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Figure 1: Model performance on downstream tasks. The first row shows the direct application of our
model in cross-modal retrieval. The second row shows that, when replacing the CLIP encoders with
ours in existing SOTA models in zero-shot text-guided image retrieval and fashion image captioning,
their results can be further improved notably. (We show R@1 results for cross-modal retrieval,
average R@10 for text-guided image retrieval, and B @4 for image captioning. )

Abstract

When learning vision-language models (VLM) for the fashion domain, most exist-
ing works design new architectures from vanilla BERT with additional objectives,
or perform dense multi-task learning with fashion-specific tasks. Though progress
has been made, their architecture or objectives are often intricate and the extendibil-
ity is limited. By contrast, with simple architecture (comprising only two unimodal
encoders) and just the contrastive objective, popular pre-trained VL models (e.g.,
CLIP) achieve superior performance in general domains, which are further easily
extended to downstream tasks. However, inheriting such benefits of CLIP in the
fashion domain is non-trivial in the presence of the notable domain gap. Empir-
ically, we find that directly finetuning on fashion data leads CLIP to frequently
ignore minor yet important details such as logos and composition, which are critical
in fashion tasks such as retrieval and captioning. In this work, to maintain CLIP’s
simple architecture and objective while explicitly attending to fashion details, we
propose £2: Easy Regional Contrastive Learning of Expressive Fashion Represen-
tations. £? introduces only a few selection tokens and fusion blocks (just 1.9%
additional parameters in total) with only contrastive losses. Despite lightweight,
in our primary focus, cross-modal retrieval, £ notably outperforms existing
fashion VLMs with various fashion-specific objectives. Moreover, thanks to CLIP’s
widespread use in downstream tasks in general domains (e.g., zero-shot composed
image retrieval and image captioning), our model can easily extend these models
from general domain to the fashion domain with notable improvement (Fig. 1). To
conduct a comprehensive evaluation, we further collect data from Amazon Reviews
to build a new dataset (Fig. 4) for cross-modal retrieval in the fashion domain.
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Description: Long sleeve denim
shirt in dark navy. Spread collar.
Button closure at front featuring rib
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¥ | black. Patch pocket and leather logo
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hardware. Tonal stitching.

Category: SHIRTS.

Brand: Raf Simons.

Season: FW2016 (Fall/Winter).
Composition: 96% cotton, 4%
polyurethane.
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Figure 2: Illustration of domain gap and attention results of CLIP and E2. General domain data
often consist of a short caption which describes a few objects in an image, while fashion data come
with description and meta information (tag entities) of a single product. CLIP: Image Tokens with
maximum attention values (in each attention head) with the global token are marked yellow. E?:
Selected image tokens by selection tokens during the second stage are colored. Blue: Brand. Orange:
Season, Red: Sub-category. Green: Composition.

1 Introduction

There has been a long research line for vision-language learning in general domain [15, 34, 19,
23, 26, 40, 52, 53]. Recently, cross-modal retrieval in fashion domain is receiving increasing
attention [10, 27, 12, 56, 13, 4, 38, 22, 14, 12]. Most existing fashion vision-language models (VLM)
[12, 38, 14, 10, 12, 56] design new vision-language models based on vanilla BERT [6].

Existing studies commonly train BERT-based models with Masked Language Modeling (MLM),
(Image-Text Matching) ITM, Image-Text Contrastive Learning (ITC), or Masked Image Modeling
(MIM) to their specific architectures. Various techniques tailored to fashion domain have been
proposed, including learning extra fashion- specific tasks, new attention mechanism [38], or additional
modules for fashion feature learning [14]. FashionSAP [14] and FAME-ViL [13] perform a fashion-
specific multi-task learning with various fashion tasks in addition to cross-modal retrieval, such as
category recognition. However, the learning of existing BERT-based or multi-task fashion VLMs
is often intricate with their complex architecture or additional fashion-specific objectives. By
contrast, with simple architecture that comprises only two unimodal transformer encoders, and
a single contrastive learning objective, contrastive language-image pre-training models such as
CLIP [34] exhibit outstanding performance from cross-modal retrieval to a wide range of downstream
tasks [24, 42, 20, 33]. Motivated by the simplicity and effectiveness of CLIP, we look forward to
learning a model that inherits such benefits of CLIP in the fashion domain, which could be simple,
lightweight while highly effective. While directly finetuning CLIP (FashionCLIP [4]) is an intuitive
solution, it is deficient in presence of the notable domain shift [55]. Consequently, Ma et al., [27] uses
CLIP as backbone and improves it by using additional text encoders to mitigate the word ambiguity
in fashion language. However, they ignore the uniqueness of visual learning in fashion domain.

Different from data in general domain, product images and descriptions in fashion domain are unique
in several aspects. As illustrated in Fig. 2, in general domain, an image contains only a few distinctive
objects, and text descriptions are more concise and general. However, in fashion domain, a product
image usually includes only one foreground object but with rich details. Besides, the fashion text
often provides a group of metadata (tag entities) [16, 36], such as Composition, Brand, Description,
Sub-category, etc. When directly finetuning CLIP on fashion data, we find it tends to give more
attention to regions that are closer to a global view, e.g., dark regions in dark clothing (Fig. 2 and 14).
Consequently, it misses details associated with tag entities such as composition and logo, which
represent more of a local view and are critical for distinguishing visually similar items.

To quantify the capability of visual representation in recognition of product details, we design an
exploratory entity classification task based on linear probing: fitting a linear classifier on image
embeddings from different models respectively, with tag entities used as labels. Results in Fig. 3
show that, the classifier which learns from fine-tuned CLIP (CLIP-FT) embeddings are less effective,
indicating that CLIP-FT embeddings contain less entity-related information, i.e., CLIP-FT is
ineffective in extracting entity-related information from fashion images. Details are available in
Appendix E, where we provide a more comprehensive analysis.
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Figure 4: Comparison of FashionGen [36] and AmazonFashion (Ours), which is notably different in
size, diversity, language style and image scope (close-up shots of products are included). We compare
it with more datasets [7, 51], and show more details (e.g., clustering [52]) in Appendix D.
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Towards this end, we propose our model:

Brand N Season ‘ Sub-category Composition

E?: Easy Regional Contrastive Learn-
ing of Expressive Fashion Representations.
Without modifying the Vision Transformer
(ViT) [9] structure of the image encoder,
E? learns richer representations with the
guidance of region contrastive loss. Meanwhile, it explicitly pays more attention to details in images
by selecting most relevant image patch tokens that contain rich detailed information and fusing them
with selection tokens during the forward propagation in ViT. Our contributions are follows:

Figure 3: Linear Probing Results on FashionGen. The
more informative embeddings are, the higher accuracy
a classifier obtains.

(1) We first reveal that the image encoder of pre-trained CLIP is biased towards visually dominant
regions of a product and consequently ignores small but critical details when directly fine-tuned
on fashion domain. Furthermore, we present the first simple yet effective solution to this problem
by allowing the model to learn more fine-grained visual representations towards tag entities. (2)
Motivated by the observation in (1), we propose a concise regional contrastive learning framework
comprising only two unimodal encoders and just contrastive learning objectives, while it learns richer
visual representations. (3) We conduct extensive experiments with existing benchmark datasets,
including our new benchmark dataset (Fig. 4) for fashion cross-modal retrieval, which differs from
the popular benchmark FashionGen [36] in notably larger size, a wider variety of brands and products,
more concise and general descriptions, and more diverse image scopes, making it more challenging
and more practical. (4) Inheriting the benefits of the widely used CLIP, our model can easily extend
models from general domain to the fashion domain with notable improvement (Fig 1) in downstream
tasks (e.g., zero-shot composed image retrieval and image captioning).

2 Related Work

Text and Image Matching. Text and image matching aims to semantically align the text and
image. Various BERT-based vision-language models (VLM) [40, 26, 41, 25, 14, 12, 10] are proposed
towards this end. Different from previous studies, CLIP [34] introduces a large-scale vision language
pre-training framework, which learns from 400 million image-text pairs with contrastive learning.
Despite of the simplicity of its structure, CLIP is surprisingly effective in visual-language learning
and various downstream tasks [24, 42, 20].

Fashion Cross-modal Retrieval. Different from general domain, the fashion data involves large
amount of domain-specific information with richer details than data from general domain, such as the
brand, material, texture, composition, various of minute design differences, etc. Besides, the fashion
text is composed of description and a group of tag entities (meta information), which describes the
meta information of products, such as its sub-category, season, brand, to name a few. Wang et al. [45]
enhances the task with knowledge graph [17, 37, 31]. A line of research pre-trains BERT-based
models [10, 56, 12, 14, 12] that are tailored for fashion data. Fame-ViL [13] and FashionSAP [14]
further formulate a multi-task learning framework with extra fashion-specific objectives. Different
from existing BERT-based models, Chia et al. [4] and Ma et al. [27] are built upon powerful CLIP.
While Chia et al. [4] directly finetune CLIP for continual learning [32] with fashion data, Ma et al. [27]



improve its language learning with additional text encoders to diminish word ambiguity. However,
they do not consider the visual discrepancy. To better learn from fashion images, which contain richer
detailed information, we improve CLIP from the perspective of visual learning, enabling its image
encoder to learn more fine-grained representations for better image-text alignment.

Zero-shot Text-guided Image Retrieval. In Text-guided Image Retrieval (TGIR), also known as
compositional image retrieval (CIR), users perform interactive dialogue to refine a given query image
toward retrieving specific items. Classic models often employ custom models that project text-image
pairs into a common embedding space. With the advance of VL foundation models (e.g., CLIP),
interest in CIR has surged, especially in zero-shot settings without task-specific models [20]. We
show that when combined with E2, which learns more fine-grained representations towards fashion
product details, their performances can be further improved.

Zero-shot Image Captioning. Zero-shot captioning [3, 46, 1, 42, 50, 24, 30] aims to generate
image/video captions without human-annotated data. Different from above works, built upon CLIP,
DeCap [24] and CapDec [30] use text-only data to train a decoder from scratch. We show that when
combined with E2, which learns more fine-grained representations towards fashion product details,
their performances can be further improved.

We provide a detailed discussion on our innovation compared with existing works in Appendix G.

3 Methodology

3.1 Contrastive Language-Image Pre-training

Instead of learning from predicting a fixed set of predetermined object categories, i.e., the classification
task, CLIP (Contrastive Language-Image Pre-training) [34] directly learns visual representations
from raw text, and it is trained on 400 million image-text pairs with contrastive learning. Specifically,
given a batch of N image-text pairs {(I;, T})}Y ;, images and texts are encoded as d-dimensional
embeddings by the image encoder h(-) and the text encoder A7 (-). Denote the image embedding
and text embedding as z! and 2!, respectively. During training, CLIP learns image-text matching
from of N x N possible combinations by maximizing the similarity scores of N matched pairs
while minimizing the scores of the rest N2 — N mismatched pairs. The cosine similarity score of
an image-text pair is calculated as z! ©® 27, (1,5 € {1,2,..., N}). In practice, CLIP optimizes a
cross-entropy loss over the N x N similarity scores matrix, namely contrastive loss, denoting as:

ﬁcontra({(zila Z;T) 1]21) = £I2T + ETZI; (1)
- 1 N cxp(z{-z;r/T) _ 1 N cxp(z;r-z{/'r)
where EIQT =N Ei:l log Ej-v=1 exp(zif»z}."/r) s and £T21 =N Zi:l log Zj-v=1 exp(ziT-zJ{/T) s

T is the temperature scalar. CLIP proves its effectiveness on various tasks in general domain. However,
when adapting it to fashion domain, it is particularly difficult for CLIP to effectively learn from
the fashion data due to its uniqueness in richer details and more compact layout. To overcome the
challenges, we make full use of tag entities and learn more fine-grained representations with explicit
(1) token fusion and selection, and (2) region contrastive learning.

3.2 Regional Contrastive Learning of Fashion Representations

We present details of our framework, Easy Regional Contrastive Learning of Expressive Fashion
Representations (E?) in Fig. 5. The core idea of E? is “Easy” and “Expressive”: it inherits the (1)
simple design of CLIP with only a few inserted fusion blocks and selection tokens in the vision
encoder, and (2) the simple learning objective: only contrastive learning objectives are used. Yet E?
is more effective than existing large fashion VLMs with various objectives.

In the following, we first describe the overall framework of E2, and then introduce the selection
tokens, which are key elements for our (1) token fusion and selection, and (2) region contrastive
learning. After that, we explain each component and finally summarize the whole training process.

Framework. We build £2 upon CLIP [34], where we keep its text encoder unchanged and facilitate
its image encoder with proposed selection tokens, fusion blocks and region contrastive loss. Similar
to CLIP, given an image-text pair, E? learns one global embedding for each for the calculation of
similarities for contrastive learning.



[ MP  }—————+ Contmastiveloss ~——— S

R P Tokens
Region
lL Contrastive loss
Sep:;aﬂr:: Avg. Seleteced Image
- Patch Tokens

JDDBOD

B— Layer (1) CLIP Text Encoder r
ransformer Layer (x
4 D T T Hard Attention (Selection)
by (D on . = .
e B = O aEsEn
. in SHIRTS L
[ Fusion Block ] navy. Spread Image Patch Tokens  Selection Tokens
Image tokens . Tag Entities
I]l] |][| [‘[ Transformer Layers (x3) Fusion Block
Selection tokens
(Fused) Dp B By suo-cotegory Brand 0 0 ]
I:(‘JI:LLIE: [ Fusion Block J
Selection tokens Avg Avg Avg
Pooling Pooling Pooling
e Transformer Layers (x8) [ [
l ELl_l % Elr Fused Selection Tokens
| - Separated Average Pooling
T
LI S - ¥

Figure 5: (a) Framework. E? contains an image encoder and a text encoder. The image encoder
consists of CLIP transformer layers with inserted fusion blocks, where selection tokens update
themselves with most relevant image tokens. After the second stage of token fusion, only the global
image token and selection tokens are kept as input for the last transformer layer. Selection tokens
further learn entity-specific knowledge with region contrastive loss. (b) The Architecture of Fusion
Block. In fusion block, each selection token selects one most relevant image patch tokens and update
itself with the averaged embedding of itself and the selected token. (c) Visualization. Logo is covered
by blue masks. Front zipper area indicates its season (Fall/Winter 2016) and left front area with
sleeves suggest the sub-category (shirts). Note that the figure is only for illustration, in experiments,
we consider C' = 4 tag entities and assign S = 2 selections for each.

Selection Tokens. Given an image, it is first split into P non-overlapping patches, which are linearly
projected into a latent space, denoted as {p; }1_;. In addition to P image tokens, we further propose
a set of selection tokens categorized into C' categories, with S tokens for each sub-category, denoted
as {sz}cxs For instance, for the image encoder in Fig. 5, C' = 3 and S = 2, The two blue, red
and yellow selection tokens are associated with the tag entity Brand, Sub-category and Season,
respectively. To capture detailed information in image patches, each selection token updates itself
with one most relevant image token in fusion block. Note that selection tokens are supervised by the
region contrastive loss. We will discuss it later in this section.

Multi-Stage Image Token Fusion and Selection. To learn more fine-grained visual representations
with the help of tag entities in fashion language, we use a group of selection tokens to iteratively
select most informative images tokens and merge themselves with the selected ones. In this way,
selection tokens contain rich information about the details of their associated tag entities. For more
fine-grained interactions, we drop less informative image tokens and only keep the global embedding
and selection tokens as the input of the /ast transformer layer. As shown in Fig. 5, we perform a
multi-stage token fusion and selection to obtain the final global embedding. Given an image, we first
obtain P image tokens {p; }%_,. Then they are concatenated with a set of selection tokens {s; Cxls
and input to the image encoder where we perform a multi-stage token fusion and selection. In each
stage, input tokens sequentially go through a few transformer layers and a fusion block. Formally,
suppose there are L stages, and during the I[-th stage, we denote the input tokens as {p'}Z ; and

{s }CXS The information propagation with each group of transformer layers is performed:

{pz 1—17{ CXS Transformer([{pz 2—17{3 CXS]) (2)

where [; | means concatenation. Then the obtained image and selection tokens are fed to the fusion
block, where each selection token selects one most related image token and updates the embedding
of itself with the selected image token:

{pi T, {81 = FusionBlock([{p}} ;{811 25°]), 3)

After that, the output tokens serve as input tokens for stage /+1 if it is not the last stage. After
obtaining the output tokens from the last stage L (via Eq. 3 with [=L), we only keep the global
embedding pL+1 and selection tokens {sLH}CXS as the input to the last transformer layer. To
enrich the global embedding with fine-grained features related to given tag entities, we enforce it to



focus on interacting with informative selection tokens by dropping less relevant image tokens to avoid
their distractions. This step is critical for the image encoder to effectively learn more fine-grained
visual representations with tag entities. As shown in Fig. 5(a), the last transformer layer is applied on
the kept tokens to obtain 155 1. Finally, the global image embedding z’ is obtained by applying a
MLP to it:

PeT = Transformer([ps™; {sFT119%5]), and 2’ = MLP(p ™). 4

Fusion Block. In fusion blocks, selection tokens are fused with their most relevant image patch
tokens to enrich themselves with entity-specific (e.g., brand, composition, etc.) visual information.

Given a group of image patch tokens {p.} ,, denoting as a matrix P!, and a group of selection

tokens {s!}9%9, denoting as a matrix S!, we use selection tokens as queries to select the most

relevant image tokens, which we call hard attention. For each selection token, it is updated by
averaging itself with the selected image patch token. Specifically, denoting Q', K! and V! are linear
projections of S! and P! respectively: Q' = W,S!, K! = W, P! and V! = W, P'. Attention
weight matrix A' is calculated by:

ex lL Kl + i
pr— p(Q.K!; +) )
2 k=1 €XP (Qé,z ‘ Klk + 'Vk)

where +; is the i.i.d random sample drawn from the Gumbel (0, 1) distribution. To explicitly select
one most similar image patch token for each selection token, we reformulate the attention weight
matrix by turning each row A; . into a one-hot representation with assigning one to the term with
highest similarity score and zero to the rest. As the argmax operation is not differentiable, we use
the gumbel-softmax and straight-through trick [8, 44, 48]:

Al one-hot(argmax Aé’j) + Aé}: - stop(Aiﬁz)7 (6)

i
J

where the operator stop stops the gradients propagation. With one-hot vectors in the attention weight
matrix A, each selection token can pick up one corresponding image patch token and update itself
with the selected one via:

Sitt=s8.+V,.A. (7)
In fusion blocks of different stages, selection tokens constantly select most relevant image tokens
explicitly and enrich the representations of themselves with selected token embeddings for better
selection and fusion in the next stage.

At the last stage, the output of the fusion block only contains selection tokens, which already contain
rich fine-grained information about associated tag entities (i.e., brand, composition, season and
categories, etc.). They are input to the last transformation layer with the global image token, so that
the global token can effectively interact with them without distractions from irreverent patch tokens.
In this way, the global token better captures details of fashion images.

Region Contrastive Learning with Selection Tokens. As each selection token is associated with a
tag entity and it aims to select most relevant image tokens in fusion blocks, selection tokens are further
supervised with the region contrastive loss. Specifically, assume we have a group of selection tokens
{si LC=><1$ , which are categorized into C categories, with S tokens for each sub-category. For better
illustration in this subsection, we reformulate them as {s¢} where ¢ € {‘brand’, ‘composition’, ...}
(C categories in total) and s € {1,2,...,.S}. After going through the last transformer layer, each
set of selection tokens {s¢}5_; with the same associated sub-category c is fed to its corresponding
average pooling layer (Fig. 5 right), so that selection tokens from the same sub-category are formed
to a more comprehensive and informative single pooled embedding s%,,,, as:

8% inal = AvgPool({s¢}5_)), c € {‘brand’, ...}. (8)

Similar to the contrastive learning process with global image embeddings and global text embeddings
introduced in section 3.1, each s%,, ,, learns to match the corresponding ground truth tag entity 2T()
via the region contrastive loss by replacing the global image embedding with the corresponding
pooled selection token in Eq. 1:

Lregion({(2]?, 85ina,) Y1) = Lror + Lrar. ©)
The region contrastive loss explicitly aligns each s%,, ., with the corresponding ground truth tag entity
2T(©) for sub-category ¢. With region contrastive loss, pooled selection tokens are distinguishable



Image to Text Text to Image Image to Text Text to Image

Model R@I R@5 R@10 R@1 R@5 R@ 10 SWMR MeanR@1  Model R@I R@5 R@10 R@1 R@5 R@10 S¥MR
ALBEF[22] 417 - - 510 - - - 462 CLIP-VPT [18] 157 43.1 600 166 433 594 238.1
SyncMask [38] 554 - - 640 - - - 597 FashionBert [10] 23.9 463 521 267 464 557 251.1
FashionSAP [14] 543 77.3 832 628 839 90.6 4518  58.5 KaleidoBert [56] 27.9 60.0 68.3 338 60.6 685 319.1
FashionViL [12] 42.8 715 80.6 S1.3 754 847 4065 47.1 FaD-VLP [28] 643 868 935 587 845 916 479.7
FashionCLIP [4] 543 855 92.8 544 859 923 4652 544 FAME-ViL [13] 659 919 972 629 874 935 4988
FILIP-FT* [49] 555 86.1 932 558 865 93.1 4702  55.7 FILIP-FT* [34] 68.1 950 98.5 653 936 982 5187
CLIP-FT[34] 552 857 929 554 862 929 4682 553 CLIP-FT[34] 674 941 982 650 932 980 5159
Ours 628 897 953 645 90.1 955 4979 637 Ours 762 968 99.1 73.1 953 99.1 5386

Table 1: Retrieval performances (full evaluation) on Table 2: Retrieval performances (sample-100
Fashion-Gen. (*) denotes results from our implemen- evaluation) on Fashion-Gen. (*) denotes re-
tation. As the code and pre-trained model of FILIP sults from our implementation.

are not released yet, we implemented the model and

initialize it with pre-trained CLIP weights.

towards tag entities, which means learnable selection tokens can effectively select and fuse themselves
with tag entity-specific image patch tokens given fashion images. Finally, the global image embedding
learns more fine-grained representation by: (1) interactions with these selection tokens in transformer
layers, and (2) explicit token selection process before the last transformer layer, which filters less
relevant patch tokens and helps the global embedding to concentrate more on certain regions.

Remark. Some semantic segmentation models, e.g., Seg [39] and GroupViT [48] also involve
additional tokens. But the usage is notably different. As their motivation is to group image tokens
to larger objects, each image token is assigned to an additional token, where softmax is applied to
additional tokens. Because our motivation is to pay more attention to details of an object, each
additional (selection) token selects a most relevant image token, where softmax is applied to image
tokens. We carefully discuss the differences in detail in Appendix H.

4 Experiments

Datasets. For a fair comparison, we first evaluate our model on the benchmark dataset Fashion-
Gen [36], following existing works [10, 56, 12, 27]. Besides, we also collect text descriptions and
product images in fashion domain from Amazon Reviews [29] and build a large-scale fashion dataset
which contains 1.3M image-text pairs, where we use 910K and 390K pairs for training and test,
respectively. It is a more challenging dataset as the text descriptions are briefer and more general than
FashionGen. We refer this dataset as AmazonFashion. More details are available in Appendix D.

Settings. E? is initialized from the pre-trained CLIP [34] (ViT-B-32 [9]) We use two selection
tokens for each tag entity (S = 2), as Fig. 5 shows. We present the validation of this choice in later
experiments. More detailed configuration and hyper-parameter setting are available in Appendix A.

Evaluation. Our model is evaluated in various downstream tasks. For retrieval tasks, we perform
two kinds of evaluations. The positive candidate is the ground truth item, while the negative can-
didates are either 100 randomly sampled unmatched items (referred as sample-100 evaluation) or
all unmatched items in the dataset (full evaluation). Following [10, 27], the evaluation metrics are
Rank@1, Rank@5, Rank@10 and SumR=100(Rank@1 + Rank@5 + Rank @ 10).

Note that full evaluation, which is suggested by latest works [27, 12], is more challenging and
practical and consistent with practical retrieval tasks. We compare with baselines with full evaluation
unless they are not compatible with full evaluation, where we run Sample-100 evaluation instead.

4.1 Comparison with State-of-the-Art

Cross Model Retrieval. For full evaluation on FashionGen, we compare our model with existing
fashion VLMs and finetuned CLIP-based models. To compare with more baselines which are not
compatible with full evaluation, following [10, 56], we also do a Sample-100 evaluation. Because
CLIP-FT and FILIP-FT outperform other baselines by a large margin, we compare E? with the two
closest baselines on AmazonFashion with full evaluation. Table 1 shows E2 notably outperforms other
baselines in full evaluation, manifesting the effectiveness of paying more attention to certain regions



Description: Cotton and | Description: Quilted leather | 2
linen-blend woven trousers in backpack in black. Carry handle at
black. Three-pocket styling. top. Twin adjustable shoulder straps

Signature stitching in white at back | cotton[/]  cotton cotton wool linen with pin-buckle fastening. Logo Gucci[v] Haerfest SaintLaurent Kara Fendi
yoke. Button-fly. Tonal stitching. plaque at face. Two-way zip -
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Figure 6: T2I retrieval examples. For each example, the query text is displayed on the left. The first
row is the top-5 retrieval result by £? and the second row is the result by CLIP-FT. Ground truth
is boxed in green. For each product image, its Composition (a) or Brand (b) is marked below. For
top-1 retrieved item, we mark its tag entity red if it is not consistent with the query text.

that contain rich information about tag entities. Table 2 shows our model also outperforms baselines
in sample-100 evaluation by a large margin. On the more challenging large-scale AmazonFashion
dataset, E? consistently achieves better performance than competing baselines (Table 3).

In Fig. 6, we present examples of retrieval results by £2 and CLIP to illustrate in which cases CLIP
fails to differentiate minor differences towards visually similar products. In Fig. 6(a), both CLIP and
E? retrieved visually similar black trousers. While £? ranks the ground truth sample first, CLIP
ranks visually similar product higher without considering its composition. . Fig. 6(b) shows E? ranks
the Gucci backpack first by recognizing its logo at face while CLIP ranks the Kara backpack first
incorrectly. More visualizations are available in Appendix B.

Zero-shot Image Captioning (ZS-IC). Built upon CLIP, E? can be easily extended to popular
SOTA CLIP-based zero-shot image captioning models [24, 30]. DeCap [24] and CapDec [30] share
similar high-level ideas: during training, a language decoder is trained to reconstruct the text input,
where the CLIP text encoder serves as the encoder. During inference, with the CLIP image encoder,
a given image is first encoded to a CLIP feature, which is later fed to the pre-trained decoder to
generate captions. We train the decoder on text-only data from FashionGen but with our E? as the
backbone encoder instead of CLIP. Results are shown in Tab. 4. As learnt features by E? contain
more fine-grained information towards product specifications, generated captions with E? better
matches ground truth captions, leading to high scores. We show the example in Fig 7. Vanilla DeCap
tends to make more mistakes towards details, such as brand, composition. While our improved DeCap
with E2 constantly yields better results.

Zero-shot Text-guided Image Retrieval (ZS-TGIR). CIReVL [20] exploits pre-trained vision-
language models (CLIP) alone with an LLM for ZS-TGIR without training. Similar to the case in
ZS-IC, when replacing the CLIP encoders with E2, CIReVL is easily extended to fashion domain,
consequently the model performance notably improves in Tab. 8.

Remark. EI-CLIP [27] and fine-grained CLIPs [49] are not necessarily our baselines, as our focuses
are different and orthogonal to each other. Still we have a comparison to demonstrate the uniqueness
and advantages of our model. Detailed results and discussions are presented in Appendix H.

4.2 Ablation and Further Analysis

To study the effectiveness of each module and how much each group of selection tokens contribute to
the our model, we design ablation studies from the two perspective: architecture and selection tokens.
Architecture. We first ablate fusion blocks, where the input and output of each transformer layer are

Model Image to Text TexttoImage o o Model Be4 ¢ M R S
R@] R@5 R@10 R@1 R@5 R@10 CapDec [30], EMNLP’22 14.23 5.14 14.98 15.02 17.87
FILIP-FT* [49] 6.2 178 258 6.2 181 259 100.0 - CapDec w/ E? 19.13 10.13 18.91 18.77 23.82
CLIP-FT[34] 6.1 177 258 62 179 258 99.5 DeCap [24], ICLR' 23 16.88 6.61 1621 1641 19.42
E? (Ours) 7.5 203 284 74 202 284 1122 - DeCap w/ E? 21.35 12.18 20.93 20.60 25.03

Table 3: Retrieval performances (full evaluation) Table 4: Zero-shot image captioning results
on AmazonFashion. (*) denotes results from our on FashionGen with BLEU@4 (B), CIDEr (C),
implementation. METEOR (M), ROUGE (R).



Ground Truth |

Description: Long sleeve French terry hoodie in red. Description: Long sleeve French terry pulloverin | | Description: Long sleeve French terry hoodie in red. Drawstring
Drawstring at hood. Multicolor graphic printed at front. Tonal white. Rib knit crewneck collar, cuffs, and hem. at hood. Multicolor graphic printed at front and embroidered in
logo embroidered at front hem. Text printed in black at Multicolor graphic printed in tones of black. red and logo embroidered. Tonal stitching.
sleeve. Rib knit cuffs and hem. Locker loop at back. Tonal Brand: Comme des Gargons Play. Brand: Raf Simons
stitching. Brand: Raf Simons. Category: HOODIES & ZIPUPS Category: Sweatshirts. Category: Hoodies & Zipups
Composition: cotton. Composition: cotton. Composition: cotton

Season: SS2018 Season: SS2017 Season: 552018

Figure 7: Zero-shot Image Captioning examples. We mark the wrong captions red, and mark a
caption green if it exactly matches the ground truth.

Method Shirt Dress Toptee Average Model Image to Text Text to Image
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 R@1 R@5 R@10 R@1 R@5 R@10
Full method 628 893 953 645 90.1 955

PALAVRA[5], ICCV'23 21.49 37.05 17.25 35.94 20.55 38.76 19.76 37.25 7o Fusion Blocks 588 837 949 536 889 949
SR, w/o Fusion Blocks 58. . 2 X R X
SEARLE|2], ECCV'22 24.44 41.61 18.54 39.51 25.70 46.46 22.89 42.53 wlo Select. Tokens 55.2 857 92.9 554 862 929

CIReVL, ICLR 24 2836 47.84 2529 4636 31.21 53.85 2829 49.35 w/oRegionCL  56.3 86.5 934 56.2 87.1 93.2
CIReVL w/ E? (Ours)  32.02 50.73 28.47 49.39 34.72 56.65 31.73 52.25 w/ FILIP backed 62.1 89.8 959 629 90.4 959

Figure 8: Results on Fashion-IQ dataset Figure 9: Ablations on FashionGen.

all of the image batch tokens and selection tokens. Without the explicit selection and fusion process
in the fusion blocks, the selection tokens, which are supervised with region contrastive loss and carry
rich information towards tag entities, are still interacting implicitly with image patch tokens and the
global token in ViT layers. In this way, we assume that, even without fusion blocks, the global token
still learns richer information about tag entities and lead to better retrieval performance. Then we are
curious to see how much the explicit token selection and fusion process benefit the learning process,
in addition to the potential improvements from this implicit interaction in transformer layers. Table 9
shows both modules are critical. We also ablate our region contrastive loss (RCL).

Group of Selection Tokens. We also study how each group of selection tokens contribute to the model
performance. While all groups of selection tokens improve the model performance, their contributions
are different. While Composition and Brand are more helpful, Season and Sub-category contribute
slightly less. One potential reason is that they are easier to be visually distinguished than product
texture and small logos, which especially require our fusion and selection process. We have detailed
discussion on their effectiveness in Appendix F, and on parameter-efficiency in Appendix 1.

Parameter Sensitivity. We also examine the impact of batch size, which has a significant influence
on the performance of contrastive learning. E? consistency surpasses CLIP-FT across a range of
batch sizes, with greater improvement over CLIP-FT as batch size decreases. We present detailed
results and analysis in Appendix C.

Number of Selection tokens. In experiments, we use two selection tokens for each tag. It is
reasonable as we are not selecting and fusing image patches in raw pixel space, instead, we conduct it
with image patch (token) embeddings within ViT layers in contextual embedding space, where each
token contains rich context/neighbor information. In fact, one token can already represent a large
area if considering its neighbour information. Our choice of two tokens is empirically enough for all
tags. We quantitatively validated this choice in Appendix I.

5 Limitations

Built upon the pre-trained foundation VL model (e.g., CLIP), E? could be bottlenecked by the qualify
of its large-scale pre-training in general domain. Besides, as our regional contrastive learning with
fusion blocks and selection tokens explicitly aligns regions in the input image with the corresponding
tag entities from text, intuitively, the quality of the provided tag entities can influence our model
performance. Although in most cases, fashion data contain such information (e.g., brand, composition
etc.), it is still a limitation if only datasets with poor tag entities are available for finetuning.

6 Conclusion

In this paper, we propose a simple yet effective framework on learning fashion representations, and
first emphasize the importance of learning fine-grained visual representations when applying CLIP to
fashion domain. To achieve it, we further propose E? with selection tokens and region contrastive
loss to enforce extra attention to details. Experimental results prove the effectiveness of £2.
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A Experimental Settings

For FashionGen, following [27, 10], the model is trained for 20 epochs. The weight decay is set to
le — 4, and the learning rate is set to 5¢ — 5 with the cosine annealing learning rate decay scheduler
applied. As the selection tokens are randomly initialized, to match them with the pre-trained CLIP
model, we first freeze other parameters and train selection tokens with an initial learning rate 5e — 4
for 5 epochs. The default batch size is 64. Configurations are the same with AmazonFashion, while
the epoch is set to 10.

B Visualization

We provide more retrieval results in Fig. 15 and Fig. 16. For each example, the first row is the top-5
retrieval result by E? and the second row is the result by CLIP. Ground truth is boxed in green.

To intuitively see what is selected by selection tokens, we visualize selected tokens in the last stage
in Fig. 14. Results show our selection tokens are effective in finding regions that contain detailed
information about the tag entities, e.g., brand, composition. In the last transformer layer, only
selection tokens and global token are kept (Eq. 4) (image tokens are dropped) to allow the latter
effectively learns fine-grained representations from the former. We also visualize what the global
token of CLIP focuses by marking image tokens with the maximum attention values with it for each
attention head (12 in total). Note the overlap exists, i.e., one image token may have the maximum
attention value with the global token in multiple attention heads. Results show CLIP is ineffective
in finding tag entity-related information and sometimes focuses on totally unrelated regions. It is
observed that visually dominant areas which are closer to the global view of the product, e.g., dark
areas in a dark product in Fig. 14 (g), (i), (j), tend to win higher attention scores with the global
token. Consequently, regions with detailed information such as logos are overlooked. One potential
reason is that, pre-training data on general domain often consist of a simple caption and a few very
distinctive objects (Fig. 2), which enables CLIP to capture features better from a high-level view.
In this case, focusing more on a global view of objects instead of a local view helps the model to
differentiate large and distinctive object in an image. However, when it comes to fashion domain,
where multiple details of a single product are required to be aware of, CLIP fails because CLIP still
tries to capture the global view of an object and ignores local view, even through it has already been
finetuned. By contrast, with our model, Brands are all picked. Composition prefers solid color areas,
where material is more clear. Sub-category is reflected by sleeves, collar and shoulder. Sleeves and
front zippers reveal the Season.

C Parameter Sensitivity

We also investigate the impact of batch size, which can be substantial to contrastive learning. Results
in Tab. 5 show that E? consistency outperforms CLIP-FT across different batch sizes. Our findings
indicate that E? consistency surpasses CLIP-FT across a range of batch sizes, with E? showing
greater improvement over CLIP-FT as batch size decreases. Notably, it is especially helpful in
scenarios where hardware limitations impose constraints on batch size, where E?’s superiority
becomes more evident.

Image to Text Text to Image
R@] R@5 R@]0 R@]I R@5 R@I10

CLIP-FT 299 63.0 76.7 30.7 63.7 76.7 340.7

Batch Size Model SumR

16 E? (Ours) 420 757 863 422 765 87.0 409.7
3 CLIP-FT 427 770 87.0 43.6 77.1 87.1 414.6
) E?(Ours) 533 844 927 539 853 929 462.6
64 CLIP-FT 55.2 85.7 929 554 86.2 929 468.2

E?(Ours) 62.8 89.7 953 645 901 955 4979

CLIP-FT 625 88.2 93.7 627 887 939 489.7
E?(Ours) 669 913 959 666 913 958 507.7

128

Table 5: Influence of batch size. We evaluate the performance of E? and CLIP-FT under different
batch size settings on FashionGen.
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(a) Title: Ever-Pretty Womens Elegant Formal
Evening Dress 14 US Sapphire Blue

Brand: Ever-Pretty

Category: Clothing

Package Dimensions: 11.8 x 8.2 x 1.5 inches
Shipping Weight: 1.1 pounds

Asin: BOORDKPOTQ

(b) Title: Womens Elegant Floor Length Mother
Of The Groom Dress 14 US Black and White

Brand: Ever-Pretty

Category: Clothing

Package Dimensions: 12.1 x 9 x 2 inches
Shipping Weight: 1.4 ounces

Asin: BO11DPK7NA

(c) Title: Babyroom "Dinosaur” Little boys' Long
Sleeve 100% Cotton Pajama G7163 2T.

Brand: Babyroom

Category: Clothing

Package Dimensions: 8.1 x 6.9 x 1.6
inches

Shipping Weight: 7.2 ounces

Asin: BO11DVW56Q

(d) Title: Women's Autumn Winter Stand Collar
Ultralight Down Jacket Black Medium.

Brand: Demetory
Category: Clothing
Asin: BO11DVW56Q

AmazonFashion example

(C) Description: Short-sleeve lace dress in
black. Single-shoulder. Zipper accent at front
in gold-tone. Asymmetric seam at waist. Silk
lining in beige. Tonal stitching.

Category: LONG DRESSES Brand: Stella
McCartney Season: FW2016
Composition: Body: 70% cotton, 30%
nylon. Lining: 100% silk.

FashionGen example

Figure 10: Examples from AmazonFashion (blue) and FashionGen (yellow).
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D Datasets

FashionGen [36] is the existing benchmark dataset for fashion cross-domain retrieval. Existing
works [12, 10, 27, 56] evaluate the performance of their model on fashion cross-domain retrieval
with this dataset.

FashionViL [12] uses two dataset: FashionGen [36] and FashionIQ [47] for fashion domain retrieval.
The critical difference is: FashionlQ [47] is for text-guided image retrieval (TGIR), a special type of
image retrieval problem, while FashionGen [36] is for cross-modal retrieval. Similar to FashionGen,
our AmazonFashion is built for the task of cross-modal retrieval.

Compared with M5Product [7] and Product1M [51], ours has two distinctive advantages: (a) Larger
fashion data size: Product1M is designed for cosmetics and groceries, not for fashion products. In
all 6.3M data in M5Product, 0.5M is in fashion domain, while ours is 1.3M. (b) 3.1 times conciser
caption in average, leading to a more practical case: in practice, users usually search products online
with short queries, instead of a long paragraph of detailed text in FashionGen style. Our dataset better
matches this more challenging and practical case.

Dataset Image-Text Pairs Brand Count Product Count Avg. Desc. Len.
FashionGen 29.6K 570 67666 28.92
AmazonFashion (Ours) 1.3M 38211 544713 11.43

Table 6: Data statistics of AmazonFashion and FashionGen. We show the number of image-text pairs,
brand count, product count and the average length of the image descriptions.
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Figure 11: Top 20 most frequent brands in FashionGen.

D.1 FashionGen

It contains 67, 666 different fashion products. Each product has one text description with one to six
images from different angles. There are 260, 480 and 35, 528 image-text pairs for training and testing,
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Figure 12: Brand frequency of AmazonFashion and FashionGen.

respectively. Each text description contains an overall description along with several tag entities:
Brand, Sub-category, Season and Composition.

D.2 AmazonFashion

We show several examples from AmazonFashion and FashionGen in Fig. 10 to highlight our differ-
ences between these two benchmarks. We also present detailed statistics of two datasets in Tab. 6 and
Fig .12. In general, AmazonFashion is closer to the practical cross-model retrieval scenario.

Tab. 6 shows that AmazonFashion is different from FashionGen in notably larger size (1.3M),
a wider variety of brands and products (67 and 8 times more, respectively), more concise and
general descriptions (0.6 times shorter), and more diverse image scopes. These differences make
AmazonFashion both more challenging and closer to real-world scenarios, where query languages
from users are often more general and more concise, meanwhile, the number of candidate products is
usually notably greater.

We also present the brand frequency plot in Fig .12. For each dataset, we selected the top 200 brands
with the highest frequency of occurrence and plotted them in a descending order. Note that for the
AmazonFashion plot, we excluded the brand amazon collection, which has a frequency of 19, 714,
significantly higher than the other brands. Both datasets exhibit a long-tail distribution in terms of
brand frequency, which accurately reflects real-world scenarios.

Besides significant differences in data statistics, images in AmazonFashion also exhibit substantial
variations. While FashionGen only provides regular views of a product from different angles such
as Fig. 10(e), AmazonFshion includes more diverse images, such as product pictures from different
domains in Fig. 10(a), and high-resolution images that showcase intricate product details in Fig. 10(a-
c). Itis close to practical scenarios where available product images on website often vary in styles. It
also brings new challenges as better adaption to images at different scales and styles is excepted. Thus,
the AmazonFashion holds significant value for researches on cross-modal retrieval in the fashion
domain, and we encourage its use in future work.

D.3 Model Results

We report results of representative CLIP-based models, including ours on AmazonFashion in Tab. 7.

D.4 Brand Details

We show the distribution of the frequency of top 20 most frequent brand in Fig 11.
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Image to Text Text to Image

Model R@l R@5 R@l0 Re@l Re5 Relo SWmR
FILIP-FT* [49] 6.2 178 258 6.2 18.1 25.9 100.0
CLIP-FT [34] 6.1 177 258 62 179 258 99.5
E? (Ours) 75 203 284 74 202 284 1122

Table 7: Retrieval performances (sample-100 evaluation) on AmazonFashion. (*) denotes results
from our implementation.

E Linear Probing

E.1 Experiment

Linear probing is a popular technique to evaluate the quality of learned embeddings of a model:
fitting a linear classifier to the image embeddings of the model. Typically, the better the model is
trained, the higher performance a classifier achieves, because a well-trained model tends to give more
informative embeddings, from which a classifier learns better.

To evaluate how well CLIP, CLIP-FT, FILIP-FT and E? are able to learn entity-specific knowledge
from images, we perform four classification tasks. More specifically, for each task, we train a
linear classifier towards one of four tag entities (i.e., to classify: Brand, Sub-category, Season
and Composition) on image embeddings of CLIP [34], CLIP-FT [34], FILIP-FT [49], and E?,
respectively. We use the Adam optimizer and train each classifier for 20 epochs with learning rate =
0.001. Results are shown in Fig. 3.

cLip
B CLIP-FT
FILIP-FT

0 079 037
Ours
0.28 0.58 0.77 0.36
0.24 I 0.44 075 I 0.36 I
0.20 030 073 035
Brand Season Sub-category Composition

Figure 13: Linear probing results on FashionGen. The more informative embeddings are, the higher
accuracy a classifier obtains.

E.2 Analysis

Results show classifiers trained with £2 embeddings consistently outperform classifiers trained with
CLIP, CLIP-FT and FILIP-FT embeddings, indicating that £? embeddings contain more information
about tag entities. This can be attributed to our proposed token fusion, token selection, and region
contrastive loss, which explicitly forces the model to pay special attention to these details.

Besides, we delve deeper into the linear probing results, which further reveal several interesting facts
on how each tag entity impacts the model performance. Fig. 13 (Brand) indicates that while fine-tuning
can enhance CLIP’s understanding of product brands, the extent of improvement is comparatively
small when contrasted with the significant progress achieved through £2. By comparison, Fig. 13
(Season) shows fine-tuning is effective for CLIP to learn about produce season. However, when it
comes to Fig. 13 (Sub-category), fine-tuning almost yields no benefits. We assume that fine-tuning
can only help learn easy classes such as bag, jeans, shirts, etc., while £2 can help difficult classes. In
this case, because the vanilla pre-trained CLIP is already effective in recognizing high-level concepts,
fine-tuning fails to yield further improvements. E? significantly benefits the learning of product
categories by learning more about difficult classes. In Fig. 13 (Composition), although the relative
magnitudes are similar to that in Fig. 13 (Brand), the absolute differences among four models are
much smaller, which indicates effectively learning about product composition is a harder task.
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F Ablation

To study how each group of selection tokens contribute to the model performance, we train and
evaluate £? without one group of selection tokens associated with one tag entity at a time and report
the result in Table 8. While all groups of selection tokens improve the model performance, their
contributions are different. Selection tokens associated with Brand and Composition are more
helpful. As Fig. 15 and Fig. 16 show, paying special attention to the brand and composition of a
product helps our model better differentiate visually very similar items. By contrast, Season and
Sub-category contribute less as they are easier to be visually distinguished than product texture and
logos, which are harder to discriminate and especially requires our fusion and selection process with
the selection tokens.

Image to Text Text to Image
Model Rel R@5 R@I0 Rel R@5 Ralo "MK
E? (Ours) 62.8 89.7 95.3 64.5 90.1 95.5 497.9

w/o Composition 59.4 88.4 94.2 61.8 89.9 95.3 488.9
w/o Sub-category 61.2 89.7 95.0 60.8 89.6 95.1 491.3
w/o Brand 58.3 88.3 95.0 58.0 88.5 94.7 482.7
w/o Season 60.0 88.9 94.4 59.8 88.6 95.0 486.6

Table 8: Ablation study (selection tokens) on FashionGen.

G Innovation

In this section, we discuss our differences from related works, and our innovation (motivation and
technical contribution).

G.1 Technical Innovation

The design of selection and fusion mechanism with fusion blocks and selection tokens is our new
technical contribution, which notably improves the performance. Typical CLIP-based adaption
models (e.g., RegionCLIP [54], FILIP [49], DenseCLIP [35], FashionCLIP [4]) are built upon
CLIP without modifying its inner structure. However, we break into the CLIP encoder by introducing
tag-aware fusion blocks. Specifically, the above models, including FashionSAP [14], do not explicitly
align image patch tokens within ViT layers with text information, which we prove to be critical in
fashion domain where the details do matter. To this end, our tag-aware selection tokens select and
fuse image patch tokens. They differ from typical new additional tokens (VPT [18], DeiT [43]),
which are simply added to input layers and structurally similar to the CLS token. Our adaptation of
CLIP is new and first tailored for fashion scenarios with tag entities, where general CLIP-adaptation
models are hard to handle (more details in Appendix H).

G.2 Motivation

Our highlight is not improving the CLIP vision encoder in general domain, as existing works such as
FILIP [49] do. Instead, we are among the first to adapt CLIP to fashion domain. When combined
with SOTA CLIP-based zero-shot image captioning models, their performance can be obviously
improved.

Most recently, several works [49, 21, 11] start to improve language image pre-training with semantic
alignment. FILIP [49] and LOUPE [21] learn better representations with semantic alignment of
patch tokens. HiCLIP [11] learns to discover hierarchy in data. GroupViT [48] also forms semantic
segments hierarchically, but it only focuses on semantic segmentation. Our motivation differs from
above methods in that, while they learn representations of larger objects via grouping smaller regions
(i.e., image tokens), we focus on certain regions with detailed information of an object, e.g., its brand
and composition. Besides, they focus on designing models for better image-text matching generally
without considering the uniqueness of fashion data. Our E? pays additional attention to image details
associated with tag entities for better visual learning (more details in Appendix H).

19



Image to Text Text to Image

Model R@l R@5 R@I0 R@I Ra@s Relo SwmR
EL-CLIP [27] 504 884 942  GL8  89.9 953 4889
EI-CLIP[27] wloE. 562 868  93.6 564  87.2 935  473.7
E? (Ours) 628 897 953 645 901 955  497.9

Table 9: Retrieval performances (full-candidate) on FashionGen.

H Discussion

Differences from Segmentation Models. Some semantic segmentation models [39, 48] also involve
additional tokens, including GroupViT [48]. We are very different from each other in: (1) motivation,
(2) selection technical details, and (3) overall framework. In summary, group tokens in GroupViT
serve as “collectors”, thus image tokens are iterated to be allocated to a group token. By contrast, in
EZ2, the process is opposite: selection tokens are iterated to select one most relevant image token.
We do attention with different objects therefore are not interchangeable. GroupViT cannot select the
most relevant image tokens, while ours does not support grouping of them. Our framework design
is also significantly different. GroupViT adopts an iterative approach, where grouped tokens are
consecutively fed as inputs to transformer layers, introducing new group tokens at each stage. In
contrast, our approach utilizes image tokens along with a fixed number of selection tokens as inputs.
To sum up, due to different tasks/objectives, GroupViT and E? are very different in both technical
details and the overall framework.

Comparisons with EI-CLIP. While we facilitate the image encoder, EI-CLIP [27] improves the text
encoding process by reducing word ambiguity in tag entities with additional text encoders. Thus we
are orthogonal to each other. Besides, EI-CLIP uses additional text encoders and during inference,
tag entities must be separately encoded by the encoders. In contrast, E? does not require separated
tag entities as text input. In our model, same to existing works [10, 56] and CLIP, tag entities are
concatenated with the description as one string, which is input to the CLIP text encoder. This is more
practical and especially helpful in cases where tag entities are mixed with descriptions and separating
them is infeasible. We also evaluate EI-CLIP under this setting, which follows existing works [10, 56]
and ours (w/o E. in Table 9). Although EI-CLIP has additional encoders and requires separated tag
entities during inference, it is still inferior to ours according to Table 9. When evaluating under the
same setting, the gap is more notable.

Differences from Fine-grained CLIPs. Several recent works [49, 11, 21] propose to better match
image-text pairs with semantic alignment or hierarchical grouping. While they learn representations
of larger objects via grouping smaller regions (image tokens), we focus on finding certain regions
with detailed information of part of an object (e.g., its brand, season, composition), motivated by
the uniqueness of fashion data. We achieve this by designing a better way to exploit tag entities,
i.e., introducing selection tokens associated with these entities, while they seek for a general way
to better align an image-text pair without considering the of characteristics of fashion data. Thus
our work is orthogonal to theirs and we can build £? based on their pre-trained models. We choose
CLIP in this work as it is the most representative one, based on which makes it extendable to others.
Because codes and pre-trained models of mentioned CLIP variants are not released, we are not able
to evaluate all of them. However, as FILIP [49] shares the same structure with CLIP, we implement it
and initialize it with a pre-trained CLIP model and finetune it on our datasets. We also use FILIP as
the backbone model in our ablation study.

I Analytical Experiments

In this section, we explore 1. how the number of selection tokens can influence our model performance
and 2. the parameter efficiency of our model.
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I.1 Selection Tokens

In Tab. 10, we provide different choices of selection tokens ((2), ¥)-(3)). Two tokens for each tag are
better than one ((¢)), and comparable to more tokens ((5-(7)), or a combination of different numbers
((®). It is reasonable as we are not selecting and fusing image patches in raw pixel space, instead, we
conduct it with image patch (token) embeddings within ViT layers in contextual embedding space,
where each token contains rich context/neighbor information. E.g., in Fig. 7 in paper, one token can
already represent a large area if considering its neighbour information. Our choice of two tokens is
empirically enough for all tags, including season, as quantitatively validated in Tab. 10.

I.2 Parameter Efficiency

We compare the amount of learnable parameters of ours (default setting in paper is shaded in
green) and most competing baselines ((9) - (i) in Tab. 10. Compared to CLIP-FT (@), we only
involve minimal new parameters in fusion blocks: (1) three projection matrices: W, W* and W4
€ R768%dw and (2): 8 selection tokens s € R'*78 where dy = 768 in paper. We have comparable
parameters with CLIP-based methods and significantly fewer parameters than (12), while achieving
notably better results over them. We also tried different dy and numbers of selection tokens ((1)-(®)),
and our original setting ((2)) achieves competing results with very few new parameters.

Model C S B SC  Params (Total)  Params (Token)  SumR
(D Ours (dy=128) 2 2 2 2 86.6M 6.1K 494.3
(2) Ours (dyw=768) 2 2 2 2 87.7TM 6.1K 497.9
(3) Ours (dw=2048) 2 2 2 2 94.8M 6.1K 498.2
(@ Ours (dw=768) 1 1 1 1 87.7M 3.1K 493.8
() Ours (dw=768) 4 4 4 4 87.7M 12K 497.9
(6) Ours (dy=768) 8 8 8 8 87.7M 24K 498.3

(@) Ours (dyw=768) 16 16 16 16 87.7M 48K 498.2
(®) Ours (dy=768) 4 8 4 8 87.7M 18K 497.9
(9 EI-CLIP - - - - 89.1M - 473.7
(i9) CLIP-FT - - - - 86M - 468.2
(i) FILIP-FT - - - - 86M - 470.2
(12) FashionSAP - - - - 120M - 451.8

Table 10: Results on FashionGen with full-candidate evaluation. C: Composition, S: Season, B:
Brand, SC: Sub-category. Numbers are the quantity of corresponding selection tokens. Total number
of learnable parameters in vision encoder: Params (Total). We also list parameters of selection
tokens (part of the fotal Params): Params (Token).

J Broader Impacts

There is no special societal impact of our work performed.
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Figure 14: Left: E? Token Selection Examples. We marked selected image patch tokens during the second
stage. Each tag entity is associated with two selection tokens. Note that tokens may overlap when an image patch
token is selected by multiple selection tokens. Right: CLIP Attention Visualization. We marked image tokens
with the maximum attention values (in each attention head) with the global token. Note that, the “Category” in
the figure refers to “Sub-category”’.
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Description: Short sleeve cotton jersey t-shirt in white. Rib knit crewneck collar. Logo graphic printed at front. Tonal stitching.
Category: T-SHIRTS Brand: Kenzo Season: SS2017 Composition: 100% cotton.
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Description: Long sleeve French terry hoodie colorblocked in red and navy. Drawstring and black embroidered text at hood.
Multicolor graphic appliqu\xe9 and ribbon trim striped in red and off-white at front. Rib knit cuffs and hem. Dropped shoulders.
Tonal stitching. Category: HOODIES & ZIPUPS Brand: Gucci Season: SS2018 Composition: 100% cotton.

Description: Buffed calfskin shoulder bag in \softt’ grey. Curb chain shoulder strap. Logo plaque and curb chain tassel at face.

Foldover flap with magnetic press-stud fastening. Patch pocket and leather logo patch at interior. Tonal suede interior.
Silver-tone hardware. Tonal stitching. Approx. 9.5" length x 6.5 height x 2.25" width. Category: SHOULDER BAGS Brand:

Saint Laurent Season: FW2017 Composition: Calfskin.
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T

Description: Nylon duffle bag in black. Tonal leather trim throughout. Single rolled leather carry handle at top. Detachable and
adjustable woven shoulder strap featuring red printed logo and lanyard clasp fastening. Logo plaque at face. Zippered
compartment and pocket at back face. Zip closure. Leather logo patch, zippered pocket, and patch pocket at textile-lined
interior. Silver-tone hardware. Tonal stitchi Category: DUFFLE & TOP HANDLE BAGS Brand: Givenchy Season: FW2017
Composition: Nylon, leather.

-
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Figure 15: T2I retrieval examples. For each example, the query text is displayed on the top. The
first row is the top-5 retrieval result by £ and the second row is the result by CLIP. Ground truth is
boxed in green.
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Description: Fitted short sleeve knit cotton t-shirt in white. Crewneck collar. Tonal stitching. Category: T-SHIRTS Brand: 3.1
Phillip Lim Season: SS2015 Composition: 85% cotton, 13% polyester, 2% elastane.
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Description: Tapered jeans in dark blue featuring mottied pink overdye. Fading, di and whiskeri
Five-pocket styling. Brown leather logo patch at back waistband. Pin-tuck seams at front and back. Raw edge at cuffs.
Button-fly. Contrast stitching in tan. Approx. 6.5" leg opening. Category: JEANS Brand: Gucci Season: FW2017
Composition: 100% cotton

88

Description: Long sleeve panelled cotton poplin and rib knit cotton shirt colorblocked in black and white. Signature 'slim' fit.
Spread collar. Concealed button closure at front. Single-button barrel cuffs. Tonal stitching. Category: SHIRTS Brand: Neil
Barrett Season: SS2018 Composition: 100% cotton
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Description: Short sleeve cotton jersey t-shirt in white. Rib knit crewneck collar. Graphic printed at front. Logo printed in black
at back hem. Tonal stitching. Concealed button closure at front. Single-button barrel cuffs. Tonal stitching. Category:
T-SHIRTS Brand: Neil Barrett Season: FW2017 Composition: 100% cotton

0 0 f

Figure 16: T2I retrieval examples. For each example, the query text is displayed on the top. The
first row is the top-5 retrieval result by E? and the second row is the result by CLIP. Ground truth is

boxed in green.

24



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our main contribution are presented at the end of the introduction.
Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We use a section to discuss the limitation.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not involve theoretical proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduced the implementation details in the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide open access to both data and source code with sufficient
instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The implementation detail is presented in the paper and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: We follow previous works to present the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: It is mentioned in the implementation details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the guidelines of Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: It is discussed in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:Our model has little negative impact on society.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: They are all public.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: It is introduced in the paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing is involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: None of them are involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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