a).

This gives

(εh + ϑω,k

h
)⇓ (εh + ϑε,ω

h
) = ϑω,k

h
⇓ ϑε,ω

h
= ϑω,k

h
⇓ ϑ̃k,ω

h ︷︷ ︸
I

+ ϑ̃k,ω

h
⇓ ϑε,ω

h ︷︷ ︸
II

, (E.7)

where ϑ̃k,ω

h
=

[
ς̃k,ω
h,i

]
i→[d]

, and ς̃k,ω
h,i

= maxϖ→[0,H]


Eµ

0
h,i

[
V k,ω

h+1(s)
]
ϖ
⇓ εϖ


. In what follows, we will bound these

two terms separately.

For term I in (E.7), we have

ϑω,k

h
⇓ ϑ̃k,ω

h
⇑


max

ϖ→[0,H]

 ⊋Eµ
0
h,i


V k,ω

h+1(s)


ϖ

⇓ Eµ
0
h,i


V k,ω

h+1(s)


ϖ



i→[d]
.

Denote ϖk

i
= argmax

ϖ→[0,H]

 ⊋Eµ
0
h,i

[
V k,ω

h+1(s)
]
ϖ
⇓ Eµ

0
h,i

[
V k,ω

h+1(s)
]
ϖ


, i = 1, · · · , d. Then we have

ϑω,k

h
⇓ ϑ̃k,ω

h

⇑
((

&k

h

)↗1
k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)



ϖ
k

i

)

i

⇓
(
Eµ0

h


V k,ω

h+1(s)


ϖ
k

i

)

i



i→[d]

=

(
⇓ φ

(
&k

h

)↗1Eµ0
h


V k,ω

h+1(s)


ϖ
k

i

)

i

+

((
&k

h

)↗1
k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ
k

i

⇓

P0
h


V k,ω

h+1



ϖ
k

i


(sϱ

h
, aϱ

h
)

)

i



i→[d]

.

(E.8)

For the first term on the RHS of (E.8),

∣∣∣∣


ω(s, a),

(
⇓ φ

(
&k

h

)↗1Eµ0
h


V k,ω

h+1(s)


ϖ
k

i

)

i



i→[d]

∣∣∣∣

=

∣∣∣∣
d∑

i=1

ϑi(s, a)1
↘
i
(⇓φ)

(
&k

h

)↗1Eµ0
h


V k,ω

h+1(s)


ϖ
k

i

∣∣∣∣

⇑ φ
d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i ·

E
µ0

h


V k,ω

h+1(s)


ϖ
k

i


(”k

h
)↑1

⇑
→
φH

d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i, (E.9)
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where 1i is the vector with the i-th entry being 1 and else being 0. The first inequality holds due to the Cauchy-
Schwarz inequality. For the second term on the RHS of (E.8), given the event E defined in Lemma C.1 we
have,

∣∣∣∣


ω(s, a),

(
(&k

h
)↗1

k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ
k

i

⇓

P0
h


V k,ω

h+1



ϖ
k

i


(sϱ

h
, aϱ

h
)

)

i



i→[d]

∣∣∣∣

=

∣∣∣∣
d∑

i=1

ϑi(s, a)1
↘
i
(&k

h
)↗1

k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ
k

i

⇓

P0
h


V k,ω

h+1



ϖ
k

i


(sϱ

h
, aϱ

h
)

∣∣∣∣

⇑
d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i ·


k↗1∑

ϱ=1

ωϱ

h


V k,ω

h+1(s
ϱ

h+1)


ϖ
k

i

⇓

P0
h


V k,ω

h+1



ϖ
k

i


(sϱ

h
, aϱ

h
)


(”k

h
)↑1

⇑ C · dH→
0

d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i, (E.10)

for an absolute constant C independent of cφ , and 0 = log[3(cφ + 1)dT/p]. Combining (E.8), (E.9) and (E.10),
we have


ω(s, a),ϑω,k

h
⇓ ϑ̃k,ω

h


⇑ c · dH→

0
d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i,

for an absolute constant c independent of cφ . On the other hand, we can similarly deduce ≃ω(s, a), ϑ̃k,ω

h
⇓ϑω,k

h
⇐ ⇑

c · dH→
0
∑

d

i=1


ϑi(s, a)1↘

i
(&k

h
)↗1ϑi(s, a)1i. Thus, we have

∣∣≃ω(s, a),ϑω,k

h
⇓ ϑ̃k,ω

h
⇐
∣∣ ⇑ c · dH→

0
d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i. (E.11)

For term II in (E.7), we have


ω(s, a), ϑ̃k,ω

h
⇓ ϑε,ω

h


= inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)


PhV

k,ω

h+1


(s, a)⇓ inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)


PhV

ε,ω

h+1


(s, a).

Finally, since ≃ω(s, a),εh +ϑω,k

h
⇐⇓Qε,ω

h
(s, a) = ≃ω(s, a),ϑω,k

h
⇓ ϑ̃k,ω

h
+ ϑ̃k,ω

h
⇓ϑε,ω

h
⇐, by our choice of φ and (E.11)

we have
∣∣∣∣

ω(s, a),εh + ϑω,k

h


⇓Qε,ω

h
(s, a)⇓

(
inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)


PhV

k,ω

h+1


(s, a)⇓ inf

Ph(·|s,a)→Uω

h
(s,a;µ0

h
)


PhV

ε,ω

h+1


(s, a)

)∣∣∣∣

=
∣∣ω(s, a),ϑω,k

h
⇓ ϑ̃k,ω

h

∣∣

⇑ c · dH→
0

d∑

i=1


ϑi(s, a)1↘

i

(
&k

h

)↗1
ϑi(s, a)1i.

Finally, to prove this lemma, we only need to show that there exists a choice of absolute value cφ so that

c↓

↽+ log(cφ + 1) ⇑ cφ

→
↽, (E.12)

where ↽ = log 3dT/p. We know ↽ ↑ [log 3,∝) by its definition, and c↓ is an absolute constant independent of cφ .
Therefore we can pick an absolute constant cφ which satisfies c↓

√
log 3 + log(cφ + 1) ⇑ cφ

→
log 3. This choice of

cφ will ensure (E.12) hold for all ↽ ↑ [log 3,∝), which finishes the proof.
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