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Abstract

Large Language Models (LLMs) are increasingly used to support scientific research,
but their knowledge of scientific advancements can quickly become outdated. We
introduce SCIENCEMETER, a new framework for evaluating scientific knowledge
update methods over scientific knowledge spanning the past, present, and future.
SCIENCEMETER defines three metrics: knowledge preservation, the extent to
which models’ understanding of previously learned papers are preserved; knowl-
edge acquisition, how well scientific claims from newly introduced papers are
acquired; and knowledge projection, the ability of the updated model to anticipate
or generalize to related scientific claims that may emerge in the future. Using
SCIENCEMETER, we examine the scientific knowledge of LLMs on claim judg-
ment and generation tasks across a curated dataset of 15,444 scientific papers and
30,888 scientific claims from ten domains including medicine, biology, materials
science, and computer science. We evaluate five representative knowledge up-
date approaches including training- and inference-time methods. With extensive
experiments, we find that the best-performing knowledge update methods can
preserve only 85.9% of existing knowledge, acquire 71.7% of new knowledge, and
project 37.7% of future knowledge. Inference-based methods work for larger mod-
els, whereas smaller models require training to achieve comparable performance.
Cross-domain analysis reveals that performance on these objectives is correlated.
Even when applying on specialized scientific LLMs, existing knowledge update
methods fail to achieve these objectives collectively, underscoring that developing
robust scientific knowledge update mechanisms is both crucial and challenging.

� Code and Data github.com/yikee/ScienceMeter

1 Introduction

LLMs are being widely used to aid scientific research [30, 34, 17, 44, 22], with the potential to enable
even greater future discoveries [2, 47]. However, due to the rapid pace of scientific advancements [26]
and the static nature of pre-trained LLMs [7], their scientific knowledge quickly becomes stale. We
posit that effective scientific knowledge updates in LLMs must do more than simply adding new
information, but preserve existing knowledge, incorporate new findings, and enable generalization
to reason about future or yet-undiscovered knowledge. Although generic update strategies have
been explored, e.g., via continual pre-training [14], instruction-tuning [59], or retrieval-augmented
generation [46], it is not clear whether these methods sufficiently support these goals.

To fill this gap, we propose SCIENCEMETER—a new framework for evaluating how LLMs update
and reason over scientific knowledge. As shown in Figure 1, our approach centers on tracking
scientific knowledge updates as trajectories along three axes: preservation of prior knowledge
(the parametric knowledge already encoded in the LLM), acquisition of new knowledge introduced
through knowledge update methods, and projection of future knowledge not yet available to the model
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New Knowledge

Scientific Claim: Microglia produce OSM, LIF, activin A, CSF-1, IL-34, 
GDF-15, FGF-2, and IGF-2 with neurotrophic activity. [Features of Microglia]

LLM

Scientific 
Knowledge 

Update

Prior Knowledge

Scientific Claim: Microglia are mononuclear phagocytes of 
mesodermal origin that migrate to the CNS during the early 
stages of embryonic development. [Basics of Microglia]

Future Knowledge
Scientific Claim: Microglia play a dual role in 
neurodegeneration and neuroprotection in 
Alzheimer’s disease. [Roles of Microglia] 

Scientific  
Advancement

 preserve 

acquire
 project 

Paper: <Microglia morphophysiological diversity and its 
implications for the central nervous system>

Paper: <Diversity of Microglia-Derived Molecules with Neurotrophic Properties 
That Support Neurons in the Central Nervous System and Other Tissues>

Figure 1: We propose an evaluation framework, SCIENCEMETER, along with novel metrics to
quantify the reliability and usefulness of scientific knowledge updates in LLMs: preservation of
existing scientific claims and their linkage to existing literature, acquisition of new scientific claims
from emerging research, and projection of future scientific claims. For example, when we update
an LLM with a new paper introducing the effective identification of features of Microglia, our
framework evaluates the acquisition of this new knowledge, as well as the preservation of existing
knowledge about the fundamentals of Microglia learned from previous literature, and the ability of
LLMs effectively use its parametric knowledge to extrapolate future knowledge on Microglia, such
as potential roles of Microglia in the Alzheimer’s disease.

but can be inferred. Past discoveries serve as the foundation for future advancements and remain
valuable for researchers seeking historical context, validation, or reinterpretation of previous findings,
while the latter evaluates the utility of knowledge updates in enabling models to internalize new
knowledge, moving beyond mere factual memorization to understand the underlying principles and
patterns that govern such knowledge. This capability can facilitate advanced reasoning, hypothesis
generation [44], and the formulation of novel ideas [47]—key future usages of AI for science.

Inspired by SciFact [54], SCIENCEMETER operationalizes scientific knowledge as atomic scientific
claims, i.e., atomic verifiable statements expressing a finding about one aspect of a scientific entity
or process, which can be verified against a single source. While prior work in general domains
often represents knowledge as factoid information or structured entity tuples [53, 60], we argue that
scientific claims are more appropriate and meaningful units of knowledge in scientific contexts, as
they better capture the core insights and implications of research beyond isolated numerical values.

In SCIENCEMETER, we curate a large-scale, multi-domain dataset encompassing 15,444 research
papers and 30,888 scientific claims across 10 rapidly evolving scientific fields, including medicine,
biology, materials science, and computer science. As LLMs become increasingly integrated into
these domains, it is essential to evaluate whether existing knowledge update methods can support
their progress. Related scientific literature is grouped chronologically to represent prior, new, and
future knowledge based on publication dates. To evaluate scientific knowledge, we focus on two
tasks: claim judgment, and claim generation. To better reflect the rigor of the scientific domain, our
evaluation methodology emphasizes both factual accuracy and model’s confidence. Specifically, we
categorize the model’s knowledge of a claim as correct (factually accurate and confident), incorrect
(factually inaccurate and confident), or unknown (not confident) and quantify the percentage of two
types of errors in preservation, acquisition, and projection, respectively.

We evaluate LLMs’ scientific knowledge updates using five methods spanning training, inference, or
both. Experimental results across standard and frontier models highlight that the best-performing
knowledge update method achieve on average only 85.9% on knowledge preservation, 71.7% on
knowledge acquisition, and 37.7% on knowledge projection. While inference-time update methods
tend to be effective for large models, smaller models require training-based approaches to achieve
comparable performance. Cross-domain analysis reveals that performance on these objectives is
correlated, with knowledge preservation and projection heavily influenced by domain volatility, while
the availability of domain knowledge during pretraining has limited impact. Moreover, even applying
on specialized, domain-adapted scientific LLMs struggle to balance these objectives, underscoring
persistent challenges in updating scientific knowledge in LLMs.
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Figure 2: An overview of SCIENCEMETER: (1) We curate chronologically organized datasets of
scientific papers and claims across 10 rapidly evolving domains; (2) define claim judgment and
generation tasks to evaluate scientific knowledge, incorporating both factual accuracy and model
confidence; and (3) introduce metrics for evaluating scientific knowledge updates.

2 The SCIENCEMETER Evaluation Framework

To systematically evaluate scientific knowledge updates in LLMs, SCIENCEMETER integrates three
core components: (1) a carefully curated dataset consisting of 15,444 scientific papers and 30,888
scientific claims (§2.1); (2) evaluation of model’s scientific knowledge through claim judgment and
generation tasks, assessed by both factual accuracy and model confidence (§2.2); and (3) novel
metrics for evaluating knowledge update methods that aggregate claims from past/present/future data
sets (§2.3). An overview of SCIENCEMETER is illustrated in Figure 2.

2.1 Dataset Construction

Paper Collection

Domain Paper Count
Computer Science 835
Medicine 480
Biology 351
Materials Science 559
Psychology 491
Business 503
Political Science 409
Environmental Science 455
Agricultural and
Food Sciences 533

Education 532

SUM 5148

Table 1: Paper Count in each domain
after filtering out papers without cita-
tion information or abstracts. Originally,
1,000 papers were retrieved per domain.

We identify 10 rapidly evolving scientific domains: Com-
puter Science, Medicine, Biology, Materials Science,
Psychology, Business, Political Science, Environmental
Science, Agricultural and Food Sciences, and Educa-
tion. LLMs are increasingly integrated into scientific
research across these domains, so it is crucial to assess
whether LLMs can continuously contribute to these do-
mains through knowledge updates.

For each domain, we retrieve 1,000 journal or conference
papers (excluding review or survey papers) published at
least three months before the knowledge cutoff date of the
given model using the Semantic Scholar API [4]. This
three-month window accounts for potential discrepancies
between a paper’s online availability and its official pub-
lication date, ensuring a more accurate representation of
the knowledge. To obtain more recent knowledge on the
subjects relevant to each paper, we perform an additional
query to the Semantic Scholar API, retrieving papers that
cite the original paper and were published at least three
months after the knowledge cutoff date. We also set a
recent cutoff date, beyond which papers serve as a proxy for future knowledge. The specific cutoff
dates used for all models examined in this study are detailed in Appendix C. In total, we constructed
5,148 triplets of (pprior, pnew, pfuture), each representing a prior, new, and future version of scientific
knowledge on the same topic.

Synthetic Claim Generation and Expert Validation We synthetically generate one SUPPORT
(uniquely supporting) scientific claim and one REFUTE (relevant but non-supporting) scientific claim
for each paper, resulting in a total of 15,444 (p, cSUPPORT) and 15,444 (p, cREFUTE) tuples. Expert
evaluation confirms that at least 80% of the generated claims strictly comply with the specified rule,
while over 95% broadly align with our expectations, demonstrating the effectiveness of our synthetic
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claim generation approach. To further validate our methodology, we collect a set of author-annotated
claims and conduct additional experiments. The results consistently support the efficacy of our
approach, indicating that synthetic claims achieve comparable quality to those annotated by human
experts while offering significant scalability benefits. Further details are provided in Appendix C.

2.2 Evaluation of Scientific Knowledge

Now we want to evaluate a model’s scientific knowledge on the papers collected in Section 2.1,
specifically the scientific claims made in each paper. We propose two tasks, judgment and generation,
and categorize the model’s knowledge of a claim as correct, incorrect, or unknown, based on both the
response’s factual accuracy and the model’s confidence.

Task Formulation

• Claim Judgment To evaluate a model’s knowledge of pprior or pnew, we frame the task as a claim
verification problem: given the title t of a prior or new scientific paper and its associated claim
c, the ground-truth label is y(c, t) 2 {SUPPORT, REFUTE}. The model is instructed to predict a
label ŷ(c, t) for each (c, t) pair. To evaluate a model’s knowledge of pfuture, we adapt the task into
a classification setting: given a claim c associated with a “future” scientific paper, the ground
truth label y(c) 2 {SUPPORT, REFUTE} indicates whether its associated “future” paper supports
or refutes the claim c. The model is asked to predict a label ŷ(c) based solely on its internalized
knowledge or extrapolative reasoning, without access to any specific paper.

• Claim Generation The generation task poses a greater challenge. To evaluate a model’s knowl-
edge of pprior or pnew, the model is given the title t of a prior or new scientific paper p and
instructed to generate a supporting claim ĉ(t) such that y(ĉ, t) = SUPPORT. To evaluate a model’s
knowledge of pfuture, the model is given the subject s of a “future” scientific paper p (with title t)
and tasked with generating a supporting claim ĉ(s) such that y(ĉ, t) = SUPPORT.

Task Evaluation
To better reflect the rigor of the scientific domain, our evaluation methodology emphasizes both factual
accuracy and the model’s confidence. We present our choices of measurement methods in Section 3.2.
By combining factual accuracy with model confidence, we categorize the model’s knowledge of a
claim as correct (factually accurate and confident), incorrect (factually inaccurate and confident), or
unknown (not confident). We argue that when confidence is low, even a factually accurate answer
is not reliable as it may result from hallucination or random chance. This categorization enables a
detailed analysis of the impact on prior, new, and future scientific knowledge following knowledge
updates, as discussed in the next section.

2.3 Evaluation of Knowledge Update Methods

Given the set of papers and associated claims, along with the model’s knowledge about each claim
(correct, incorrect, or unknown), we can systematically evaluate how a given knowledge update
method impact the model’s prior, new, and future scientific knowledge. Specifically, we define three
core metrics, Knowledge Preservation, Knowledge Acquisition, and Knowledge Projection, as well
as two associated error categories, distortion and loss, as detailed below.

Let Pprior, Pnew, and Pfuture be sets of prior, new, and future scientific documents in a particular
scientific domain. Pnew is introduced using the given scientific knowledge update method f . Let
g represent either the claim judgment or generation task presented in Section 2.2. Then, given a
pre-trained language model LM and a knowledge update method f , we define:

• Knowledge Preservation as the percentage of scientific claims associated with Pprior that remain
correct. The proportion of previously correct claims that become incorrect is referred to as a
distortion in preservation, while the proportion that becomes unknown is considered as loss.

• Knowledge Acquisition as the proportion of scientific claims associated with Pnew that the
model LM correctly acquires through f , i.e., changing from unknown to correct. Similarly, the
proportion of unknown claims that become incorrect is referred to as a distortion in acquisition,
while the proportion that stays as unknown is referred to as loss.

• Knowledge Projection as the percentage of scientific claims associated with Pfuture that the model
LM successfully projects after update f , i.e., claims changing from unknown to correct. Because
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some incorrect projections may become correct over time, the true magnitude of Knowledge
Projection is likely higher than our current estimate. We define the proportion of unknown claims
that remain unknown as loss.

We provide the detailed formulas for each metric in Appendix E. The sum of Knowledge Preservation,
distortion, and loss equals one, and the same holds for Acquisition. Among the error types,
distortion is considered more severe than loss in both Preservation and Acquisition scenar-
ios. This is because generating a factually inaccurate response with high confidence (e.g., stating
“this claim is SUPPORT for sure” to a REFUTE claim) is more problematic than producing a low-
confidence response, regardless of its factual accuracy (e.g., “maybe this claim is SUPPORT/REFUTE”).
An optimal scientific knowledge update method should aim to collectively maximize Knowledge
Preservation, Knowledge Acquisition, and Knowledge Projection.

3 Experiment Settings and Results
In this section, we evaluate five knowledge update methods, covering training, inference, or a
combination of both. Experiments on both standard and frontier models, along with three confi-
dence measurement approaches, demonstrate the challenge of developing a such reliable scientific
knowledge update method capable of meeting all three objectives.

3.1 Models

We aim to evaluate the performance of various knowledge update methods on a widely used, rea-
sonably sized model and a frontier large model. As a representative of commonly used mid-sized
models, we select LLaMA3.1-8B-Instruct [13], and OLMo2-32B-Instruct [39] serves a representative
of frontier models, given computational constraints and the limited openness of commercial models.
Notably, OLMo2-32B-Instruct has demonstrated frontier performance while requiring only one-third
of the compute of other open-weight models and outperforming GPT-4o mini [40].

3.2 Factual Accuracy and Model Confidence Measurement Methods

Factual Accuracy For the Claim Judgment task, we map the model’s predictions ŷ(c, t) and ŷ(c) to
the set {SUPPORT, REFUTE} using manually identified answer patterns, and compare them against the
ground-truth labels y(c, t) and y(c), respectively. For the Claim Generation task, we assess the factual
accuracy of the generated claim ĉ by inviting GPT-4O to determine whether y(ĉ, t) = SUPPORT,
based on the abstract of the corresponding paper p.

Model Confidence Given the absence of a validation set, we estimate confidence levels using three
rule-based measurement methods and finalize the decision through majority voting.

• More Information Following existing prompt-based solutions [10, 12], we append a prompt
asking whether more information is needed to answer a given question: “Do you need more
information to answer this question? (Yes or No)”. Indicating the need for more information
suggests a lack of confidence.

• Consistency We paraphrase the question three times, sample responses for each version, and
classify the model as confident if all responses converged on the same final binary answer.

• Linguistic Confidence Given only the model’s response, we prompt GPT-4O [40] with
the following question: “Do you think the model is confident about its answer? (Yes
or No)”, aiming to capture implicit linguistic markers of confidence, such as assertive
phrasing, authoritative tone, and decisive language in the response. We also conduct
a human evaluation of linguistic confidence. The confidence classification consistency
between three human evaluators and GPT-4O is 75.9%, thereby validating the effectiveness
of GPT-4O as a judge in this task.

All three methods are used as confidence measurement for the judgment responses, while More
Information is used for generation responses.

3.3 Knowledge Update Methods

We experiment with five knowledge update methods that update new scientific knowledge (i.e., Pnew)
at either the training stage, the inference stage, or both. Pnew is split into training and test sets, and
only the test set will be evaluated. Following previous work on scientific domains [54, 38], we use
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Method
Claim Judgment Task Claim Generation Task

Pres Dist Loss Acqu Dist Loss Proj Loss Pres Dist Loss Acqu Dist Loss Proj Loss

LLAMA3.1-8B-INSTRUCT

CNT PRETRAIN 85.0 5.5 9.5 37.3 29.9 32.8 34.5 48.3 53.3 30.0 16.7 53.1 42.0 5.0 11.8 70.6
INST TUNE 86.3 4.1 9.6 38.9 28.3 32.8 24.1 41.3 72.2 17.8 10.0 56.1 38.2 5.7 29.4 64.7
PRE INST TUNE 59.0 38.3 2.7 64.2 26.8 9.0 44.9 48.2 63.3 23.3 13.3 56.1 37.4 6.5 11.8 64.7
INFER 68.6 17.8 13.6 43.2 50.8 6.0 48.3 13.7 14.4 62.2 23.3 84.4 8.4 7.3 23.5 5.9
INST TUNE + INFER 69.9 19.2 10.9 41.8 43.3 15.0 44.9 6.8 12.2 58.9 28.9 76.0 11.5 12.6 17.6 17.6

OLMO2-32B-INSTRUCT

CNT PRETRAIN 89.4 0.0 10.6 18.7 40.7 40.7 16.6 63.8 82.5 17.5 0.0 68.3 31.7 0.0 13.1 71.5
INST TUNE 89.5 0.9 9.6 20.3 35.6 44.2 13.8 68.5 85.8 14.2 0.0 67.7 32.3 0.0 18.9 71.3
PRE INST TUNE 89.4 0.9 9.7 17.0 39.9 43.2 17.6 65.7 84.2 15.8 0.0 68.3 31.7 0.0 18.6 63.9
INFER 99.1 0.9 0.0 57.7 3.3 39.0 35.3 15.6 42.9 55.8 1.3 79.3 9.9 10.8 37.6 13.7
INST TUNE + INFER 96.1 0.9 2.9 46.6 6.8 46.7 33.3 18.7 41.7 57.1 1.3 80.5 8.7 10.8 30.4 26.4

Table 2: Performance of knowledge update methods in the domain of Computer Science. Best
results in bold and second best in underline. Performance are color-coded per category: Preservation,
Acquisition, Projection. Higher values of preservation, acquisition, and projection are better, while
lower values of distortion and loss are preferred. All methods fail to meet objectives collectively.

abstracts of papers in Pnew instead of full papers, as they typically contain sufficient information and
are easier to fit within the model’s context window.

Training. Through training, we update the model parameters by minimizing loss defined by different
training objectives. Only LoRA adapters [18] are trained for all training baselines, with the training
duration set to 1 epoch for autoregressive training and 4 epochs for SFT.

Continual Pre-training (CNT PRETRAIN). P test
new is introduced through autoregressive train-

ing [14], minimizing the standard next-token prediction loss: � 1
|d|

P
t log p✓(dt|d<t).

Standard Instruction-tuning (INST TUNE). The model is first trained autoregressively on both
P train

new and P test
new, and then fine-tuned [59] on training QA by minimizing the answer prediction

loss given the question: � 1
|a|

P
t log p✓(at|q, a<t).

Pre-instruction-tuning (PRE INST TUNE). Jiang et al. [24] introduces a new method that
exposes LLMs to QA pairs before continued pre-training on documents. Specifically, the model
is instruction-tuned on training QA along with P train

new prior to autoregressively trained on P test
new.

Inference (INFER). The success of in-context learning [8] highlights the potential for introducing
new knowledge at inference time, offering a more cost-efficient approach. Many existing knowledge
augmentation methods, including retrieval-augmented generation [46], search engines [43], and multi-
LLM collaborations [10, 11], leverage this strategy to provide additional information. In our setting,
we add corresponding paper pnew in P test

new to the prompt text and g(LMf(P test
new)

, p) = g(LM |pnew, p).

Training + Inference (INST TUNE + INFER). Following Tang et al. [53], we also explore whether
combining training and inference-time methods can yield improved performance. Specifically, we
integrate standard instruction-tuning with the inference-time approach.

3.4 Results

No knowledge update method can simultaneously achieve all three objectives. As shown in
Table 2, the best-performing knowledge update methods, averaged across tasks and models, preserve
only 85.9% of existing knowledge, acquire 71.7% of new knowledge, and project 37.7% (or more) of
future knowledge. However, we fail to find a method that can achieve all three objectives collectively.
Overall, standard instruction-tuning and inference methods remain as the strongest methods across
five. Enabling models to project future knowledge presents a new challenge for knowledge update. As
LLMs become increasingly integrated into scientific workflows, especially tasks such as hypothesis
and idea generation, it becomes critical to develop update methods that not only integrate new claims
but also enable models to anticipate and reason about future scientific advancements.

6



Figure 3: Performance of Standard Instruction-tuning on LLAMA3.1-8B in the claim judgment task.
Performance are color-coded per category: Preservation, Acquisition, Projection. The performance in
Materials Science and Environmental Science is poor across all three objectives, whereas Political
Science and Education show relatively strong performance in all three.

Inference-based methods work for larger models, whereas smaller models require training
to achieve comparable performance. For instance, in the claim judgment task, OLMo2-32B
achieves inference-time performance that is 10.9% higher than training-based methods in Knowledge
Preservation on average, whereas the inference-time method on LLaMA-8B performs 10.7% worse
than training-based methods. This discrepancy arises in part from the larger models’ capacity to
effectively filter out irrelevant or noisy contextual information during inference. With their greater
representational power and more robust internal attention mechanisms, larger models are less sensitive
to distractions in the prompt or context [8, 6, 37], allowing them to incorporate new knowledge
with minimal degradation of prior understanding. From a computational perspective, inference-
based update is significantly more cost-effective than training [16, 45, 28], especially when updates
are frequent. Notably, combining inference with additional training does not lead to performance
improvements over inference alone, suggesting diminishing returns from training once a model has
sufficient capacity to leverage inference-based strategies effectively. For smaller models, however,
training remains a necessary component to compensate for their limited ability to generalize and
disambiguate new knowledge in context.

In the Claim Generation task, distortion is significantly greater than loss. Specifically,
in the more challenging Claim Generation task, the amount of distortion is, on average, three
times higher than loss in both Preservation and Acquisition. As we discussed in Section 2.3,
distortion is considered more severe than loss in both scenarios. This observation suggests a
significant challenge for knowledge update methods, as they may introduce errors even when they
should remain cautious. To address this issue, future developments in knowledge update methods
could incorporate an abstention mechanism, avoiding updating models’ representations if they lack
confidence or certainty about the new content. Such a mechanism would allow models to opt out
of updates when faced with ambiguous or uncertain knowledge, helping to preserve accuracy and
reduce the propagation of errors.

4 Analysis
In this section, we perform additional analyses across different scientific domains. The results reveal
that performance on the three objectives is correlated; Preservation and Projection exhibit strong
dependence on domain volatility, whereas the availability of domain knowledge in the pretraining cor-
pus demonstrates only marginal influence. We also evaluate scientific LLMs in the worst-performing
domain (i.e., Materials Science) and find that even applying on domain-adapted models struggle to
achieve all three objectives, underscoring persistent challenges in updating scientific knowledge.

4.1 Cross-domain Analysis

In this section, we further break down performance by scientific domain and analyze potential factors
that may influence the preservation, acquisition, and projection of scientific knowledge. As shown in
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Figure 4: The correlation between Preservation, Acquisition, Projection and average citation count,
as well as pretraining occurrence. The strength of the correlation is reflected in how closely the data
points cluster around the best-fit line.

Figure 3, performance varies significantly across domains. While over 90% of scientific knowledge in
Political Science is preserved, only 72% of Materials Science knowledge can be retained. Similarly,
while 48.6% of scientific knowledge in Education can be projected, this drops to just 16.8% in
Materials Science. We also notice that these three capabilities appear to be correlated. Performance
in certain domains tends to be consistently poor across all three tasks, for example, Materials
Science and Environmental Science, whereas domains such as Political Science and Education exhibit
relatively strong performance across all three objectives.

We hypothesize that domain performance may be influenced by two key factors:

First, the nature of the domain, specifically the stability or volatility of knowledge within that domain.
In some domains, such as Political Science, knowledge is more stable, with long-established theories
and principles that evolve slowly over time. In contrast, other domains, such as Materials Science,
may experience more volatility, with frequent breakthroughs or shifting paradigms that rapidly change
the state of knowledge. Knowledge preservation and projection may be more challenging in domains
with higher volatility compared to those with greater stability. To test this hypothesis, we randomly
retrieve 1,000 conference or journal papers published between October 2022 and September 2023
in each domain, and calculate the average citation count for these papers (Appendix G), under the
assumption that higher average citation counts reflect higher knowledge volatility.

Second, the availability of domain knowledge in the pretraining corpus. We posit that if domain
knowledge appears frequently or widely in the pretraining corpus, knowledge acquisition might
be easier. To assess this possibility, we collect the 100 tokens that appear least frequently in the
abstracts of these 1,000 papers in each domain, as they tend to be specialized tokens unique to each
domain. We then use Infini-gram [31] to count the occurrence of these tokens in the pretraining
corpus Dolma-v1.7 [48], and use the average occurrence of domain-specific tokens as a proxy for the
availability of domain knowledge in the pretraining data. A complete list of specialized tokens and
average occurrences across domains is provided in Appendix G.

As shown in Figure 4, our analysis reveals a strong relationship between the ability to preserve and
project scientific knowledge and the dynamics of the domain. Specifically, the Pearson correlation
coefficient [42] between average Citation Count and Knowledge Preservation is -0.709, while its
correlation with Knowledge Projection is -0.736, both indicating a significant relationship. Highly dy-
namic domains with frequent updates may lead to more knowledge conflicts [58], making preservation
and projection particularly challenging. In contrast, the correlation between pretraining availability
and the robustness of scientific knowledge updates is relatively weak, indicating that pretraining
alone may have a limited impact on how well models adapt to evolving scientific information.

4.2 Scientific LLMs

Rather than relying solely on off-the-shelf LLMs, researchers also use scientific LLMs [62], LLMs
specifically trained or adapted for science. In this work, we also experiment with HoneyBee [49],
a llama-based model fine-tuned for Materials Science domain using high-quality, relevant textual
data from the open literature. As we find that the performance of scientific knowledge updates in
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Model Preservation Distortion Loss Acquisition Distortion Loss Projection Loss

LLAMA3.1-8B-INSTRUCT 72.0 11.0 17.0 15.5 13.4 71.7 16.8 75.8
OLMO2-7B 60.3 16.9 22.8 11.9 36.0 52.1 15.6 76.0
HONEYBEE-7B 62.6 0.0 37.4 18.2 42.8 39.0 15.1 69.0

Table 3: Performance of Standard Instruction-tuning on off-the-shelf and scientific LLMs in the
claim judgment task within the domain of Materials Science. Best results in bold and second best in
underline. HoneyBee is a materials science model fine-tuned on LLaMa-7B.

Materials Science is significantly lower than other domains (Section 4.1), we wonder if applying on a
specialized scientific LLM could help. As shown in Table 3, scientific LLMs show no significant
improvement compared to off-the-shelf LLMs of similar sizes, highlighting the unique challenges
involved in updating scientific knowledge in terms of preservation, acquisition, and projection.

5 Related Work

LLMs for Scientific Advancements Recent research has demonstrated the significant potential of
LLMs in driving scientific advancements across various domains, revolutionizing the way researchers
approach complex problems and innovate in their respective fields [30, 34, 17, 44, 22, 2, 47, 50].
Researchers utilize off-the-shelf LLMs [3], domain-specific scientific LLMs [62], or LLMs augmented
with external resources [5] to assist in scientific research. Studies show that current LLMs can be
useful across various stages of the research cycle [34], including literature review [17, 1], hypothesis
proposing [44], idea generation [47], and experiment planning and implementation [22, 19]. However,
to the best of our knowledge, we are the first to explore whether LLMs can effectively stay up to date
with evolving scientific fields while remaining reliable and useful. Specifically, we examine whether
LLMs can continuously contribute to the advancement of these fields.

Evaluation of Knowledge Updates in LLMs Our evaluation of scientific knowledge updates differs
from existing work on evaluation of knowledge updates in LLMs [29, 51, 55] in three key aspects.
First, most prior work primarily regards the effective incorporation of new information as the only
objective [20, 41, 24, 61, 53, 60, 63, 21], with few studies also considering the preservation of old
knowledge [24, 61]. However, they rely on generic benchmarks such as Natural Questions [27] and
CommonsenseQA [52], which evaluate the retention of general world knowledge rather than the
preservation of knowledge related to the newly updated information. And we further introduce a
new evaluation dimension, evaluating the utility of knowledge updates for reasoning, hypothesis
generation [44], and the creation of novel ideas [47], which are the key future applications of AI in
science. Second, existing approaches heavily rely on Wikipedia as a data source and assess knowledge
at the factoid level (e.g., names, locations) [20, 41, 24, 61, 53, 60, 63, 21], whereas we extend
evaluation to natural language representations, which better capture the core insights and implications
of research beyond isolated numerical values as well as the complexity of real-world knowledge.
Third, prior work on knowledge alignment primarily focuses on temporal alignment [63, 60, 21],
aiming to align knowledge to specific timestamps, such as associating a president with a particular
year, our goal, in scientific domains, is to align scientific claims with scientific literature.

Furthermore, we distinguish our evaluation of knowledge preservation from Catastrophic Forgetting
(CF) in Continual Learning (CL) [25, 20, 9], as our setting involves multiple training stages and
methods. Another relevant line of work is knowledge editing [36, 57, 35, 62, 33, 56, 23, 32, 15],
which aims to replace incorrect existing knowledge, whereas our goal is to integrate new knowledge
without altering the model’s understanding of previously learned scientific literature.

6 Conclusion
In this work, we investigate scientific knowledge updates of LLMs and propose that an effective and
reliable update method should be able to preserve existing scientific knowledge, acquire new scientific
knowledge, and project future scientific knowledge, which are crucial for the continual use of LLMs
in evolving scientific fields. To this end, we introduce an evaluation framework SCIENCEMETER with
rich datasets of scientific papers across domains, new tasks and evaluation of scientific knowledge,
and new metrics for evaluating knowledge update methods. With comprehensive experiments on
frontier general-purpose and science-focused LLMs, we find that achieving these objectives remains
an open research challenge, underscoring the need for further exploration in this direction.
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A Limitations

Real Scientific Advancement is Far More Complex In this work, we model scientific advancement
as a linear timeline spanning existing, new, and future developments. However, genuine scientific
progress is considerably more complex in reality. New advancements often emerge from the conver-
gence of multiple research trajectories across diverse domains. Future work should aim to capture
this multidimensional nature of scientific progress.

Beyond Scientific Claims While this work focuses on scientific claims as the fundamental unit of
analysis for evaluating scientific knowledge and scientific knowledge updates, we recognize that
scientific knowledge operates at multiple meaningful levels of granularity. Other critical dimen-
sions worthy of investigation include the paper-level and researcher-level, which could be potential
directions for future research.

Contradictory Claims When evaluating future scientific knowledge using claim classification tasks,
we acknowledge that, theoretically, there is a chance that some claims may contradict past findings.
However, empirical evidence suggests such occurrences are rare. Moreover, our claims are sufficiently
detailed and comprehensive, making it unlikely that identical or highly similar claims have appeared
in prior literature.

Disentangling Knowledge from Instruction-Following/Reasoning Capabilities Separating the
"knowledge" of LLMs from their instruction-following and reasoning abilities is challenging, particu-
larly if we define "knowledge" as the content they generate. Prior work has attempted to assess LLMs’
knowledge using cloze-style tasks [20] at inference time, which rely more on raw knowledge and less
on instruction-following ability. However, such formats are limited to evaluating factoid knowledge.
In this work, we define scientific knowledge as scientific claims and propose claim judgment and
generation tasks to evaluate it. While these tasks are effective for assessment and analysis, we
acknowledge that model performance on them still depends, to some extent, on instruction-following
and reasoning capabilities.

B Ethics Statement

We envision certain potential ethical risks of SCIENCEMETER. For example, when evaluating "future"
scientific claims, the framework risks creating ethical dilemmas regarding premature validation of
unproven hypotheses. This becomes particularly problematic when assessing claims in sensitive
domains (e.g., climate science or medical research) where premature endorsement could influence
policy or clinical decisions.

However, SCIENCEMETER also provides significant ethical benefits by introducing systematic
transparency to scientific knowledge assessment. SCIENCEMETER can help surface meritorious but
underrecognized research directions, and these features may ultimately promote more equitable and
evidence-based scientific progress when implemented with appropriate ethical safeguards.

C Dataset Details

C.1 Date Cutoffs

Table 4 presents the specific date cutoffs used to construct the dataset for all models in this study. A
three-month buffer accounts for potential discrepancies between a paper’s online availability and its
official publication date, allowing a more accurate representation of respective knowledge.

C.2 Synthetic Claims

To generate synthetic claims for each paper, we prompt GPT-4O with the instructions detailed in
Table 5. We explored various alternative methods for synthetic claim generation, such as retrieving
a relevant paper and using its SUPPORT claim as the REFUTE claim for the given paper. However,
the method we ultimately adopted, despite its simplicity, yielded the best results. Additionally, we
control the granularity of claims by constraining their length to approximately 15 words, ensuring
that they are neither overly simplistic nor excessively verbose (e.g., the entire abstract).
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Model Cutoff Prior Knowledge New Knowledge Future Knowledge
LLAMA3.1-8B Dec 2023 2022.10.1 - 2023.9.30 2024.3.1 - 2024.11.30 2024.12.1 - 2025.2.1
OLMO2-7B Dec 2023 2022.10.1 - 2023.9.30 2024.3.1 - 2024.11.30 2024.12.1 - 2025.2.1
OLMO2-32B Dec 2023 2022.10.1 - 2023.9.30 2024.3.1 - 2024.11.30 2024.12.1 - 2025.2.1
HONEYBEE Oct 2023 2022.8.1 - 2023.7.31 2024.1.1 - 2024.11.30 2024.12.1 - 2025.3.1

Table 4: Date cutoffs used to distinguish prior, new, and future knowledge when constructing the
dataset for different models.

Prompt: SUPPORT Claim Generation

System Prompt
You are an expert scientific research assistant.

User Prompt
Please identify and extract the main scientific claim that is uniquely supported by the given
paper. A scientific claim is a atomic verifiable statements expressing a finding about one
aspect of a scientific entity or process, which can be verified against a single source.

Prompt: REFUTE Claim Generation

System Prompt
You are an expert scientific research assistant.

User Prompt
Please identify and extract a scientific claim that is relevant but not supported by the given
paper. A scientific claim is a atomic verifiable statements expressing a finding about one
aspect of a scientific entity or process, which can be verified against a single source.

Table 5: Prompt templates for synthetic claim generation.

We further conduct an expert evaluation of our synthetic claims. We invite two PhD students in
Computer Science and two PhD students in Biology. Each student is assigned 30 papers within their
respective domain of expertise. For each paper, we provide the title, abstract, and two synthetic
claims, and they are instructed to classify each claim into one of the following categories:

• Uniquely Supported – The claim can only be verified by the given paper.
• Broadly Supported – The claim is supported by the given paper but is likely validated by

other sources as well.
• Not Supported – The claim is not supported by the given paper.

The results are presented in Table 6, showing that at least 80% of claims strictly adhere to the rule,
while more than 95% broadly meet our expectations. While the results demonstrate the effectiveness
of our synthetic claims, there is still room for improvement, so we collect author-annotated claims in
Section C.3.

Computer Science Biology
SUPPORT REFUTE SUPPORT REFUTE

Uniquely Supported 83.3% 0.0% 80.0% 0.0%
Broadly Supported 13.3% 16.7% 15.0% 11.7%
Not Supported 3.3% 83.3% 5.0% 88.3%

Table 6: Expert evaluation results on synthetic claims, averaged across two experts per domain.
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C.3 Author-annotated Claims

We argue that the original authors of research papers possess the most appropriate expertise for claim
annotation. Under budget constraints, we conducted a randomized survey of 50 computer science
researchers, requesting annotations of claims from their own publications. This process yielded 284
scientific claims (142 SUPPORT and 142 REFUTE claims) derived from 142 papers spanning various
publication dates. While these papers do not necessarily share citation relationships, we consider
them conceptually related as they all belong to the AI subfield of Computer Science.

Our evaluation using LLaMA-8B on this author-annotated dataset (Table 7) reveals no statistically
significant performance difference compared to synthetic claims. This finding empirically validates
the effectiveness of our synthetic claim generation methodology, suggesting that the synthetic claims
maintain comparable quality to human expert annotations while offering scalability advantages.

Model Preservation Distortion Loss Acquisition Distortion Loss Projection Loss

SYNTHETIC CLAIMS 86.3 4.1 9.6 38.9 28.3 32.8 24.1 41.3
AUTHOR-ANNOTATED CLAIMS 89.3 3.7 7.0 33.3 26.5 40.2 20.9 43.0

Table 7: We evaluate Standard Instruction-tuning on LLaMA-8B using our claim judgment task with
synthetic and author-annotated claims in Computer Science respectively. The results demonstrate no
statistically significant difference between model performance on synthetic versus author-annotated
claims, which validates the effectiveness of our synthetic claim generation approach.

D Claim Judgment and Generation Tasks

We present the prompts used for the claim judgment and generation tasks in Table 8 and Table 9.

Prompt: Claim Judgment Task - Claim Verification (Prior and New Knowledge)

System Prompt
You are an AI research assistant designed to provide accurate, evidence-based responses.

User Prompt
claim: {claim}
Can every detail in the given claim be substantiated by the paper {title}?

Prompt: Claim Judgment Task - Claim Classification (Future Knowledge)

System Prompt
You are an AI research assistant designed to provide accurate, evidence-based responses.

User Prompt
claim: {claim}
Is the claim correct?

Table 8: Prompt templates for Claim Judgment Task.

E Metrics

Table 10 provides the detailed mathematical definitions of knowledge preservation, knowledge
acquisition, and knowledge projection, as well as distortion and loss.
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Prompt: Claim Generation Task - Prior and New Knowledge

System Prompt
You are an AI research assistant designed to provide accurate, evidence-based responses.

User Prompt
State the main scientific claim made in the paper {title}. A scientific claim is a atomic
verifiable statements expressing a finding about one aspect of a scientific entity or process,
which can be verified against a single source.

Prompt: Claim Generation Task - Future Knowledge

System Prompt
You are an AI research assistant designed to provide accurate, evidence-based responses.

User Prompt
State a scientific claim about {subject}. A scientific claim is a atomic verifiable statements
expressing a finding about one aspect of a scientific entity or process, which can be verified
against a single source.

Table 9: Prompt templates for Claim Generation Task.

Knowledge Preservation =

P
i I(g(LMf(P test

new)
, piprior) = correct | g(LM, piprior) = correct, g(LM, pinew) = unknown))

P
i I(g(LM, piprior) = correct, g(LM, pinew) = unknown)

distortion in Preservation =

P
i I(g(LMf(P test

new)
, piprior) = incorrect | g(LM, piprior) = correct, g(LM, pinew) = unknown))

P
i I(g(LM, piprior) = correct, g(LM, pinew) = unknown))

loss in Preservation =

P
i I(g(LMf(P test

new)
, piprior) = unknown | g(LM, piprior) = correct, g(LM, pinew) = unknown))

P
i I(g(LM, piprior) = correct, g(LM, pinew) = unknown))

Knowledge Acquisition =

P
i I(g(LMf(P test

new)
, pinew) = correct | g(LM, pinew) = unknown)

P
i I(g(LM, pinew) = unknown)

distortion in Acquisition =

P
i I(g(LMf(P test

new)
, pinew) = incorrect | g(LM, pinew) = unknown)

P
i I(g(LM, pinew) = unknown)

loss in Acquisition =

P
i I(g(LMf(P test

new)
, pinew) = unknown | g(LM, pinew) = unknown)

P
i I(g(LM, pinew) = unknown)

Knowledge Projection =

P
i I(g(LMf(P test

new)
, pifuture) = correct | g(LM, pifuture) = unknown, g(LM, pinew) = unknown))

P
i I(g(LM, pifuture) = unknown, g(LM, pinew) = unknown))

loss in Projection =

P
i I(g(LMf(P test

new)
, pifuture) = unknown | g(LM, pifuture) = unknown, g(LM, pinew) = unknown))
P

i I(g(LM, pifuture) = unknown, g(LM, pinew) = unknown))

Table 10: Detailed formulations of evaluation metrics introduced in Section 2.3. Note that piprior and
pifuture are considered only if pinew is unknown to the model before knowledge updates, as otherwise
no new scientific knowledge is introduced.

F Experiment Details

We employ a learning rate of 2⇥ 10�4 for model optimization, and experiments are performed on a
cluster with 4 A100 GPUs each with 40 GB memory.
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G Cross-domain Analysis

This section provides details on cross-domain analysis discussed in Section 4.1.

G.1 Citation Count

See Table 11 for the average citation count across ten scientific domains.

Domain Citation Count
Computer Science 5.957
Medicine 4.575
Biology 5.799
Materials Science 7.192
Psychology 3.702
Business 2.447
Political Science 1.832
Environmental Science 5.973
Agricultural and Food Sciences 4.939
Education 2.002

Table 11: The average citation count of 1,000 conference or journal papers published between October
2022 and September 2023 across different domains.

G.2 Domain-specific Tokens

We randomly retrieve 1,000 conference or journal papers published between October 2022 and
September 2023 for each of the ten domains. From these abstracts, we extract the 100 least frequently
occurring tokens using the LLAMA3.1 tokenizer. Stop words, punctuation, and numbers are removed
from the list. The full list of tokens is provided in Table 12 and Table 13.

G.3 Occurrence in Pretraining Corpus

Refer to Table 14 for the average occurrence of domain-specific tokens in the pretraining data.
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Domain Specialized Tokens
Computer Science [Background, chunks, mined, keywords, -res, ourced, Million, logistic, LR, encoder, coder,

isolate, solved, imperfect, realized, abrupt, transmitted, connects, ended, tan, imoto, wave-
form, coefficients, -current, Self, -driving, navigation, drivers, orientation, camera, installed,
videos, combinations, Next, Track, substantially, Thanks, mil, king, Trad, itionally, EB,
-from, -more, including, dairy, deviations, sequent, lact, Est, herit, splitting, Rem, Mi, To-
gether, encompass, setup, concluding, seaborn, matplotlib, Num, Py, Log, Literary, properly,
client, -server, Client, Server, -Agent, Rapid, oring, planner, inverse, kin, ematic, fourth,
Transfer, HTTP, send, Wireless, Control, missions, envi, nets, -agent, Path, -aware, preserva-
tion, extends, intermediate]

Medicine [logic, outputs, AY, applic, subt, ropical, underscores, gam, publicly, overlapping, warrant,
intimate, website, Domestic, Violence, DV, item, DV, observation, attainment, jun, forego-
ing, divorce, offspring, focused, uns, aturated, UF, palm, Animals, aily, Spatial, lost, -Jan,
uary, Identification, Matrix, Laser, Ion, Time, Flight, rometer, MAL, Possible, encountering,
opportun, Admission, inertia, RAP, charge, iny, -fe, alan, mem, brane, reversed, PAR, car-
bohydrate, -chain, aur, -en, rich, chicken, iated, recipients, misconception, abandonment,
sustaining, optim, -ag, Enhanced, -k, Da, property, aiding, TJ, Adopt, -condition, polariza-
tion, Moh, -Tr, optic, interf, amil, arth, ref, dup, sister, ismus, disclosed, fe]

Biology [Qu, QS, attracts, basics, realization, solving, oriented, priorities, productive, oking, subt,
timely, priority, ials, uns, aturated, Di, Twenty, palm, Animals, aily, -k, aiding, ulcer, rebound,
TJ, Adopt, ada, Br, voltage, Nav, hurdle, arr, hyth, mic, :c, :p, Nav, exponentially, impose,
UG, specialised, Laur, Material, -response, iaux, -comp, -death, Cock, ayne, olated, -rate,
visceral, Unexpected, dc, Sp, pm, Nos, Statement, Kid, okes, emergency, monitored, urine,
elo, album, -sk, ewed, Highly, inherently, paths, quasi, Americans, idi, opathic, ATIC, III,
restrictive, Character, omorphic, stature, -height, Binding, slow, cognition, BF, doubled,
unexpectedly, Well, come, Council, Horizon]

Materials Science [Even, afford, lacks, Rh, unnecessary, seem, believed, restrictive, transistor, NR, ampl,
-terminal, stand, gate, COM, vertically, dissertation, satisfy, gien, Regular, convinced, rows,
satin, stitch, ext, skipping, stitches, spent, row, Regression, duce, choose, passes, -cons,
istent, VP, -mult, VP, supplemented, strengthened, deflect, meticulous, seems, Hamilton,
energetic, warp, shr, mesh, widening, inferior, Spacer, twisting, earlier, oogeneous, alter,
retained, vil, abundance, ol, clin, partition, Applying, minute, iles, Tit, -visible, follow, -first,
law, Ev, Add, itive, Manufacturing, yx, ylon, chopped, Fil, Fabric, manners, inevitable,
Increase, Rotary, sty, ABS, isot, chips, dispens, conforms, Cross, VR, incomplete]

Psychology [supporters, Turkish, Federation, league, season, mekte, aca, reside, deploy, February,
undergone, referral, .Pre, vious, Using, partner, .Actor, .Al, though, careers, disabling,
hab, ilitation, vo, rehabilit, ROT, Reality, pencil, Compar, ventional, uo, -exec, expanding,
Council, arts, theatrical, Documentation, encode, professor, Yuri, Kon, stant, ovich, orn,
twenties, ungen, Menschen, affen, Ap, ensured, Wall, Thought, Anyway, -long, Sol, wind,
-al, gorithm, izable, Simon, scientists, .L, Rub, Brush, insky, Ya, onom, contempor, Kor, la,
Login, .F, Spi, rid, Lap, isto, pol, sk, .N, Sav, ols, outlines, specializing, Today, attracted,
squares, phys, immense, scan, ancers, dancers, Oper, recognizing]

Table 12: Specialized tokens by domains.
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Domain Specialized Tokens
Business [universities, shaped, intents, Planned, variance, cur, ricula, colleges, hiding, thinks, Mixed,

edir, esign, Ped, est, rian, busiest, worship, Aut, ad, plan, Sketch, stone, lamps, disabilities,
night, shade, trees, trash, cans, benches, ender, neutrality, pose, proves, Cycling, territory,
initially, loc, quali, quant, -line, Content, ardin, -art, supervised, ervised, Random, Boost,
IW, AL, CH, AG, PH, tactics, Analy, engaging, Among, tips, istrict, awi, Boston, Consulting,
regulator, backward, penetration, automobiles, -side, Rating, internal, insurance, distribution,
Observation, interpreted, bands, Merch, andise, band, tok, po, plain, publish, stories, inders,
keepers, consent, Customers, annoyed, technology, ynamic, breakdown, Revenue, GRA,
Tam]

Political Science [Mayor, alignments, reputation, cular, tapping, -period, Deputy, Chair, chairman, upcoming,
Glob, unexpected, bur, sts, -demand, ding, negligence, -ray, ultrasound, oxygen, cylinders,
bribery, coll, usion, cov, -care, India, rebuild, aped, reproductive, Pregnancy, Assessment,
Monitoring, merged, -unit, corresponds, predicted, Models, Medicaid, uninsured, constr,
lethal, essential, inaccurate, hypothetical, underestimate, innocent, ale, assass, massac,
adopts, rig, idity, Usage, Use, Sig, Received, affili, omics, Highlands, Ranch, Colorado,
Ang, lia, Norfolk, Economics, Biology, eos, Cor, respond, Andrew, Page, prosper, chaotic,
breaks, Reports, Officials, slap, scr, ulous, collusion, receives, update, unify, Method, -trans,
subordinate, ordination, prescribed, abandon, status, liquid, ields]

Environmental Science [Ach, arya, Narendra, Technology, Kum, anj, Ay, hya, .P, ban, horizontally, Sm, breaks,
combust, ibles, -contained, breathing, charger, differentiated, gar, mist, charged, firefighters,
etal, attractive, afford, hollow, template, lacks, alloy, aceous, giving, mo, ieties, Associated,
flatt, aling, current, illustrates, Growing, arms, easing, offsets, margins, sentinel, Gui, Woody,
Native, Increase, ensured, Gas, economical, ENT, uction, pression, -dis, charge, formula,
Fresh, someone, wants, easiest, acronym, Add, Assessment, Alternative, opted, executed,
adversely, effected, Jas, Percent, retain, igated, executor, affairs, ochrome, ringing, anch,
Geo, -grid, PL, Net, rein, forc, -ing, Mon, omantic, trace, retained, diamond, vil, syn, analog]

Agricultural and
Food Sciences [Background, arms, easing, -offs, offsets, sentinel, Gui, Version, Woody, Native, Imp, In-

crease, Trees, expense, Across, que, stration, Ins, bodily, Large, Blue, elle, Wood, Color,
guaranteed, components, vit, dispersion, mixer, completeness, sustaining, urgently, schedul-
ing, intric, sovereignty, expenditures, spending, excessively, pleasing, purple, Jerusalem,
Hel, thus, Cal, brom, igh, yer, Fiber, Analyzer, -An, kom, zap, mango, Sit, aja, Sap, vene, rys,
llum, lance, andra, -J, reserves, subsets, categorized, identical, fairness, CNN, impressive,
showcasing, Bihar, consequ, odule, attrib, inferred, unavoidable, worrying, conscient, hap-
pens, prescribed, impossible, shed, anticipation, CCC, cricket, WF, blends, CCC, Purchase,
atisfied, usted, assert, predictors, Leipzig, Actual, fuels]

Education [Jur, udence, Enough, Weak, magnitude, =a, +b, RTL, param, etric, Plans, Infrastructure,
Super, Japanese, Young, intents, Planned, squares, legitimate, recognized, launch, Br, song,
gains, core, ivism, Ecology, Human, entity, instantly, environmentally, Ec, teeth, minimized,
.Result, .Con, waves, alyze, Evaluate, WAR, PER, IOD, ropy, yz, hev, Regional, Archive,
rad, martial, informational, histor, resist, battlefield, acting, aters, Ukrain, protect, fitting,
super, asks, otic, Lim, Tang, gam, overlapping, ineffective, Liter, Connected, compat, Evalu,
SET, unten, redesign, -made, checked, weighted, Messenger, emails, iber, rooted, emancip,
deficit, implicitly, depr, overly, applic, -created, Ps, LD, omencl, etiquette, ingu]

Table 13: Specialized tokens by domains. (Continued)

Domain Average Token Occurrence
Computer Science 32966797
Medicine 33036396
Biology 30569548
Materials Science 39959970
Psychology 34891007
Business 42227384
Political Science 24943232
Environmental Science 32928017
Agricultural and Food Sciences 20853024
Education 27514910

Table 14: The average number of occurrence of domain-specific tokens (as identified in Table 12 and
Table 13) in the Dolma-v1.7 [48] pretraining corpus.
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