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Abstract—We have recently demonstrated a wearable Magne-
toCardioGraphy (MCG) sensor capable of classifying high vs.
low cognitive work, i.e., the amount of mental effort a person
is exerting when performing a task during a given period of
time. However, a major limitation of our previous work was the
requirement to eliminate any type of motion for the participants.
Here, we explore the effect of motion by employing three (3)
different experimental setups, each with a different amount of
physical motion and cognitive load exerted. To better understand
the effect of motion, an inertial measurement unit (IMU) and a
breathing rate sensor are employed in addition to the MCG
sensor. Our results show that heart rate variability (HRV),
demonstrated through the mean difference in duration between
consecutive heartbeats, is at its highest when neither cognitive
workload nor motion are exerted. HRV drops when the subject
involves cognitive workload and motion. Our results pave the
way for additional research in the field, with an utmost goal of
catering to specific clinical applications.

Index Terms—Cognitive Workload (CW),Heart Rate Variabil-
ity (HRV), Magnetocardiography (MCG), Physical Motion

I. INTRODUCTION

Heart Rate Variability (HRV) provides insights onto the
variation in time between consecutive heartbeats [1]. Recent
evidence has shown the ability of HRV to classify/quantify
cognitive workload (CW), i.e., the amount of mental effort
a person is exerting while performing a certain task during
a given period of time [2] [3]. This is particularly promis-
ing as previous methods of quantifying CW (such as Elec-
troEncephaloGraphy (EEG) or pupillometry) are complicated
to build and operate, and not viable in day-to-day natural
environments.

Indeed, we have recently reported a portable MagnetoCar-
dioGraphy (MCG) sensor for capturing HRV in a non-contact
manner that was demonstrated to be sensitive to CW [4]. The
operating principle of the sensor is based on Faraday’s law,
which states that the voltage induced on a coil from a time-
varying magnetic field is:

V = AN
dB(t)

dt
. (1)

However, a major limitation of this previous work was that
participants were requested to remain completely motionless.
Distinguishing changes in HRV caused by cognitive exertion
as opposed to physical exertion remains a challenge.

In a major leap forward, we herewith propose an exper-
imental setup that differentiates changes in HRV caused by
physical vs. cognitive exertion. Our approach is based on

having a subject perform different tasks, with different levels
of physical motion and cognitive workload exerted in each,
along with sensors placed on the body to validate whether
the variations in HRV are the result of motion or cognitive
engagement.
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Fig. 1: Visual for (a) sitting without any motion, (b) answering
math questions mentally without any motion, and (c) answer-
ing math questions on a phone.

II. EXPERIMENTAL SETUP

A proof-of-concept experiment was performed with a goal
to demonstrate the ability to differentiate changes in HRV
caused by physical vs. cognitive activities. One male adult
participant was recruited and equipped with an Inertial Mea-
surement Unit (IMU) and a breathing rate sensor. The IMU,
placed on the participant’s right hand, was used to show
acceleration in the x, y, and z directions. The MCG device used
is the same as the one discussed in [5]. To validate the MCG
results, an off-the-shelf 3-lead ECG sensor was also employed.
Multiple recordings with different setups were performed for a
duration of 5 minutes each. During each recording, all sensors
were collecting data simultaneously.

Three setups were tested, as shown in Fig. 1. The first
setup comprised of the subject sitting still on a chair. In the
second setup, the subject was asked to mentally verify pre-
solved math problems, some of which contained incorrect
answers. The task was to evaluate each question mentally and
indicate whether the presented answer was true or false, while
refraining from verbal responses or physical movements. A
total of 90 two-digit addition and subtraction equations were
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Fig. 2: Zoom-in on (a) MCG data obtained from the subject
while answering math questions on the phone and (b) IMU
data of the same experiment.

displayed and the subject had 5 seconds for each. For the
third setup, the subject answered the same math questions
while recording the answers (True or False) on a phone. The
participant was requested to sit throughout the full experiment
as the results are expected to change with posture [6].

III. RESULTS
Fig. 2 shows a zoom-in on (a) the MCG data obtained from

the subject while answering math questions on the phone and
(b) gravitational acceleration ”g(m/s2)” obtained through an
IMU for the same experiment. To detect the heartbeats in the
recorded MCG signal, we used the algorithm demonstrated
in [7] [8]. The peaks detected in Fig. 2a were then used
to calculate the HRV, herewith defined as the mean in the
difference in duration between consecutive heartbeats. Fig.
2b indicates that the subject was moving in the X and Y
directions, where the reference axis is shown in Fig. 1a. These
measurements are used to validated our hypothesis that HRV
will drop further when motion is involved.

Table I summarizes the results obtained and setups. Specif-
ically, after processing the raw data, the experimental setup
where the subject was sitting without any motion resulted in
the highest HRV value of 840 ms. The HRV value dropped
to 821 ms when the subject was mentally answering math
questions. The lowest HRV value of 798 ms was recorded
when the subject used a phone to answer the math questions.

These results align with our theoretical hypothesis. Accord-
ing to [4] [8], HRV is expected to drop when motion and/or

TABLE I: Summary of Experimental Setups

Activity Motion Cognitive
Load

HRV
(ms)

Sitting Still No No 840

Mentally Answering Math
Questions

No Yes 821

Answering Math Questions on
Phone

Yes Yes 798

CW are involved. Thus, sitting without involving any type of
motion is expected to yield the highest HRV as it involves
minimal to no motion and cognitive workload. Conversely,
the lowest HRV is expected when the subject is answering
math questions on the phone, as this involves both motion
and cognitive workload.

IV. CONCLUSION

In this work, we demonstrated the ability to decouple
changes in HRV from physical and cognitive exertion, as
collected via a portable MCG sensor. To do so, we created
three experimental setups, each with a different level of
physical motion and cognitive workload involved. Our results
demonstrate that changes in HRV can be tracked and assigned
to motion, cognitive workload, or both. This outcome is very
crucial for CW quantification as it is essential to identify the
amount of mental effort exerted by a subject when performing
a task while eliminating the aspect of motion.
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