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Abstract—The human body naturally emits magnetic fields
whose detection is vital for diagnosing various health conditions.
In our lab, we have previously demonstrated a wearable sensor
that detects the magnetic field of the heart. Unfortunately, the
sensed bio-magnetic signals are usually very weak, resulting in a
noisy signal. In this work, we overcome this limitation by propos-
ing a method that denoises and reconstructs a semi-periodic
bio-magnetic signal using its analytical model. The approach
is based on segmenting the signal into several windows, and
then averaging the magnitude of the Discrete Fourier Transform
(DFT) of each window. Once that is complete, phase retrieval
is done on the signal’s derived analytical model to reconstruct
the noise-free signal. Simulation results show that the proposed
approach achieves an error of less than 5.71% with SNR= —7.45
dB when compared to a signal that is perfectly periodic. The
proposed approach is expected to have significant impact on the
detection of bio-magnetic signals that can be obtained in a non-
contact and non-invasive manner but suffer from noise.

Index Terms—Bio-Magnetic signals, Magnetocardiography
(MCG), Windowed Discrete Fourier transform (WDFT).

I. INTRODUCTION

The flow of ionic current through the human body results
in naturally emanated bio-magnetic fields radiated by the
muscles, heart, brain, nerves, and more [1] [2]. These signals
provide a great advantage when it comes to diagnostics as they
can be retrieved in a non-contact and non-invasive manner.
They also propagate unaltered through the biological tissues
that are not magnetic in nature. However, bio-magnetic fields
are extremely weak, making their sensing very challenging [3].

For example, in the field of MagnetoCardioGraphy (MCQG),
state-of-the-art sensors entail Super Conducting Quantum
Interference Devices (SQUIDs) and Atomic Magnetometers
(AMs). These devices are extremely sensitive and, thus, able
to detect weak magnetic fields. That is, they result in a signal
with high Signal-to-Noise ratio (SNR) [4]. However, these
devices have several limitations: they operate at very low
temperatures (achieved by liquid helium cooling systems); are
highly expensive, bulky, and sophisticated to fabricate; and/or
require shielding [5] [6].

To overcome these limitations, we have recently demon-
strated a portable MCG sensor that does not require shielding;
is low-cost (in the order of tens of dollars) and simple to
fabricate; and does not require shielding. The sensor design
is detailed in [2], but, in brief, it consists of an array of 8
coils that capture the heart’s magnetic field via Faraday’s law.
However, when it comes to SNR, our sensor is not as sensitive
as SQUIDs or AMs, resulting in a captured signal that is noisy.

In [7] [8], we reported an algorithm that was capable of
locating the heartbeats in the MCG signal obtained through
our sensor. Although promising results were achieved, the
algorithm assumed a constant period between consecutive
heartbeats. However, this is not the case as the heartbeats vary
in duration due to several physiological factors. In this work,
we propose a time-invariant method of detecting the heartbeats
in the MCG signal, i.e, the proposed method is unaffected by
the varying period between consecutive activations within a
signal. Notably, the method is suitable for high-noise envi-
ronments, such as those encountered in bio-magnetic signal
detection. Without loss of generality, the approach applies to
any semi-periodic bio-magnetic signal, besides MCG.

II. PROPOSED SIGNAL PROCESSING APPROACH

Let z[l] = z(IT) represent samples of a (bio-magnetic)
periodic signal, defined as:

M
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where u[l] = Z?Zl Ajexp{—(l — 6;)?/o3} for all j €
[1,...,5], Ts is the sampling period, and T}, is the signal’s
period. It is important to note that u[l] is an example, and the
method is not restricted to this particular model. Since 430
includes 99.7% of the signal’s power, the sampling period is
chosen such that Ty < 1/B := min;60; where B denotes the
effective bandwidth of the signal. In this example, the pulses
of Eq. (1) are included at synchronized locations, thus, simple
averaging can provide a denoised estimate of the pulse shape.
However, this is not the case for some bio-magnetic signals.
In this case, the updated signal model is defined as:

M
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where 7; is the random shift, and n[l] is the noise. In this
case, simple averaging would not be beneficial. One would
argue that correlation can be used to synchronize the pulses
across the segments. However, this will not be effective in
low SNR regimes, which is the case for bio-magnetic signals.
Therefore, we propose the following approach. The first step
in our method is to segment Z[{] into windows where each
window contains one pulse. Then, Discrete Fourier Transform
(DFT) is applied to each window to convert the signal into
the frequency domain. Once complete, the DFT magnitude
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Fig. 1. Pulses of constant T}, (z[l] in blue) and varying T}, with noise (2[I] in red).

of each window is taken and averaging is finally performed
over all windows to obtain Z [k]. This process ensures that
noise gets averaged out across the signal despite the varying
shifts {7;},. Given the denoised Z[k], multiple algorithms
can then be applied to retrieve the phase and reconstruct the
original noiseless signal.

III. RESULTS

Fig. 1 shows example signal models for Eq. (1) and Eq. (2),
representing MCG signals. That is, Z[!] in Fig. 1 (in red) has
random shifts between consecutive pulses, whereas z[l] (in
blue) has a constant duration (i.e., T,,) between consecutive
pulses. To obtain the denoised DFT version of the signal,
as discussed in Section II, we define the unit amplitude
window w[l] supported on l € {0,1,..., N —1}, and calculate
the windowed DFT (WDFT) as Z[k,A] = leigl Z[lw[l —
Alexp{—i2nkl/N}, for k € {0,...,N — 1}, for a window
of size N =T, /T starting at A. In turn, the average Fourier

transform is:
M
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The same process can be used to define Z[k] from z[l]. The
reasoning behind using Eq. (3) is two fold. The DFT mag-
nitude is invariant under unknown time shifts and averaging
helps reduce the noise level. The resulting Z[k] and Z|[k]
signals are shown in Fig. 2. It is evident that even though Z[I]
had much higher noise levels than that of z[l], the obtained
average magnitude of the DFT of the segments of both signals
overlap. To check the percentage of error between the obtained
results, the normalized euclidean distance, obtained according
to

[2[0} — Z[0],...,Z[[2NB/F,]] — Z[[zNB/an]

Err = H 2

11Z[0], ..., Z[[2N B/Fs]]]ll, @
resulted in an error less than 5.71% when SNR= —7.45 dB.
IV. CONCLUSION

In this paper, we proposed an algorithm capable of de-
noising and reconstructing noisy, semi-periodic bio-magnetic
signals (such as MCG signals) using an analytical model. A
simulation study showed that the approach achieves a percent-
age error of less than 5.71% when compared to a perfectly
periodic signal. In our future work, we will be applying this
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Fig. 2. Average magnitude of the DFT of the segments of z[l] denoted by
Z k] in blue and Z[I] denoted by Z[k]| in red.

approach on the analytical model of the MCG signal obtained
through a portable sensor reported in our previous work. Once
this process is complete, a parametric model-based phase
retrieval method can be applied to reconstruct the noise-free
signal by retrieving the pulse parameters (amplitudes, time
shifts, and dilation values).
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