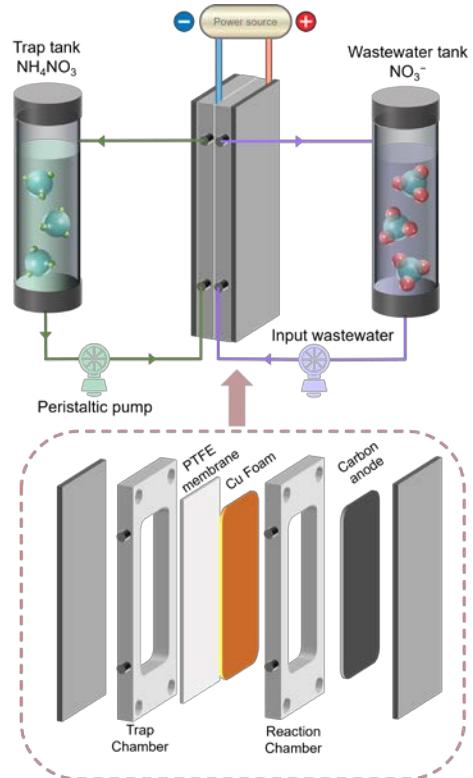


Ammonia Recovery from Wastewater using Integrated Tunable Electrochemical Systems


Jiahe Zhang¹, Jianan Gao¹, Wen Zhang^{1,2*}

¹Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102

²Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102

The Haber-Bosch process has long been employed to produce industrial ammonium for fertilization, which consumes fossil fuels to drive the thermodynamically unfavorable reaction between nitrogen (N₂) and hydrogen (H₂) at high pressures and temperatures. Meanwhile, the extensive use of fertilizers and industrial waste streams causes eutrophic water pollution (e.g., with high nitrate/nitrite content). Conventional biological nitrogen removal involves energy intensive nitrification and denitrification processes (~11.7–12.5 kWh·kg-N⁻¹) that eventually converts all nitrogen species into nitrogen gas. Clearly, shortening the nitrogen removal processes by converting wastewater nitrate into NH₃ can potentially reduce the energy and carbon footprints and enable nutrient recovery and reuse/recycle. This study demonstrates for the first prototype electrified membrane system for synchronizing electrochemical NO₃⁻ reduction and upcycling to NH₃ without any external chemical addition. Unlike those widely reported sacrificial half-reactions in the electrochemical nitrogen recovery, a paired electrolysis was employed to enable proton and hydrogen transfer between cathodic and anodic chambers to minimize energy consumption and avoid acid/base use for NH₃ capture and conversion. This study will demonstrate an electrified membrane made of a CuO@Cu foam and a polytetrafluoroethylene (PTFE) membrane for reducing NO₃⁻ to NH₃ and upcycling NH₃ into (NH₄)₂SO₄, a liquid fertilizer readily for use. A paired electrolysis process was achieved under a partial current density of 63.8±4.4 mA·cm⁻² on the cathodic membrane, which removed 99.9% NO₃⁻ in the feed (150 mM NO₃⁻) after 5 h operation with a NH₃ recovery rate of 99.5%. A recovery rate and energy consumption of 3100±91 g-(NH₄)₂SO₄·m⁻²·d⁻¹ and 21.8±3.8 kWh·kg⁻¹-(NH₄)₂SO₄ almost outcompetes the industrial ammonia production cost in the Haber-Bosch process. Density functional theory (DFT) calculations unraveled that the in situ electrochemical conversion of Cu²⁺ into Cu¹⁺ provides high dynamic active species for NO₃⁻ reduction to NH₃. Additionally, a pilot-scale electrocatalytic reactor with an anode contact area of 0.16 m² has been fabricated and tested using real wastewater (e.g., RO retentate, ion exchange backwash brine, and ammonia-laden landfill leachate) to recover ammonia. Key results indicate that when 1 gallon of RO retentate (obtained from Yuma Desalination Plant, Arizona) containing 10 mM NO₃⁻ and 10 mM NH₄⁺ is fed into the system, approximately 7.87 mM of NH₃ is converted and successfully recovered after 100 minutes of operation. Additionally, testing with wastewater of higher NO₃⁻ concentration (~211 mM) demonstrated the system's effectiveness, achieving the removal of ~47 mM NO₃⁻ during a 120-minute operation, highlighting its robust performance. Overall, this research highlights a promising sustainable approach to ammonia recovery that not only reduces energy consumption and carbon emissions but also enables nutrient recycling, offering a viable alternative to conventional industrial processes like the Haber-Bosch.

Keywords:

