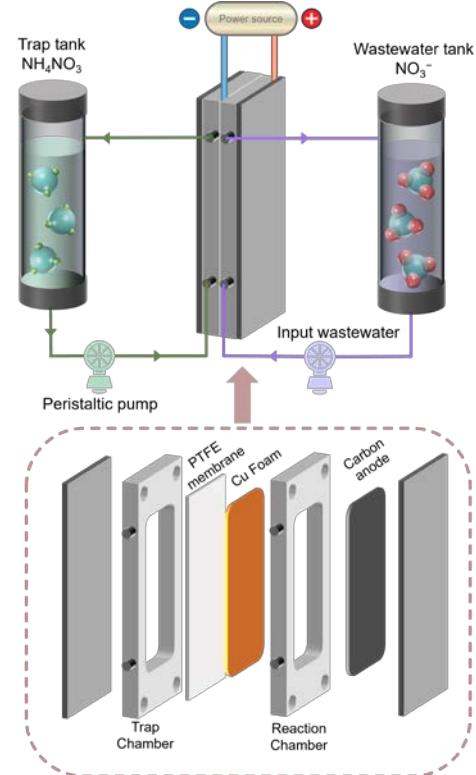


Ammonia Recovery from Wastewater containing Nitrate and/Ammonia using Integrated Electrochemical Membrane Flow Reactor


Jiahe Zhang¹, Jianan Gao¹, Wen Zhang^{1,2*}

¹Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102

²Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102

The Haber-Bosch process has long been employed to produce industrial ammonium for fertilization, which consumes fossil fuels to drive the thermodynamically unfavorable reaction between nitrogen (N_2) and hydrogen (H_2) at high pressures and temperatures. Meanwhile, the extensive use of fertilizers and industrial waste streams causes eutrophic water pollution (e.g., with high nitrate/nitrite content). Conventional biological nitrogen removal involves energy intensive nitrification and denitrification processes ($\sim 11.7\text{--}12.5\text{ kWh}\cdot\text{kg-N}^{-1}$) that eventually converts all nitrogen species into nitrogen gas. Clearly, shortening the nitrogen removal processes by converting wastewater nitrate into NH_3 can potentially reduce the energy and carbon footprints and enable nutrient recovery and reuse/recycle. This study demonstrates for the first prototype electrified membrane system for synchronizing electrochemical NO_3^- reduction and upcycling to NH_3 without any external chemical addition. Unlike those widely reported sacrificial half-reactions in the electrochemical nitrogen recovery, a paired electrolysis was employed to enable proton and hydrogen transfer between cathodic and anodic chambers to minimize energy consumption and avoid acid/base use for NH_3 capture and conversion. This study will demonstrate an electrified membrane made of a $CuO@Cu$ foam and a polytetrafluoroethylene (PTFE) membrane for reducing NO_3^- to NH_3 and upcycling NH_3 into $(NH_4)_2SO_4$, a liquid fertilizer readily for use. A paired electrolysis process was achieved under a partial current density of $63.8\pm4.4\text{ mA}\cdot\text{cm}^{-2}$ on the cathodic membrane, which removed 99.9% NO_3^- in the feed (150 mM NO_3^-) after 5 h operation with a NH_3 recovery rate of 99.5%. A recovery rate and energy consumption of $3100\pm91\text{ g}\cdot(NH_4)_2SO_4\cdot m^{-2}\cdot d^{-1}$ and $21.8\pm3.8\text{ kWh}\cdot\text{kg}^{-1}\cdot(NH_4)_2SO_4$ almost outcompetes the industrial ammonia production cost in the Haber-Bosch process. Density functional theory (DFT) calculations unraveled that the in situ electrochemical conversion of Cu^{2+} into Cu^{1+} provides high dynamic active species for NO_3^- reduction to NH_3 . Additionally, a pilot-scale electrocatalytic reactor with an anode contact area of 0.25 m^2 has been fabricated and tested using real wastewater (e.g., RO retentate, ion exchange backwash brine, and ammonia-laden landfill leachate) to recover ammonia. Some major results show when 1 gallon of real RO wastewater (containing 10 mM NO_3^- and 10 mM NH_4^+) is fed into the system, 7.87 mM of NH_3 can be converted and recovered after 100 minutes of operation. Overall, this research highlights a promising sustainable approach to ammonia recovery that not only reduces energy consumption and carbon emissions but also enables nutrient recycling, offering a viable alternative to conventional industrial processes like the Haber-Bosch.

Keywords:

