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Abstract

Gene expression can be highly plastic in response to environmental variation.
However, we know little about how expression plasticity is shaped by natural se-
lection and evolves in wild and domesticated species. We used genotypic selection
analysis to characterize selection on drought-induced plasticity of over 7,500 leaf
transcripts of 118 rice accessions (genotypes) from different environmental condi-
tions grown in a field experiment. Gene expression plasticity was neutral for most
gradually plastic transcripts, but transcripts with discrete patterns of expression
showed stronger selection on expression plasticity. Whether plasticity was adaptive
and co-gradient or maladaptive and counter-gradient varied among varietal groups.
No transcripts that experienced selection for plasticity across environments showed
selection against plasticity within environments, indicating a lack of evidence for
costs of adaptive plasticity that may constrain its evolution. Selection on expression
plasticity was influenced by degree of plasticity, transcript length and gene body
methylation. We observed positive selection on plasticity of co-expression modules
containing transcripts involved in photosynthesis, translation and responsiveness to
abiotic stress. Taken together, these results indicate that patterns of selection on ex-
pression plasticity were context-dependent and likely associated with environmental
conditions of varietal groups, but that the evolution of adaptive plasticity would likely
not be constrained by opposing patterns of selection on plasticity within compared
to across environments. These results offer a genome-wide view of patterns of selec-

tion and ecological constraints on gene expression plasticity and provide insights into
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1 | INTRODUCTION

Many organisms have the ability to express trait plasticity, and
this ability has long been recognized as potentially advantageous
in response to spatial and temporal environmental variation
(Alpert & Simms, 2002). A trait is considered plastic when the
same genotype can express multiple phenotypes in response to
environmental variation (Nicotra et al., 2010; Schlichting, 1986;
Sultan, 1995; Via et al., 1995). This ability has been well studied
in terrestrial plants, which are sessile and thus required to deal
with ambient conditions and potentially multiple biotic and abiotic
stresses while staying in place. Examples include inducible produc-
tion of defensive compounds in response to herbivory (Agrawal
et al., 2002; Groen et al., 2016) and morphological changes in stem
elongation in response to shade (Dudley & Schmitt, 1995; Schmitt
etal.,, 2003).

Plasticity of a phenotypic trait is often depicted as a reaction
norm across varying environmental conditions (Schlichting, 1986;
Schlichting & Pigliucci, 1998; Sultan, 1987). While plasticity can
be studied as reaction norms across multiple environments, here
we focus on plastic responses across two environments (Figure 1).
When a genotype shows different trait values across environments,
that genotype is phenotypically plastic for that trait, with the slope
of the reaction norm indicating the degree of plasticity (Figure 1a).
When plastic genotypes have the highest global fitness across en-
vironmental conditions, phenotypic plasticity would be adaptive
(Figure 1b), yet plasticity is maladaptive when plasticity moves
phenotypes away from their optima (Figure 1c) (Campbell-Staton
et al., 2021; Ghalambor et al., 2007). Plastic responses may also be
neutral, with little effect on fitness. If plasticity is favoured when
fitness is averaged across environments (Figure 1d—thick line) and
within environments (Figure 1e—thin line), then plasticity is adap-
tive and should evolve to increase for that trait (Byars et al., 2007;
Ghalambor et al., 2007). However, if plasticity is favoured when fit-
ness is averaged across environments (Figure 1d—thick line) but se-
lected against within an environment (Figure 1le—thick line), then the
evolution of plasticity may be constrained because of antagonistic
directions of selection within compared with across environments,
indicating a cost of adaptive plasticity (DeWitt et al., 1998; Murren
et al., 2015). In this case, plasticity might be favoured when envi-
ronments are highly variable in space or time, but selection against
plasticity within a stable environment would reduce the overall
benefit of plasticity and instead favour homeostasis (van Kleunen &
Fischer, 2005, 2007).

the interplay between plastic and evolutionary responses to drought at the molecular

costs of adaptive plasticity, genotypic selection analysis, natural selection, Oryza sativa (rice),

As global change progresses and increases climate variability,
phenotypic plasticity may play an important role in species' re-
sponses (Hamann et al., 2020; Jentsch et al., 2007). Yet, the inter-
play between plasticity and genetically-based evolutionary change
remains a long-standing knowledge gap in the field of evolution-
ary genetics (Campbell-Staton et al., 2021; He et al., 2021; Nicotra
et al.,, 2010). Recent models suggest plasticity could be advanta-
geous and a critical first step towards adaptive evolution if associ-
ated costs are limited (Scheiner et al., 2020), but plasticity might also
hamper species' evolutionary responses by weakening the strength
of directional selection on trait values (Block et al., 2020; Oostra
et al., 2018). The adaptive value of phenotypic plasticity depends
on its direction relative to the phenotypic optimum (Campbell-
Staton et al., 2021; Ghalambor et al., 2007, 2015; He et al., 2021;
Price et al., 2003). As such, trait plasticity can be in the same or op-
posite direction as selection on mean trait values (co-gradient and
adaptive, counter-gradient and maladaptive respectively) or neutral
(Figure 1b,c). Plasticity can thus move individuals closer to (adaptive)
or further away from (maladaptive) their phenotypic optima, which
can in turn influence the strength and direction of selection on traits
and evolutionary outcomes (Byars et al., 2007; Campbell-Staton
et al., 2021). Additionally, plasticity itself may be under selection,
and the evolution of plasticity may occur independently, or jointly
with, changes in the mean trait value (Ghalambor et al., 2007).

The degree to which climatic and other environmental changes
cause plastic adjustments, and the relative importance of plasticity
compared to other responses such as migration or trait evolution,
are still debated (Merila & Hendry, 2014). While plasticity is ubiqui-
tous, the extent to which plasticity is adaptive and evolving under
selection is incompletely understood (Arnold et al., 2019; Saltz
et al., 2018; Sultan, 2004; Via et al., 1995). Several potential costs
and limits of plasticity have been theorized as constraints to the evo-
lution of plasticity (DeWitt et al., 1998), yet these concepts remain
highly debated because empirical evidence for such constraints is
rare (van Kleunen & Fischer, 2005). However, a review suggested
that costs of plasticity are often biased or underestimated due to
correlations between environment-specific trait values and the mag-
nitude of trait plasticity (Auld et al., 2010) and that variable selection
intensities or directions across environments may also impose strong
constraints on the evolution of plasticity (Murren et al., 2015).

The plastic phenotypic response of an organism is largely me-
diated through regulation of the transcriptome, that is, plasticity
of gene expression levels as molecular traits (Hodgins-Davis &

Townsend, 2009). Plasticity can be assessed for any quantitative
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FIGURE 1 Reaction norms illustrating phenotypic plasticity and patterns of selection on plasticity within and across environments. In
panel (a), the degree of plasticity of a genotype is represented as the slope of the reaction norm, with a plastic genotype (solid line) and a
canalized (non-plastic) genotype (hatched line) shown. Panel (b) illustrates adaptive plasticity. Here, the dark, filled symbols represent the
phenotype associated with greater fitness than the phenotype represented by the open symbols. Plasticity is adaptive and co-gradient when
the more plastic genotype (solid line) has greater fitness in each environment than the non-plastic genotype, as shown. In contrast, when
plastic genotypes have lower fitness in both environments (solid, thick line with open symbols) relative to non-plastic genotypes (hatched
line with filled symbols) plasticity is maladaptive and counter-gradient (c). Panel (d) illustrates variation in selection on plasticity across
environments. Here, plasticity might be favoured across environments and under positive selection (solid, thick line), disfavoured and under
negative selection (selection for canalization) (solid, thin line), or neutral (dashed line). Panel (e) illustrates a cost of adaptive plasticity, which
occurs when plasticity of a trait is favoured across environments (thick line in panel d) but is associated with decreasing fitness within an

environment (solid, thick line). See text for details.

trait, but to date, most work has focused on higher-order traits
such as growth or natural enemy defences (Agrawal et al., 2002;
Groen et al., 2016; Relyea, 2002; Valladares et al., 2006; Van
Buskirk & Steiner, 2009). Expression of a gene, however, is also
a quantitative trait, and expression variation among isogenic in-
dividuals constitutes plasticity, which plays an integral role in
adjustment of organismal physiology to environmental change
(Schlichting & Smith, 2002). Genome-wide gene expression plas-
ticity has been examined in response to various abiotic stresses,
such as drought, heat, salinity and grazing, especially in crops and
crop wild relatives, to improve breeding for sustainable agriculture
(Dang et al., 2021; Priest et al., 2014; Zhou et al., 2007). Moreover,
the transcriptome represents a direct link between genotype
and phenotype, offering the possibility to examine the inter-
play between gene expression plasticity, fitness, and evolution

(Ahmad et al., 2021; Groen et al., 2020; Koch & Guillaume, 2020).
Because of advances in genomic technologies, it is now possible
to measure genome-wide gene expression and fitness proxies for
many individuals and to use a genomic reaction norm approach
to study plasticity from a molecular perspective (Aubin-Horth &
Renn, 2009; Oomen & Hutchings, 2022). It thus becomes feasible
to assess gene expression plasticity, selection on plasticity, and
whether plastic responses are co-gradient or counter-gradient
with selection on gene expression (Figure 1). Similarly, we can
examine the nature and extent of constraints or costs that could
impede the evolution of plasticity (Figure 1). To our knowledge,
this has never been attempted at the transcriptome level, al-
though it could provide important information on how individuals
cope with environmental variation from the genetic to pheno-
typic levels (Dayan et al., 2015; Kenkel & Matz, 2016; Makinen
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et al., 2015). We currently lack a detailed and comprehensive as-
sessment of the interplay between gene expression plasticity and
natural selection, as previous studies either considered plasticity
of the transcriptome as a unified whole (Bittner et al., 2021; Dayan
etal., 2015; Ghalambor et al., 2015; Kenkel & Matz, 2016; M&kinen
et al.,, 2015), considered specific candidate genes (Campbell-
Staton et al., 2021; McCairns & Bernatchez, 2010), or measured
selection on gene expression levels but not expression plasticity
(Ahmad et al., 2021; Groen et al., 2020).

In this study, we examined selection on gene expression plas-
ticity throughout the transcriptome in rice, Oryza sativa (L.). Rice
is an important crop and genetic model system. Rice can be sub-
divided in two main varietal groups—Indica and Japonica—which
we considered separately to account for population structure
(Figure S1) (Choi et al., 2020; Groen et al., 2020; Wang et al., 2018).
Traditional varieties are accessions of rice that have been grown
for millennia across gradients of factors such as soil moisture and
temperature (Gutaker et al., 2020). Our varietal groups contain
mixtures of accessions that were sourced from four different rice
agro-ecosystems that range from consistently wet to more in-
termittently dry (irrigated, deepwater, rainfed lowland and rain-
fed upland respectively) with the rainfed upland agro-ecosystem
offering no standing water (flooding) around the base of the rice
plants. Japonica varieties are predominantly grown in irrigated
temperate lowlands and at higher altitudes in tropical and sub-
tropical upland environments, whereas Indica varieties are mainly
cultivated in irrigated and rainfed tropical and subtropical low-
lands (Table S1). Relative fitness of Japonica versus Indica variet-
ies in different environments frequently reflects their cultivation
histories. For example, Japonica varieties tend to be more cold-
tolerant than Indica varieties (Shakiba et al., 2017). Fluctuations
within each of these environments occur and can be exacerbated
by climate change, substantially influencing rice yields and fitness
(Wing et al., 2018).

To examine selection on gene expression plasticity in rice,
we conducted a large-scale field experiment in which Indica and
Japonica accessions (mostly inbred traditional varieties) were sub-
jected to dry or wet conditions, and measured how levels of gene
expression affected plant fecundity, which is strongly correlated
with grain yield, in each environment (Cali¢ et al., 2022; Groen
et al., 2020). We previously used this field experiment to assess
selection on constitutive (non-plastic) gene expression. This prior
study found widespread variation in gene expression, selection on
expression for some transcripts, and differences in selection on gene
expression patterns within the dry and wet environments separately
(Groen et al., 2020). However, it did not determine if plasticity of ex-
pression was under selection, characterize patterns of selection on
plasticity within and across environments, or evaluate whether po-
tentially opposing selection patterns could constrain the evolution
of expression plasticity. Thus, whether and to what extent expres-
sion plasticity is beneficial and adaptive in variable environments, or,
whether its evolution is constrained under variable environments,

remains unresolved for this system, as well as more broadly.

In the current study, we took advantage of this dataset (Groen
et al., 2020) and built on our prior work by examining patterns of
selection on gene expression plasticity. We determined how se-
lection may act on drought-induced gene expression plasticity and
how plasticity itself could affect selection on gene expression in
rice using quantitative, population and systems genetics/genom-
ics. Specifically, we examined: (1) heritability of gene expression
plasticity, (2) selection on plasticity, (3) potential constraints on the
evolution of plasticity due to opposing patterns of selection within
relative to across environments (defined as costs of adaptive plas-
ticity), (4) the relationship between selection on mean trait values
and selection on plasticity, and specifically whether plasticity con-
strained (counter-gradient) or facilitated (co-gradient) selection on
gene expression, (5) what genetic or metabolic factors impact pat-
terns of selection on expression plasticity and (6) which biological
processes may be influenced by selection on expression plasticity.
One important aspect of our approach is that by using isogenic rep-
licates within and across environments, we could calculate plasticity
for each genotype, and then use fitness information to determine if
there was selection for or against plasticity both within and across
environments, while accounting for selection on mean trait values
by including both plasticity and trait means in the statistical models.
This allowed us to determine costs and benefits of plasticity itself,
separate from costs of the phenotype produced by a plastic re-
sponse (Murren et al., 2015). This approach provides insight into the
evolutionary potential of gene expression and expression plasticity,
as well as how plasticity and evolution can interact to determine re-
sponses to environmental changes at the genotypic and phenotypic

levels.
2 | MATERIALS AND METHODS
2.1 | Datasources

We previously assessed transcriptome variation among 132 ‘Indica’
(indica and circum-aus) and 84 ‘Japonica’ (japonica and circum-
basmati) accessions of rice (Oryza sativa) planted in a field experiment
(Groen et al., 2020). In this experiment, conducted at the International
Rice Research Institute in the Philippines, three individuals (geneti-
cally identical biological replicates) were planted per accession both
in a continuously wet paddy field and a field that imposed intermit-
tent drought (Groen et al., 2020). All experimental and analytical
methods are described in detail in (Groen et al., 2020). Briefly, we
used 3’-end mRNA sequencing (3’ mRNA-seq) to measure transcript
levels in leaf blades of all plants at 50 days after sowing, 17 days after
withholding water in the dry field, for a total of n=15,635 widely
expressed transcripts. After extraction, total RNA for each sample
was processed individually according to a barcoded, plate-based 3’
mRNA-seq protocol (Satija Lab, 2018). Libraries of multiplexed sam-
ple pools were sequenced on the lllumina NextSeq 500, after which
deconvoluted read data were quantified by aligning reads to the
Nipponbare IRGSP 1.0 reference genome. For normalization, read
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counts were then scaled to transcripts per million, normalized using
invariant-set normalization (Li & Wong, 2001), and converted to log
space for further data analysis. Fecundity, defined as the number of
filled grains, was measured destructively at season's end as a fitness
proxy (Groen et al., 2020). There were 87 Indica accessions and 31
Japonica accessions that produced seeds and thus had a value of fe-
cundity that could be used to approximate fitness, and these acces-
sions (118 total) were included in the present study.

2.2 | Genotype x environment interaction
For each transcript, we fit a linear mixed model partitioning variance
between the terms ‘genotype’ (G, random factor), ‘environment’ (E,
fixed factor), Gx E interaction (random factor), and error variance (g)
using the package Ime4 in R v3.6.3 (R Core Team, 2017).

2.3 | Source of plasticity

Significant GXE interaction may come from two sources: devia-
tion of the cross-environment genetic correlation (rg;) from unity,
and differences in the among-genotype variance between environ-
ments (Gutteling et al., 2007). Cross-environment genetic corre-
lations were estimated as "GE=C°VU/","’;: where cov; is covariance
of accession means between a transcript's expression level as i
in wet and j in dry conditions, and ¢; and o; are the square roots
of among-genotype variance for the transcript in wet and dry
conditions. We determined the contribution from each source
using: VGXE=O.5(6i—6j)2+G,-0'j(1—rGE), where V. is GxE variance,
o; and o;are the square roots of among-genotype variance for the
transcript's expression level in wet and dry conditions (Gutteling
et al., 2007).

2.4 | Heritability

We estimated broad-sense heritability for each transcript by esti-
mating variance explained by genotype within each environment
as H? =62 / (6% + 6%¢) where 0_26 is among-genotype variance
and aZE error variance (West et al., 2007). While broad-sense her-
itability does not differentiate between additive and non-additive
genetic variance (i.e. dominance or epistasis), this estimate reflects
the portion of phenotypic variance attributable to genetic causes,
potentially under selection, for these inbred rice accessions (Konate
et al., 2016; Roy & Shil, 2020).

2.5 | Differential gene expression

We used the Bioconductor package limma to identify transcripts
that were differentially expressed between environments for each
accession (Gentleman et al., 2004; Ritchie et al., 2015). Limma

employs an empirical Bayesian approach for identifying differen-
tially expressed transcripts. This approach models transcript ex-
pression data under the assumption that variation in expression
is normally distributed, with prior probabilities for differential
expression set as equal for all transcripts. These assumptions are
not always biologically realistic. Furthermore, the ability of limma
to detect differential expression gradually decreases at increas-
ing expression ratios, particularly if these ratios exceed a log, fold
change of 1.5 (Rapaport et al., 2013). We took several steps to ad-
dress these limitations. We applied invariant set normalization (Li
& Wong, 2001) to our expression data, which helps make it more
likely that the assumption of normal distribution of expression val-
ues is met. We also employed a minimal log, fold change thresh-
old of 1, using the false discovery rate (FDR) at g <0.05 to control
for false positives (Benjamini & Hochberg, 1995). Accession-level
variation in expression plasticity was quantified as the number of
accessions with significant drought-modified expression for each
transcript (Des Marais et al., 2012).

2.6 | Plasticity quantification

Based on how widespread transcripts were expressed across geno-
types, individual replicates, and wet and dry environments, we dis-
tinguished two sets of transcripts for the current study: (1) gradually
plastic transcripts (GPTs) with continuous expression levels across en-
vironments and (2) discretely plastic transcripts (DPTs) that are more
frequently switched on or off, with environment-specific expression
(Stearns, 1989). For GPTs, we selected widespread transcripts as ex-
pressed by at least two of the three individual replicates in >75% of
genotypes in a varietal group in each of the two environments. DPTs
had to show the same widespread expression, but in only one environ-
ment (since they are only expressed in one environment, by definition).
The selection criteria mirror the methods used for previous analyses
of selection on baseline gene expression levels (Groen et al., 2020).
For GPTs and DPTs, we calculated absolute values of plasticity
metrics to avoid biases regarding transcripts' biological roles; for ex-
ample, transcription factors can be activators or repressors (Wilkins
et al., 2016). GPTs can be regarded as quantitative functional traits,
and we quantified the plasticity of transcript expression across en-
vironments for each genotype as the simplified relative distance
plasticity index (RDPI), which allows for statistical comparisons
of genotypes (Valladares et al., 2006). We calculated RDPI, as the
absolute difference of mean genotypic transcript levels across en-
vironments divided by the mean genotypic transcript level in the
wet environment, following Valladares et al. (2006), with RDPI, as
P= IZj,k=2 -
Transcript value, and P Transcript plasticity.

Zj’k=1|/Zj,k=1, where j is Genotype, k Focal environment, Z

For DPTs, whose expression is null in one of the two environ-
ments, we calculated the coefficient of variation over the envi-
ronments based on means (CV, ) as in Schlichting and Levin (1984)
and Schlichting (1986), a measure strongly correlated with RDPI,
(Valladares et al., 2006).
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2.7 | Genotypic selection analyses

Phenotypic selection analysis examines patterns of selection by
regressing trait values against fitness (Lande & Arnold, 1983),
while genotypic selection analysis uses a similar regression ap-
proach but with family means or other estimates of genotypic trait
values to avoid biases inherent in phenotypic selection analysis
(Rausher, 1992). We conducted genotypic selection analyses, which
were based on gene expression values and relative fecundity fit-
ness (filled-grain number), averaged across replicate individuals of
each genotype. Genotypic selection analyses were conducted with
genotypic fitness values averaged across environments to assess
the strength and direction of selection on gene expression plastic-
ity (i.e. whether plasticity is adaptive and selected for across vari-
able environments), as well as within the wet and dry environments
to assess potential costs of adaptive plasticity (Arnold et al., 2019;
DeWitt et al., 1998; Murren et al., 2015; Relyea, 2002; van Kleunen
& Fischer, 2007), as explained below.

We calculated relative fitness for each genotype by dividing its
average filled-grain number by the mean of all genotypes across both
environments. Mean transcript expression values were then stan-
dardized for all genotypes (mean=0, SD=1) across environments.
Similarly, the RDPI_ and CV_ values calculated for transcript level
plasticity across environments were standardized for all genotypes
(mean=0, SD=1). Furthermore, genotypes that were severe outliers
for the relative abundance of a transcript (+3 SD) were removed on
a per-transcript basis to satisfy the assumption of normality for the
selection analyses as was done for previous analyses of selection on
baseline gene expression levels (Groen et al., 2020).

To examine selection on constitutive transcript expression (se-
lection on baseline expression level rather than on change in ex-
pression), we estimated the total linear selection differential S as
the regression coefficient of relative fitness on the standardized
mean expression level (Lande & Arnold, 1983). To additionally ex-
amine selection on transcript plasticity (selection on the degree to
which a genotype changes in expression across environments), we
estimated g as the partial regression coefficient of relative fitness
on the standardized mean transcript level value and transcript plas-
ticity index (Relyea, 2002). We focused on  because this value is di-
rectly proportional to the response to selection, which is a measure
of microevolution and thus indicates whether plasticity itself may
evolve (Hendry & Kinnison, 1999; Lande & Arnold, 1983). A posi-
tive partial regression coefficient of relative fitness on the plasticity
index indicates that plasticity is selected for and adaptive, while a
negative coefficient indicates that plasticity is selected against and
maladaptive. Because the model includes both plasticity and mean
trait values, the partial regression coefficient for the plasticity index
reflects selection on plasticity itself, apart from selection on the
phenotypic value produced by the plasticity (Murren et al., 2015;
Relyea, 2002).

We conducted an analysis to determine if the evolution of plas-
ticity in gene expression might be constrained by opposing patterns
of selection within compared to across environments (Figure 1e;

Relyea, 2002; Auld et al., 2010; Murren et al., 2015). This analysis
took advantage of the fact that our experiment included replicated
genotypes planted in each environment, allowing us to calculate se-
lection on plasticity of each genotype both within and across envi-
ronments. For this analysis, we used relative fitness calculated as
the mean genotypic filled-grain number produced in one environ-
ment (wet or dry) divided by the average filled-grain number of all
genotypes in that same environment. Similarly, transcript expression
values within each environment as well as RDPI_ and CV, values
were standardized for all genotypes (mean=0, SD=1). We assessed
a cost of adaptive plasticity (DeWitt et al., 1998) as cases in which
there is selection favouring plasticity when fitness is measure across
environments and selection against plasticity within an environment
(Figure 1d,e). To do so, we selected transcripts that showed signifi-
cant positive selection on plasticity when considering fitness aver-
aged across environments (RDPI_and CV, pat a=0.01), and then for
these transcripts, we looked for cases in which there was selection
against plasticity when considering fitness within an environment
(RDPI_ and CV,, g at a=0.01). Such a contrasting effect of plas-
ticity on fitness across environments compared to within environ-
ments constitutes evidence for a cost of adaptive plasticity, which
could constraint the evolution of plasticity (DeWitt et al., 1998; van
Kleunen & Fischer, 2005). A relatively conservative 1% o-threshold
was used to account for the regressions performed on thousands of
transcripts.

All genotypic selection analyses were performed in R v3.6.3
(R Core Team, 2017). Regression outputs were retrieved using
the broom package in the tidyverse modelling set (Wickham
et al.,, 2019), and we extracted selection differentials for con-
stitutive transcript expression (S), transcript plasticity (8) and
their corresponding statistical significance levels (Relyea, 2002).
Additionally, we assessed our models for potential biases by cal-
culating the Variance Inflation Factor (VIF), using the car package,
to determine if there were correlations between trait values and
the magnitude of plasticity that would lead to multicollinearity and
confound selection on trait values with selection on trait plastici-
ties (Auld et al., 2010).

To assess co- or counter-gradient selection (Byars et al., 2007)
for both the GPTs and DPTs, we categorized the transcripts based on
whether they showed a significant effect of environment (p<0.01)
as determined by linear mixed model fitting and whether differential
expression across environments was manifested as up- or down-
regulation in the dry versus the wet environment. We further cat-
egorized transcripts by whether selection on constitutive transcript
levels within the wet and dry environments was under positive or
negative directional selection (S at «=0.01). When differential ex-
pression and selection on constitutive expression were in the same
direction, selection on expression was considered to be co-gradient.
When expression and selection on constitutive expression were
in opposite directions, selection on expression was considered
counter-gradient. We tested whether co- or counter-gradient pat-
terns occurred significantly more or less frequently than expected
by chance using y? tests.
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2.8 | Factors affecting selection on gene
expression plasticity

For both types of plastic transcripts, we assessed whether average
selection (p) on expression plasticity was influenced by factors related
to metabolic, gene architectural and network features. Specifically,
we focused on gene characteristics previously found to influence evo-
lutionary change in gene expression in this system, such as rg and
heritability, primary transcript length, GC content, tissue-specificity
(tau), expression polymorphism and noise, mean expression level, and
transcript connectivity (Groen et al., 2020). We also examined char-
acteristics known to influence gene expression, including gene body
methylation (gbM), transcript stability and translatability, the length
and GC content of UTRs and CDSs (Chodavarapu et al., 2012; Elhaik
et al., 2014; Su et al., 2018; Zhao et al., 2017), the number of introns
per gene (https://plants.ensembl.org/biomart/), and codon usage
(Nakamura et al., 2000). Based on codon usage, we calculated the total
and relative (to molecule length) number of N atoms per transcript
(Kelly,2018), and C and N atoms per protein (Arnold & Nikoloski, 2014).
We also calculated ATP expenditure per transcript using general
eukaryote-derived values (Lynch & Marinov, 2015), and per encoded
protein using plant-derived values from Arabidopsis, ignoring the neg-
ligible protein assembly costs (Arnold & Nikoloski, 2014).

We included these 25 covariates alongside g in partial correlation
analyses (n=3,772 and n=3,058 for GPTs and DPTs in Indica, respec-
tively, while n=3,789 and n=3,580 for GPTs and DPTs in Japonica,
respectively) using the R package corecor version 1.6.9 (R Core
Team, 2017; Schifer & Strimmer, 2005). We first calculated Pearson
product-moment correlations between pairs of all variables, before
estimating the partial correlations by establishing the pseudo-inverse
of the resulting correlation matrices (Larracuente et al., 2008). Results
were visualized in heatmap format with ClustVis (Metsalu & Vilo, 2015).

2.9 | Co-expression analysis

To infer the biological relevance of selection on gene expression
plasticity, we filtered GPTs for significant heritability of plasticity (i.e.
a significant GXE term, p<0.05) and retained 1045 and 494 tran-
scripts for Indica and Japonica, respectively. We then conducted k-
means clustering analyses in iDEP to infer modules of co-expressed
genes in an unsupervised manner using a jack-knifing approach to
determine module number (Ge et al., 2020). We inferred separate
networks of heritably plastic, co-expressed transcripts in Indica and
Japonica. We did not perform this analysis for DPTs, since the on/
off expression patterns reduce the power for identifying biologically
meaningful modules of co-expressed transcripts.

2.10 | Gene-set enrichment analysis

For transcript modules with evidence of selection on gene expres-

sion plasticity levels, we examined gene functional annotations. We
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considered gene ontology (GO) biological processes, using PANTHER's
Overrepresentation Test (released February 24, 2021) with the O. sa-
tiva genes in the GO database (DOI: 10.5281/zenodo0.4495804; re-
leased 1 February 2021) as background gene set used to match the
foreground set (Mi et al., 2020). A Fisher's exact test was applied to
identify the most enriched GO biological processes.

3 | RESULTS

3.1 | Patterns of selection on transcript plasticity
We found evidence for genotype-by-environment interaction (GxE)
in a portion of transcripts examined, indicating that expression
level differed between dry and wet conditions for these genotypes.
Specifically, of the 15,635 transcripts examined, after FDR correc-
tion for multiple tests, ~17.3% showed significant G x E among Indica
accessions (Figure 2; Table S2). This proportion was lower (~8.9%)
among Japonica accessions (Figure S2; Table S2). The transcripts that
showed significant GXE tended to exhibit higher heritability within
each of the environments (median H2,y.=0.58 and H?,,=0.57 re-
spectively) than transcripts that did not show significant GX E (me-
dian H2y;=0.51 and H?p,,=0.50 respectively) for Indica accessions
(Figure 2; Table S2), with similar patterns observed for Japonica ac-
cessions (Figure S2; Table S3). In keeping with significant GXE for
many transcripts, we observed that most drought-induced transcript-
level changes occurred in only one or a few genotypes (Figure 2;
Figure S2; Table S4). For both varietal groups, GxE was mostly due
to differences in the among-genotype variance in gene expression
levels between environments (Figure 2; Figure S2; Table S5).

Known drought-responsive transcripts were among the most
plastic. Specifically, the set of the top ~5% of transcripts that were
most frequently differentially expressed between wet and dry envi-
ronments was enriched for several cellular metabolism-related GO
biological processes, as well as responses to external stimuli and cell
morphogenesis (Figure S3; Table Sé).

Transcripts were grouped into GPTs or DPTs depending on
their expression patterns across environments. Inclusion of tran-
scripts within one or the other category was not influenced by
general patterns of presence/absence variation (PAV) of genes in
O. sativa (Figure S4; Table S7). We analysed 3,772 GPTs and 3,058
DPTs for Indica accessions, as well as 3,789 GPTs and 3,580 DPTs
for Japonica accessions (Table S8, S9). Plasticity indices used to
quantify plasticity for GPTs and DPTs (RDPI_and CV respectively)
were highly correlated for both varietal groups (Figure S5). We
estimated selection differentials for each GPT expressed among
the Indica and Japonica varietal groups separately (Tables S10 and
S11), and our model verifications detected no multicollinearity is-
sues (VIF <3 for GPTs). Plasticity was neutral for most transcripts,
but for those transcripts showing selection on plasticity, plasticity
was more often selected for than against. In Indica, selection on
expression plasticity appeared to be relatively weak: the median
selection differential for plasticity was |l .gianung =0-0291, with
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FIGURE 2 Bivariate plot of broad-sense heritability (H?) estimates for constitutive transcript expression levels in the Indica populations
in wet and dry conditions (a). Orange dots indicate significant transcript G E interaction variance (FDR q value <0.001), and grey non-
significant. Proportion of G X E interaction variance attributed to changes in among-accession transcript variance in wet and dry conditions
versus rg.. Orange dots indicate significant transcript Gx E interaction variance (FDR q value <0.001), and grey non-significant (b). Reaction
norms of a transcript for which GxE interaction variance is mostly determined by deviation of r¢ from unity, as indicated by abundant line
crossing (c). Reaction norms of a transcript for which more GxE interaction variance is determined by changes in among-accession variance
in wet and dry conditions, as indicated by less-abundant line crossing and wider among-accession variance in one environment than the

other (d).

only ~2.5% of transcripts showing |8|>0.1 (Figure 3a; Table S10),
suggesting that—for most genes—variation in expression plas-
ticity is neutral. However, there was slightly stronger selection
for (ﬂmedian(pos)=0.0302) rather than against (ﬂmedian(neg)=—0.028)
plasticity in Indica (Mann-Whitney U-test [MWt], one-tailed
p=0.0401; Figure 3b). In Japonica, a similar pattern was visible,

although selection on plasticity was generally stronger with |-
medianUap)=0.1075 (MWt, p<0.0001; Figure Séa; Table S11). A
trend towards stronger selection for rather than against plas-
,=0.1342 and
Bredianineg) = -0.1241, respectively, but this difference was not sig-
nificant (MWt, p=0.484; Figure Séb).

ticity was also visible in Japonica with Brnedian(pos

9SUa2IT suowwo) aAeal) ajqesijdde ayy Aq paultanob aie sa|dlle YO ‘9sh Jo sa|nJ 1oy Aueuaql] auljuQ A3]IM UO (SUolIpUOd-pue-swIdlfwod As|im Alelqijauljuo//:sdiny)
suonipuo) pue swid] ayl 89S ‘[§z02/£0/GL] uo Ateiqi aunuo AsIMm ‘18l Ag "zzG /L odw/LLLL OL/lop/wod As|im Alelqijauljuo//:sd1y wouy papeojumoq ‘0 ‘#Z0Z ‘Xr62S59¢€L



HAMANN ET AL.

90of21
MOLECULAR ECOLOGY gAVVA| LEYJ—

(a) 02 - (b) 01 -
0.18
0.16 008 -
0.14
c 012 c 006 -
o )
A o
3 3
2 01 =
7] 2} 1
O 508 1 O 504 :
1
0.06 4 1
1
1
004 | 002 | |
|
1
002 | |
1
0 . . 0 ‘ ; ! : \ :
0 007 014 021 028 035 0.35 0.28 -0.21 -0.144 -0.07 0 007 014 021 028 035
(¢) o2 (d) o1 - ,
1
0.18 - I
1
1
0.16 008 - ]
014 4
= 4 = o
§ o2 § oo0e
“— —
=2 =
2 014 =2
= =
(2] 2}
O o8 0 o041
006 4
004 1 002 -
002 4
0 . . . . — A& 0 : : : : -~
0 007 014 021 028 035 0.35 028 -021 0.14 007 0 007 014 021 028 035

FIGURE 3 Patterns of selection || on gene expression plasticity in Indica for gradually plastic transcripts (GPTs; a and b) and for
discretely plastic transcripts (DPTs; c and d) using fecundity as a fitness measure. For GPTs, selection was relatively weak for most
transcripts (|8 <0.1) (a); positive directional selection on transcript level plasticity was stronger than negative directional selection

across environments (purple), and selection differential values were generally higher in dry (red) than in wet (blue) conditions with

(18] mediantdryy=0-0581) and (Il,.cqiantwery = 0-032) respectively (MWt, p <0.0001; b). For DPTs, a substantial number of transcripts showed
relatively strong selection (|| >0.1) (c); negative directional selection on transcript level plasticity was stronger than positive directional
selection across environments (purple), and selection differential values were generally higher in dry (red) than in wet (blue) conditions with
(|ﬁ|median(wet) =0.036) and (|ﬂ|median(dry) =0.069) respectively (MWt, p<0.0001; d).

For DPTs, we detected collinearity (VIF> 10 for the majority of are only expressed in one of the two environments. Thus, the mag-
transcripts) between the baseline expression values and the plasticity nitude of plasticity is necessarily correlated with expression values.
index (CV, ). This correlation is inherent to the fact that transcripts While there is no immediate analytical solution to this potential bias
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FIGURE 4 Co-gradient and counter-gradient selection. In Indica, the direction of selection on constitutive expression in wet and dry
conditions (s) was co-gradient with the direction of expression plasticity more frequently than expected by chance (a). In Japonica, the
direction of selection on constitutive expression in wet and dry conditions (S) was counter-gradient with the direction of expression
plasticity more frequently than expected by chance (b). Asterisks (***) indicate p<0.001.

because both variables are needed in the models to quantify the ef-
fects of plasticity while controlling for the expression profiles (Auld
et al., 2010), we acknowledge that selection differentials across en-
vironments for DPTs should be interpreted with caution. Plasticity
of DPTs was overall under stronger selection than that of GPTs in
Indica, with Iﬁlmedian(graded)=0.o291 and |8l cgian(discrete) = 0-0879,
respectively (MWt, z=-42.16, p<0.0001; Figure 3c; Table S10),
indicating that the population distribution of plasticity levels for
drought-responsive DPTs was further removed from the pheno-
typic optimum. In contrast to GPTs, plasticity in DPTs was gener-
ally selected against, meaning that canalization was beneficial. This
can be seen by the fact that for DPTs, g showed an overall bias for
edian(pos) = 0-0746 and
Brnedian(neg= ~0-0973, respectively (MWt, p<0.0001; Figure 3d;
Table S10). Also, in Japonica, selection on plasticity was generally
stronger for DPTs than GPTs (Figure Séc,d; Table S11), indicating
that the expression distributions for DPTs were overall further from

stronger negative than positive values, with g

adaptive peaks.

3.2 | Potential constraints on the evolution of
transcript plasticity

Transcripts in which plasticity was under positive selection across

environments (3 at «=0.01) give evidence for adaptive plastic-

across
ity. We found that for GPTs, plasticity was selected for and would be
adaptive for 63% of transcriptsin Indicaand 91% in Japonica based on
selection for their levels of plasticity across environments (x=0.01)

(Figure S7; Tables S10 and S11). For DPTs, transcript plasticity across

environments was selected for in 33% of transcripts in Indica and in
38% of transcripts in Japonica (Figure S7; Tables S10 and S11).

To test for costs of adaptive plasticity, we examined if there were
transcripts in which plasticity was selected for across environments
(B.cross POSsItiVE) but against within environments (4, ., and/or Beary is
negative). These are transcripts from the positive and negative tails
of the distributions (Figure 3b,d; Figure Séb,d). Transcripts with
positive g, .. never overlapped with transcripts showing negative
Buet OF Byry indicating that this type of cost of adaptive plasticity
was not detected in either the Indica or the Japonica varietal groups

(Figure S7; Tables S10 and S11).

3.3 | Effects of plasticity on selection

We investigated whether directional selection on constitutive lev-
els of transcript expression was co-gradient or counter-gradient
with the direction of expression plasticity to determine if plastic-
ity enhanced or constrained responses to selection on expres-
sion. In Indica, the direction of gene expression plasticity for GPTs
and DPTs was more frequently co-gradient with the direction of
S on transcript expression than expected by chance, whereas a
counter-gradient pattern occurred less frequently (y?=21.832,
p=2.977x107%; Figure 4a; Table S12). Thus, plasticity does not
appear to counter selection on expression in Indica and may have
contributed to evolutionary responses to selection. However,
this pattern was reversed in Japonica, with directions of expres-
sion plasticity more frequently than expected by chance run-
ning counter-gradient with directional selection on expression
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(¥*=61.775, p=3.849x107%>; Figure 4b; Table $12), indicating
that plasticity may constrain the evolutionary response to se-
lection on expression plasticity in Japonica. Thus, the degree to
which plasticity in expression enhanced or constrained responses
to selection on expression varied among varietal groups rather

than showing a consistent pattern.

3.4 | Factors affecting selection on gene
expression plasticity

We examined whether the strength and pattern of selection on gene
expression plasticity was linked to factors related to constitutive
gene expression, gene architecture, metabolic costs and network

features. In Indica, g showed significant negative partial correla-

across
tions with transcript length for GPTs as well as with gene body meth-
ylation (gbM) for GPTs and DPTs (p <0.0002; Figure 5a,b), which are
both factors related to gene architecture and metabolic costs. We
did not detect any significant relationships between selection on
expression plasticity and factors related to gene network features

(Tables S13 and S14).

3.5 | The biological role of transcripts experiencing
selection on gene expression plasticity

Because genes may correlate in their expression patterns, and se-
lection may act on variation in levels of a multitude of transcripts
simultaneously (Hamila et al., 2019; Huang et al., 2020), we also
examined selection on co-expression modules for GPTs. We ex-
cluded DPTs from this analysis because of their much lower lev-
els of connectivity than GPTs (0.93x difference, p=7.24x107%¢;
Figure S4) based on measurements over a time series of the
tightness of their co-expression with other transcripts (Plessis
et al., 2015), which was due to their discontinuous expression
across environments. We focused on transcripts that showed
significant GxE, since selection on the plasticity of these tran-
scripts has the potential to cause evolutionary changes in plastic-
ity (Hendry & Kinnison, 1999).

For Indica, the 1045 transcripts retained for network analy-
sis after filtering for heritability of expression plasticity could be
grouped into 13 modules of co-expressed transcripts (Figure 6a;
Table S1). Modules B to | showed significant positive selection on
expression plasticity whereas the other modules did not (Figure 6b).
The set of transcripts in these modules was enriched in GO biological
processes related to photosynthesis, translation and responsiveness
to abiotic stress (Figure 6c), suggesting selection on environment-
induced plasticity of the molecular machinery regulating these bio-
logical processes. There was no selection against plasticity for these
modules in either wet or dry conditions (mean Bet=0.0138; mean
Bary=0.0121).

In Japonica, two modules showed significantly negative g val-
ues overall (Figure S8; Table S15). These modules under negative
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selection were enriched in translation-related transcripts (Figure S8),
suggesting opposite patterns of selection on the expression plas-
ticity of such genes between the Indica and Japonica accessions.

Finally, we examined whether factors related to metabolic and
gene architectural features could suggest a biological explanation
for patterns of negative selection on expression plasticity of DPTs
(Figure 3d; Figure Séd). As previously described, plasticity of DPTs
was more frequently selected against than for, and expression of the
underlying genes was more frequently shut down rather than acti-
vated under drought stress conditions. This latter pattern seemed
to be associated with certain gene and transcript architectural fea-
tures. Compared to GPTs, DPTs exhibited wider potential expression
across tissues as indicated by a 0.93x difference in the tissue spec-
ificity index t (p=3.29x 10-24; Figure 7a), and DPTs were longer
than GPTs (1.19x difference, p=1.99 x10-41; Figure 7a; Table S7).
Promoters of the underlying genes contained fewer TF binding
sites (median of 5 instead of the of 6 regulatory elements for GPTs,
p<0.0001; Figure 7b; Table S7), and TATA-boxes (23.4% vs. 25.7%,
p=0.002; Figure 7c; Table S7). Furthermore, gbM levels were higher
for the less abundant DPTs than for the more abundant GPTs (1.25x
difference, p=8.12x10-11; Figure 7a). All of these patterns were
similar for Japonica (Figure S9; Table S7).

4 | DISCUSSION

Our study provides novel insights into factors influencing the bene-
fits of gene expression variation and potential constraints on its evo-
lution by analysing selection on the plasticity of expression of over
7500 genes in rice subjected to dry or wet conditions in the field.
We found selection on plasticity in gene expression in response to
drought in a small fraction of transcripts examined. Some of these
transcripts had functions related to drought stress responses, and
there was selection for plasticity of gene modules linked to pho-
tosynthesis- and translation-related genes. Whether plasticity of
expression was co- or counter-gradient with selection on gene ex-
pression depended on the rice varietal group, indicating that the ef-
fects of plasticity on the evolution of gene expression could vary
among locations and selective pressures. Selection on plasticity of
expression was related to gene architectural features. We found no
cases in which there was selection favouring plasticity across en-
vironments and selection against plasticity within an environment,
indicating the absence of evidence for this type of cost of adaptive
plasticity. These results help us understand the role that variation in
plasticity of gene expression can play in evolutionary responses to
changing climatic conditions.

4.1 | Selection and constraints on gene expression
plasticity

Plasticity can evolve when there is significant GXE interaction
(Schlichting & Pigliucci, 1998). Yet, environment-specific expression
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FIGURE 6 Heritably plastic transcripts in Indica can be clustered in modules of co-expressed transcripts using k-means clustering (a).
The bar under the heatmap colour-codes the distinct modules with the length of the bar representing the number genes in each module. A
subset of modules overall showed significant positive selection for plasticity (modules B-1), whereas other modules did not (modules A, J-M)
(b). Error bars represent 95% confidence intervals around the median; asterisks indicate significance. The modules under selection (B-I) are
enriched for photosynthesis-related gene ontology (GO) biological processes as well as processes related to translation and responses to
abiotic stress (c). The Y axis represents the negative logarithm of the p value evaluating the significance of enrichment among the modules
for each GO term.
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FIGURE 7 Structural and regulatory features of gradually- and discretely-plastic transcripts (GPTs and DPTs respectively) in Indica. Ratios
were calculated as the average levels of factors that characterize DPTs relative to average levels of these factors for GPTs (a). Values for

the former have been normalized relative to the latter. GPTs and DPTs differed in the number of cis-regulatory promoter elements (REGs)

in their genes' promoters (one-way ANOVA; p<0.0001, lower 95% CI for GPTs higher than transcriptome-wide average REG number of

6.65 [6.98, 7.66], which was within 95% Cl for DPTs [6.5, 7.31]) (b). GPTs and DPTs also differed significantly in the frequency with which
TATA boxes occur in their genes' promoters with respect to the frequency of TATA boxes in the promoters of other leaf-expressed genes
(Fisher's exact test; one-tailed p=0.127 for GPTs vs. other transcripts, and one-tailed p=0.001 for DPTs vs. other transcripts respectively).
rWD =r=cross-environment genetic correlation, Tau=tissue specificity, Length=transcript length, gbM=gene body methylation; ns=not

significant, *** indicates p <0.001.

patterns are hypothesized to relax selection on genes, potentially lim-
iting plasticity evolution (Kawecki, 1994; Murren et al., 2015; Roberts
& Josephs, 2023). Although the majority of transcripts did not show
significant GxE, we did find significant GXE for many transcripts,
indicating evolutionary potential. Most drought-induced transcript-
level changes occurred in only one or few genotypes, as previously ob-
served in Arabidopsis thaliana (Des Marais et al., 2012). We also found
that GXE was mostly due to rank-order changes in gene expression
levels among genotypes across environments, as has been found for
functional traits in A. thaliana (Ungerer et al., 2003), Caenorhabditis
elegans (Gutteling et al., 2007) and Drosophila melanogaster (Carreira

et al., 2013). Plasticity levels were not significantly correlated with
constitutive expression levels, suggesting generally distinct genetic
architectures (Auld et al., 2010), as was previously observed for func-
tional traits in maize (Kusmec et al., 2017). Additionally, selection on
expression plasticity was neutral or nearly so for most transcripts,
resembling the distribution of selection differentials for plasticity
of hundreds of functional traits in a wide variety of plant and ani-
mal populations (Hendry, 2015; Van Buskirk & Steiner, 2009). These
results indicated that although plasticity of expression was neutral
in most transcripts, there was selection on plasticity of some tran-

scripts, with many transcripts showing significant GXE, indicating
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evolutionary potential in the plasticity of expression for at least for
some genes, which could possibly aid in adaptation.

While plasticity in gene expression appears to be quite com-
mon (Hodgins-Davis & Townsend, 2009; Makinen et al., 2015), how
often gene expression plasticity is adaptive, neutral, or maladaptive
is still debated (Bittner et al., 2020; Campbell-Staton et al., 2021;
Ghalambor et al., 2015; He et al., 2021). Several previous studies
considered genome-wide gene expression plasticity and arrived
at opposite conclusions regarding the adaptive value of plas-
ticity when the transcriptome was considered as a unified whole
(Bittner et al., 2020; Dayan et al., 2015; Ghalambor et al., 2015; He
et al., 2021; Kenkel & Matz, 2016; Makinen et al., 2015; Oostra
et al., 2018). For example, Bittner et al. (2020) found that plasticity
in gene expression facilitates invasion of desert environments
by house mice. In contrast, Ghalambor et al. (2015) found that
non-adaptive plasticity in Trinidadian guppies potentiates evolu-
tion by increasing the strength of directional selection. Similarly,
Campbell-Staton et al. (2021) recently highlighted the role of se-
lection against maladaptive heat-induced plasticity during ther-
mal adaptation of Anolis lizards to urban heat islands. Another
recent study demonstrated that pre-existing plasticity may be
a stepping stone for adaptation to stress, but also revealed that
the selective forces driving the evolution of gene expression were
context-dependent and differed across Arabidopsis lineages (He
et al., 2021). While these groundbreaking studies did much to
deepen our understanding of the adaptive nature of gene expres-
sion plasticity, our fine-grained approach enabled us to pinpoint in-
dividual transcripts and classes or modules of transcripts for which
expression plasticity was associated with changes in plant fitness.
For example, one individual transcript in particular showed highly
significant positive selection on expression plasticity in Indica.
This was the GPT 0S09T0556400-01 from OsPHT4;5 ($=0.169,
p=3.96x10'5, Table S9), which codes for an inorganic phosphate
transmembrane transporter. OsPHT4;5 is differentially expressed
in response to abiotic stressors (Li et al., 2020), and plastic ex-
pression of phosphate transporters contributes to optimization of
shoot growth across stressful and non-stressful conditions (Dong
et al., 2019). While we cannot directly exclude non-adaptive causal
agents (Stoltzfus, 1999), there are several lines of evidence, de-
tailed below, that lead us to suggest that selection can act on gene
expression plasticity.

Our genotypic selection analyses showed not only that plas-
ticity was more often selected for rather than against for GPTs, but
also that in Indica, expression plasticity was co-gradient with se-
lection on constitutive expression in wet and dry conditions, sug-
gesting that plasticity moves phenotypes closer to their optima,
and may be adaptive in Indica rice experiencing variable water
availability (Byars et al., 2007). Interestingly, we saw the opposite
pattern (a counter-gradient relationship) between expression plas-
ticity and selection on constitutive expression in Japonica. Here,
plasticity seemed to be maladaptive, moving phenotypes away
from their optima. This difference between varietal groups may be
related to the fact that many Indica accessions have been and still

are cultivated across agro-ecosystems with strong spatial and tem-
poral variability in water availability (e.g. rainfed lowland and deep-
water ecosystems), whereas Japonica accessions tend to be grown
in more stably wet irrigated ecosystems, or in upland ecosystems
with relatively constant limitations on water availability (Groen
et al.,, 2022). These results suggest that the interplay between
gene expression plasticity and the selective outcomes are strongly
mediated by the ecological context of accessions, as seen in a re-
cent study comparing the adaptive potential of gene expression
plasticity in closely related Arabidopsis species (He et al., 2021). A
subset of the transcripts under selection for expression plasticity
was enriched for regulating known drought-responsive biological
processes, in keeping with our previous observation that Indica ac-
cessions with broader drought-induced changes in gene expression
experience greater fitness in dry conditions (Groen et al., 2020).
This result is also consistent with the recent finding that genes with
more treatment-specific expression are generally under weaker se-
lection compared to more evenly expressed genes in Arabidopsis
thaliana (Roberts & Josephs, 2023). Transcripts with beneficial
plasticity were further enriched for functionally relevant growth-
and photosynthesis-related processes, which are known to be im-
portant for fitness (Kromdijk et al., 2016; Wilkins et al., 2016; Yoon
et al., 2020). Interestingly, subsets of these genes are regulated
by transcription factors such as MYB1R, which evolved changes
in expression level following drought in Brassica rapa (Hamann
et al., 2021), suggesting that these transcription factors may play
a key role in drought adaptation in a variety of plant species, and
that expression plasticity in these transcripts was adaptive. The
evidence for positive selection for gene expression plasticity in
certain genes and gene families, which appears to be conserved
across several species, indicates that regulatory plasticity is likely
to play a crucial role in population establishment and persistence
under novel environments. It may also provide avenues to im-
prove crops and engineer organisms to cope with environmental
challenges.

While plasticity may be beneficial and under selection for
many traits in many contexts, as we found with many GPTs, there
are also cases in which plasticity is costly, harmful and selected
against, with selection for canalization (reduction in plasticity)
instead (Schlichting & Pigliucci, 1998). We found that the major-
ity of DPTs in our analysis showed selection against expression
plasticity. This was particularly clear in Japonica, where expression
plasticity in DPTs was frequently counter-gradient and thus mal-
adaptive. Stress-induced plasticity is often thought to reveal cryp-
tic genetic variation that increases the genotypic or phenotypic
variance otherwise hidden under normal environmental conditions
(Ghalambor et al., 2007; Rutherford, 2000). It is likely that the
drought stress released more cryptic genetic variation in Japonica
compared to Indica, since Japonica accessions are more frequently
found in naturally wet irrigated ecosystems. Furthermore, the
majority of DPTs were more frequently shut down rather than
activated under drought stress conditions, which reduced plant
fitness under drought stress. This pattern was likely the result
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of stress-induced dysregulation of gene expression (Kremling
et al., 2018). One particular class of genes for which stress-
induced repression might result in lower fitness could be the class
of genes known as housekeeping genes, such as ones involved in
mRNA translation, which are essential for continued growth and
development (Deprost et al., 2007). Many architectural features of
housekeeping genes seemed to be shared by the DPTs in our anal-
ysis. Indeed, housekeeping genes tend to be longer, have wider
potential expression across tissues, have fewer TF binding sites
and less frequently contain TATA-boxes in their promoters, and
display more gene body methylation (gbM) (Aceituno et al., 2008;
Wang et al., 2020; Yanai et al., 2005). DPTs showed these exact ar-
chitectural features, strongly suggesting many may be housekeep-
ing genes, for which stress-induced repression should be selected
against. The notion that many DPTs are housekeeping genes is
corroborated by enrichment of GO biological processes among
them related to intracellular protein transport, mRNA splicing,
chromatin remodelling, and other housekeeping processes in both
Indica and Japonica rice (Table S16). These results highlight the
role of selection against maladaptive regulatory plasticity under
stress conditions and rapid climate change adaptation (Campbell-
Staton et al., 2021).

Thus, by using genotypic selection analysis on the degree of
transcript expression plasticity, we found that while plasticity was
neutral for most transcripts, there were some transcripts, espe-
cially GPTs, showing selection favouring plasticity, and some tran-
scripts, especially DPTs, showing selection against plasticity. We
also used this analysis to investigate potential costs of adaptive
plasticity in gene expression. A cost of adaptive plasticity occurs
when plasticity is advantageous across environments but reduces
fitness within at least one environment (DeWitt et al., 1998; Murren
et al., 2015). Such antagonistic effects of plasticity on fitness may
constrain the evolution of plasticity, despite its potential advan-
tages for adaptation to heterogeneous environments (Nicotra
et al., 2010). Although plasticity costs have been widely theorized,
costs have been notoriously difficult to detect (Auld et al., 2010;
DeWitt et al., 1998; Relyea, 2002; van Kleunen & Fischer, 2005).
Our experimental design allowed us to assess this type of cost
of plasticity directly because we had clonal replicates planted in
two different environments, allowing us to compare selection on
plasticity itself (separate from selection on trait values) within and
across environments.

While there were cases in which plasticity of transcript ex-
pression was under positive selection across environments, in
none of these cases was there also selection against plasticity
of that transcript in either environment. Thus, we found no evi-
dence for opposing selection patterns across compared to within
environments that could constrain the evolution of plasticity.
This finding supports the idea that selection on gene expression
plasticity may generally experience relatively limited constraints
(Murren et al., 2015), and is in keeping with multiple studies and
meta-analyses that found very little evidence for plasticity costs
(Arnold et al., 2019; Bergelson & Purrington, 1996; van Kleunen

& Fischer, 2005). It is quite striking that out of many transcripts
under selection, we found zero evidence for costs of adaptive
plasticity. While our study was not designed to determine mech-
anistically why this was the case, we can surmise why this might
be a likely outcome particularly for gene expression plasticity. At
the regulatory level, the cost of carrying unexpressed genes or
additional regulatory elements is likely negligible in most cases.
Supporting this idea, Latta et al. (2012) found no differences in
costs associated with amounts of transcription, protein length
or ATP production when comparing specialist and generalist re-
sponses to environmental salinity differences. This low regulatory
cost may help to explain the fact that we did not find a cost of
adaptive plasticity for any transcript in this system. While this con-
clusion should be robust for GPTs, we are more cautious in our
interpretation of the results for DPTs, given the fact that we found
multicollinearity showing correlations between trait values and
plasticity, which is not surprising since expression for these tran-
scripts was on or off in a particular environment. We thus echo
the previous call to develop new analytical frameworks to better
quantify environment-specific sources of errors (Auld et al., 2010),
especially for traits such as expression of DPTs, to improve our
understanding of the evolutionary constraints on plasticity at
the phenotypic and regulatory level. Additionally, our data are
based on leaf samples collected at 50days after sowing. Results
may differ if we were to consider other tissues such as root, shoot
or cotyledons, as well as earlier or later developmental stages
(Hodgins-Davis & Townsend, 2009). Furthermore, our analytical
approach is relatively simplistic, given that we compared selection
on plasticity within compared to across environments under exper-
imental conditions where replicated genotypes experienced each
environment. However, in natural populations, the true magnitude
of such a cost of adaptive plasticity would certainly depend on the
frequency with which each environment is encountered, among
other factors. As an extreme example, if a population only expe-
rienced one environment, then this type of cost, even if it existed
under experimental conditions, would not occur at all in the field.
While we provide information on the environments experienced
by each accession (Table S1), it is beyond the scope of this study to
determine how often each accession would encounter each envi-
ronment in the field. It is difficult to know the frequency of with-
in- and between-growing season shifts in bioclimatic variables that
rice varieties have experienced because historical data on this are
not always fine-grained enough. In addition, human management
of rice plants may have exacerbated gradients in water availability
relative to what wild plants would experience when we compare
across rice varieties, particularly when contrasting varieties from
irrigated versus rainfed agro-ecosystems. Our study populations
and experimental set up have more power to detect potential costs
of gene expression plasticity than observations on wild plants in
natural contexts would have. However, since we do not know the
frequencies of shifts in environmental variables that plants in our
populations experience, it will be nearly impossible to extrapolate
our analyses of how selection may influence the evolution of gene
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expression plasticity on a micro-evolutionary time-scale and make
inferences for macro-evolutionary time-scales. Ongoing field stud-
ies with a larger panel of accessions from irrigated, rainfed lowland
and rainfed upland agro-ecosystems will have more power to ad-
dress the importance of this issue for the evolution of plasticity.
Nevertheless, the fact that we found no overlap in selection for
plasticity across environments compared with selection against
plasticity within environments points towards a lack of costs of
adaptive plasticity at the regulatory level.

4.2 | Factors associated with selection on gene
expression plasticity

We examined whether the strength and pattern of selection on gene
expression plasticity was linked to factors related to gene architec-
ture, metabolic costs and network features. We found that several
factors, including level of plasticity, transcript length and level of
gene-body methylation (gbM) appear to influence selection on gene
expression plasticity. The effect of gbM is in keeping with a previ-
ously observed link between reductions in gbM and adaptive gene
expression plasticity in corals (Dixon et al., 2018), and the observa-
tion that genes with high gbM levels typically show more consistent
expression across cells, and thus low plasticity (Horvath et al., 2019).
Such findings have contributed to the view that gbM has homeo-
static functions for gene expression (Zilberman, 2017). Interestingly,
the factors expression plasticity, transcript length, and gbM together
appear to influence longer-term patterns of gene expression and pro-
tein evolution in the Poaceae as well (Seymour & Gaut, 2019).

Our network analysis revealed a set of gene modules in Indica
with positive average selection on expression plasticity. Transcripts
in these modules are enriched in GO biological processes related
to photosynthesis, translation and responses to abiotic stress, sug-
gesting selection on expression plasticity of a multitude of genes
that participate in these processes. Adjusting photosynthesis and
osmotic regulation under fluctuating water availabilities appeared
to be particularly beneficial for fitness not only in rice, but also
in many other species such as B. rapa, where related genes were
previously shown to be involved in regulating plastic responses to
dehydration (Hamann et al., 2021). Overall, these results suggest
selection generally favoured gradual expression plasticity of tran-
scripts associated with biological functions related to photosynthe-
sis, osmotic regulation and stress responses, which all play a critical
role in drought-stress responses. In contrast, selection may act more
strongly against expression plasticity in housekeeping genes, where
dysregulation could have high fitness costs.

To conclude, our study provides a rich, genome-wide view of
the factors that shape patterns of selection on gene expression
plasticity. Our results offer insights into the interplay between
plastic and evolutionary responses to drought at the molecular
level. This work can help to pave the way for future functional
studies of the underlying mechanisms of the evolution of gene

regulation.
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