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Abstract
We prove several results on linear codes achieving list-recovery capacity. We show that random

linear codes achieve list-recovery capacity with constant output list size (independent of the alphabet
size and length). That is, over alphabets of size at least ℓΩ(1/ε), random linear codes of rate R are
(1 − R − ε, ℓ, (ℓ/ε)O(ℓ/ε))-list-recoverable for all R ∈ (0, 1) and ℓ. Together with a result of Levi,
Mosheiff, and Shagrithaya, this implies that randomly punctured Reed–Solomon codes also achieve
list-recovery capacity. We also prove that our output list size is near-optimal among all linear codes:
all (1 − R − ε, ℓ, L)-list-recoverable linear codes must have L ≥ ℓΩ(R/ε).

Our simple upper bound combines the Zyablov-Pinsker argument with recent bounds from
Kopparty, Ron-Zewi, Saraf, Wootters, and Tamo on the maximum intersection of a “list-recovery
ball” and a low-dimensional subspace with large distance. Our lower bound is inspired by a recent
lower bound of Chen and Zhang.
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1 Introduction

In this work, we study list-recovery for random linear codes and random Reed–Solomon
codes, proving near-optimal upper and lower bounds.

An (error correcting) code C is a subset of Σn for an alphabet Σ, which, in this work, is
always Fq for some prime power q. We study linear codes, which are subspaces of Fn

q . We
want codes to be large, meaning they have large rate R =

(
logq |C|

)
/n. We also want codes

to tolerate more errors. In the standard unique decoding setting, tolerating many errors
means that, for any vector z ∈ Fn

q , there is at most one codeword c ∈ C that agrees with z on
many coordinates.

We study a generalization of the unique-decoding problem known as list-recovery. In
list-recovery, we want that, for any ℓ × ℓ × · · · × ℓ combinatorial rectangle, there are few
codewords c that “agree” with this rectangle on many coordinates. Formally, a code C is
(ρ, ℓ, L)-list-recoverable if for any sets S1, . . . , Sn ⊂ Fq of size |Si| = ℓ, there are at most L

codewords c1, . . . , cL ∈ C such that ci ∈ Si for at least a (1 − ρ)n fraction of the coordinates.
The special case of (ρ, 1, 1) list-recoverability is the standard unique-decoding setting, and
the special case of (ρ, 1, L) list-recoverability is known as list-decodability.

List-recovery has motivations in coding theory, complexity theory, and algorithms. In
coding theory, list-recovery has been used as a tool to obtain efficient list-decoding algorithms
[25, 22, 28, 35, 31]. Also, list-recoverable random-linear codes — which we study in this work

© Ray Li and Nikhil Shagrithaya;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rli6@scu.edu
https://orcid.org/0000-0003-3441-2364
mailto:nshagri@umich.edu
https://orcid.org/0009-0006-7242-6416
https://doi.org/10.4230/LIPIcs...1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Near-Optimal List-Recovery of Linear Code Families

— are used as a building block in other coding constructions [18, 32]. In complexity theory,
list-recoverable codes find applications in constructions of other pseudorandom objects such
as extractors [49] and condensers [27]. In algorithms, they are also useful primitives in group
testing [33, 41] sparse recovery [12], and streaming algorithms [37, 8].

The list-recovery capacity theorem states that ρ = 1 − R is the optimal tradeoff between
the error radius ρ and the code rate R. (see e.g., [23, 43]). That is, below capacity ρ < 1 − R,
there exist (p, ℓ, Oℓ(1))-list-recoverable codes of rate R, and above capacity ρ > 1 − R, any
(ρ, ℓ, L)-list-recoverable code must have exponential list size L ≥ qΩ(n). The existence holds
because uniformly random codes of rate R (over sufficiently large alphabets q ≥ ℓΩ(1/ε)) are
(1 − R − ε, ℓ, O(ℓ/ε))-list-recoverable with high probability.

We wish to understand what kinds of codes achieve list-recovery capacity. A number
of explicit code constructions are known to achieve list-recovery capacity, including Folded
Reed–Solomon codes, Multiplicity codes, Folded Algebraic–Geometry codes. Additional
techniques — subspace evasive sets, subspace designs, and expander techniques — can be used
to improve the output list-size L and alphabet size q [22, 35, 28, 29, 30, 32, 31, 19, 9, 36, 50]
(see Table 1 in [36], see also [48, 5] for even tighter list size bounds in the special case of
list-decoding).

Still, several fundamental questions remain open.
1. First, how list-recoverable is a random linear code? A random linear code is a random

subspace of Fn
q . All explicit constructions are based on linear codes (though many

are only linear over a subfield), so it is natural to wonder about list-recovery of a
“typical” linear code. As list-recovery is a pseudorandom property, this question also
addresses the deeper geometric question of “how similar is a random subspace to a
random set over Fn

q ?”, which is well-studied in the more specific context of list-decoding
[52, 10, 17, 7, 51, 44, 45, 46, 39, 20, 1].

2. Second, how list-recoverable are Reed–Solomon codes? The above constructions all
generalize the Reed–Solomon code, the most fundamental polynomial evaluation code.
Can Reed–Solomon codes themselves achieve list-recovery capacity? Given recent progress
that showed the special case that Reed–Solomon codes achieve list-decoding capacity
[4, 15, 1], this general case of list-recovery has been an obvious and tantalizing open
question.

3. Lastly, is there a fundamental separation between linear and nonlinear codes for list-
recovery? On one hand, there is no apparent separation for the special case of list-
decoding, where random linear codes are list-decodable to capacity with list-size O(1/ε)
[17, 51, 39, 20], just like uniformly random codes. On the other hand, uniformly random
codes are list-recoverable with list size O(ℓ/ε), but all known linear constructions require
output list size at least ℓΩ(1/ε), and this lower bound has been proven in various specific
settings [20, 38, 5].

We answer all three questions. We show that random linear codes are list-recoverable
to capacity with provably near-optimal output list size. By a recent result of [38], this
implies that randomly punctured Reed–Solomon codes are list-recoverable to capacity with
near-optimal output list size. Lastly, we prove a fundamental separation between linear
and non-linear codes by showing that all linear codes of rate R must have list-size at least
L ≥ ℓΩ(R/ε).

1.1 Our results
We now state our results in the context of prior work.
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Citation Radius ρ input list size output list size

[52, 16] 1 − R − ε ℓ qO(ℓ/ε)

[46] 1 − R − ε ℓ qO(log2(ℓ/ε))

This work 1 − R − ε ℓ
(

ℓ
ε

)O(ℓ/ε)

Table 1 List-recovery of Random Linear codes

1.1.0.1 List recovery for Random Linear Codes.

Several known arguments show that random linear codes achieve list-recovery capacity.
A random linear code is a code generated by a uniformly random generator matrix G ∈
Fn×k

q . First, the Zyablov-Pinsker argument [52] adapted to list-recovery shows that random
linear codes of rate R over alphabet q ≥ ℓΩ(1/ε) are (1 − R − ε, ℓ, qO(ℓ/ε))-list-recoverable
(see, for example [16, Lemma 9.6]). Rudra and Wootters [46] improved the output list
size to qO(log2(ℓ/ε)), showing random linear codes of rate R over alphabet q ≥ ℓΩ(1/ε) are
(1 − R − ε, ℓ, qO(log2(ℓ/ε)))-list-recoverable. We improve the output list size to be independent
of the alphabet size q.

▶ Theorem 1 (Theorem 8, Informal). For all R, ε ∈ (0, 1), and q ≥ ℓΩ(1/ε) a random linear
code of rate R is

(
1 − R − ε, ℓ,

(
ℓ
ε

)O(ℓ/ε))-list-recoverable with high probability.

Our list size improves on the prior bounds when q ≥ ℓΩ(ℓ/ε), which covers most alphabet
sizes (q ≥ ℓΩ(1/ε) is needed to achieve list-recovery capacity), and the improvement is more
significant when q is larger. This improvement to an alphabet-independent output list size is
critical for Theorem 2 below (see Remark 3). As we show in Theorem 5, this output list size
is near optimal among all linear codes.

Our proof is simple, combining the Zyablov–Pinsker [52] argument with recent analyses
of the list-recovery of explicit constructions like Folded Reed–Solomon codes. In particular,
the Zyablov–Pinsker argument [52] shows that a random linear code can be list-recovered so
that, with high probability the output list always lies in a subspace of dimension at most
O(ℓ/ε). Naively, this implies an output list size bound of qO(ℓ/ε). However, recent analyses
of list-recovering explicit codes [36, 50] showed that subspaces of dimension D with good
distance — random linear codes are well known to have good distance with high probability

— can have at most (ℓ/ε)O(D) points inside an ℓ-list-recovery ball, thus giving our improved
output list size. We also show that we get the best possible output list size for our proof
technique, in the sense that, for any linear code, there are output lists that span a subspace
of dimension at least Ω(ℓ/ε) (see Proposition 13).

We believe that the simplicity of our proof is a strong indicator that we have found
the right way to approach the problem, which had previously resisted various other proof
techniques.

1.1.0.2 List recovery for Random Reed-Solomon Codes.

Reed–Solomon codes [42] are the most fundamental evaluation codes. A Reed–Solomon code
is given by n evaluation points α1, α2, . . . , αn in a finite field Fq, and a degree k < n, and is
defined as

RSn,k(α1, . . . , αn) := {(f(α1), . . . , f(αn)) | f ∈ Fq[x], deg f < k} .
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List-decoding and list-recovery of Reed–Solomon codes are well-studied questions. The
seminal Guruswami–Sudan [25] algorithm showed that Reed–Solomon codes are list-decodable
and list-recoverable up to the Johnson radius 1 −

√
Rℓ [34, 26]. Since then, there has been

much interest in determining whether Reed–Solomon codes are list-decodable and list-
recoverable beyond the Johnson bound, and perhaps even up to capacity ρ = 1 − R (the
capacity is 1−R for both list-decoding and list-recovery). Initially, there was evidence against
this possibility [21, 6, 2], suggesting that Reed–Solomon codes could not be list-decoded or
list-recovered much beyond the Johnson bound. Since then, an exciting line of work has
shown, to contrary, that Reed–Solomon codes can beat the Johnson bound for list-decoding
[44, 47, 11, 13, 14, 4, 15, 1], and, in fact, can be list-decoded up to capacity [4, 15, 1]. All of
these works studied randomly punctured Reed–Solomon codes, where α1, . . . , αn are chosen
at random from a larger field q.

Despite the exciting progress for list-decoding, there has been comparatively little progress
on list-recovery. Lund and Potukuchi [40] and Guo, Li, Shangguan, Tamo, and Wootters
[14] proved that (randomly punctured) Reed–Solomon codes are list-recoverable beyond the
Johnson bound in the low-rate regime: [40] shows (ρ, ℓ, L)-list-recovery for ρ ≤ 1 − 1/

√
2,

L = O(ℓ) and rate Ω
(

1√
ℓ log q

)
, and [14] shows

(
Ω
(

ε√
ℓ log(1/ε)

)
, ℓ, O(ℓ/ε)

)
-list-recovery for

rate 1 − ε Reed–Solomon codes. Both improve on the Johnson radius of O
( 1

ℓ

)
in the low

rate setting.
In [38], Levi, Mosheiff and Shagrithaya showed that random Reed–Solomon codes and

random linear codes are locally equivalent, meaning that both random code families achieve
identical rate thresholds for all “local properties”, which include (the complements of) list-
decoding and list-recovery. Thus, our result for list-recovery of random linear codes transfers
to random Reed–Solomon codes as well.

▶ Theorem 2 (Theorem 11, Informal). For all R, ε ∈ (0, 1), a randomly punctured Reed–
Solomon code of length n over alphabet size q = n · (ℓ/ε)(ℓ/ε)O(ℓ/ε) , of rate R is(

1 − R − ε, ℓ,
(

ℓ
ε

)O(ℓ/ε))-list-recoverable with high probability.

We note that the problem of determining optimal list sizes for random Reed–Solomon
codes across all rates R ∈ (0, 1) has proven resistant to a variety of previous approaches.
The simplicity of our proof suggests that the method presented here may offer a promising
direction for completely resolving this question.

▶ Remark 3. We note that in order to use the equivalence result from [38], it is crucial
that the upper bound on the list size be independent of the alphabet size, as guaranteed by
Theorem 1. Hence, previous results on list size cannot be used with the equivalence result.

▶ Remark 4. A fruitful line of work [22, 35, 28, 9, 36, 50] has culminated in output list sizes
of O

(
ℓ
ε

)O(log(ℓ)/ε) for various explicit list-recoverable codes such as Folded Reed–Solomon
codes and Multiplicity codes. This list size is better than our list size of ( ℓ

ε )O(ℓ/ε) by roughly
a factor of ℓ/ log(ℓ) in the exponent. However, our results are still interesting because,
as described above, the list-recovery of random linear codes and Reed–Solomon codes are
fundamental questions, and also because our results yield linear codes for list-recovery and
use much smaller alphabet sizes.

1.1.0.3 Lower bounds for list-recovery.

We now discuss impossibility results for list-recovery. An early impossibility result of
Guruswami and Rudra in [21] showed that, in the setting of zero-error list-recovery (ρ = 0),
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many full length Reed–Solomon codes of rate R require R ≤ 1/ℓ in order to have poly n

output list size, so many full length Reed–Solomon codes cannot be list-recovered beyond
the Johnson bound — note this does not contradict Theorem 2, as we consider randomly
punctured, as opposed to full length (n = q) codes. More recently it was shown that achieving
list-recovery capacity requires exponential list size ℓΩ(1/ε) for particular codes: random linear
codes in the high-rate zero-error (ρ = 0) regime [20], random linear codes in general parameter
settings [38], and for Reed–Solomon codes, Folded Reed–Solomon codes, and Multiplicity
codes in general parameter settings [5].

Inspired by the lower bound in [5], we show that any linear code list-recoverable to
capacity must have output list size at least ℓΩ(R/ε).

▶ Theorem 5 (Theorem 12, Informal). Over any field, any linear code of rate R that is
(1 − R − ε, ℓ, L) list-recoverable must satisfy L ≥ ℓΩ(R/ε).

One takeaway from Theorem 5 is that our list sizes of (ℓ/ε)O(ℓ/ε) in Theorem 1 and
Theorem 2 are near-optimal. Additionally, Doron and Wootters [8] asked whether there were
explicit list-recoverable codes with, among other desired guarantees, output list size L = O(ℓ).
Our result shows this is not possible with any linear code. Lastly, our lower bound shows
separation between non-linear and linear codes for list-recovery, which is perhaps surprising
given that no such separation exists for list-decoding.

We point out that, for list-decoding (ℓ = 1), our lower bound is trivial (L ≥ 1), so it
does not contradict the recent results that random linear codes, randomly punctured Reed–
Solomon codes, and randomly punctured Algebraic-Geometry codes achieve list-decoding
capacity with output list size O(1/ε) [4, 15, 1, 3].

2 Preliminaries

For a prime power q, let Fq be the finite field of order q. Let [n] denote the set {1, . . . , n}.
For a given vector space V , let L(V ) denote the set of all subspaces of V . For a given set S,
let 2S denote the power set of S. For a vector v, let v[i] denote its ith entry.

A code C ⊆ Fn
q is said to be linear if it is a linear subspace, and said to have rate R ∈ (0, 1)

if R = dim(C)/n. We say C has relative distance δ ∈ (0, 1) if ∀c ∈ C, wt(c) ≥ δ · n, where
wt(c) denotes the number of non-zero entries in the codeword c. A matrix G ∈ Fn×Rn

q

containing linearly independent columns is said to be the generator matrix of C if every
codeword c ∈ C can be constructed using some linear combinations of the columns in G. C is
said to contain a set of vectors s1, . . . sb ∈ Fn

q if si ∈ C for every i ∈ [b].
For a vector x ∈ Fn

q and sets S1, . . . , Sn ⊆ Fq, the agreement set agr(x, S1, . . . , Sn) is
defined as:

agr(x, S1, . . . , Sn) := {i ∈ [n] | x[i] ∈ Si} .

A ρ-radius ℓ-list-recovery ball B(ρ, S1 × · · · × Sn) is given by input lists S1, . . . , Sn ⊆ Fq of
size ℓ, and is defined to be

B(ρ, S1 × · · · × Sn) =
{

x ∈ Fn
q : agr(x, S1 × · · · × Sn) ≥ (1 − ρ)n

}
. (1)

We can alternatively define (ρ, ℓ, L)-list-recovery using the above definition: a code C ⊆ Fn
q is

(ρ, ℓ, L)-list-recoverable if every ρ-radius ℓ-list-recovery ball B contains at most L codewords.
For 0 < R < 1, a random linear code (RLC) of rate R is a linear code whose generator

matrix G ∈ Fn×Rn
q is a matrix whose entries are chosen uniformly at random from Fq,

independently of one another. For α1, . . . , αn ∈ Fq, we use RS (α1, . . . , αn; Rn) to denote
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the Reed–Solomon (RS) code of rate R obtained by evaluating polynomials of degree < Rn

on evaluation points α1, . . . , αn ∈ Fq. We say this is a random RS code if the evaluation
points have been chosen uniformly at random and independently of one another1.

2.1 Local Coordinate-Wise Linear (LCL) Properties
We now introduce the machinery in [38] that connects random linear codes to (randomly
punctured) Reed–Solomon codes. A code property Pn for codes of block length n in Fn

q is
simply a family of codes in Fn

q . We say that a code Cn ⊆ Fn
q satisfies Pn if Cn ∈ Pn. Denoting

P := {Pn}n∈N, we say that an infinite family of codes Cn := {Cn}n∈N satisfies P if Cn ∈ Pn

for every n ∈ N. In this paper, we focus on local, monotone-increasing code properties. A
local code property, informally speaking, is defined by the inclusion of some bad set. A
monotone-increasing code property is one for which the following is true: if C satisfies P , then
every C′ for which C′ ⊇ C holds, also satisfies P. An example of local, monotone-increasing
code property is the complement of (ρ, L)-list-decodability, defined as the family of all codes
that contain at least one set of L + 1 distinct vectors, all lying within a Hamming ball of
radius ρ.

For a locality parameter b ∈ N, an ordered tuple of subspaces V = (V1, . . . , Vn), where
Vi ∈ L(Fb

q) for each i ∈ [n] is defined to be a b-local profile. Note that V ∈ L(Fb
q)n. We say

that a matrix A ∈ Fn×b
q is contained in V if the ith row of A belongs to Vi, for all i. A code

C ⊆ Fn
q is said to contain V if

(a) there exists a matrix A ∈ Fn×b
q with distinct columns such that the set of columns of A

is contained in C, and
(b) A is contained in V.
For a family of b-local profiles {Fn}n∈N, where Fn ⊆ L

(
Fb

q

)n, we define a b-local coordinate
wise linear (b-LCL) property P := {Pn}n∈N as follows:

Pn =
{

C ⊆ Fn
q | ∃V ∈ Fn such that C contains V

}
.

The complement of (ρ, ℓ, L)-list-recoverability is a (L + 1)-LCL property. This is proven
in [38, Proposition 2.2], but we provide a justification in this paragraph. Every bad set
of vectors lying within a given ρ-radius ℓ-list-recovery ball agrees with some input lists
S1, . . . , Sn ⊆ Fq at a lot of coordinates. This implies that the vectors agree with one another
at a lot of coordinates as well, and once we arrange the bad vector sets as columns in a
matrix of dimension n × (L + 1), we can specify these agreements as linear constraints on
the rows of such matrices. Formally, the property is defined by a family of (L + 1)-local
profiles that we now describe. For every n ∈ N, we define Fn by describing the (L + 1)-local
profiles V ∈ L(FL+1

q )n that constitute it. Let S(1−ρ) ⊆
(
2[n])L+1 denote the collection

of all L + 1-length tuples where each element is a subset of [n] of size exactly (1 − ρ)n.
Furthermore, let M[ℓ] := [ℓ]n×(L+1) denote the set of all matrices of dimension n × (L + 1)
having elements in [ℓ] 2. Then, for every s = (s1, . . . , s(L+1)) ∈ S(1−ρ), every M ∈ M[ℓ],
define V(s, M) = (V1, . . . , Vn) such that for every i ∈ [n],

Vi :=
{

r ∈ FL+1
q | ∀j, k ∈ [L + 1], r[j] = r[k] if (i ∈ sj) ∧ (i ∈ sk) ∧ (M [i, j] = M [i, k])

}
.

1 This is different from the usual model for random RS codes, where it is required that the random
evaluation points be distinct. However, it can be shown that both models behave similarly (refer to [38],
Appendix A for details).

2 Even though S(1−ρ) and M[ℓ] depend on n, we have suppressed this dependence in the notation for sake
of clarity.
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Note that each Vi is a subspace of F(L+1)
q , and therefore V(s, M) is a valid linear profile. We

can now define the associated family of linear profiles for the complement of (ρ, ℓ, L)-list-
recoverability:

Fn :=
{

V ∈ L
(
FL+1

q

)n | ∃s ∈ S(1−ρ), M ∈ M[ℓ], such that V = V(s, M)
}

.

Observe that

|FP | ≤
∣∣S(1−ρ)

∣∣ ·
∣∣M[ℓ]

∣∣ ≤
(

n

ρn

)(L+1)
· ℓ(L+1)n. (2)

In the same work, the authors also prove a threshold theorem for random linear codes
(RLCs) in relation to all LCL properties, and moreover, gave a complete characterization of
the rate threshold. Informally, the theorem says that RLCs of a sufficiently large alphabet
exhibit a sharp threshold phenomenon for all LCL properties. That is, for every LCL property
P, there exists a rate threshold RP such that RLCs of rate RP − ε satisfy P with high
probability, and RLCs of rate RP + ε do not satisfy P with high probability.

▶ Theorem 6 ([38], Theorem 3.1). Let P be a b-LCL property of codes in Fn
q and let

F ⊆ L
(
Fb

q

)n be a corresponding family of profiles. Let C ⊆ Fn
q be an RLC of rate R. Then,

there is some threshold rate RP for which the following holds.
1. If R ≥ RP + ε then Pr[C satisfies P] ≥ 1 − q−εn+b2 .
2. If R ≤ RP − ε then Pr[C satisfies P] ≤ |F| · q−εn+b2 .
3. In particular, if R ≤ RP − ε and q ≥ 2

2 log2 |F|
εn then Pr[C satisfies P] ≤ q− εn

2 +b2 .

The concept of LCL properties allows for “transfer type” theorems between random linear
codes and random RS codes. In more detail, for every reasonable LCL property (that is,
for every LCL property whose corresponding family of profiles is large), the rate thresholds
for random linear codes and random RS codes are the same. That is, any rate threshold
proved for LCL properties of RLCs also applies for random RS codes, and vice versa. For
our purposes, we only require one part of this result, which we formally state below.

▶ Theorem 7 ([38], Theorem 3.10 (part 1) (Threshold theorem for RS codes)). Let P be a
b-LCL property of codes in Fn

q , with associated local profile family FP ⊆ L
(
Fb

q

)n and (random
linear code) threshold rate RP . Let 0 < R′ < 1 and let C = RSFq

(α1, . . . , αn; R′n), and
α1, . . . , αn are sampled independently and uniformly from Fq. Assume that q > R′nb. Fix
ε′n ≥ 2b(b + 1). If R′ ≤ RP − ε′, then

Pr[C satisfies P] ≤ (2b − 1) ·
(

(4b)4bR′n

ε′q

) ε′n
2b

· |FP |. (3)

3 List-recovery of Random Linear Codes

In this section, we prove Theorem 1, that random linear codes achieve list-recovery capacity
with constant output list size. Formally, we show the following.

▶ Theorem 8. Fix 0 < R < 1, ε > 0 so that (1 − R − ε) > 0, ℓ ∈ N, and let q be a
prime power such that q ≥ max

(
ℓ

8R
ε +6, ℓ · 24/ε

)
. Let C ⊆ Fn

q be an RLC of rate R. Then
with probability at least 1 − 2q− εn

8 , C is ((1 − R − ε), ℓ, L)-list-recoverable with L satisfying
L ≤

( 2ℓ
ε

)2ℓ/ε.
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The theorem follows as a consequence of two lemmas. We first state both lemmas, and
then give the proof of Theorem 8 using them. The first lemma essentially states that any low
dimensional subspace with good distance has few points in a list-recovery ball. This lemma
appears in [36, 50]; we state the version from [50, Lemma 3.1].

▶ Lemma 9 ([50], see also [36]). For ε > 0 and ℓ ∈ N, let C ⊆ Fn
q be a linear code with

relative distance δ > ε/2 that is (δ − ε
2 , ℓ, L)-list-recoverable. Assume further that any output

list is contained in a subspace V ⊆ C of dimension r. Then the output list size L ≤
( 2ℓ

ε

)r.

The second lemma uses the Zyablov–Pinsker argument [52], showing that a random linear
code does not have too many linearly independent codewords within a list-recovery ball.

▶ Lemma 10. Fix 0 < R < 1, ε > 0 so that (1−R−ε) > 0, ℓ ∈ N, and let q be a prime power
such that q ≥ max

(
ℓ

8R
ε +6, ℓ · 24/ε

)
. Let C ⊆ Fn

q be an RLC of rate R. Then with probability

at least 1 − q− εnL
8 , for every input lists S1, . . . , Sn of size ℓ, the maximal linearly independent

subset of C within the (1 − R − ε) radius ℓ-list-recovery ball B ((1 − R − ε), S1 × · · · × Sn)
has size less than 2ℓ/ε.

Proof of Lemma 10. Denote ρ := 1 − R − ε and L := 2ℓ/ε. We also assume q is a multiple
of ℓ for simplicity of exposition, and note that the result holds in the general case as well. We
show that an RLC “avoids” all bad configurations with high probability. A bad configuration
is a set V of linearly independent vectors of size L such that there exist input lists S1, . . . , Sn

of size ℓ, so that V ⊆ B (ρ, S1 × · · · × Sn). We say that C contains a bad configuration V

if for every v ∈ V , v is also in C. If this condition is not satisfied, then we say that C does
not contain V . It is easy to see that if C contains no bad configurations, then the maximal
linearly independent subset of C within any ℓ-list-recovery ball of radius ρ has size less than
2ℓ/ε. Therefore we show that the probability of C containing a bad configuration is low.

Fix input lists S1, . . . , Sn of size ℓ, and let B := B (ρ, S1 × · · · × Sn) be the corresponding
ρ radius ℓ-list-recovery ball. The size of B is

(
n

ρn

)
· ℓ(1−ρ)n · qρn. The probability that a

particular configuration is bad is equal to the probability of the encodings of some L linearly
independent messages being inside B simultaneously, which is

(
|B|
qn

)L

. By a union bound
over at most qnℓ possible input lists and all L-sized linearly independent subsets of the
message vectors in FRn

q (there are at most qRnL such subsets), we have

Pr
C

[C contains a bad configuration] ≤

((
n

ρn

)
· ℓ(1−ρ)n · qρn

qn

)L

· qnℓ · qRnL

=
((

ℓ

q

)n

·
(

n

ρn

)
·
(q

ℓ

)ρn
)L

· qnℓ · qRnL

≤
((

ℓ

q

)n

· (q/ℓ)Hq/ℓ(ρ)n

)L

· qnℓ · qRnL

≤
(

(q/ℓ)−(1−Hq/ℓ(ρ))n
)L

· qnℓ · qRnL

≤
(

(q/ℓ)−(R+ 3ε
4 )n
)L

· qnℓ · qRnL (4)

= ℓ(R+ 3ε
4 )nL · q−(R+ 3ε

4 )nL · q
εnL

2 · qRnL

= ℓ(R+ 3ε
4 )nL · q− εnL

4

≤ q− εnL
8 .
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In Equation 4, we used q ≥ ℓ · 24/ε, and for the last inequality, we used q ≥ ℓ
8R
ε +6. This

implies that the probability with which C does not contain any bad configuration is at least
1 − q− εnL

8 . ◀

We now prove Theorem 8.

Proof of Theorem 8. Denote ρ := 1 − R − ε. Denote by E1 the event that for a RLC C
of rate R, the maximal linearly independent subset of C within every (1 − R − ε) radius
ℓ-list-recovery ball has size less than 2ℓ/ε. By Lemma 10, we know that E1 happens with
probability at least 1 − q− εnL

8 . Let E2 denote the event that a rate R RLC C has distance at
least 1 − R − ε

2 . By the Gilbert-Varshamov bound (see [24], Section 4.2), and because of the
fact that q ≥ ℓ · 24/ε ≥ 24/ε, E2 happens with probability at least 1 − q− εn

2 . Therefore we
have

Pr
C

[E1 ∧ E2] ≥ 1 − q− εnL
8 − q− εn

2 ≥ 1 − 2 · q− εn
8

When E1 and E2 occur simultaneously, the assumptions of Lemma 9 are satisfied by C with
r = 2ℓ/ε and δ = 1 − R − ε

2 , and therefore we see that

Pr
C

[∧
B

|C ∩ B| ≤
(

2ℓ

ε

)2ℓ/ε
]

≥ 1 − 2 · q− εn
8

where B is ranging over all (1 − R − ε) radius ℓ-list-recovery balls, and we are done. ◀

4 List-Recovery of Reed–Solomon codes

In this section, we will prove the following result, which says that random Reed–Solomon
codes are list-recoverable to capacity with constant output list size. The proof combines
Theorem 8 from the previous section with Theorem 6, the equivalence theorem from [38].

▶ Corollary 11. Fix 0 < R < 1, ε > 0 so that (1 − R − ε) > 0, ℓ ∈ N. Fix a constant ε′ > 0
such that ε′ < R, and denote L := ⌊

( 2ℓ
ε

)2ℓ/ε⌋. Let η > 0 be a constant, and let q be a prime
power satisfying q > (4(L+1))4(L+1)Rn

ε′ · 2
((log ℓ+2)(L+1)+η)·2(L+1)

ε′ . Then, a random RS code of
rate R − ε′ over Fn

q is (1 − R − ε, ℓ, L)-list-recoverable with probability at least 1 − 2−ηn.

Proof of Corollary 11. Denote L := ⌊
( 2ℓ

ε

)2ℓ/ε⌋ and b := L + 1. Let P be the b-LCL property
of not being (1 − R − ε, ℓ, L)-list-recoverable, and let RP be the corresponding (random
linear code) threshold rate. By Theorem 6, part 1 [38], we know that if C is an RLC of rate
R, then the following holds for every constant ε∗ > 0:

Pr[C satisfies P] < 1 − qε∗n+b2
=⇒ R < RP + ε∗

According to Theorem 8, a rate R RLC (having a sufficiently large alphabet size) satisfies
P only with probability at most 2q− εn

8 < 1 − qε∗n+b2 . Therefore, R < RP + ε∗ for every
ε∗ > 0, and so R ≤ RP .

We will now work with random RS codes having rate slightly less than R. Define
R′ := R − ε′ ≤ RP − ε′, take n to be large enough so that ε′n ≥ 2b(b + 1). Note that q >

Rnb > R′nb. Define C = RSFq
(α1, . . . , αn; R′n), where α1, . . . , αn are sampled independently

and uniformly from Fq. Upon denoting FP to be the local profile family associated with
property P , we see that the hypothesis of Theorem 7 [38] is satisfied, and therefore, Equation 3
is satisfied.
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Recall that we calculated an upper bound for |FP | in Equation 2, and so |FP | ≤(
n

(1−R−ε)n

)b · ℓbn. Substituting this bound on |FP | in Equation 3,

Pr[C satisfies P] ≤ (2b − 1) ·
(

(4b)4bR′n

ε′q

) ε′n
2b

· |FP |

≤
(

(4b)4bR′n

ε′q

) ε′n
2b

·
(

n

(1 − R − ε)n

)b

· ℓbn

≤
(

(4(L + 1))4(L+1)R′n

ε′q

) ε′n
2(L+1)

· 2(H2(1−R−ε)+1)·(L+1)n.

Because q > (4(L+1))4(L+1)R′n
ε′ · 2

((log ℓ+2)(L+1)+η)·2(L+1)
ε′ , we see that Pr[C satisfies P] ≤ 2−ηn.

Thus, C is (1 − R − ε, ℓ, L)-list-recoverable with probability at least 1 − 2−ηn. ◀

5 Any linear code needs output list-size ℓΩ(R/ϵ)

We now prove our lower bounds for list-recovery, that any linear code list-recoverable to
capacity needs output list size ℓΩ(R/ε).

▶ Theorem 12. Let R, ε ∈ (0, 1), ℓ be a positive integer, and n ≥ n0(ℓ, R, ε) be sufficiently
large. Let C ⊆ Fn be a linear code of rate R. If C is (1 − R − ε, ℓ, L)-list-recoverable, then
L > ℓ⌊R/ε⌋.

Proof. Let k := Rn be the dimension of the code. Let k′ =
⌈

ε
R · k

⌉
. Let m =

⌊
k−1
k′+1

⌋
. By

Gaussian elimination and permuting rows and columns, we may, without loss of generality
write the generator matrix of C as

G =



1
1

. . .
. . .

1
∗ ∗ · · · · · · ∗


(5)

where each ∗ is a length n − k vector. For i ∈ [k], let vi ∈ Fn denote the columns. By
rank-nullity, there exist vectors w0, . . . , wm−1 ∈ Fn such that wi is a linear combination of
vi·(k′+1)+1, . . . , v(i+1)·(k′+1) such that wi is not supported on indices k + 1, . . . , k + k′ (there
are k′ + 1 vectors and k′ indices). Now let wm = vk. Restricted to indices in [k + k′], vectors
w0, . . . , wm have pairwise disjoint supports: within indices [k + k′], for i = 0, . . . , m − 1,
vector wi is supported on i · (k′ + 1) + 1, . . . , (i + 1) · (k′ + 1) ≤ k − 1, and vector wm is
supported on k, . . . , k + k′.

Now fix ℓ arbitrary distinct values β1, . . . , βℓ ∈ Fq. Consider the output list L =
{
∑m

i=0 βri
wi : ri ∈ [ℓ]} to be all linear combinations of wi with coefficients from β1, . . . , βℓ.

The fact that the vectors w0, . . . , wm have pairwise disjoint supports on [k + k′] implies (i)
the vectors w0, . . . , wm are linearly independent, and so all vectors in L are distinct, and (ii)
the vectors in L can only take on one of ℓ values at any index in [k + k′]. Therefore, we can
choose input lists S1, . . . , Sk+k′ , each of size ℓ such that all codewords in L agree with all of
S1, . . . , Sk+k′ .
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Choosing the rest of the input lists arbitrarily, we see that if this code is (ρ, ℓ, L)
list-recoverable with radius ρ = (n − k − k′)/n < 1 − R − ε, then the list size satisfies
L ≥ ℓm+1 ≥ ℓ⌊R/ε⌋.3

◀

We also show that our Zyablov-Pinsker type argument in Theorem 1 (Lemma 10) is tight,
in the sense that any linear code must have Ω(ℓ/ε) linearly independent codewords in a
list-recovery ball.

▶ Proposition 13. Let R, ε ∈ (0, 1), ℓ be a positive integer, and n ≥ n0(ℓ, R, ε) be sufficiently
large. Let C be a linear code of rate R. Then there exists a (1 − R − ε) radius ℓ-list-recovery
ball B that contains at least ⌈(1 − R)ℓ/ε⌉ − 1 linearly independent elements of C.

Proof. Upon writing the generator matrix of C in the same form as described above in
the proof of Theorem 12, consider the first m := ⌈(1 − R)ℓ/ε⌉ − 1 < (1 − R)ℓ/ε columns
of the generator matrix. Denote these linearly independent column vectors by v1, . . . , vm.
Create input lists S1, . . . , Sk each of size ℓ that contain 0 and 1, but are otherwise arbitrary.
Then create lists Sk+1, . . . , Sn of size ℓ, each containing elements that are evenly distributed
so that they agree equally with each of v1, . . . , vm. Thus, each of v1, . . . , vm agrees with
S1, . . . , Sn on the first k, and on at least ⌊ ℓ

m · (n − k)⌋ > εn of the remaining coordinates.
Therefore, these vectors lie inside a (1 − R − ε)n-radius ℓ-list-recovery ball around S1, . . . , Sn,
as desired. ◀

6 Concluding remarks

We showed that random linear codes and Reed–Solomon codes are list-recoverable to capacity
with near-optimal output-list size. Several open questions remain.
1. What is the optimal output-list size for random linear codes and Reed–Solomon codes?

There is a gap between our upper bound of ( ℓ
ε )O(ℓ/ε) and the lower bound of ℓΩ(1/ε). We

surmise that the correct answer is closer to the lower bound.
2. As asked by Doron and Wootters [8], are there explicit list-recoverable codes with output

list size L = Oε(ℓ)? (and, even better, over alphabet size q = poly(ℓ)). We showed
(Theorem 5) that any such code must be nonlinear.

3. Our alphabet size for list-recovering Reed–Solomon codes (Theorem 2) is optimal in
that it is linear in n, but the constant is double-exponential in ℓ/ε. By contrast, for
list-decoding, the best known alphabet size for achieving capacity has an exponential-type
constant, 2poly(1/ε) · n [1]. Can our alphabet size be improved?
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3 m + 1 =
⌊

k+k′

k′+1

⌋
≥
⌊

k+ ε
R

k
ε
R

k+2

⌋
≥
⌊

R
ε

⌋
, where we used that k > 2R2/ε2.
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